
OPTIMIZATION

A hybrid genetic-particle swarm optimization algorithm for multi-
constraint optimization problems

Bosong Duan1 • Chuangqiang Guo1 • Hong Liu1

Accepted: 21 August 2022 / Published online: 17 September 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained

optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm

(GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to

make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main

body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best

value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is

used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out

of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point

crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm.

Finally, this paper uses a nonlinear constraint problem (Himmelblau’s nonlinear optimization problem) and three structural

optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design

problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm,

whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried

out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation,

operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in

finding the optimal value, convergence speed and time overhead.

Keywords Particle swarm optimization � Genetic algorithm � Multi-constraint optimization problem � Genetic-particle
swarm optimization algorithm

1 Introduction

In the fields of engineering and science, many practical

problems can be regarded as optimization problems. The

mathematical models of these problems are often compli-

cated. The traditional algorithms are limited in solving

these problems and cannot obtain ideal results (Garg 2016).

Therefore, a series of metaheuristic algorithms came into

being (Garg 2014); scholars around the world used their

optimization algorithms to solve multi-constraint opti-

mization problems in practical engineering. For example,

the improved gradient-based optimization algorithm

(IGBO) was used to accurately define the static model of

photovoltaic panel characteristics under various environ-

mental conditions (Abd Elaziz et al. 2022; Jamei et al.

2022); arithmetic optimization algorithm (AOA) and its

improved algorithms such as improved algorithm opti-

mization algorithm (IAOA), logarithmic spiral algorithm

optimization algorithm (LS-AOA), chaotic quasi-opposi-

tional arithmetic optimization algorithm (COAOA) were

applied to wind power prediction (Al-qaness et al. 2022),

optimized solar cell (Abbassi et al. 2022), power grid

design (Kharrich et al. 2022), thermal economy optimiza-

tion of shell-tube condenser with mixed refrigerant (Turgut

et al. 2022), control of electric system (Ekinci et al. 2022)

and other practical engineering problems; Hernan et al.

(2021) proposed DOA to solve the optimization problem of
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PID control parameters. Mirjalili et al. proposed WOA

(2016) and GWO (2014) to solve traditional engineering

problems such as tension/compression spring design; He

et al. (2004) and He and Wang (2007) proposed an

improved PSO to solve the optimization of multi-constraint

mechanical design problem; Dimopoulos (2006) used GA

to solve mixed-integer engineering design optimization

problems; Zhang et al. (2019) proposed an algorithm to

predict financial time series based on improved GA and

neural network.

Among the above optimization algorithms, the swarm

intelligence (SI) algorithm represented by PSO and the

evolutionary algorithm (EA) represented by GA are widely

used in practical engineering. Compared with various new

algorithms, GA and PSO have extremely distinct advan-

tages and disadvantages, such as GA has strong global

optimization capability, but it has no memory and is easy to

lose the optimal solution; moreover, the operation time is

long and the efficiency is low (Coello 2000; Coello and

Montes 2002); PSO has memory and high efficiency, but it

is easy to fall into local optimum (Liu et al. 2015;

Abdelhalim et al. 2019; Rahman et al. 2020). In view of the

complementary advantages and disadvantages of GA and

PSO, scholars are studying the hybrid algorithm of GA and

PSO, namely GPSO, hoping to integrate the advantages of

the two algorithms perfectly and get an algorithm that is

most suitable for solving problems in practical engineering

(Zhang 2021; Song 2018; Alrufaiaat and Althahab 2021;

Zhao et al. 2019; Guan et al. 2019; Guo et al. 2018).

However, the proposed GPSO is all serial algorithms, that

is, on the basis of PSO algorithm, PSO and GA are used to

update the particles at the same time. Although such GPSO

algorithm can solve the problem that the traditional PSO is

easy to fall into local optimum in the iterative process, due

to the serial connection of GA, there are also problems

such as the decrease of optimization efficiency and the

large operation overhead.

Aiming at the above problems in the existing GPSO

algorithm, this paper fully combines the efficiency of PSO

with the global optimization ability of GA and proposes a

new parallel GPSO optimization algorithm to better solve

the multi-constrained optimization problem. This algorithm

takes PSO as the main body, and GA as a means of

updating particles in parallel to complete the optimization

task. The parallel relationship refers to that when the

algorithm does not fall into local optimum, PSO is used to

update the particles alone. When the algorithm falls into

local optimum, GA is used to select, crossover and muta-

tion of the particles alone to update the particles, which

helps the algorithm jump out of local optimum. Once the

algorithm jumps out of local optimum, PSO is continued to

be used for optimization. Since PSO has memory, GA does

not destroy the found optimal value. The parallel structure

gives full play to the advantages of PSO efficiency and GA

global optimization ability, avoids the disadvantages of

PSO easily falling into local optimum and GA low opti-

mization efficiency. Moreover, to solve the multi-con-

strained optimization problem better and faster, this GPSO

uses adaptive inertia weight, adaptive mutation parameters

and multi-point crossover operation between particles and

pbest to improve the global optimization ability of the

algorithm. In Sect. 4, a classical nonlinear constrained

optimization problem and three classical structural opti-

mization problems are used to test the performance of the

algorithm. The results show that the proposed GPSO can

perform very well in solving multi-constrained optimiza-

tion problems. The following points can summarize the

main contributions of the paper:

• A new parallel GPSO algorithm is proposed, which

fully integrates the efficiency of PSO and the global

optimization ability of GA.

• Evaluation the proposed GPSO algorithm’s efficiency

and its performance on Himmelblau’s nonlinear opti-

mization problem.

• Evaluation of the proposed GPSO algorithm’s effi-

ciency and its performance on the structural optimiza-

tion problems (pressure vessel design problem, welded

beam design problem and gear train design problem).

• In order to verify the optimization performance of the

proposed GPSO algorithm, the algorithm is compared

with the latest GPSO algorithm and several other latest

algorithms. The performance evaluation of the pro-

posed algorithm is carried out by using the evaluation

indexes such as best value, mean value, median value,

worst value, standard deviation, operation time and

convergence speed.

The rest of the paper is organized as follows: Sect. 2

introduces the GPSO algorithm proposed in recent years;

Sect. 3 presents the proposed GPSO algorithm; Sect. 4

presents the results and discussions of the function test;

Sect. 5 summarizes the conclusions of this paper and future

work.

