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Abstract
In neighborhood rough set theory, attribute reduction based on measure of information has important application signif-

icance. The influence of different decision classes was not considered for calculation of traditional conditional neigh-

borhood entropy, and the improvement of algorithm based on conditional neighborhood entropy mainly includes of

introducing multi granularity and different levels, while the mutual influence between samples with different labels is less

considered. To solve this problem, this paper uses the supervised strategy to improve the conditional neighborhood entropy

of three-layer granulation. By using two different neighborhood radii to adjust the mutual influence degree of different

label samples, and by considering the mutual influence between conditional attributes through the feature complementary

relationship, a neighborhood rough set attribute reduction algorithm based on supervised granulation is proposed.

Experiment results on UCI data sets show that the proposed algorithm is superior to the traditional conditional neigh-

borhood entropy algorithm in both aspects of reduction rate and reduction accuracy. Finally, the proposed algorithm is

applied to the evaluation of fatigue life influencing factors of titanium alloy welded joints. The results of coupling

relationship analysis show that the effect of joint type should be most seriously considered in the calculation of stress

concentration factor. The results of influencing factors analysis show that the stress range has the highest weight among all

the fatigue life influencing factors of titanium alloy welded joint.

Keywords Neighborhood rough set � Attribute reduction � Supervised granulation � Fatigue life � Welded joints

1 Introduction

Attribute reduction (also known as feature reduction)

(Zhang and Miao 2014) is a very useful data preprocessing

technique, which removes noise, irrelevant or misleading

features by mining the importance of feature, and obtains

the smallest subset of features from the decision system

while maintaining the same classification accuracy. In

today’s era of data explosion, attribute reduction of data

can greatly improve the utilization of data, reduce storage

space, save resources, and promote the visualization and

understanding of data.

Rough Set Theory (RST) (Pawlak 1982) is an effective

feature reduction tool proposed by Professor Zdzisław

Pawlak in 1982, and has been widely used in many fields

such as fault diagnosis (Xu et al.2020), pattern recognition

(Sinha and Namdev 2020), and data mining (Singh and

Pamula 2020). RST can obtain the key attributes from the

data itself without any prior knowledge, so it is suitable for

obtaining the key factors that affect the fatigue life of

welded joints from the fatigue test data of welded joints,

and can obtain the objective and comprehensive evaluation

of the influencing factors of the fatigue life of welded

joints. In recent years, RST has been applied to the fatigue

life analysis of welded joints (Liu et al.2017; Zou et al.

2019a, b), and the evaluation model and fatigue life
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prediction model of welded joints are constructed. This

paper proposes a neighborhood rough set attribute reduc-

tion algorithm based on supervised granulation. The pos-

sible influence of different classes in decision attribute

from the perspectives of neighborhood partition and cal-

culation of conditional entropy could be considered by the

algorithm. And the influence of conditional attributes was

also considered by introducing mutual information theory.

Based on the proposed algorithm, the evaluation model of

influencing factors of titanium alloy welded joint was

established. The coupling relationship between influencing

factors was discussed. The influencing factors of joint

fatigue life were quantitatively evaluated, and the set of

key influencing factors of fatigue life was obtained.

2 Related works

Besides RST, information theory is also a method to deal

with uncertainty problems. Shannon (1948) first proposed

the concept of information entropy in 1948. Information

entropy provides the quantitative measurement of infor-

mation. Miao (1997) merged information theory with

rough set theory in 1997, and established the relationship

between the roughness of knowledge and information

entropy. Using the information quantity of knowledge as

the measure of attribute importance, Liang et al. (2001)

quantified the relationship between knowledge and infor-

mation quantity in information system. However, the

classical rough set model can only deal with discrete data.

For continuous data, it needs to be discretized, which will

cause data loss. To solve this problem, Hu et al.

(2006, 2008) proposed a neighborhood rough set model

based on the definitions of d neighborhood and neighbor-

hood relations in metric spaces. Then Hu et al. (2009,

2011) generalizes Shannon’s information entropy to

neighborhood information entropy, and proposes a measure

of neighborhood mutual information. According to the

measurement attribute method, rough set is mainly divided

into algebraic view method (Shen et al.2013) and infor-

mation view method (Wang and Ou.2008). In which

algebra view method calculates the weight value of attri-

bute importance of features by calculating the upper and

lower approximation of samples. The information view

method is based on the idea of information theory. Through

the study of the uncertainty of the universe, it calculates the

information entropy or conditional information entropy to

get the weight, so as to reduce the attributes of the data.

At present, the main research direction of rough set

attribute reduction algorithm is divided into the improve-

ment of different types of data and the improvement of

different granulation methods. Due to the complexity and

diversity of data, many scholars begin to study different

types of data, including dynamic data, incomplete data,

mixed data, etc. Then incremental reduction, dynamic

reduction, multi decision table reduction and parallel

reduction are developed. In the view of algebra, Chu et al.

(2020) proposed a three-way clustering algorithm based on

neighborhood rough sets for incomplete and attribute-re-

lated random large sample data; Deng et al. (2021) pro-

posed F-neighbor rough sets and its reducts for dynamic

numerical data, combining the advantages of neighbor

rough set and F-rough set; Singh et al. (2020) introduced a

novel approach for attribute selection in set-valued infor-

mation system based on tolerance rough set theory. In

terms of information view, Zhao and Qin (2014) proposes

an extended rough set model based on neighborhood-tol-

erance relation for incomplete data mixed by categorical

and numerical features, and then proposes conditional

entropy of neighborhood tolerance; Sang et al. (2021)

proposed incremental feature selection approaches based

on a fuzzy dominance neighborhood rough set for dynamic

interval-valued ordered data; Wan et al. (2021) proposed a

new objective evaluation function of the interactive

selection of hybrid features and designed a novel interac-

tion feature selection algorithm based on neighborhood

conditional mutual information for hybrid data; Chen et al.

(2018a, b, c) proposed a variable precision neighborhood

rough set attribute reduction heuristic algorithm based on

mutual information entropy for incomplete hybrid decision

system; Sun et al. (2020) proposed a novel neighborhood

multi-granulation rough sets based attribute reduction

method using Lebesgue and entropy measure in incomplete

neighborhood decision system; Shu et al. (2020) proposed

a neighborhood entropy-based incremental feature selec-

tion framework by neighborhood rough set model for

dynamic hybrid data with mixed-type features. For multi

label data, Qian et al. (2020) integrated label distribution

learning into multi label feature selection, and proposed a

multi-label feature selection algorithm based on label dis-

tribution and feature complementarity.

