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Abstract
This paper is to integrate among solid transportation problem, budget constraints and carbon emissionwith probablemaximum
profit. The range of air pollution and climate change are effected byCO2 gas emission and other greenhouse gases frommyriad
transportation systems. Henceforth, our target is to minimize carbon emission for pollution-free environment. Transportation
system with single objective is hardly applicable to the situation with more than one criterion. Therefore multi-objective
decision making is incorporated for designing real-life transportation problem. Due to time pressure, data limitation, lack of
information or measurement errors in practical problems, there exist some hesitations. Based on the fact, decision maker
considers indeterminacy in the designed problems. To overcome such hesitancy of occurrence and non-occurrence in fuzzy
and intuitionistic fuzzy, neutrosophic set is very important and suitable to accommodate such general structure of problems.
Therefore neutrosophic environment with neutrosophic linear programming, fuzzy programming and global criterion method
is utilized here to find the compromise solution of the multi-objective transportation problem. Thereafter, the performance
of the considered model is useful by evaluating a numerical example, and then the derived results are compared. Finally
sensitivity analysis and conclusions with upcoming works of this research are stated hereafter.

Keywords Fixed-charge transportation problem · Multi-objective decision making · Carbon emission · Neutrosophic linear
programming · Fuzzy programming · Global criterion method · Compromise solution

1 Introduction

First we display all the abbreviations which are convenient
to use in this paper.

Abbreviations

MOTP Multi-objective transportation problem
TP Transportation problem
FTP Fixed-charge transportation problem
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STP Solid transportation problem
FSTP Fixed-charge solid transportation problem
IF Intuitionistic fuzzy
IFS Intuitionistic fuzzy set
NN Neutrosophic number
MFSTP Multi-objective fixed-charge solid transportation

problem
NLP Neutrosophic linear programming
PIS Positive ideal solution
NIS Negative ideal solution
FP Fuzzy programming
DM Decision maker
GCM Global criterion method

Only a single-objective function was considered in classical
transportation system in the last few decades. In the present
situation, more than one criterion are selected as transporta-
tion cost, average delivery time of product, deterioration rate
of goods, fixed-charge for an open route, etc., at the time
of passing a homogeneous product from a source to dif-
ferent destinations in the avenue of competitive economic
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condition. For this cause, the single-objective transporta-
tion problem (TP) is not enough to tractable such real-life
decisionmaking problem. To tackle such situation, themulti-
objective decision making is included in the traditional TP.
Hitchcock (1941) first defined TP, and then TP with linear
programming is known as Hitchcock–Koopmans TP. There
exist various research papers on TP with multi-objective
nature in crisp or imprecise data. A few of them is pre-
sented here. Maity et al. (2019) analyzed multimodal TP and
its application to artificial intelligence. Ebrahimnejad (2014)
represented a new approach for solving TP with generalized
trapezoidal fuzzy numbers. Multi-objective transportation
problem (MOTP) with fuzzy environment was provided by
Li and Lai (2000). Maity et al. (2016) proposed an MOTP in
uncertain environment with cost reliability.

An extension of general TP is fixed-charge transportation
problem (FTP) where the fixed-charge being independent of
transported amount. A fixed cost is called setup cost added
with transportation cost while the solution appears with the
level of positivity and it is associatedwith 0–1 variable. There
comes accumulation of some charges such as renting cost of
vehicle, landing fees at an airport, toll charges on a high
way and establishment cost for machines. All these costs are
considered for the transportation of some quantity towards
destinations. Adding to all the cost, the TP is called FTP and
there exist two sets of cost. The names of these costs are direct
cost and fixed-charge. The association of direct cost for each
source to destination and fixed-charge takes place when the
function of transportations is in the corresponding source–
destination pair. Hirsch and Dantzig (1968) first defined FTP.
Besides, there are some exact methods provided by litera-
ture review on FTP. Midya and Roy (2017) represented an
application of interval programming using interval and rough
interval on FTP in different environments. Midya and Roy
(2014) included fixed-charge in MOTP with single-sink and
multi-index stochastic environment. Roy et al. (2018) used
random rough variables for solvingMOTPwith fixed-charge.

The TP is renamed as solid transportation problem (STP)
when conveyance constraints are added with source and
destination constraints. STP was first introduced by Haley
(1962). Goods train, ships, trucks and cargo flights are the
media for the transportation of homogeneous products from
sources to destinations. The TP is restructured and renamed
as fixed-charge solid transportation problem (FSTP) after
the single type conveyance is used in FTP. Roy and Midya
(2019) solved FSTP in intuitionistic fuzzy (IF) environment
withmulti-objective and product blending concept. Das et al.
(2020) represented STP and facility location with carbon
policies. Ghosh et al. (2021) solved a multi-objective STP
in which variables and parameters are IF in nature. Roy et al.
(2019) analyzed multi-objective and multi-item FSTP with
twofold uncertainty.