2 Relative work

In practice, we are often faced with many optimization

problems. EA and SI algorithm are the two most commonly

used algorithms to solve practical engineering problems,

because these two types of algorithms are simple and easy

to implement and do not require high resolution of the

objective function. The most representative of them are GA

and PSO. However, as mentioned above, GA has strong

global optimization ability but low efficiency; PSO has

high efficiency, but it is easy to fall into local optimum. So
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many scholars are studying GPSO, hoping to integrate the

advantages of the two algorithms perfectly.

Zhang (2021) proposed GPSO to introduce crossover

and mutation operations of GA into PSO. The fitness val-

ues of the particles are calculated and sorted, and then, the

particles with lower fitness are eliminated, and the

remaining particles are crossed and mutated. Particles with

better fitness are crossed with pbest or gbest until the total

number of particles reaches the total number of particles

before elimination. This can fully improve the quality of

particles, which improved the ability to search for opti-

mization. Song et al. (2018) proposed a GPSO algorithm

based on differential evolution. On the basis of PSO, the

differential evolution of each three particles is carried out

to replace the existing particles to improve the quality of

particles. Su et al. (2021) integrated the ant colony algo-

rithm (AC) on the basis of GPSO algorithm, used the high

efficiency of GPSO to update the velocity and position of

particles, and used the global optimization ability of AC to

update the fitness value of particles. The GPSO algorithms

proposed by Sheng et al. (2021) and Aravinth et al. (2021)

are similar to the algorithm proposed by Zhang (2021). The

difference is that the parent generations of the crossover

operation are randomly selected in the current population,

which can improve the diversity of the population and

avoided falling into local optimum. The GPSO algorithm

proposed by Salaria et al. (2021) is based on PSO, while

the inertia weight is optimized by the algorithm, and the

quasi-oppositional population-based global particle swarm

optimizer is used to update and evolve the particles, which

greatly improves the optimization ability of the algorithm.

The GPSO algorithm proposed by Chen and Li (2021) has

made two improvements based on GPSO. Firstly, the

global inertia weight is introduced to improve the global

search ability in the whole optimization process. Second,

using a small probability mutation operation, GPSO algo-

rithm is easy to jump out of local optimum. Alrufaiaat and

Althahab (2021) proposed the GPSO algorithm, where a

new update formula is innovated by combing the GPSO

with the gradient ascent/descent algorithm, so that the

update of particle position can be completed faster and

better. GPSO algorithm proposed by Allawi et al. (2020)

uses greedy algorithm to select and optimize pbest and

gbest, which can avoid falling into local optimum. Gao

et al. (2020) proposed a GPSO algorithm using binary

coding system and gradient penalty. In this algorithm, the

particles are arranged in gradient according to the size of

the fitness value, so that the particles with high quality are

updated preferentially. This purpose is to solve the problem

that when the number of particles in PSO is large, PSO

cannot judge the priority of particle update, which leads to

low convergence efficiency. Mir et al. (2020) proposed a

GPSO algorithm, which made two improvements based on

PSO. The first is to change inertia weight into adaptive

parameters. The second is to use Gaussian function to

optimize the particle update formula, which can accelerate

the particle update and improve the optimization speed and

quality. Zhao et al. (2019) proposed a grouping GPSO

algorithm, in which the population is composed of several

groups. For each iteration, an elite group is constructed to

replace the worst group. Grouping is conducive to

improving the diversity of solutions, thereby enhancing the

global search ability of the algorithm. Guan et al. (2019)

proposed a GPSO algorithm, which integrates the cross-

over and mutation operation of GA into the optimization

iteration process of PSO and adaptively processes the

crossover parameters, mutation parameters, inertia weight

and learning factor parameters to enhance the ability of

population to jump out of local optimum. Guo et al. (2018)

proposed a grouping GPSO-PG algorithm based on indi-

vidual best position guidance, which maintains the diver-

sity of population by preserving the diversity of samples.

On the one hand, the uniform random allocation strategy is

used to assign particles to different groups, and the loser in

each group will learn from the winner. On the other hand,

the pbest of each particle in social learning is used to

replace the gbest. This not only increases the diversity of

samples, but also eliminates the dominant influence of

gbest on optimization and prevents falling into local opti-

mum. Al-Bahrani and Patra (2018) proposed an OPSO

algorithm. The algorithm uses the orthogonal diagonal-

ization between the particles with good performance and

the residual particles to replace the crossover operation of

GA to update the particles. All the GPSO algorithms

mentioned above are series algorithms. Although they can

also ensure the optimization ability of the algorithm, the

series algorithm will reduce the optimization efficiency of

the algorithm and increase the overhead of the algorithm.

Therefore, parallel GPSO algorithm is required to improve

the optimization efficiency and reduce the algorithm

overhead while ensuring the optimization ability. Table 1

shows the similarities and differences between the pro-

posed GPSO algorithm and the other GPSO algorithm

(except the differences in parallel architecture).

3 GPSO

The GPSO proposed in this paper takes PSO as the main

body and GA as a means of updating particles in parallel to

complete the optimization task. The algorithm can fully

combine the advantages of PSO efficiency and GA excel-

lent global optimization ability. The operation of the

algorithm can be divided into the following three stages:

1. First stage
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Table 1 Similarities and differences between the proposed GPSO and the other GPSO

Algorithm Similarities Differences

GPSO by Zhang (2021) PSO as main body, GA

as auxiliary;

Crossing particles with

pbest

The mutation parameter of the GPSO by Zhang is constant, the mutation effect is not

good, and it is not easy to jump out of local optimum;

GPSO in this paper adopts adaptive mutation parameters, which can improve the mutation

probability and easily jump out of local optimum

GPSO by Song et al.

(2018)

PSO as main body, EA

as auxiliary

GPSO by Song uses the differential evolution method of three particles to update the

particles, but if the particles are similar, it cannot produce new particles and is easy to

fall into local optimum;

GPSO in this paper updates the particles with the selection, crossover and mutation of

GA. GA has a strong global optimization ability to help the algorithm jump out of local

optimum

GPSO by Sheng et al.

(2021)

PSO as main body, GA

as auxiliary

GPSO by Sheng randomly selects the parent generations to cross in the particle,

increasing the randomness of the offspring, and the quality of the particles after

crossover is not high;

GPSO in this paper uses particles to cross with pbest, and the quality of particles after

crossover is high, which can improve the optimization efficiency

GPSO by Aravinth et al.