At present, more and more scholars combine rough set

theory with granular computing (Zadeh 1997), and realize

the transformation and representation of uncertain knowl-

edge by using different granulation mechanisms. It makes

the subsequent calculation start from different levels or

granularity, and realizes the characterization of neighbor-

hood information system from multiple perspectives. In the

view of algebra, Zhang et al.(2019a, b) developed a novel

model called local multi-granulation decision-theoretic

rough set in an ordered information system; Zhan and Xu

(2018) introduced two types of coverings based (optimistic,

pessimistic and variable precision) multi granulation rough

fuzzy set models respectively by means of neighborhoods

and presented an approach to multiple criteria group

decision making problem, and then Zhang et al. (2019a, b)
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proposed two types of multi-granulation rough sets model

called the optimistic multi-granulation hesitant fuzzy rough

sets and pessimistic multi-granulation hesitant fuzzy rough

sets; Tsang et al. (2020) investigated the mechanism of

multi-level cognitive concept learning method oriented to

data sets with fuzziness; Tan et al. (2019) defined several

measurements to compare the granularity of neighborhood

granulations, using which the granulation selection with

multi granulation rough set is characterized; Jiang et al.

(2019) proposed a multi-scale based acclerated stragegy for

attribute reduction by means of the changing of radius;

Chen et al. (2018c) proposed a three-level structure of

granules in the neighborhood system: the neighborhood

granule, the neighborhood granule swarm and the neigh-

borhood granule library; Chen et al. (2018a) proposed a

multi-radius neighborhood rough set weighted feature

extraction method for high-resolution remote sensing

image classification; Li et al. (2020) proposed a dynamic

granularity selection algorithm by introducing local

weighted accuracy and local likelihood ratio to compute

the weight of granularity. In terms of information view,

Zhao et al. (2015) proposed a new complement information

entropy model in fuzzy rough set based on arbitrary fuzzy

relation, which takes inner-class and outer-class informa-

tion into consideration; Zhou et al. (2018,2020) applied the

idea of three-layer construction to conditional neighbor-

hood entropy; Zhao and Yang (2019) proposed an incre-

mental attribute reduction algorithm for object constantly

increasing in numeric information system; Mou et al.

(2020) decomposed high classification- based neighbor-

hood approximation condition-entropy and proposed a

class-specific attribute reduct based on the new information

measure. Mu et al. (2019) establishes double-granule

conditional-entropies based on three-level granular struc-

tures by improvements of hierarchical granulation.

The parameter of radius in the neighborhood reduction

algorithm plays an important role. Different radius results

in different reduction result. If the same radius is used, the

influence of samples under different labels cannot be fully

considered. To solve this problem, Yang et al. (2019)

proposed a pseudo-label neighborhood relation. On this

basis, Rao et al. (2020) put forward relevant reduction

acceleration strategies; Nevertheless, not only is it a time-

consuming process for generating pseudo labels of sam-

ples, but also the information provided by pseudo labels

may be incorrect which will lead to lower quality of

neighborhood rough approximations. Jiang et al. (2020)

proposed a supervised neighborhood based on the super-

vised strategy. By using two neighborhood radii, which

successfully reduced the interference between samples

with different labels.

The traditional rough set reduction algorithm based on

information view fails to consider the influence

relationship between different decision attributes when

calculating conditional neighborhood entropy, and the

traditional radius does not take into account the informa-

tion provided by decision attributes. In this paper, a two-

step reduction algorithm is proposed. We combine the

supervised strategy (Jiang et al.2020) with the concept of

three-level granulation (Zhou et al.2018) in the first step of

reduction, and fully consider the influence of decision

attributes from the perspective of determination and mea-

surement calculation. In order to further consider the

influence of different conditional attributes and eliminate

those attributes that are too similar to each other and have

little impact on decision attributes, the feature comple-

mentary relationship in reference (Qian et al.2020) is

introduced in the second step of reduction. The two-step

reduction algorithm is called the neighborhood rough set

based on supervised granulation (NRSBSG) attribute

reduction algorithm. Then, it is applied for the fatigue life

influencing factors’ analysis of titanium alloy welded

joints, coupling relationship between the fatigue life

influencing factors of titanium alloy welded joints are

studied. The implicit relationship between the influencing

factors is researched, and the corresponding intelligent

model is constructed. The model is tested by using the

fatigue experiment data of titanium alloy welded joints. At

last, the analysis system of fatigue life influencing factors

of welded joints based on NRSBSG is designed and

developed.

The rest of this paper is organized as follows. Section 3,

describes the theory of neighborhood rough set reduction

by defining some concepts, and the proposed NRSBSG is

introduced. Section 4, carries out some experiments on the

standard UCI datasets and analyzes the results. Section 5,

describes details with the design and implementation of the

fatigue life influencing factors analysis system. Section 6,

concludes the paper and presents further work in this area.

3 Basic concepts

3.1 Preliminary

Generally, a neighborhood decision system can be denoted

as NDS ¼ ðU;C; d; f Þ, in which U is the set of nonempty

samples, C is the set of conditional attributes and d is the

decision attribute. 8x 2 U, dðxÞ indicates the value of x

over decision attribute. INDðdÞ ¼ fðx; yÞ 2 U� U : dðxÞ ¼
dðyÞg indicates the equivalent relation of decision attribute

d,U=INDðdÞ ¼ fX1;X2; :::;Xqg indicates the sample divi-

sion of decision attribute d,and Xq is the q decision class

with the same label sample. In this Section, some basic
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concepts of neighborhood rough set and the proposed

NRSBSG are introduced.

3.1.1 Neighborhood relation

Definition 1. (Hu 2006) Distance function.

Given a decision system NDS,

U ¼ fx1; x2; :::; xig,8B � C, the conditional attribute col-

lection B ¼ fc1; c2; :::; cng,then the distance function of B

is:

DBðx; xiÞ ¼
Xn

k¼1

f ðx; ckÞ � f ðxi; ckÞj jp
 !1

p

ð1Þ

in which f ðx; ckÞ denotes the value of sample x with respect

to conditional attribute ck. When p = 1, it is Manhattan

distance, and when p = 2, it is Euclidean distance. In this

paper, we use Manhattan distance as the distance function.

Definition 2. (Hu 2006) Neighborhood relation.

Given a decision system NDS,U ¼ fx1; x2; :::; xig,

xi 2 U,the neighborhood of xi can be denoted as:

ndBðxiÞ ¼ fxjDBðx; xiÞ\d; x 2 Ug ð2Þ

in which conditional attribute collection

B � C,B ¼ fc1; c2; :::; cng indicates the conditional attri-

bute contained in the conditional attribute set B,DBðx; xiÞ
indicates the distance between sample xi and x with respect

to conditional attribute set B,d is the neighborhood radius.