In previous research works, STP includes sources,
demands and conveyance constraints for solving decision
making problem. But no research work found with STP
under budget constraints including fixed-charge, purchasing
cost, transportation cost and profit maximization. Budget is
an important fact in TP.Whenever transporting distinct items,
then transportation cost rapidly increases, which effects on
the total system. Considering the budget, we optimize the
several objective functions which are conflicting to each
other. These objective functions minimize total transporta-
tion cost, total delivery time and deterioration charge of
breakable goods. Many researchers applied budget con-
straints in MOTP. Majumder et al. (2019) used budget
constraints in FSTPwith uncertainmulti-objective andmulti-
itemenvironment.Das et al. (2016) analyzedGaussian type-2
fuzzy STP with breakable multi-item and multi-stage under
budget. Ghosh and Roy (2021) formulated a multi-objective
product blending FTP with truck load constraints through
transfer station under fuzzy-rough environment. Sifaoui and
Aider (2020) considered budget constraints and safety mea-
sure in multi-objective multi-item fixed-charge STP under
uncertain interval programming.

General transportation sector transports items, andpassen-
gers by bus, train, truck, car, ship, flight, etc., which emits
greenhouse gasses. Thus the transportation system is mostly
involved for emission of CO2 gas and other greenhouse
gasses. Mainly these gases emit from light-duty vehicles,
passenger car, minibus, etc., and the remaining part emits
from heavy-duty vehicles such as truck, ships and freight
transport. The greenhouse gas emission is high risk for envi-
ronmental and air pollution. The carbon emission depends on
its fuel type, engine type, traffic rule, road condition, driving
rules, etc. Here we include some research works on carbon
emission in TP. Das and Roy (2019) analyzed the impact of
CO2 in an integrated transportation and facility location prob-
lem under neutrosophic environment. Ding et al. (2013) tried
to reduce carbon emission and applied its potential effect in
China for transportation. Song andLeng (2012) analyzed car-
bon emission policies for single-period problem. Tarulescu
et al. (2017) introduced CO2 emission reduction strategies
for smart transportation. Midya et al. (2021) presented a
multi-stage multi-objective FSTP in a green supply chain.

Neutrosophic set is the generalized extension of fuzzy set
(Zadeh 1965) and intuitionistic fuzzy set (IFS) (Atanassov
1986). Neutrosophic set was first studied by Smarandache
(1999), and this set is very important and suitable to over-
come the restriction on occurrence and non-occurrence of
fuzzy and intuitionistic fuzzy, respectively. The meaning of
neutrosophic is neutral and it is based on the logic of uni-
verse that its elements are presented by three membership
degrees. These are truth degree, indeterminacy degree and
falsity degree and they lie in [0, 1]. Neutrosophic set differs
from IFS which involves only the uncertainty of truth and
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falsity, that is belongingness and non-belongingness degrees.
In neutrosophic, indeterminacy factor occurs, which is inde-
pendent on truth value and falsity value. Smarandache first
introduced the concept of indeterminacy. The neutrosophic
number (NN) is presented by z = p+ I q, for p, q ∈ R, and I
is the indeterminacy,whichgives indeterminate value.Here p
is the determinate part andqI is the indeterminate part. There-
fore neutrosophic set is a useful concept in mathematical
science for describing incomplete and indeterminate infor-
mation. In the case of time pressure, measurement errors,
limited data or lack of information, the practical problems
are solved with help of indeterminacy I . It is more important
to define NN that contains indeterminacy I and handles all
the programming problems with indeterminate environment.
To tackle indeterminate problems, Smarandache introduced
neutrosophic function, neutrosophic pre-calculus, neutro-
sophic calculus in 2015. Some recent studies on neutrosophic
set are included here. Rizk-Allah et al. (2018) proposed an
MOTP under neutrosophic environment. Time-neutrosophic
soft set and its application was analyzed by Khalil et al.
(2018). Ye et al. (2018) analyzed nonlinear programming
problems and solutionmethods in neutrosophic environment.

The main contributions of this study are as follows:

(i) In this MOTP, all the parameters are considered as NNs
for controlling the indeterminacy which does not con-
trol by fuzzy or intuitionistic fuzzy.

(ii) For neutrosophic system, there exist truth membership,
indeterminacy membership and falsity membership
functions which help to accommodate more imprecise
information in the problem.

(iii) Objective functions are conflicting to each other. There-
fore for finding the compromise solution three advance
programming methods, namely neutrosophic linear
programming (NLP), fuzzy programming (FP) and
global criterion method (GCM), are utilized.

(iv) NLP always increases the degree of truth member-
ship value, indeterminacy membership value, and at
the same time, it decreases the degree of falsity mem-
bership value for determining better Pareto-optimal
solution.