(2021)

PSO as main body, GA

as auxiliary;

Adopts adaptive

mutation parameters

GPSO by Aravinth randomly selects the parent generations to cross in the particle,

increasing the randomness of the offspring, and the quality of the particles after

crossover is not high;

GPSO in this paper uses particles to cross with pbest, and the quality of particles after

crossover is high, which can improve the optimization efficiency

GPSO by Chen and Li

(2021)

PSO as main body, GA

as auxiliary;

Adopts adaptive

inertial weight

The mutation parameter of GPSO by Chen is constant, the mutation effect is not good,

and it is not easy to jump out of local optimum;

GPSO in this paper adopts adaptive mutation parameters, which can improve the mutation

probability and easily jump out of local optimum

GPSO by Allawi et al.

(2020)

PSO as main body GPSO by Allawi uses greedy algorithm to calculate multiple pbest and gbest, and selects

multiple pbest and gbest to avoid falling into local optimum, but the convergence speed

will slow down

GPSO by Gao et al.

(2020)

PSO as main body

Sorting and selecting

particles

GPSO by Gao adds gradient penalty, so that the particles with high fitness will be updated

first, and the particles with fitness will be eliminated. Although it will improve the

convergence speed, it is easy to fall into local optimum;

GPSO in this paper updates the particles with the selection, crossover and mutation of

GA. GA has a strong global optimization ability to help the algorithm jump out of local

optimum

GPSO by Mir et al. (2020) PSO as main body;

Adopts adaptive

inertial weight

GPSO by Mahai uses Gaussian function to update particles. It can improve the

convergence speed, but it is easy to fall into local optimum;

GPSO in this paper updates the particles with the selection, crossover and mutation of

GA, which is easy to jump out of local optimum

GPSO by Zhao et al.

(2019)

PSO as main body, GA

as auxiliary

GPSO by Zhao population is grouped, and the elite group is used to eliminate the worst

group to further optimize the particles. Each step of this algorithm will produce large

amount of calculation, resulting in slow convergence speed and large overhead;

GPSO in this paper only uses particles to cross with pbest, which can ensure the high

quality of particles after crossover and improve the optimization efficiency

GPSO by Guan et al.

(2019)

PSO as main body, GA

as auxiliary;

Adopts adaptive

inertial weight;

Adopts adaptive

mutation parameters

GPSO by Guan randomly selects the parent generations to cross in the particle, increasing

the randomness of the offspring, and the quality of the particles after crossover is not

high;

GPSO in this paper uses particles to cross with pbest, and the quality of particles after

crossover is high, which can improve the optimization efficiency

GPSO-PG by Guo et al.

(2018)

PSO as main body, GA

as auxiliary

GPSO-PG by Guo uses pbest instead of gbest in each particle sociology department to

prevent falling into local optimum, but it will lead to slower convergence speed and

lower optimization efficiency than GPSO proposed in this paper
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In the first stage, in order to ensure the efficiency of

optimization, GA does not participate in the updating of

particles and only uses PSO to update particles, so that

gbest quickly approaches the optimal value. During this

period, the velocity and position of particles are updated by

Eqs. (1) and (2) as follows:

vikþ1 ¼ w � vik þ c1 � rand1 � pik � xik
� �

þ c2 � rand2
� pgk � xik
� �

ð1Þ

xikþ1 ¼ xik þ vikþ1 ð2Þ

where vik is the particle velocity,xik is the particle position,

w is the inertia weight, c1 and c2 are constants known as the

social and cognitive parameters, rand1 and rand2 are ran-

dom numbers in the range of [0,1], pik is pbest, p
g
k is gbest.

The right side of Eq. (1) consists of three terms: The first

item is the ‘‘inertia’’ part, which represents the tendency of

particles to maintain their own speed; the second item is

the ‘‘cognition’’ part, which indicates that the particle has a

tendency to approach the best position in its own history;

the third item is the ‘‘social’’ part, which represents the

tendency of the particle to approach the best position in the

history of the group or neighborhood. The first item guar-

antees the global convergence performance of the algo-

rithm, and the second and third items guarantee the ability

of local convergence. Therefore, in order to ensure the

global search capability of the algorithm, w is dynamically

adjusted during the search process in Eq. (3):

w ¼ wmax �
wmax � wminð Þ � t

Tmax

ð3Þ

where wmax and wmin are the maximum and minimum of

the inertia weight; t is the current number of iterations;

Tmax is the maximum number of iterations.

2. Second stage

When the continuous nummax generation of gbest does

not change, the algorithm assumes that it falls into the local

optimum (It may also find the optimal value, while since

the particle swarm algorithm has memory, it will not

destroy the optimal value). At this time, it is difficult to

help the algorithm jump out of the local optimum by

continuing to use the PSO update particles in the first stage.

Therefore, the algorithm enters the second stage, that is, the

selection, crossover and mutation of GA are used to help

the algorithm jump out of the local optimum. In the

crossover operation, multi-point crossover operation

between particles and pbest can quickly improve the

quality of the population and improve the optimization

efficiency. In the second stage, once gbest changes, it

indicates that GA has completed its mission and has helped

the algorithm jump out of local optimum, so the algorithm

jumps back to the first stage to continue optimization.

Equations (4) and (5) for updating particles by GA are as

follows:

x
i rand\pcð Þ
kþ1 ¼ randiD � xi rand\pcð Þ

k þ 1� randiDð Þ � pi rand\pcð Þ
k

ð4Þ

x
i N�randd eð Þ
kþ1 rand�Dd e ¼ xikþ1 rand�Dd emax

� rand

� xikþ1 rand�Dd emax
� xikþ1 rand�Dd emin

� �
ð5Þ

where pc is probability of crossover, x
i rand\pcð Þ
k are the

crossing particles, D is the dimension of the particles,

randiD is the binary vector with length D, p
i rand\pcð Þ
k is the

pbest of crossing particle, N is the number of particle

swarm, d e represents an upward integer, x
i N�randd eð Þ
kþ1 rand�Dd e

represents the random particles in the particle swarm par-

ticipating in the mutation operation, Mutation operation

N�pm times, pm is the mutation probability. xikþ1 rand�Dd emax
and

xikþ1 rand�Dd emin
are the maximum and minimum values of the

particle.