The neighborhood relation can be denoted as follows:

ndB ¼ fðx; yÞjDBðx; yÞ\d; 8x; y 2 Ug ð3Þ

3.1.2 Neighborhood rough set based on information view

Hu et al. (2009) combined the classical Shannon entropy

with neighborhood rough set, studied the correlation

measure of neighborhood decision system under the

information view, including neighborhood entropy, condi-

tional neighborhood entropy and neighborhood mutual

information. It can be directly applied to multi-label data

with numerical and discrete characteristics without dis-

cretization. The concept is introduced as follows:

Definition 3. (Hu et al. 2009) Conditional neighborhood

entropy.

Given a decision system NDS,8A;B � C,the conditional

neighborhood entropy of conditional attribute set A with

respect to conditional attribute set B is defined as:

NHdðA=BÞ ¼ � 1

jUj
XjUj

i¼1

log
jndAðxiÞ \ ndBðxiÞj

jndBðxiÞj
ð4Þ

the conditional neighborhood entropy of decision attribute

d with respect to the set of conditional attribute B is defined

as:

NHdðd=BÞ ¼ � 1

jUj
XjUj

i¼1

log
j½xi�d \ ndBðxiÞj

jndBðxiÞj
ð5Þ

where ½xi�d is the decision class corresponding to sample xi.

Definition 4. (Hu et al. 2009) Neighborhood mutual

information.

Given a decision system NDS,8A;B � C,the neighbor-

hood mutual information of conditional attribute set A with

respect to conditional attribute set B is defined as:

NHdðA;BÞ ¼ � 1

jUj
XjUj

i¼1

log
jndAðxiÞjjndBðxiÞj

jUjjndAðxiÞ \ ndBðxiÞj
ð6Þ

the neighborhood mutual information of decision attribute

d with respect to the set of conditional attribute B is defined

as:

NHdðd;BÞ ¼ � 1

jUj
XjUj

i¼1

log
j½xi�djjndBðxiÞj

jUjj½xi�d \ ndBðxiÞj
ð7Þ

If variables B and C are independent of each other, then

the value of neighborhood mutual information between

B and C is minimum. The value of neighborhood mutual

information between B and C is maximum, if B is com-

pletely determined by C (Qian et al. 2020).

3.1.3 (Zhou et al. 2018) Conditional neighborhood entropy
with granulation monotonicity

Definition 5. Conditional neighborhood entropy with

granulation monotonicity.

Given a decision system NDS, 8xi 2 U,8B � C and

U=INDðdÞ ¼ fX1;X2; :::;Xqg, the conditional neighbor-

hood entropy with granulation monotonicity is defined as:

HdðXj=n
d
BðxiÞÞ ¼ � 1

jUj logðjn
d
BðxiÞj

2

jUj2
jXj \ ndBðxiÞj
jndBðxiÞj

Þ; Xj \ ndBðxiÞ 6¼ ;

HdðXj=n
d
BðxiÞÞ ¼ � 1

jUj logðjn
d
BðxiÞj

2

jUj2
1

jndBðxiÞj
Þ; Xj \ ndBðxiÞ ¼ ;

8
>>>><

>>>>:

ð8Þ

3.1.4 Supervision strategy

The traditional neighborhood relation is determined by the

distance between two samples and the radius of a single
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neighborhood. This method may not be able to express

whether the samples with different decision attributes are

similar and two samples with different labels will fall into

the same neighborhood. In order to solve this problem, the

neighborhood relationship based on supervisory decision is

proposed in document (Jiang et al. 2020). The neighbor-

hood relationship is introduced as follows:

Definition 6. (Jiang et al. 2020) Supervised neighborhood.

Given a decision system NDS, 8xi 2 U,8B � C,the

supervised neighborhood of conditional attribute set B is

defined as:

n
dI;dO
B ðxiÞ ¼ fxjx 2 U; dðxÞ ¼ dðxiÞ&DBðx; xiÞ\dI

[dðxÞ 6¼ dðxiÞ&DBðx; xiÞ\dOg
ð9Þ

in which the intra class radius dI and inter class radius dO
should satisfy dO\dI , which can effectively reduce the

impact between different label samples.

3.1.5 Neighborhood rough set based on supervised
granulation

Conditional neighborhood entropy with granulation

monotonicity takes into account the influence of different

decision classes in the calculation of conditional neigh-

borhood entropy. In order to further improve the discrim-

inant performance of neighborhood relations, the

supervision strategy is introduced, and the influence rela-

tionship between different decision attribute samples is

fully considered in the calculation. A neighborhood rough

set based on supervised granulation is proposed. The

related definitions are introduced as follows:

Definition 7. Conditional neighborhood entropy and

neighborhood mutual information based on supervised

granulation.

Given a decision system NDS, 8xi 2 U,dI ; dO 2
½0; 1�,8B � C,the decision class of the sample is divided

into U=INDðdÞ ¼ fX1;X2; :::;Xqg ,the conditional neigh-

borhood entropy of decision attribute d with respect to

conditional attribute set B based on supervised granulation

is defined as:

HdI ;dOðd=BÞ ¼ � 1

jUj
Xq

j¼1

XjUj

i¼1

HdI ;dOðXj=n
dI;dO
B ðxiÞÞ ð10Þ

The neighborhood mutual information of decision

attribute d with respect to conditional attribute set B based

on supervised granulation is defined as:

NHdI ;dO
ðd;BÞ ¼ � 1

jUj
XjUj

i¼1

log
j½xi�djjn

dI ;dO
B ðxiÞj

jUjj½xi�d \ n
dI ;dO
B ðxiÞj

ð11Þ

Definition 8. Attribute reduction.

Given a decision system NDS,

8xi 2 U,dI ; dO 2 ½0; 1�,8B � C,the decision class of the

sample is divided into U=INDðdÞ ¼ fX1;X2; :::;Xqg when

the following two conditions are satisfied, the conditional

attribute set B is the attribute reduction of C relative to

decision attribute d.

HdI ;dOðd=BÞ 6¼ HdI ;dOðd=B� fcgÞ; 8c 2 B

HdI ;dOðd=BÞ ¼ HdI ;dOðd=CÞ

(
ð12Þ

Definition 9. Core.

Given a decision system NDS, 8xi 2 U,dI ; dO 2 ½0; 1�
and 8c � C,the decision class of the sample is divided into

U=INDðdÞ ¼ fX1;X2; :::;Xqg . If HdI ;dOðd=CÞ 6¼ HdI ;dO

ðd=C � fcgÞ, then c is the core attribute of the decision

system, all core attributes constitute the core of decision

system.

Definition 10. Significance.

Given a decision system NDS, supposed c 2 C � B,then

the significance of adding conditional attribute c to con-

ditional attribute set B with respect to decision attribute d

is:

sigoutðc;B; dÞ ¼ HdI ;dOðd=B [ fcgÞ � HdI ;dOðd=BÞ ð13Þ

supposed c 2 B, then the significance of deleting condi-

tional attribute c to conditional attribute set B with respect

to decision attribute d is:

siginðc;B; dÞ ¼ HdI ;dOðd=BÞ � HdI ;dOðd=B� fcgÞ ð14Þ

The proof of the monotonicity of conditional neigh-

borhood entropy can be obtained from (Zhou et al. 2018).