(v) Carbon emission ismore important factor in transporta-
tion system, as reduction of emission charge decreases
the rate of air pollution indirectly. As well as minimum
carbon emission charge directly helps to maximize the
profit of the system as it corresponds to the total cost.

(vi) Extra constraints for budget and carbon capacity sup-
port to maximize the profit and to minimize the deteri-
oration.

(vii) Sensitivity analysis is introduced for analyzing the
effect of change of coefficient and finding the ranges
of all parametric values.

The remaining part of the paper is structured as follows:
Some basic definitions based on neutrosophic set are pre-
sented in Sect. 2. In Sect. 3, the mathematical model with
notations are discussed. Section 4 introduces the solution
methodology. Sections 5 and 6 describe the drawbacks of
existing methods and advantages of our proposed method
respectively. Numerical example with results and discussion
is given in Sect. 7. Section 8 depicts the sensitivity analysis
of the parameters. Conclusions and future research scopes
are provided in Sect. 9.

2 Preliminaries

To formulate the proposed problem, we recall here some use-
ful basic definitions of neutrosophic set.

The concept of neutrosophic set is a representation that
consists of the indeterminate and inconsistent information,
and is applied in scientific and engineering applications.

Definition 2.1 (Wang et al. 2010) Let U be the universal
set. A single-valued neutrosophic set Ãn over U is of the
form Ãn = {〈x, μ Ãn (x), σ Ãn (x), γ Ãn (x)〉 : x ∈ U }, where
μ Ãn (x) : U → [0, 1], σ Ãn (x) : U → [0, 1], γ Ãn (x) :
U → [0, 1] with 0 ≤ μ Ãn (x)+σ Ãn (x)+γ Ãn (x) ≤ 3,∀ x ∈
U . Here μ Ãn (x), σ Ãn (x) and γ Ãn (x) are the degrees of
truth-membership, indeterminacy-membership and falsity-
membership of x in Ãn , respectively.

Definition 2.2 The general form of a multi-objective opti-
mization problem with l objective functions, m constraints
and n variables is given as follows:

minimize Z(X) = (Z1(x), Z2(x), . . . , Zl(x))

subject to g j (X) ≤ 0, ( j = 1, 2, . . . ,m)

xi ≥ 0, (i = 1, 2, . . . , n), xi ∈ X ⊆ R
n .

The truth-membership μl(Zl), indeterminacy-membership
σl(Zl) and falsity-membership νl(Zl) functions for the objec-
tive function Zl are, respectively, defined as:

μl(Zl) =

⎧
⎪⎨

⎪⎩

1, if Zl ≤ tl ,

1 − Zl−tl
al

, if tl ≤ Zl ≤ tl + al ,

0, if Zl ≥ tl + al ,

σl(Zl) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if Zl ≤ tl ,
Zl−tl
dl

, if tl ≤ Zl ≤ tl + dl ,

1 − Zl−tl
al−dl

, if tl + dl ≤ Zl ≤ tl + al ,

0, if Zl ≥ tl + al ,

νl(Zl) =

⎧
⎪⎨

⎪⎩

0, if Zl ≤ tl ,
Zl−tl
cl

, if tl ≤ Zl ≤ tl + cl ,

1, if Zl ≥ tl + cl .
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Fig. 1 Truth-membership,
indeterminacy-membership and
falsity-membership for Zl

where tl is the target value for Zl and al , dl and cl are the
acceptance tolerance, indeterminacy tolerance and rejection
tolerance, respectively. The graphical presentation of three
membership functions is shown in Fig. 1

Definition 2.3 Interval valuedneutrosophic number: (Smaran-
dache 2013) An neutrosophic number is denoted by ãn =
p + q I , where p, q ∈ R and I ⊆ [0, 1] is the indetermi-
nacy. Now I = [I L , IU ], and therefore the interval form of
ãn = [p + q I L , p + q IU ] = [aL , aU ].
Basic properties of interval valued neutrosophic number:Let
ãn1 = p1 + q1 I1 and ãn2 = p2 + q2 I2 with I1 = [I L1 , IU1 ],
I2 = [I L2 , IU2 ] be two neutrosophic numbers. The interval
forms are ãn1 = [p1 + q1 I L1 , p1 + q1 IU1 ] = [aL1 , aU1 ] and
ãn2 = [p2 + q2 I L2 , p2 + q2 IU2 ] = [aL2 , aU2 ]. Now the basic
properties are defined as:

1. Addition: ãn1 + ãn2 = [aL1 + aL2 , aU1 + aU2 ].
2. Subtraction: ãn1 − ãn2 = [aL1 − aU2 , aU1 − aL2 ].

3. Multiplication: ãn1 ∗ ãn2 =

⎧
⎪⎨

⎪⎩

[min(aL1 ∗ aL2 , aL1 ∗ aU2 , aU1 ∗ aL2 ,

aU1 ∗ aU2 ),

max(aL1 ∗ aL2 , aL1 ∗ aU2 , aU1 ∗ aL2 ,

aU1 ∗ aU2 )].