3. Third stage

Table 1 (continued)

Algorithm Similarities Differences

OPSO by Al-Bahrani and

Patra (2018)

PSO as main body OPSO by Al-Bahrani uses the orthogonal pairing of high-quality particles and residual

particles to update particles, so the optimization efficiency is not high, and it is easy to

fall into local optimum;

GPSO in this paper uses particles to cross with pbest, and the quality of particles after

crossover is high, which can improve the optimization efficiency. Moreover, using

adaptive mutation parameters, improve the mutation probability, easy to jump out of

local optimum

GPSO by Alrufaiaat and

Althahab (2021)

PSO as main body GPSO by Alrufaiaat uses gradient ascent/descent algorithm to update particles. It can

improve the convergence speed, but it is easy to fall into local optimum;

GPSO in this paper updates the particles with the selection, crossover and mutation of

GA, which is easy to jump out of local optimum
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When the continuous NUMmax generation of gbest does

not change, it indicates that the operation in the second

stage of the algorithm cannot help the algorithm jump out

of the local optimum. Moreover, after several generations

of evolution, most of the particles have been trapped in the

local optimum. At this time, the population structure needs

to be greatly changed. By using Eqs. (6) and (7), the

mutation probability is greatly improved, so that the indi-

viduals in most particles are randomly updated and the

maximum possible jump out of local optimum. Once gbest

changes, it indicates that GA has completed its mission and

has helped the algorithm jump out of the local optimum.

Therefore, the algorithm jumps back to the first stage for

further optimization, otherwise, it will always use GA to

update particles.

pm ¼ t

Tmax

� �c

�pmmax
ð6Þ

c ¼ 1 NUM\NUMMAX

0:5 NUM�NUMMAX

�
ð7Þ

where pmmax
is the maximum probability of mutation, c is

the coefficient of mutation.

Through the above steps, the whole process of GPSO

optimization is completed. The GPSO flowchart is shown

in Fig. 1:

3.1 Time complexity analysis

Since the running time of an algorithm is greatly affected

by computer performance, the time complexity of an

algorithm is generally used to evaluate the execution effi-

ciency of an algorithm. Time complexity can also be

understood as a relative measure of the running time of an

algorithm, usually described by the big O notation, that is,

T nð Þ ¼ O f nð Þð Þ.
Because PSO and GA are included in the algorithm,

there are many iterations in the algorithm. The time com-

plexity of the algorithm is estimated by taking the fre-

quency of the most repeated sentences in the algorithm.

The most frequently executed statement in the algorithm is

the judgment statement in PSO whether the velocity and

position of the particle after updating exceed the boundary.

Three loops are needed to execute the statement. The first

loop is the iteration of the whole algorithm, the second loop

is the PSO population updating, and the third loop is to

determine whether the velocity and position of each par-

ticle exceed the boundary. Since the algorithm has three

loops, its time complexity is T nð Þ ¼ O n3ð Þ. The time

complexity of other serial GPSO algorithms is also O n3ð Þ.
However, since GA is always involved in the operation in

the serial GPSO algorithm, and the parallel GPSO only

participates in the operation when the algorithm falls into

local optimum, the operation overhead of the parallel

GPSO is lower than that of the serial GPSO. The analysis

of time complexity is only a rough estimate of the effi-

ciency and overhead of the algorithm. The comparison of

the running time of the specific algorithm is shown in Sect.

4.

4 Verification and analysis of algorithm
performance

In order to verify the effectiveness of the proposed GPSO,

this paper selects several classical multi-constrained opti-

mization problems to test the algorithm. In order to elim-

inate the influence of computer performance on the

algorithm, this paper reproduces several latest GPSO

algorithms and tests them under the same computer; in

order to eliminate the influence of algorithm stability on

the results, this paper takes the best value, mean value,

median value, worst value, standard deviation, operation

time and convergence speed of each algorithm in 100

experiments as the evaluation indexes of algorithm per-

formance, so as to fully eliminate the contingency of the

results and ensure that the results have statistical

significance.

4.1 Constrained optimization problem

4.1.1 Himmelblau’s nonlinear optimization problem

The performance of the proposed GPSO is verified by

Himmelblau’s nonlinear optimization problem. The prob-

lem was first proposed by Himmelblau and is now widely

used to validate nonlinear constrained optimization algo-

rithms. This problem contains five optimization variables

and six nonlinear constraints, as follows:

x ¼ x1; x2; x3; x4½ � ð8Þ

Minf xð Þ ¼ 5:3578547x23 þ 0:8356891x1x5 þ 37:293239x1
� 40792:141

ð9Þ

s.t.

0� g1 xð Þ� 92 ð10Þ
90� g2 xð Þ� 110 ð11Þ
20� g3 xð Þ� 25 ð12Þ

where
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Fig. 1 Flowchart of GPSO
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g1 xð Þ ¼ 85:334407þ 0:0056858x2x5 þ 0:0006262x1x4
� 0:0022053x3x5

ð13Þ

g2 xð Þ ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2
� 0:0021813x23

ð14Þ

g3 xð Þ ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3
þ 0:0019085x3x4

ð15Þ
78� x1 � 102 ð16Þ
33� x2 � 45 ð17Þ
27� x3; x4; x5 � 45 ð18Þ

This paper uses this problem to test the performance of

the proposed GPSO algorithm and compares it with several

latest GPSO algorithms. The comparison results are shown

in Tables 2 and 3.

In Table 2, different algorithms have achieved good

results in optimizing this problem, but there are small

differences in the results of the optimal value. The optimal

value of GPSO proposed in this paper is 2 30,659.81,

which is closer to the real optimal value compared with

other results in the table. At this time, the parameter is: [x1,

x2, x3, x4, x5] = [78.01, 33.01, 30.01, 44.94, 36.78], which

is within the constraint range of the parameter and meets

the parameter requirements. The constraint result obtained

by substituting the parameters into the constraint equations

is: [g1, g2, g3] = [91.99, 98.85, 20.00], which also satisfies

the constraint condition. Through comparative analysis, it

is proved that the optimization algorithm proposed in this

paper can obtain a better optimal value to Himmelblau’s

nonlinear optimization problem.

Table 3 shows the algorithm performance of each

algorithm in solving Himmelblau’s nonlinear optimization

problem. The optimal value of GPSO proposed in this

paper is 2 30,659.81, which is closer to the real optimal

value compared with other results in the table; it shows that

the GPSO proposed in this paper can get a better optimal

value. The average value of the optimal value obtained by

100 experiments is 2 30,597.25, which is smaller than the

optimal value of - 30,595.62 in the above algorithm. It

shows that the algorithm can obtain better results in many

repeated experiments and proves that the algorithm has a

better stability. The standard deviation is 59.54, which is

smaller than the minimum deviation of 60.26 in the above

algorithm, indicating that the stability of the algorithm is

better. The time of 100 experimental results is only 2.62 s.

Compared with the shortest time of 2.85 s in the above

algorithm, the time can be shortened by 8%, indicating that

the algorithm has high optimization speed and low time

complexity. Through the comparative analysis of the above

performance, it is proved that the GPSO proposed in this

paper can obtain better optimal value and has good per-

formance in stability and efficiency.