3.2 Attribute reduction algorithm
of neighborhood rough set based
on supervised granulation

In this paper, the algorithm of attribute reduction of

neighborhood rough set based on supervised granulation is

formed by combining the conditional neighborhood

entropy with granulation monotonicity with the supervised

strategy, and then considering the interaction between the

conditional attributes by introducing the feature comple-

mentary relationship. The workflow of the proposed algo-

rithm is shown in Fig. 1.

As is shown in Fig. 1, dI ; dO are intra class radius and

inter class radius respectively, calculated by

dIðciÞ ¼ stdðciÞ=k,dOðciÞ ¼ a � dIðciÞ, where dIðciÞ indi-

cates the intra class radius of conditional attributes

ci,dOðciÞ indicates the inter class radius, parameters k and a

control the size of radius. The size of the inter class radius

Attribute reduction algorithm of neighborhood rough set based on supervised granulation and its… 1569
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are determined by the value of a. The value range of

a should between [0,1]. The closer it is to 1, the closer the

inter class radius is to the intra class radius and the pro-

portion of considering the influence of decision attributes

in neighborhood division becomes smaller. No difference

in dividing neighborhoods between the five algorithms

when the inter class radius is equal to the intra class radius.

In order to ensure the intra class radius is greater than the

inter class radius. a is taken as 0.5. sig_ctrl and threH are

the significance threshold and complementarity threshold

respectively, and the value is a positive number slightly

greater than 0. The larger the value of sig_ctrl, the less

number of the reduction results satisfying the conditions.

So, the reduction set will have fewer attribute elements.

The larger the value of threH, the more similar attributes

will be divided into a reduction set. The reduction set will

have more attribute elements.

In the first step of proposed algorithm, firstly, the attri-

bute importance is taken as the evaluation criterion to find

out the redundant attributes in the whole dataset. In this

way, the reduct set can be quickly found in a short time.

Then,HdI ;dOðd=redSetÞ�HdI ;dOðd=CÞ is taken as the eval-

uation criterion to ensure the integrity of information. From

the point of view of information, the amount of information

of the reduced set is not less than that of the original data

set by supplementing the reduced set. The first step of

proposed algorithm corresponds to steps 1,2,3 and 4 in the

reduction step. In the second step, reduction results are

calculated by the mutual information NHdI ;dOðA;BÞ and

NHdI ;dOðd;BÞ. The attributes which are similar to each

other and have little influence on the decision attributes in

the reduction set are eliminated. The second step of pro-

posed algorithm corresponds to steps 5,6,7 and 8 in the

reduction step. For calculation convenience, the average

value R(i) of influence between conditional attribute ci and

other features is calculated. The detailed calculation steps

of the algorithm are shown in ALGORITHM.

3.3 Illustrative example

In order to show the calculation process of the proposed

algorithm, eight samples are selected from iris dataset from

UCI (http://archive.ics.uci.edu/ml/index.php). The specific

data are shown in Table 1. Normalization is conducted at

the beginning. The normalization formula is as follows:

f ðxiÞ ¼
xi � xmin

xmax � xmin

ð15Þ

where xmax and xmin are the maximum and minimum values

of samples with the same attribute. The normalized data is

shown in Table 2.

Suppose a = 0.5, k = 2, neighborhood radius dI(ci)-

= std(ci)/k, dO(ci) = a*dI(ci) are calculated, dI(c1)-

= 0.1930, dO(c1) = 0.0965, dI(c2) = 0.1485,

dO(c2) = 0.0743. According to formula (10), the supervised

1570 L. Zou et al.
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neighborhood of samples in attribute set

B1 ¼ fc1g,B2 ¼ fc2g, B12 ¼ fc1; c2g are obtained, as is

shown in Table 3.

The decision class of the sample is

U=INDðdÞ ¼ fX1;X2;X3g, in which X1 ¼ fx1; x2g,

X2 ¼ fx3; x4; x5g,X3 ¼ fx6; x7; x8g. According to formula

(10), the corresponding conditional neighborhood entropy

is calculated. Calculating of the neighborhood of samples

with respect to attribute set B1 is detailed as following. The

calculation process with respect to B2 and B12 is similar

and will not be repeated.

Fig. 1 Attribute reduction

process of neighborhood rough

set based on supervised

Table 1 Iris data set

Samples c1 c2 c3 d

x1 5.1 3.5 1 Setosa

x2 4.9 3 1 Setosa

x3 5.8 2.7 1 Virginica

x4 6.3 3.3 1 Virginica

x5 7.1 3 2 Virginica

x6 6.9 3.1 2 Versicolor

x7 7 3.2 2 Versicolor

x8 6.4 3.2 1 Versicolor

Table 2 Normalized iris data set

Samples c1 c2 c3 d

x1 0.0909 1.0000 1 Setosa

x2 0 0.3750 1 Setosa

x3 0.4091 0 1 Virginica

x4 0.6364 0.7500 1 Virginica

x5 1.0000 0.3750 2 Virginica

x6 0.9091 0.5000 2 Versicolor

x7 0.9545 0.6250 2 Versicolor

x8 0.6818 0.6250 1 Versicolor

Table 3 Supervised neighborhood

Supervised neighborhood B1 B2 B12

n
dI;dO
Bi

ðx1Þ fx1; x2g fx1g fx1g

n
dI;dO
Bi

ðx2Þ fx1; x2g fx2; x5g fx2g

n
dI;dO
Bi

ðx3Þ fx3g fx3g fx3g

n
dI;dO
Bi

ðx4Þ fx4; x8g fx4g fx4g

n
dI;dO
Bi

ðx5Þ fx5; x6; x7g fx2; x5g fx5g

n
dI;dO
Bi

ðx6Þ fx5; x6; x7g fx6; x7; x8g fx6; x7g

n
dI;dO
Bi

ðx7Þ fx5; x6; x7g fx6; x7; x8g fx6; x7g

n
dI;dO
Bi

ðx8Þ fx4; x8g fx6; x7; x8g fx8g
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X1 \ ndB1
ðx1Þ ¼ fx1; x2g; X2 \ ndB1