4. Division: ãn1/ã
n
2 =

{ [min(aL1 /aL2 , aL1 /aU2 , aU1 /aL2 , aU1 /aU2 ),

max(aL1 /aL2 , aL1 /aU2 , aU1 /aL2 , aU1 /aU2 )],
0 /∈ ãn2 .

5. Scalar multiplication: k.ãn =
{ [kaL , kaU ], if k ≥ 0,

[kaU , kaL ], if k < 0.

6. Absolute value: |ãn| =

⎧
⎪⎨

⎪⎩

[aL , aU ], if aL ≥ 0,
[0,max(−aL , aU )], if aL ≤ 0 ≤

aU ,

[ − aU ,−aL ], if aU ≤ 0.
7. Inequality: Ishibuchi and Tanaka (1990)⎧

⎪⎨

⎪⎩

x ≤ [aL , aU ] ≡ ∃ z ∈ [aL , aU ] and x ≤ z,
x ≥ [aL , aU ] ≡ ∃ z ∈ [aL , aU ] and x ≥ z,
[aL ≤ bL , aU ≤ bU ], iff [aL , aU ] ≤ [bL , bU ],
[aL ≥ bL , aU ≥ bU ], iff [aL , aU ] ≥ [bL , bU ].

Definition 2.4 (Ye 2018) A neutrosophic linear program-
ming is a general optimization problem if the following
conditions are met:

1. The neutrosophic objective function is linear.
2. The decision variables are all nonnegative.
3. The structural constraints are all of the types of “ ≤” or

“ ≥.”

Definition 2.5 (Ye et al. 2018) In general, a constrained opti-
mization problem in n decision variables with NNs is defined
as follows:

minimize/maximize F(x, I )

subject to gi (x, I ) ≤ 0, i = 1, 2, . . . ,m

h j (x, I ) ≥ 0, j = 1, 2, . . . , l

pk(x, I ) = 0, k = 1, 2, . . . , o

x ∈ X .

When the indeterminacy I is considered as a possible
interval range, the optimal solution of all feasible inter-
vals forms the feasible region or feasible set for x and
I = [I L , IU ]. In this case, the value of the NN objective
function is an optimal possible interval (NN) for F(x, I ). For
example, let us consider the following optimization problem
with I = [0, 1]:

maximize F(x, I ) = (2 + 3I )x1 + (4 + I )x2

= [2x1 + 4x2, 5x1 + 5x2]
subject to (1 + I )x1 + (2 + I )x2 ≤ (6 + 2I )

≡ [x1 + 2x2, 2x1 + 3x2] ≤ [6, 8],
(2 + 3I )x1 + (3 + I )x2 ≤ (8 + 2I )

≡ [2x1 + 3x2, 5x1 + 4x2] ≤ [8, 10],
x1 ≥ 0, x2 ≥ 0.
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Now, this problem can be transformed into two equivalent
crisp subproblems to obtain worst (lower bound) and best
(upper bound) solutions as follows:
Subproblem 1:

maximize 2x1 + 4x2

subject to x1 + 2x2 ≤ 6,

2x1 + 3x2 ≤ 8,

5x1 + 4x2 ≤ 10,

x1 ≥ 0, x2 ≥ 0.

Subproblem 2:

maximize 5x1 + 5x2

subject to x1 + 2x2 ≤ 6,

2x1 + 3x2 ≤ 8,

5x1 + 4x2 ≤ 10,

x1 ≥ 0, x2 ≥ 0.

By solving two subproblems we get the optimal solution
(as NN) of the original problem as: F = [10, 12.5].
Definition 2.6 (Smarandache 1999) Let two single-valued
neutrosophic sets be Ãn and B̃n over the universal set U
as Ãn = {〈x, μ Ãn (x), σ Ãn (x), γ Ãn (x)〉 : x ∈ U }, B̃n =
{〈x, μB̃n (x), σB̃n (x), γB̃n (x)〉 : x ∈ U }. Then some basic
properties are defined as:

1. Ãn ⊂ B̃n if and only if μ Ãn (x) ≤ μB̃n (x), σ Ãn (x) ≤
σB̃n (x), γ Ãn (x) ≥ γB̃n (x).

2. Ãn = B̃n if and only if μ Ãn (x) = μB̃n (x), σ Ãn (x) =
σB̃n (x), γ Ãn (x) = γB̃n (x).

3. The complement of Ãn is denoted by ( Ãn)c and defined
by ( Ãn)c = {〈x, γ Ãn (x), 1 − σ Ãn (x), μ Ãn (x)〉 : x ∈ U }.

4. The intersection of Ãn and B̃n is defined by Ãn ∩
B̃n = {〈x,min{μ Ãn (x), μB̃n (x)},min{σ Ãn (x), σB̃n (x)},
max{γ Ãn (x), γB̃n (x)}〉 : x ∈ U }.