In addition, Fig. 2 shows the convergence performance

of each algorithm in solving Himmelblau’s nonlinear

optimization problem. It can be seen from Fig. 2 that the

GPSO proposed in this paper has a higher convergence

speed compared with other algorithms. Through the com-

parative analysis of the above performance, it is proved

that the GPSO proposed in this paper can get a better

optimal value and has good performance in stability, con-

vergence speed and time overhead.

4.2 Structural optimization problems

In order to verify the effectiveness of the algorithm in

solving multi-objective optimization problems in practical

Table 2 Comparison of the

optimal value for Himmelblau’s

nonlinear optimization problem

found by different algorithms

Method Variables f(x)

x1 x2 x3 x4 x5

GPSO by Zhang (2021) 78.01 33.01 30.03 44.94 36.72 - 30,658.18

GPSO by Zhao et al. (2019) 78.01 33.03 30.03 44.60 36.86 - 30,649.58

GPSO by Guan et al. (2019) 78.03 33.08 30.04 44.96 36.66 - 30,655.55

GPSO-PG by Guo et al. (2018) 78.07 33.06 30.03 44.94 36.70 - 30,653.97

OPSO by Al-Bahrani and Patra (2018) 78.76 33.37 30.81 44.56 34.91 - 30,472.52

GPSO by Song et al. (2018) 78.00 33.06 30.07 44.99 36.60 - 30,653.27

DOA by Hernan et al. (2021) 78.05 33.01 30.02 44.98 36.73 - 30,658.72

WOA by Mirjalili and Lewis (2016) 78.08 33.01 30.01 44.99 36.75 - 30,656.05

GWO by Mirjalili et al. (2014) 78.02 33.04 30.02 44.92 36.74 - 30,657.58

GPSO by Alrufaiaat and Althahab (2021) 78.14 33.18 30.14 44.99 36.37 - 30,634.98

GPSO in this paper 78.01 33.01 30.01 44.94 36.78 2 30,659.81

Bolditalics values indicated by optimal valve
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engineering, comparative tests were carried out on three

classic practical engineering problems, including pressure

vessel design problem, the welded beam design problem

and the gear train design problem.

4.2.1 Pressure vessel problem

The objective of pressure vessel design problem is to

minimize the cost of pressure vessel fabrication (matching,

forming and welding). The design of the pressure vessel is

shown in Fig. 3. Both ends of the pressure vessel have a

Table 3 Performance of different algorithms for Himmelblau’s nonlinear optimization problem

Method Best Mean Median Std Worst Time

GPSO by Zhang (2021) - 30,658.18 - 30,595.62 2 30,652.57 59.83 - 30,335.32 2.85

GPSO by Zhao et al. (2019) - 30,649.58 - 30,578.38 - 30,637.13 73.94 - 30,325.04 2.89

GPSO by Guan et al. (2019) - 30,655.55 - 30,585.12 - 30,634.39 70.96 - 30,359.93 2.87

GPSO-PG by Guo et al. (2018) - 30,653.97 - 30,572.10 - 30,638.37 76.62 - 30,310.31 2.98

OPSO by Al-Bahrani and Patra (2018) - 30,472.52 - 30,006.17 - 29,869.29 149.98 - 29,627.54 3.58

GPSO by Song et al. (2018) - 30,653.27 - 30,573.08 - 30,415.40 71.88 - 30,312.98 3.65

DOA by Hernan et al. (2021) - 30,658.72 - 30,573.27 - 30,429.80 75.20 - 30,325.79 2.89

WOA by Mirjalili and Lewis (2016) - 30,656.05 - 30,588.02 - 30,343.84 66.41 - 30,343.84 2.91

GWO by Mirjalili et al. (2014) - 30,657.58 - 30,584.63 - 30,606.36 60.26 2 30,404.35 2.90

GPSO by Alrufaiaat and Althahab (2021) - 30,634.98 - 30,498.90 - 30,549.20 111.86 - 30,101.50 6.46

GPSO in this paper 2 30,659.81 2 30,597.25 - 30,611.42 59.54 - 30,360.36 2.62

In the table, Best is the best of the optimal value in 100 experimental results; mean is the average value of the optimal value in 100 experimental

results; median is the median of the optimal value in 100 experimental results; Std is the standard deviation between the optimal value and Best

in 100 experimental results; Worst is the worst value of the optimal value in 100 experimental results; Time is the total running time for 100

experiments. All the tables below are the same

Bolditalics values indicated by optimal valve

Fig. 2 The convergence performance of each algorithm in solving Himmelblau’s nonlinear optimization problem

Fig. 3 The design of the pressure vessel

A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems 11703

123



cover top. The cover at one end of the head is hemi-

spherical. The maximum working pressure is 2000 psi, and

the maximum volume is 750 ft3. L is the section length of

the cylinder part without considering the head, R is the

inner wall diameter of the cylinder part, Ts and Th represent

the wall thickness of the cylinder part and the head. L, R, Ts
and Th are the four optimization variables of the pressure

vessel design problem. The objective function and con-

straints of the problem are expressed as follows:

x ¼ x1; x2; x3; x4½ � ¼ Ts; Th;R; L½ � ð19Þ

Minf xð Þ ¼ 0:6224x1x3x4 þ 1:7781x1x
2
3 þ 3:1661x21x4

þ 19:84x21x3

ð20Þ

s.t.

g1 xð Þ ¼ �x1 þ 0:0193x3 � 0
ð21Þ

g2 xð Þ ¼ �x2 þ 0:00954x3 � 0 ð22Þ

g3 xð Þ ¼ �px23 �
4

3
px23 þ 1296000� 0 ð23Þ

g4 xð Þ ¼ x4 � 240� 0 ð24Þ
1� 0:0625� x1; x2 � 99� 0:0625 ð25Þ
10� x3; x4 � 200 ð26Þ

This paper uses this problem to test the performance of

the proposed GPSO algorithm and compares it with several

latest GPSO algorithms. The comparison results are shown

in Tables 4 and 5.

In Table 4, different algorithms have achieved good

results in optimizing this problem, but there are small

differences in the results of the optimal value. The optimal

value of GPSO proposed in this paper is 5881.0474, which

is closer to the real optimal value compared with other

results in the table. At this time, the parameter is: [x1, x2,

x3, x4] = [0.7782, 0.3831, 40.3199, 199.9980], which is

within the constraint range of the parameter and meets the

parameter requirements. The constraint result obtained by

substituting the parameters into the constraint equations is:

[g1, g2, g3, g4] = [- 3.8027e-6, - 1.0516e-4, - 8.6355,

- 40.0020], which also satisfies the constraint condition.