ðx1Þ ¼ f;g; X3 \ ndB1
ðx1Þ

¼ f;g

X1 \ ndB1
ðx2Þ ¼ fx1; x2g; X2 \ ndB1

ðx2Þ ¼ f;g; X3 \ ndB1
ðx2Þ

¼ f;g

X1 \ ndB1
ðx3Þ ¼ f;g; X2 \ ndB1

ðx3Þ ¼ fx3g; X3 \ ndB1
ðx3Þ

¼ f;g

X1 \ ndB1
ðx4Þ ¼ f;g; X2 \ ndB1

ðx4Þ ¼ fx4g; X3 \ ndB1
ðx4Þ

¼ fx8g

X1 \ ndB1
ðx5Þ ¼ f;g; X2 \ ndB1

ðx5Þ ¼ fx5g; X3 \ ndB1
ðx5Þ

¼ fx6; x7g

X1 \ ndB1
ðx6Þ ¼ f;g; X2 \ ndB1

ðx6Þ ¼ fx5g; X3 \ ndB1
ðx6Þ

¼ fx6; x7g

X1 \ ndB1
ðx7Þ ¼ f;g; X2 \ ndB1

ðx7Þ ¼ fx5g; X3 \ ndB1
ðx7Þ

¼ fx6; x7g; X1 \ ndB1
ðx8Þ ¼ f;g; X2 \ ndB1

ðx8Þ
¼ fx4g; X3 \ ndB1

ðx8Þ ¼ fx8g

The supervised granulation conditional neighborhood

entropy of decision class X1 with respect to the conditional

attribute set B1 is obtained as follows:

HdI ;dOðX1=n
dI;dO
B1

ðx1ÞÞ ¼ � 1

jUj log
ndB1

ðx1Þ
�� ��2

Uj j2
X1 \ ndB1

ðx1Þ
�� ��

ndB1
ðx1Þ

�� ��

 !

¼ � 1

8
logð2

2

82

2

2
Þ ¼ 0:5

HdI ;dO X1=n
dI;dO
B1

ðx2Þ
� �

¼ � 1

8
log

22

82

2

2

� �
¼ 0:5

HdI ;dO X1=n
dI;dO
B1

ðx3Þ
� �

= � 1

8
log

12

82

1

1

� �
¼ 0:75

HdI ;dO X1=n
dI;dO
B1

ðx4Þ
� �

= � 1

8
log

22

82

1

2

� �
¼ 0:625

HdI ;dO X1=n
dI;dO
B1

ðx5Þ
� �

= � 1

8
log

32

82

1

3

� �
¼ 0:552

HdI ;dO X1=n
dI;dO
B1

ðx6Þ
� �

= � 1

8
log

32

82

1

3

� �
¼ 0:552

HdI ;dO X1=n
dI;dO
B1

ðx7Þ
� �

= � 1

8
log

32

82

1

3

� �
¼ 0:552

HdI ;dO X1=n
dI;dO
B1

ðx8Þ
� �

= � 1

8
log

22

82

1

2

� �
¼ 0:625

The conditional neighborhood entropy of decision class

X1 is:

HdI ;dOðX1=B1Þ ¼
XjUj

i¼1

HdI ;dOðX1=n
dI;dO
B1

ðxiÞÞ ¼ 4:656

The conditional neighborhood entropy of decision class

X2 and X3 is:

HdI ;dOðX2=B1Þ ¼
XjUj

i¼1

HdI ;dOðX2=n
dI;dO
B1

ðxiÞÞ ¼ 4:906

HdI ;dOðX3=B1Þ ¼
XjUj

i¼1

HdI ;dOðX3=n
dI;dO
B1

ðxiÞÞ ¼ 4:531

Therefore, the conditional neighborhood entropy of the

supervised granulation of conditional attribute set B1 with

respect to decision attribute d is:

HdI ;dOðd=B1Þ ¼
X3

j¼1

HdI ;dOðXj=B1Þ ¼ 14:093

Then, the supervised granulation conditional neighbor-

hood entropy of conditional attribute set B2,B12,B13,B23 and

C can be calculated:

HdI ;dOðd=B2Þ ¼ 14:873; HdI ;dOðd=B3Þ ¼ 10:238

HdI ;dOðd=B12Þ ¼ 17; HdI ;dOðd=B13Þ ¼ 14:092

HdI ;dOðd=B23Þ ¼ 17; HdI ;dOðd=CÞ ¼ 17

The significance of attributes c1,c2 and c3 can be cal-

culated by formula (15):

siginðc1;C; dÞ ¼ HdI ;dOðd=CÞ � HdI ;dOðd=C � fc1gÞ
¼ HdI ;dOðd=CÞ � HdI ;dOðd=B23Þ ¼ 0

siginðc2;C; dÞ ¼ HdI ;dOðd=CÞ � HdI ;dOðd=C � fc2gÞ
¼ HdI ;dOðd=CÞ � HdI ;dOðd=B13Þ ¼ 2:908

siginðc3;C; dÞ ¼ HdI ;dOðd=CÞ � HdI ;dOðd=C � fc3gÞ
¼ HdI ;dOðd=CÞ � HdI ;dOðd=B12Þ ¼ 0

According to the above calculation process, the signifi-

cance of attribute c1 and c3 with respect to d is 0, which is

redundant thus could be deleted.

4 Experimental work

Experiments on 10 open UCI data sets are carried out here.

The data sets are shown in Table 4.

The effectiveness of the proposed algorithm is verified

from two aspects: reduction rate and accuracy of classifi-

cation. The reduction rate formula is shown in formula

(16):

Rate ¼ jCj � jredSetj
jCj ð16Þ

where jCj indicates the number of original

attributes,jredSetj indicates the number of attributes about

reduction set.

The accuracy of classification is as following:
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Accuracy ¼ jUaj
jUj � 100% ð17Þ

where jUaj indicates the number of samples correctly

classified, jUj indicates the total number of samples.

To reduce the adverse effects caused by inconsistent

sample data, the preprocessed data are limited to [0,1] by

normalization. The normalization formula is shown in (18):

f ðxiÞ ¼
xi � xmin

xmax � xmin

ð18Þ

where xmax and xmin are the maximum and minimum values

of samples under the same attribute respectively.

Comparative experiments are carried out with the same

and different neighborhood parameters respectively. The

experiment is carried out on an Ali-cloud server computer:

using X86 computing architecture, 16vCPU: AMD

EPYCTM ROME 7H12, 64 GB running memory.

MATLAB R2018b is used as the development tool.

4.1 Reduction results with same parameters

To verify the performance of NRSBSG algorithm, we

compared NRSBSG with FARNeMF (Hu 2008), NRSBCE

(Zou et al. 2021), IFSANRSR (Zou et al.2019a) and

SNBAR (Jiang et al.2020) on the selected 10 data sets. The

parameter a in NRSBSG algorithm and SNBAR algorithm

is set to be 0.5. And the intra class radius dI in NRSBSG is

0.1 which is the same as that in the other four algorithms.

In IFSANRSR, the number of iterations is 100, and the

number of artificial fish is set to be half of the number of

conditional attributes, the maximum field of vision is half

of the number of artificial fish, and the maximum move-

ment step is 1 less than the maximum field of view. The

reduction results and reduction rate of the five algorithms

are shown in Table 5. The accuracy of classification and

running time are shown in Table 6.