5. The union of Ãn and B̃n is defined by Ãn ∪ B̃n = {〈x ,
max{μ Ãn (x), μB̃n (x)},max{σ Ãn (x), σB̃n (x)}, min{γ Ãn

(x), γB̃n (x)}〉 : x ∈ U }.

Definition 2.7 (Smarandache 1999) Let Ãn = {〈x, μ Ãn (x),
σ Ãn (x), γ Ãn (x)〉 : x ∈ U } and B̃n = {〈x, μB̃n (x), σB̃n (x),
γB̃n (x)〉 : x ∈ U } are two single-valued neutrosophic sets.
Some operations of neutrosophic sets are defined as:

1. λ Ãn = 〈1 − (1 − μ Ãn (x))λ, σ Ãn (x)λ, γ Ãn (x)λ〉; λ ≥
0, λ ∈ R.

2. ( Ãn)λ = 〈μ Ãn (x)λ, 1 − (1 − σ Ãn (x))λ, 1 − (1 −
γ Ãn (x))λ〉; λ ≥ 0, λ ∈ R.

3. Ãn + B̃n = 〈μ Ãn (x)+μB̃n (x)−μ Ãn (x)μB̃n (x), σ Ãn (x)
σB̃n (x), γ Ãn (x)γ Ãn (x)〉.

4. Ãn .B̃n = 〈μ Ãn (x)μB̃n (x), σ Ãn (x)+σB̃n (x)−σ Ãn (x)σB̃n

(x), γ Ãn (x) + γB̃n (x) − γ Ãn (x)γB̃n (x)〉.

3 Problem description

To transform homogeneous products from distinct sources
to different destinations with certain condition, we consider
a multi-objective fixed-charge solid transportation problem
(MFSTP) (here three objective functions) under budget con-
straints and carbon emission in neutrosophic environment.
The first objective function represents the profit over car-
bon emission charge and fixed-charge from each source to
each destination. The second objective function is chosen as
the deterioration rate of goods, and third one is taken as the
transporting time of goods. To overcome the complexity of
incomplete and indeterminate information, here we assume
that all the parameters are NNs. The main aim is to obtain
compromise optimal solution for transforming homogeneous
products from m sources to n destinations using the k con-
veyances at shipping cost c̃ni jk per unit product in such a way
that all the objective functions are optimized simultaneously.
That is to shipping the product from supplier i to customer
j by means of k conveyance with fixed-charge f̃ ni jk . Each
supplier (i = 1, 2, . . . ,m) has ãni units of supply, each cus-
tomer ( j = 1, 2, . . . , n) has b̃nj units of demand and each
conveyance (k = 1, 2, . . . , l) has ẽnk units of capacity.

3.1 Notations of the proposed study

The following notations are described to formulate the pro-
posed mathematical model as:

xi jk : amount of product transported from i th source to
j th destination with kth conveyance,

c̃ni jk : cost for unit quantity of the product from i th source
to j th destination with kth conveyance,

f̃ ni jk : fixed-charge of the product from i th source to j th
destination with kth conveyance,

d̃ni jk : deterioration rate for unit quantity of the product
from i th source to j th destination with kth con-
veyance,

t̃ ni jk : time of transportation for unit quantity of the product
from i th source to j th destination with kth con-
veyance,

η(xi jk): binary variable takes the value “1” if xi jk �= 0 and
“0” if xi jk = 0,

ãni : the supply at i th source,
b̃nj : the demand at j th destination,
ẽnk : the kth conveyance for TP,
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B̃n
j : total budget at j th destination,

p̃ni : purchasing cost per unit quantity of product at i th
origin,

s̃nj : selling price per unit quantity of product at j th des-
tination,

c̃nk : fixed carbon capacity,
ẽni jk : charge of carbon emission per unit,
α̃n : carbon tax per unit of its carbon emission (α̃n > 0),
Z̃ n
r : the objective function with NNs (r = 1, 2, 3),

Z
′n
r : the interval valued objective function (r = 1, 2, 3),

Z ′L
r : the lower-level objective function (r = 1, 2, 3) in

crisp nature,
Z ′U

r : the upper-level objective function (r = 1, 2, 3) in
crisp nature.