Through comparative analysis, it is proved that the opti-

mization algorithm proposed in this paper can obtain a

better optimal value to pressure vessel design problem.

Table 5 shows the algorithm performance of each

algorithm in solving pressure vessel design problem. The

optimal value of GPSO proposed in this paper is

5881.0474, which is closer to the real optimal value com-

pared with other results in the table, and it shows that the

GPSO proposed in this paper can get a better optimal

value. The average value of the optimal value obtained by

100 experiments is 6001.3177, which is smaller than the

optimal value of 6006.4589 in the above algorithm. It

shows that the algorithm can obtain better results in many

repeated experiments and proves that the algorithm has a

better stability. The median value of the optimal value

obtained from 100 experiments is 5882.6562, which is

smaller than the minimum median value of 5892.4465 in

the above algorithm, indicating better stability of the

algorithm. The time of 100 experimental results is only

2.3047 s. Compared with the shortest time of 2.5270 s in

the above algorithm, the time can be shortened by 9%,

indicating that the algorithm has high optimization speed

and low time complexity. Through the comparative anal-

ysis of the above performance, it is proved that the GPSO

proposed in this paper can obtain better optimal value and

has good performance in stability and efficiency.

Table 4 Comparison of the

optimal value for pressure

vessel design problem found by

different algorithms

Method Variables f(x)

x1 x2 x3 x4

GPSO by Zhang (2021) 0.7783 0.3832 40.3241 199.9385 5881.5499

GPSO by Zhao et al. (2019) 0.7785 0.3832 40.3354 199.7809 5881.5583

GPSO by Guan et al. (2019) 0.7788 0.3834 40.3540 199.5214 5881.7955

GPSO-PG by Guo et al. (2018) 0.8167 0.4299 42.1756 177.2461 6091.7792

OPSO by Al-Bahrani and Patra (2018) 0.9607 0.5855 47.2922 127.1722 7161.8969

GPSO by Song et al. (2018) 0.7788 0.3833 40.3505 199.5716 5881.7177

DOA by Hernan et al. (2021) 0.7784 0.3831 40.3286 199.8787 5881.5046

WOA by Mirjalili and Lewis (2016) 0.7784 0.3832 40.3254 199.9366 5882.7597

GWO by Mirjalili et al. (2014) 0.7784 0.3830 40.3196 199.9997 5882.2191

GPSO by Alrufaiaat and Althahab (2021) 0.7964 0.4049 40.9939 191.9829 6012.6369

GPSO in this paper 0.7782 0.3831 40.3199 199.9980 5881.0474

Bolditalics values indicated by optimal valve
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In addition, Fig. 4 shows the convergence performance

of each algorithm in solving pressure vessel design prob-

lem. It can be seen from Fig. 4 that the GPSO proposed in

this paper has a higher convergence speed compared with

other algorithms. Through the comparative analysis of the

above performance, it is proved that the GPSO proposed in

this paper can get a better optimal value and has good

performance in stability, convergence speed and time

overhead.

4.2.2 Welded beam problem

The welded beam design problem is also a classic opti-

mization problem. The objective is to find the minimum

fabricating cost of the welded beam subject to constraints

on shear stress (s), bending stress in the beam (h), buckling
load on the bar (Pc), the end deflection of the beam (d), and
side constraint; the design of welded beam is shown in

Fig. 5. This problem has four variables that need to be

optimized, namely the thickness of the welded layer h, the

length of the welded layer l, the width of the beam t, and

the thickness of the beam b. The objective function and

constraints of the problem are expressed as follows:

x ¼ x1; x2; x3; x4½ � ¼ h; l; t; b½ � ð27Þ

Minf xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ ð28Þ

s.t.

Table 5 Performance of different algorithms for pressure vessel design problem

Method Best Mean Median Std Worst Time

GPSO by Zhang (2021) 5881.5499 6057.3225 5900.6996 209.4077 6790.7251 6.4480

GPSO by Zhao (2019) 5881.5583 6099.3547 5912.4757 279.1119 7031.5241 2.5270

GPSO by Guan (2019) 5881.7955 6006.4589 5965.4783 161.1013 6555.6666 2.5667

GPSO-PG by Guo (2018) 6091.7792 8594.3849 13,031.6004 2316.0683 20,570.9776 2.4790

OPSO by Al-Bahrani and Patra (2018) 7161.8969 10,103.2843 7940.2697 1589.4665 15,299.6134 3.7434

GPSO by Song (2018) 5881.7177 6049.3820 5991.5861 207.9317 6819.0669 3.4975

DOA by Hernan (2021) 5881.5046 6017.0942 5985.6417 167.6150 6572.3540 2.5978

WOA by Mirjalili and Lewis (2016) 5882.7597 6047.3411 5892.4465 230.9826 6913.6343 2.5839

GWO by Mirjalili et al. (2014) 5882.2191 6198.6201 6793.7182 237.5923 6930.7830 2.5811

GPSO by Alrufaiaat and Althahab (2021) 6012.6369 6549.9268 6303.4466 267.1786 7333.9928 5.1600

GPSO in this paper 5881.0474 6001.3177 5882.6562 222.4062 6919.2537 2.3047

Bolditalics values indicated by optimal valve

Fig. 4 The convergence performance of each algorithm in solving pressure vessel design problem
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g1 xð Þ ¼ s xð Þ � smax � 0 ð29Þ
g2 xð Þ ¼ r xð Þ � rmax � 0 ð30Þ
g3 xð Þ ¼ x1 � x4 � 0 ð31Þ
g4 xð Þ ¼ 0:125� x1 � 0 ð32Þ
g5 xð Þ ¼ d xð Þ � 0:25� 0 ð33Þ
g6 xð Þ ¼ P� Pc xð Þ� 0 ð34Þ

g7 xð Þ ¼ 0:10471x21 þ 0:04811x3x4 14þ x2ð Þ � 5� 0 ð35Þ

0:1� x1; x4 � 2 ð36Þ
0:1� x2; x3 � 10 ð37Þ

where s xð Þ is the shear stress in the weld, smax is the

allowable shear stress of the weld (= 13600 psi), r xð Þ is the
normal stress in the beam, rmax is the allowable normal

stress for the beam material (= 30000 psi), Pc xð Þ is the bar
buckling load, P is the load (= 6000 lb), and d xð Þ is the

beam end deflection:

s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 2s1s2

x2
2R

� �
þ s22

r
ð38Þ

s1 ¼
P
ffiffiffi
2

p
x1x2

ð39Þ

s2 ¼
MR

J
ð40Þ

M ¼ P Lþ x2
2

� �
ð41Þ

J ¼ 2
ffiffiffi
2

p
x1x2

x22
2
þ x1 þ x3

2

� �2
 �� �
ð42Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2
r

ð43Þ

r xð Þ ¼ 6PL

Ex33x4
ð44Þ

Pc xð Þ ¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

ð45Þ

G ¼ 12� 106 psi;E ¼ 30� 106 psi;P ¼ 6000 lb; L
¼ 14 in ð46Þ

This paper uses this problem to test the performance of

the proposed GPSO algorithm and compares it with several

latest GPSO algorithms. The comparison results are shown

in Tables 6 and 7.