As could be seen from Table 5, the reduction effect of

NRSBSG is similar to the other four algorithms in most

data sets when d = 0.1. In high-dimensional data sets

including Arrhythmia, Parkinson’s disease and Swarm

behavior, the average reduction rate of the proposed

algorithm is above 0.95. Compared with NRSBCE and

IFSANRSR algorithms, it is slightly better than the two

algorithms.

As is shown in Table 6, when d = 0.1, the accuracy of

classification of the proposed NRSBSG algorithm is 0.9504

and 0.9388 on Wine and Ionosphere data sets which is

slightly lower than that of NRSBCE algorithm. It has

higher accuracy of classification than the other four algo-

rithms on other datasets. The standard deviation of the

accuracy of the five algorithms was about 0.04.

As could be seen from Table 6, the FARNeMF algo-

rithm has the shortest running time of the five on the

selected ten data sets. The running time of NRSBSG

algorithm is shorter than that of IFSANRSR algorithm. The

time complexity of NRSBSG algorithm is O(|U|2�|C|3). The

time complexity of NRSBCE algorithm is O(|U|2�|C|2)(Zou

et al. 2021). The time complexity of SNBAR algorithm is

O(|U|2�|C|2)(Jiang et al.2020). The time complexity of

FARNeMF algorithm is O(|U|log|U|�|C|2)(Hu 2008). The

time complexity of IFSANRSR algorithm is O(|Itera-

tions|�|Fish|2�|try_number|�|U|2�|C|)(Zou et al.2019a).

From the above, when d = 0.1, NRSBSG algorithm has

made a progress in the aspect of accuracy of classification

at the cost of running time. At the same time, NRSBSG

algorithm has also perform well in the reduction rate of

high-dimensional data sets.

4.2 Reduction rate evaluation under different
parameters

As we know that different value of radius parameter results

in different granularity of knowledge. In order to see the

change of reduction rate of the four algorithms with dif-

ferent value of radii parameter, 20 radius parameters are

selected. The radius range is from 0.05 to 1.0, and the

change step is 0.05. The radius parameters dI is taken as the

horizontal axis, and the value of reduction rate as the

vertical axis. Figure 2 shows the comparison result of

reduction rate.

It can be seen from Fig. 2, with the increase of radii, the

overall trend of reduction rate is gradually decreasing.

Compared with the other three algorithms, the maximum

reduction rates of NRSBSG algorithm on Breast, Fertility,

Ionosphere and Wine data sets are 0.5556, 0.5556, 0.9697

and 0.8462 respectively. While the maximum reduction

rates of other three algorithms are 0.5556, 0.5556, 0.8788

and 0.8462. Which are lower or same than that of NRSBSG

algorithm. In high-dimensional data sets including

Table 4 Dataset used in the experiment

U Data sets Samples Features Classes

1 Lymphography 114 18 4

2 Wine 178 13 3

3 Ionosphere 351 34 2

4 Breast 277 9 2

5 Zoo 101 16 7

6 Fertility 100 9 2

7 Conn 208 60 2

8 Arrhythmia 452 280 13

9 Parkinson’s disease 756 753 2

10 Swarm behavior 2001 2400 2
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Table 5 Reduction results and reduction rate at d¼0:1

Data sets NRSBSG NRSBCE FARNeMF

Reduct Rate Reduct Rate Reduct Rate

Lymphography 1,2,7,10,12,13,14,15 0.5556 13 0.9444 2,13,14,15,16,18 0.6667

Wine 1,12,13 0.7692 3,5,6,8,12 0.6154 9,13 0.8462

Ionosphere 2,3,4,6,27,30 0.8182 2,11,17,19 0.8788 2,13,17,23,30 0.8485

Breast 3,4,5,6,7,8,9 0.2222 1,3,4,6,7,8,9 0.2222 1,2,3,4,6,7,8 0.2222

Zoo 1,2,3,8,13 0.6875 6,7 0.875 4,6,8,12,13 0.6875

Fertility 2,3,4,9 0.5556 1,3,4,7,9 0.4444 1,2,3,4,7,9 0.3333

Conn 1,7,16,30,40,43,54,55 0.8667 1,2,4,45,56 0.9167 11,20,35,44 0.9333

Arrhythmia 7,64,78,152,162, 173,250,256 0.9713 23,33,42,43,45,47, 48,57,66,

69,71,76,82,94, 123,143

0.9427 40,64,89,132 0.9857

Parkinson’s

disease

5,48,63,94,96, 97, 109,170,405 0.988 23,24,36,46,84,347, 348,573,

715,717,722,728, 740,751

0.9814 65,133,373, 0.996

Swarm

behavior

214,233,257,507, 1033,1547,

2230,2300,

0.9967 2239,2240, 0.9992 493,901, 0.9992

Data sets IFSANRSR SNBAR

Reduct Rate Reduct Rate

Lymphography 2,12,13,14,15,16,18 0.6111 2,11,12,13,14,15,18 0.6111

Wine 1,3,9,11,13 0.6154 1,5,7,13 0.692

Ionosphere 4,6,7,13,14,19,23 0.7879 4,5,13,15,23 0.8485

Breast 1,2,3,4,6,7,8 0.2222 1,3,4,5,6,7,8,9 0.1111

Zoo 2,3,4,6,8,13 0.625 4,6,8,12,13 0.6875

Fertility 1,2,3,5,6,7,8 0.2222 1,2,3,5,9 0.4444

Conn 23,28,33,36,45 0.9167 10,14,19,49 0.9333

Arrhythmia 1,7,30,56,67,78,85, 156,167,176,242,251 0.957 3,10,14,109,152,167,250 0.9749

Parkinson’s disease 29,41,63,122,124, 229,256, 347,476,578,686,710 0.9841 271,390 0.9973

Swarm behavior 518,724,748,1202,1335,1377, 2137,2150 0.9967 201,933 0.9222

Table 6 Accuracy of classification and running time at d¼0:1

Data sets NRSBSG NRSBCE FARNeMF IFSANRSR SNBAR

Acc Time (s) Acc Time (s) Acc Time (s) Acc Time (s) Acc Time (s)