To obtain the maximum profit, it is obvious to minimize
the purchasing cost, transportation cost, fixed-charge, car-
bon emission charge and to maximize the selling price. In
the same time, deterioration rate of goods and total delivery
time of transportation must be minimized. Since there exist
three objective functions with conflicting nature, therefore
the total system is controlled by MOTP. Without loss of gen-
erality, we select the first objective function as to maximize
profit, second objective function as to minimize deteriora-
tion and third objective function as to minimize time. Budget
constraints and fixed carbon capacity are important features
in the formulated model. These two constraints help to
obtain maximum profit. The mathematical model for profit
maximizationMFSTPwith carbon emission and budget con-
straints under neutrosophic environment is presented as:

Model 1

maximize Z̃ n
1 =

m∑

i=1

n∑

j=1

l∑

k=1

[
(s̃nj − c̃ni jk − α̃nẽni jk − p̃ni )xi jk

− f̃ ni jkη(xi jk)
]

(1)

minimize Z̃ n
2 =

m∑

i=1

n∑

j=1

l∑

k=1

d̃ni jk xi jk (2)

minimize Z̃ n
3 =

m∑

i=1

n∑

j=1

l∑

k=1

t̃ ni jkη(xi jk) (3)

subject to
n∑

j=1

l∑

k=1

xi jk ≤ ãni (i = 1, 2, . . . ,m), (4)

m∑

i=1

l∑

k=1

xi jk ≥ b̃nj ( j = 1, 2, . . . , n), (5)

m∑

i=1

n∑

j=1

xi jk ≤ ẽnk (k = 1, 2, . . . , l), (6)

m∑

i=1

l∑

k=1

[ p̃ni + c̃ni jk + α̃nẽni jk]xi jk ≤ B̃n
j

( j = 1, 2, . . . , n), (7)
m∑

i=1

n∑

j=1

ẽni jk xi jk ≤ c̃nk (k = 1, 2, . . . , l), (8)

xi jk ≥ 0,∀ i, j, k,

η(xi jk) =
{
1, if xi jk > 0,
0, otherwise.

(9)

The feasibility condition of this TP is as follows:

m∑

i=1

ãni ≥
n∑

j=1

b̃nj ;
l∑

k=1

ẽnk ≥
n∑

j=1

b̃nj .

In Model 1, the objective function (1) presents the profit
that would be maximized. It consists of selling price (1st
part), transportation cost (2nd part), carbon emission charge
(3rd part), purchasing cost (4th part) and fixed-charge in its
last part. The objective function (2) refers to minimize the
total deterioration, and the objective function (3) indicates to
minimize the total time of transportation. The constraints (4),
(5) and (6) display as source, demand and conveyance con-
straints, respectively. The constraints (7) introduce as budget
constraints. Carbon capacity is explained by constraints (8)
and nonnegativity restriction is attended by constraints (9).

Remark 1 All the parameters in the objective functions and
constraints are NNs and based on this fact, Model 1 is treated
as neutrosophic MFSTP. To derive the Pareto-optimal solu-
tion (compromise solution) of this model, we consider that
minimize Z̃ ′n

1 = maximize (−Z̃ n
1 ), minimize Z̃ ′n

2= minimize

Z̃ n
2 and minimize Z̃ ′n

3= minimize Z̃ n
3 .

Theorem 3.1 Model 1 can be solved asmulti-objective linear
programming problem under NNs.

Proof Model 1 satisfies all of the conditions stated in Def-
inition 2.4. Therefore, Model 1 can be solved as general
linear programming problem under neutrosophic environ-
ment. This evinces the proof of the theorem.

3.2 Equivalent deterministic form of Model 1

Without loss of generality, we choose NN in Model 1 of the
form ãn = p + q I , where I is the indeterminacy, and then
Model 1 transforms into Model 2 as:
Model 2

minimize Z
′n
1 =

m∑

i=1

n∑

j=1

l∑

k=1

[(p1i + Ip p
2
i

) +
(
c1i jk + Icc

2
i jk

)

+
(

α1 + Iαα2
) (

e1i jk + Iee
2
i jk

)
−

(
s1j + Iss

2
j

)
]xi jk
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+
m∑

i=1

n∑

j=1

l∑

k=1

(
f 1i jk + I f f

2
i jk

)
η(xi jk)

minimize Z
′n
2 =

m∑

i=1

n∑

j=1

l∑

k=1

(d1i jk + Idd
2
i jk)xi jk

minimize Z
′n
3 =

m∑

i=1

n∑

j=1

l∑

k=1

(t1i jk + It t
2
i jk)η(xi jk)

subject to
n∑

j=1

l∑

k=1

xi jk ≤ (a1i + Iaa
2
i ) (i = 1, 2, . . . ,m),

m∑

i=1

l∑

k=1

xi jk ≥ (b1j + Ibb
2
j ) ( j = 1, 2, . . . , n),

m∑

i=1

n∑

j=1

xi jk ≤ (e1k + Iee
2
k ) (k = 1, 2, . . . , l),

m∑

i=1

l∑

k=1

[(p1i + Ip p
2
i

) + (c1i jk + Icc
2
i jk) + (α1 +

Iαα2)(e1i jk + Iee
2
i jk)]xi jk ≤ (B1

j + IB B
2
j )

( j = 1, 2, . . . , n),
m∑

i=1

n∑

j=1

(
e1i jk + Iee

2
i jk

)
xi jk ≤ (c1k + Icc

2
k )

(k = 1, 2, . . . , l),

xi jk ≥ 0,∀ i, j, k,

η(xi jk) =
{
1, if xi jk > 0,

0, otherwise.