In Table 6, the optimal value of GPSO proposed in this

paper is 1.7249; this value is the same as the optimal value

obtained by the existing algorithm, indicating that the

algorithm can get a good optimal value. At this time, the

parameter is: [x1, x2, x3, x4] = [0.2057, 3.4705, 9.0366,

0.2057], which is within the constraint range of the

parameter and meets the parameter requirements. The

constraint result obtained by substituting the parameters

into the constraint equations is: [g1, g2, g3, g4, g5, g6,

g7] = [0, - 7.2760e-12, - 2.2204e-16, - 3.4330,

- 0.0807, - 0.2355, 0], which also satisfies the constraint

condition. Through comparative analysis, it is proved that

the optimization algorithm proposed in this paper can

obtain a better optimal value to welded beam design

problem.

Table 7 shows the algorithm performance of each

algorithm in solving welded beam design problem. The

optimal value, average value and median value of GPSO

proposed in this paper are all 1.7249, which are the same as

the optimal value obtained by the existing algorithm,

indicating that the algorithm can get a good optimal value

and have a good stability. The standard deviation is

6.6979e26, which is smaller than the minimum deviation

of 3.4796E-05 in the above algorithm, indicating that the

stability of the algorithm is better. The worst value of the

optimal value obtained from 100 experiments is 1.7251,

which is smaller than the minimum worst value of 1.7255

in the above algorithm, indicating better accuracy of the

algorithm. The time of 100 experimental results is only

5.1190 s. Compared with the shortest time of 5.2413 s in

the above algorithm, the time can be shortened by 2.3%,

indicating that the algorithm has high optimization speed

and low time complexity. Through the comparative anal-

ysis of the above performance, it is proved that the GPSO

proposed in this paper can obtain better optimal value and

has good performance in stability and efficiency.

In addition, Fig. 6 shows the convergence performance

of each algorithm in solving welded beam design problem.

It can be seen from Fig. 6 that the GPSO proposed in this

paper has a higher convergence speed compared with other

Fig. 5 The design of the welded beam
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Table 6 Comparison of the

optimal solution for welded

beam design problem found by

different algorithms

Method Variables f(x)

x1 x2 x3 x4

GPSO by Zhang (2021) 0.2057 3.4705 9.0366 0.2057 1.7249

GPSO by Zhao et al. (2019) 0.2057 3.4705 9.0366 0.2057 1.7249

GPSO by Guan et al. (2019) 0.2057 3.4705 9.0366 0.2057 1.7249

GPSO-PG by Guo et al. (2018) 0.1985 3.6784 8.9249 0.2111 1.7628

OPSO by Al-Bahrani and Patra (2018) 0.2006 3.5166 9.8080 0.2108 1.8984

GPSO by Song et al. (2018) 0.2057 3.4705 9.0366 0.2057 1.7249

DOA by Hernan et al. (2021) 0.2057 3.4705 9.0366 0.2057 1.7249

WOA by Mirjalili and Lewis (2016) 0.2057 3.4705 9.0366 0.2057 1.7249

GWO by Mirjalili et al. (2014) 0.2057 3.4705 9.0366 0.2057 1.7249

GPSO by Alrufaiaat and Althahab (2021) 0.2035 3.5075 9.0913 0.2055 1.7338

GPSO in this paper 0.2057 3.4705 9.0366 0.2057 1.7249

Bolditalics values indicated by optimal valve

Table 7 Performance of

different algorithms for welded

beam design problem

Method Best Mean Median Std Worst Time

GPSO by Zhang (2021) 1.7249 1.7249 1.7249 3.4796E-05 1.7255 8.375

GPSO by Zhao (2019) 1.7249 1.7252 1.7249 1.2859E-03 1.7365 5.2817

GPSO by Guan (2019) 1.7249 1.725 1.7265 3.6884E-04 1.7272 5.3727

GPSO-PG by Guo (2018) 1.7628 2.4487 2.6693 5.3189E-01 4.1438 5.2413

OPSO by Al-Bahrani and Patra (2018) 1.8984 2.8782 2.6013 4.4612E-01 3.925 8.7204

GPSO by Song et al. (2018) 1.7249 1.7251 1.7249 9.5686E-04 1.7335 5.9953

DOA by Hernan et al. (2021) 1.7249 1.725 1.7249 1.0065E-03 1.735 5.2648

WOA by Mirjalili and Lewis (2016) 1.7249 1.7249 1.7249 2.8723E-04 1.7277 5.2432

GWO by Mirjalili et al. (2014) 1.7249 1.7279 1.7249 9.5964E-03 1.8108 5.3352

GPSO by Alrufaiaat and Althahab (2021) 1.7338 2.2772 2.0483 3.3751E-01 3.2246 7.5093

GPSO in this paper 1.7249 1.7249 1.7249 6.6979e26 1.7251 5.1190

Bolditalics values indicated by optimal valve

Fig. 6 The convergence performance of each algorithm in solving welded beam design problem
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algorithms. Through the comparative analysis of the above

performance, it is proved that the GPSO proposed in this

paper can get a better optimal value and has good perfor-

mance in stability, convergence speed and time overhead.

4.2.3 Gear train problem

Gear train design problem is also a common optimization

problem in engineering. The optimization goal is to make

the gear transmission ratio reach or close to the given

transmission ratio by optimizing the number of gear teeth.

The optimized variable is the number of teeth of 4 gears

(gear range [12, 60]). The objective function and con-

straints of the problem are expressed as follows:

x ¼ x1; x2; x3; x4½ � ¼ T1; T2; T3; T4½ � ð47Þ

Minf xð Þ ¼ 1

6:931
� x1x2
x3x4

� �2

ð48Þ

s.t.

12� x1; x2; x3; x4 � 60
ð49Þ

xi 2 Zþ ð50Þ

This paper uses this problem to test the performance of

the proposed GPSO algorithm and compares it with several

latest GPSO algorithms. The comparison results are shown

in Tables 8 and 9.