Lymphography 0.7838 3.39 0.7761 0.13 0.7704 0.01 0.772 1.3 0.768 0.3

Wine 0.9504 2.05 0.9634 0.11 0.9319 0.03 0.9334 0.9 0.9237 0.4

Ionosphere 0.9388 45.1 0.9563 0.89 0.8983 0.13 0.9003 23.7 0.9173 1.1

Breast 0.737 2.68 0.6863 0.16 0.6898 0.05 0.6793 1.3 0.7032 0.8

Zoo 0.7989 2.18 0.7589 0.02 0.7553 0.01 0.7533 0.7 0.7687 0.1

Fertility 0.8878 1.16 0.8533 0.05 0.8319 0.01 0.8598 0.2 0.8680 0.08

Conn 0.7488 7.2 0.7009 1.2 0.702 0.2 0.6798 8.3 0.6931 2.6

Arrhythmia 0.657 697.8 0.6554 191.5 0.6271 8.4 0.6331 1022.7 0.6277 397.3

Parkinson’s disease 0.7659 1233.2 0.681 598.1 0.6773 51.8 0.676 1795.4 0.716 1295.4

Swarm behavior 0.6341 4175.6 0.621 2031.1 0.5802 867.5 0.5637 4938.2 0.5602 4537.2
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Parkinson’s Disease, Arrhythmia and Swarm behavior, the

maximum reduction rates of NRSBSG algorithm are close

to the other three algorithms. The maximum reduction rate

of NRSBSG algorithm on Conn data set is slightly lower

than the other three algorithms. Although the maximum

reduction rate of NRSBSG algorithm on Zoo data set is

lower than NRSBCE algorithm, but it is higher than

FARNeMF algorithm and IFSANRSR algorithm. There-

fore, in most cases, the NRSBSG algorithm perform better

than the other three algorithms in the reduction rate.

4.3 Evaluation of classification accuracy
under different parameters

The accuracy of classification is believed more important

for algorithm evaluation criteria. In this paper, the support

vector machine is used as a classification tool, and the ten-

fold cross validation method is used to verify the accuracy

of classification of the proposed NRSBSG algorithm.

Based on 10 data sets, 20 different neighborhood radius

parameters in the reduction experiment are used. The

radius values range from 0.05 to 1.0. The radius parameter

is taken as the horizontal axis and the value of classification

accuracy is taken as the vertical axis. The comparison

results are shown in Fig. 3.

According to Fig. 3, the best accuracy of classification

can be obtained by using different neighborhood radius

parameters in different algorithms. On Breast, Fertility,

Ionosphere, Wine, Zoo, Conn and Lymphography data sets,

the maximum accuracy of classification of NRSBSG

algorithm are 0.7478, 0.8964, 0.9687, 0.9850, 0.8253,

0.7648 and 0.7952 respectively which is higher than that of

the other three algorithms. In high-dimensional data sets

including Arrhythmia, Parkinson’s disease and Swarm

behavior, the maximum accuracy of classification of

NRSBSG algorithm are 0.6988, 0.8083 and 0.6608 while

the maximum accuracy of classification of other three

algorithms are 0.6758, 0.7171 and 0.6454. Therefore, the

accuracy of classification of NRSBSG algorithm is better

than the other three algorithms in most cases.

As could also be seen from Figs. 2 and 3 that the

NRSBSG algorithm can obtain higher accuracy of classi-

fication and efficiently delete the redundant features from

the original data. Compared with the other algorithms, the

proposed NRSBSG algorithm mainly carries out attribute

reduction from the perspective of information view. Firstly,

in the process of dividing the neighborhood, the possible

influence among different classes in decision attribute is

bFig. 2 Reduction rates of different reduction algorithms in 10 data

sets
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considered by introducing the supervised strategy. Sec-

ondly, in the process of entropy calculation, the possible

influence among different classes in decision attribute is

considered by using conditional neighborhood entropy with

granulation monotonicity. Thirdly, the influence of condi-

tional attributes on each other is also considered in attribute

reduction through mutual information. Thus, the possible

influence of attributes is fully considered from three

aspects in the proposed NRSBSG algorithm. So that

NRSBSG algorithm is superior to the other algorithms in

classification accuracy. At the same time, with the increase

of the categories of decision attributes, the influence

between different decision attributes will be more and the

influence of decision attributes needs to be considered

more. NRSBSG algorithm will perform better than other

algorithms at this occasion. However, due to the high time

complexity, the running time of NRSBSG algorithm will

increase. How to decrease the time complexity of the

proposed algorithm and how to determine the appropriate

neighborhood radius parameters to achieve high accuracy

and reduction rate at the same time should be focused in

the future.

5 Application

In order to comprehensively analyze the influencing factors

of fatigue life of titanium alloy welded joints and the

coupling relationship between the influencing factors, an

analysis model of fatigue influencing factors of titanium

alloy welded joints is established. The NRSBSG algorithm

is applied in attribute reduction of the fatigue decision

system of titanium alloy welded joints. The key influencing

factors of fatigue life of titanium alloy welded joints are

determined. At the same time, the coupling relationship

between the influencing factors is analyzed based on

mutual information theory.

5.1 Fatigue decision system of titanium alloy
welded joints

Fatigue test data of titanium alloy welded joints are col-

lected as introduced in reference (Iwata and Matsuoka

2004) and the fatigue database is established as shown in

Table 7. There are 43 samples in the database. The data-

base is used as the experimental basis to analyze the

influencing factors of fatigue life of titanium welded joints.

In total, there are 6 attributes in the established database.

Among which, the character of fatigue life is decision

attribute, and the other 5 characters including Nominal

Stress Range, Thickness, Stress concentration and Equiv-

alent Structural Stress Range are conditional attributes. In

the established fatigue database, except the value of Joint
bFig. 2 continued
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Type is discrete, the values of other attributes are all

continuous.

Let S1¼{Nominal Stress Range ðc1Þ,Thickness

ðc2Þ,Stress Concentration Factor ðc3Þ,Joint Type ðc4Þ} and

S2¼{Equivalent Structural Stress Range ðc1Þ,Thickness

ðc2Þ,Stress Concentration Factor ðc3Þ,Joint Type ðc4Þ}, by

taking the ‘‘fatigue life’’ character as decision attribute, two

Fig. 3 Accuracy of

classification of different

reduction algorithms in 10 data

sets
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fatigue decision systems of titanium alloy welded joints are

established. As is shown in Table 8 and Table 9.

The proposed reduction algorithm is applied in the

fatigue decision system. Several experiments show that

when the radius parameter is 1.2, the accuracy of classifi-

cation is better. So, the radius parameter is set as 1.2. The

other parameters are set as a = 0.5, sig_ctrl = 0.01,

threH = 0.3. The reduction result of the nominal stress

decision system is {Nominal Stress Range, Stress Con-

centration Factor, Joint type}; The reduction result of the

equivalent structural stress decision system is {Equivalent

structural stress range, Stress concentration factor, Joint

type}.