NowNN can be expressed as ãn = [p+q I L , p+q IU ] =
[aL , aU ] which becomes an interval number, and then there
exist lower bound and upper bound of the interval. There-
fore for existence of these bounds, Model 2 splits into two
equivalent crisp problems, which are noted as Model 3A
and Model 3B. Model 3A chooses as lower-level prob-
lem whereas Model 3B considers as upper-level problem.
Also using inequality 7 (from Def. 2.3) the interval val-
ued constraints transform into deterministic form. Hence the
deterministic form of these models is as follows:

Model 3A

minimize Z ′L
1 =

m∑

i=1

n∑

j=1

l∑

k=1

[
(
pUi + cUi jk + αUeUi jk − sLj

)
xi jk

+ f Ui jkη(xi jk)] (10)

minimize Z ′L
2 =

m∑

i=1

n∑

j=1

l∑

k=1

dL
i jk xi jk (11)

minimize Z ′L
3 =

m∑

i=1

n∑

j=1

l∑

k=1

t Li jkη(xi jk) (12)

subject to
n∑

j=1

l∑

k=1

xi jk ≤ aUi (i = 1, 2, . . . ,m), (13)

m∑

i=1

l∑

k=1

xi jk ≥ bLj ( j = 1, 2, . . . , n), (14)

m∑

i=1

n∑

j=1

xi jk ≤ eUk (k = 1, 2, . . . , l), (15)

m∑

i=1

l∑

k=1

[pLi + cLi jk + αLeLi jk ]xi jk ≤ BL
j

( j = 1, 2, . . . , n), (16)
m∑

i=1

l∑

k=1

[pUi + cUi jk + αUeUi jk ]xi jk ≤ BU
j

( j = 1, 2, . . . , n), (17)
m∑

i=1

n∑

j=1

eLi jk xi jk ≤ cLk (k = 1, 2, . . . , l), (18)

m∑

i=1

n∑

j=1

eUi jk xi jk ≤ cUk (k = 1, 2, . . . , l), (19)

xi jk ≥ 0,∀ i, j, k, (20)

η(xi jk) =
{
1, if xi jk > 0,
0, otherwise.

(21)

Model 3B

minimize Z ′U
1 =

m∑

i=1

n∑

j=1

l∑

k=1

[(pLi + cLi jk + αLeLi jk − sUj )xi jk

+ f Li jkη(xi jk)]

minimize Z ′U
2 =

m∑

i=1

n∑

j=1

l∑

k=1

dUi jk xi jk

minimize Z ′U
3 =

m∑

i=1

n∑

j=1

l∑

k=1

tUi jkη(xi jk)

subject to constraints (13)−(21).

Henceforth the definition of Pareto-optimal solution (com-
promise solution) is defined as follows.

Definition 3.1 Pareto-optimal solution (compromise solu-
tion) of Model 3A/Model 3B is a feasible solution x∗ =
(x∗

i jk : i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . , l)
such that there exists no other feasible solution x = (xi jk :
i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . , l) with
Z ′
r (x) ≤ Z ′

r (x
∗), r = 1, 2, 3 and Z ′

r (x) < Z ′
r (x

∗) for at
least one r .

Theorem 3.2 The combination of the Pareto-optimal solu-
tions ofModel 3A andModel 3B represent the Pareto-optimal
solution of Model 2 and consequently of Model 1 in the form
of interval neutrosophic number.

Proof Using Definition 2.5, Theorem 3.2 can be proven eas-
ily.
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Table 1 Pay-off matrix

Z1 Z2 Z3

X1
∗ Z1(X1

∗) Z2(X1
∗) Z3(X1

∗)
X2

∗ Z1(X2
∗) Z2(X2

∗) Z3(X2
∗)

X3
∗ Z1(X3

∗) Z2(X3
∗) Z3(X3

∗)

4 Solutionmethodology

In multi-objective optimization problem, there does not
always exist a solution which is the best for all the objec-
tive functions. That is the solution will be the best for one
objective function and that may be worst for another objec-
tive function. The objective functions are conflicting to each
other and hence the solutions cannot simply compare to each
other. For this cause, we discuss three methods for solving
neutrosophic MFSTP as follows:

– Neutrosophic linear programming (NLP),
– Fuzzy programming (FP),
– Global criterion method (GCM).