In Table 8, the result of using the GPSO proposed in this

paper to optimize the problem is: 2.7009e-12, the

parameter is: [x1, x2, x3, x4] = [19, 16, 43, 49]. Since the

parameters of this problem are finite integers, the optimal

value is known. The significance of solving this opti-

mization problem is to compare the advantages and dis-

advantages of the algorithms by comparing the

performance of the algorithms.

Table 8 Comparison of the

optimal solution for gear train

design problem found by

different algorithms

Method Variables f(x)

x1 x2 x3 x4

GPSO by Zhang (2021) 16 19 49 43 2.7009E-12

GPSO by Zhao et al. (2019) 16 19 43 49 2.7009E-12

GPSO by Guan et al. (2019) 16 19 43 49 2.7009E-12

GPSO-PG by Guo et al. (2018) 19 16 49 43 2.7009E-12

OPSO by Al-Bahrani and Patra (2018) 26 15 53 51 2.3078E-11

GPSO by Song et al. (2018) 16 19 43 49 2.7009E-12

DOA by Hernan et al. (2021) 19 16 43 49 2.7009E-12

WOA by Mirjalili and Lewis (2016) 16 19 49 43 2.7009E-12

GWO by Mirjalili et al. (2014) 19 16 49 43 2.7009E-12

GPSO by Alrufaiaat and Althahab (2021) 26 15 51 53 2.3078E-11

GPSO in this paper 19 16 43 49 2.7009E212

Bold values indicated by optimal valve

Table 9 Performance of different algorithms for gear train design problem

Method Best Mean Median Std Worst Time

GPSO by Zhang (2021) 2.7009E-12 5.5781E-10 2.7009E-12 8.7412E-10 4.5033E-09 6.8976

GPSO by Zhao (2019) 2.7009E-12 9.0259E-10 1.1661E-10 1.9240E-09 1.3125E-08 2.4033

GPSO by Guan (2019) 2.7009E-12 1.9522E-10 8.8876E-10 4.1787E-10 2.3576E-09 2.6563

GPSO-PG by Guo (2018) 2.7009E-12 9.3414E-09 3.3667E-08 1.6663E-08 1.1555E-07 2.3780

OPSO by Al-Bahrani and Patra (2018) 2.3078E-11 9.5187E-07 2.7265E-08 1.5744E-06 9.8207E-06 3.3740

GPSO by Song et al. (2018) 2.7009E-12 5.4215E-10 2.7009E-12 9.1924E-10 4.5033E-09 3.1630

DOA by Hernan et al. (2021) 2.7009E-12 3.6887E-10 1.1661E-10 7.2821E-10 2.3576E-09 2.6096

WOA by Mirjalili and Lewis (2016) 2.7009E-12 4.1501E-10 2.3078E-11 7.5615E-10 2.3576E-09 2.6874

GWO by Mirjalili et al. (2014) 2.7009E-12 4.5905E-10 2.3078E-11 1.2605E-09 1.1173E-08 2.5031

GPSO by Alrufaiaat and Althahab (2021) 2.3078E-11 1.8633E-07 2.3576E-09 3.5199E-07 2.0226E-06 6.0757

GPSO in this paper 2.7009E212 5.1431E211 2.7009E212 8.8063E211 2.3576E209 2.3258

Bolditalics values indicated by optimal valve
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Table 9 shows the algorithm performance of each

algorithm in solving gear train design problem. The opti-

mal value and median value of GPSO proposed in this

paper are all 2.7009E212, which are the same as the

optimal value obtained by the existing algorithm, the

average value is 5.1431E211 which is smaller than the

minimum optimal value of 1.9522E-10 in the above

algorithm, indicating that the algorithm can get a good

optimal value and have a good stability. The standard

deviation is 8.8063E211, which is smaller than the mini-

mum deviation of 4.1787E-10 in the above algorithm,

indicating that the stability of the algorithm is better. The

worst value of the optimal value obtained from 100

experiments is 2.3576E209, which is the same as the

optimal value obtained by the existing algorithm, indicat-

ing good accuracy of the algorithm. The time of 100

experimental results is only 2.3258 s. Compared with the

shortest time of 2.3780 s in the above algorithm, the time

can be shortened by 2.2%, indicating that the algorithm has

high optimization speed and low time complexity. Through

the comparative analysis of the above performance, it is

proved that the GPSO proposed in this paper can obtain

better optimal value and has good performance in stability

and efficiency.

In addition, Fig. 7 shows the convergence performance

of each algorithm in solving gear train design problem. It

can be seen from Fig. 7 that the GPSO proposed in this

paper has a higher convergence speed compared with other

algorithms. Through the comparative analysis of the above

performance, it is proved that the GPSO proposed in this

paper can get a better optimal value and has good perfor-

mance in stability, convergence speed and time overhead.

In summary, through the comparative analysis of the

results of the classical nonlinear multi-constrained opti-

mization problem and the classical multi-constrained

optimization problems in practical engineering, GPSO

proposed in this paper has obvious advantages over other

GPSO algorithms in solving the multi-constrained opti-

mization problem in terms of accuracy, stability, conver-

gence speed and time overhead.

5 Conclusion

In this paper, a parallel GPSO algorithm is proposed based

on the high efficiency of PSO and the global optimization

ability of GA. This algorithm takes PSO as the main body,

only when gbest has not changed for many generations, GA

is enabled to replace PSO to update the particles and help

the particles jump out of the local optimum. Since PSO has

memory, GA does not destroy the found optimal value. In

addition, this paper compares the performance of GPSO

algorithm with several newly proposed algorithms on

several multi-constrained optimization problems (Him-

melblau’s nonlinear optimization problem, pressure vessel

design problem, welded beam design problem and gear

train design problem) and evaluates the performance of the

proposed algorithms with optimal value, average value,

median value, worst value, standard deviation, time over-

head and convergence speed. The results show that the

GPSO proposed in this paper can get a better optimal value

Fig. 7 The convergence performance of each algorithm in solving gear train design problem
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and has good performance in stability, convergence speed

and time overhead. It shows that GPSO can ensure the

effectiveness of solving multi-constrained optimization

problems, ensure the accuracy of optimization results and

the high speed of convergence.

This algorithm is only a basic version of the parallel

GPSO algorithm. In fact, due to the high compatibility of

the GPSO algorithm, it can continue to integrate other

latest algorithms to improve the optimization performance

and speed of the algorithm. In the future, the algorithm will

continue to be developed and studied to improve its per-

formance and speed, and the algorithm will be applied to

various complex engineering optimization design to solve

various problems in practice.
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