The weight of the conditional attribute is calculated by

formula (18) proposed in (Qian et al.2020). Larger value of

weight indicates more influence on the fatigue life of the

Fig. 3 continued

Table 7 Data set of factors affecting fatigue life of Titanium alloy welded joints

Nominal stress range rNS/

MPa

Joint

type

Thickness t/
mm

Stress concentration factor

SCF
Equivalent structural stress range rES/

MPa

Fatigue

life

152 LB 2 1 170.6142 1,734,430

166.95 LT 2 1.3789 258.3990 675,006

190.8 LT 2 1.3789 295.3132 568,020

221.4 CB 2 1 248.5131 129,860

230 CB 2 1 258.1663 105,510

149.5 CT 2 1.3789 231.3906 4,213,944

218.5 CT 2 1.3789 338.1862 188,779

92.65 LL 2 2.7535 286.3533 1,116,913

102 LT 10 1.37285 205.5370 2,233,310

204 CB 10 1 299.4311 7,946,640

Table 8 Nominal stress decision system

U S1 d

C1 C2 C3 C4

x1 152 2 1 LB 1,734,430

x2 166.95 2 1.3789 LT 675,006

x3 190.8 2 1.3789 LT 568,020

x4 221.4 2 1 CB 129,860

x5 230 2 1 CB 105,510

x6 149.5 2 1.3789 CT 4,213,944

x7 218.5 2 1.3789 CT 188,779

x8 92.65 2 2.7535 LL 1,116,913

x9 102 10 1.37285 LT 2,233,310

x10 204 10 1 CB 7,946,640
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welded joints. Weight of conditional attributes of the two

fatigue decision systems are shown in Table 10 and 11.

xj ¼
NHdI ;dOðd; cjÞ
PjredSetj

i¼1

NHdI ;dOðd; ciÞ
ð18Þ

Mutual information between different attributes is

computed to measure the different influence degree. The

smaller of the value of mutual information, the better

independent between the two attributes would be. The

mutual information between the conditional attributes is

computed as shown in Table 12.

According to Table 10, in the nominal stress decision

system, the joint type has the largest influence on the

fatigue life of titanium alloy welded joint, which is 0.4123.

The nominal stress range is 0.3133, and the stress

concentration factor is 0.2744. According to Table 11, in

the equivalent structural stress decision system, the influ-

ence of equivalent structural stress range is the largest,

which is 0.4563. The stress concentration factor and joint

type are 0.2173 and 0.3264 respectively. Compared with

the nominal stress decision system, the influence of stress

concentration factor and joint type in the equivalent

structure stress decision system are smaller.

According to Table 12, the influence weight of plate

thickness on the stress concentration factor is 0.301. The

influence weight of joint type on the stress concentration

factor is 0.4071. That indicates the stress concentration

factor is more easily affected by the joint type than the

plate thickness.

5.2 Design and implementation
of the influencing factors analysis system

In this work, influencing factors analysis system of welded

joint fatigue life is designed and developed by using the

proposed NRSBSG algorithm. The development platform

of the system is MATLAB 2018b. The attribute reduction

algorithms involved in the system are all written in

MATLAB. After requirement analysis, the influencing

factors analysis system should include 3 modules, includ-

ing data selection, coupling relationship analysis and

quantitative evaluation of influencing factors.

The data selection function enables users to browse and

select the fatigue life test data set of welded joints or other

data sets for analysis and comparison. The data selection

function interface is shown in Fig. 4.

Coupling relationship analysis function enables users to

analyze and evaluate the influence degree of different

influencing factors in data set, and can see the histogram of

Table 9 Equivalent structural stress decision system

U S2 d

c1 c2 c3 c4

x1 170.6142 2 1 LB 1,734,430

x2 258.3990 2 1.3789 LT 675,006

x3 295.3132 2 1.3789 LT 568,020

x4 248.5131 2 1 CB 129,860

x5 258.1663 2 1 CB 105,510

x6 231.3906 2 1.3789 CT 4,213,944

x7 338.1862 2 1.3789 CT 188,779

x8 286.3533 2 2.7535 LL 1,116,913

x9 205.5370 10 1.37285 LT 2,233,310

x10 299.4311 10 1 CB 7,946,640

Table 10 The percentage of the influence of each influencing factor on the fatigue life (nominal stress)

Nominal stress range Thickness Stress concentration factor Joint type

Fatigue life 0.3133 0 0.2744 0.4123

Table 11 The percentage of the influence of each influencing factor on the fatigue life (equivalent structural stress)

Equivalent structural stress range Thickness Stress concentration factor Joint type

Fatigue life 0.4563 0 0.2173 0.3264

Table 12 The degree of

influence between each

influencing factor

Thickness Stress concentration factor Joint type

Thickness 0 0.301 0.0014

stress concentration factor 0.301 0 0.4071

Joint type 0.0014 0.4071 0
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influence degree of other factors on the influencing factors

by selecting specific influencing factors. As shown in

Fig. 5.

In the quantitative evaluation of influencing factors, the

reduction result of the data set is calculated and the influ-

ence ratio of the reduction result on the fatigue life is

obtained. The interface of algorithm operation results is

shown in Fig. 6, and the interface of quantitative evalua-

tion of influencing factors is shown in Fig. 7.

6 Conclusion

This paper proposed a neighborhood rough set attribute

reduction algorithm NRSBSG, which combines the super-

vised strategy, three-layer granulation, feature comple-

mentary relationship with conditional neighborhood

entropy. Experiments on 10 UCI data sets showed that the

algorithm improves the reduction rate and accuracy com-

pared with the other three algorithms.

On this basis, a coupling analysis model and quantitative

evaluation model of influencing factors of titanium alloy

welded joints was proposed. The key factors of titanium

alloy welding joints were determined in two stress decision

making systems. Through comparative analysis, the effect

of equivalent structural stress range on fatigue life of

welded joints is greater. It is shown that the equivalent

structure stress range can predict the fatigue life of welded

joints more accurately. In the coupling relationship of

influencing factors, the Stress Concentration Factor is most

importantly affected by joint type, which indicates that the

influence of joint type should be more considered impor-

tant when calculating the Stress Concentration Factor.

The design and development of fatigue analysis system

in this work provides technical support for fatigue analysis

and design of titanium alloy welded joints in industrial

Fig. 4 Data selection interface

Fig. 5 Coupling relationship analysis interface

Fig. 6 Algorithm running result interface

Fig. 7 Quantitative evaluation interface
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production. It reduces the labor intensity of designers,

improves the working efficiency, and has great practical

value and applicability.

The following topics need to be further studied.

1. The inter class radius of supervision strategy is

determined by experts. It can be dynamically and

automatedly updated by intelligent algorithms in the

future.

2. This paper carries on the analysis experiment on static

complete data set. In the future, we can analyze on

incomplete data set and dynamic data set.

3. In this paper, the coupling relationship analysis and

quantitative evaluation of influencing factors are only

from aspects of analysis of the fatigue test data. In the

future, it can be comprehensively considered and

analyzed from the experimental combined with data

analyzing aspect.
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