4.1 Neutrosophic linear programming (NLP)

Model 3A and Model 3B provide the lower bound and upper
bound of the objective functions and the solutions are not
overall compromise solution of Model 2. So we utilize NLP
to derive the compromise solution ofmulti-objective decision
making problem. To solve the proposed model in NLP, we
describe the following steps as:

– Step 4.1.1Transform the neutrosophic optimization prob-
lem into crisp problem which splits into two subprob-
lems.

– Step 4.1.2 Solve each single-objective problem for both
subproblems individually such that all constraints remain
same.

– Step 4.1.3 Determine the upper bound as negative ideal
solution (NIS) and lower bound as positive ideal solution
(PIS) for each objective function from the pay-off matrix
Table 1, where PIS and NIS are defined as PIS = Zr

∗ =
min {Zr (X1

∗), Zr (X2
∗), Zr (X3

∗)} (r = 1, 2, 3) and
NIS = Zr

′ = max {Zr (X1
∗), Zr (X2

∗), Zr (X3
∗)} (r =

1, 2, 3), respectively.
– Step 4.1.4 Design the truth-membership function and
indeterminacy-membership function with highest degree
and falsity-membership function with least degree.

– Step 4.1.5 Choose the tolerance and construct the mem-
bership functions according to the bounds as:

Tl(Z
′
l(x)) =

⎧
⎪⎨

⎪⎩

1, if Z ′
l(x) ≤ LT

l ,

1 − Z ′
l (x)−LT

l

UT
l −LT

l
, if LT

l ≤ Z ′
l(x) ≤ UT

l ,

0, if Z ′
l(x) ≥ UT

l ,

Il(Z
′
l(x)) =

⎧
⎪⎨

⎪⎩

0, if Z ′
l(x) ≤ L I

l ,

1 − Z ′
l (x)−L I

l

U I
l −L I

l
, if L I

l ≤ Z ′
l(x) ≤ U I

l ,

0, if Z ′
l(x) ≥ U I

l ,

Fl(Z
′
l(x)) =

⎧
⎪⎨

⎪⎩

0, if Z ′
l(x) ≤ LF

l ,

1 − Z ′
l (x)−LF

l

U F
l −LF

l
, if LF

l ≤ Z ′
l(x) ≤ UF

l ,

1, if Z ′
l(x) ≥ UF

l .

Here UT
l = Ul = NIS for Z ′

l , and LT
l = Ll = PIS for

Z ′
l ; U

F
l = UT

l , LF
l = LT

l + tl(UT
l − LT

l ); L I
l = LT

l ,
U I
l = LT

l + sl(UT
l − LT

l ); tl , sl are tolerances.
– Step 4.1.6 Select the values of θ, ξ, ζ in [0, 1] for each

neutrosophic number as the truth, indeterminacy and fal-
sity degrees, respectively.

– Step 4.1.7 Constitute NLP that represents in Model 4A.
Model 4A

maximize Tl(Z
′
l(x)) (l = 1, 2, 3)

maximize Il(Z
′
l(x)) (l = 1, 2, 3)

minimize Fl(Z
′
l(x)) (l = 1, 2, 3)

subject to constraints (13)−(21).

Model 4A can be reduced to Model 4B as:
Model 4B

maximize θ

maximize ξ

minimize ζ

subject to Tl(Z
′
l(x)) ≥ θ, Il(Z

′
l(x)) ≥ ξ, Fl(Z

′
l(x)) ≤ ζ,

θ + ξ + ζ ≤ 3, θ + ξ + ζ ≥ 0, θ ≥ ζ, θ ≥ ξ,

θ, ξ, ζ ∈ [0, 1] (l = 1, 2, 3),

constraints (13)−(21).

Now the simplified model of NLP (Model 4B) that
derives the compromise solution of MOTP (i.e., Model
4C) as follows:
Model 4C

maximize θ + ξ − ζ

subject to Z ′
l(x) + (UT

l − LT
l )θ ≤ UT

l ,

Z ′
l(x) + (U I

l − L I
l )ξ ≤ U I

l ,

Z ′
l(x) − (UF

l − LF
l )ζ ≤ UF

l ,

θ + ξ + ζ ≤ 3, θ + ξ + ζ ≥ 0, θ ≥ ζ, θ ≥ ξ,

θ, ξ, ζ ∈ [0, 1] (l = 1, 2, 3),

constraints (13)−(21).
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– Step 4.1.8: Solve Model 4C by LINGO 13 iterative
scheme.

Theorem 4.1 If x∗ = (xi jk : i = 1, 2, . . . ,m; j =
1, 2, . . . , n; k = 1, 2, . . . , p) is an optimal solution ofModel
4C then it is also Pareto-optimal (non-dominated) solution
of Model 2.

Proof Let x∗ is not a Pareto-optimal (non-dominated) solu-
tion of Model 2. Therefore, from Def. 3.1, we consider that
there exists at least one x such that Z ′

l(x) ≤ Z ′
l(x

∗) for
l = 1, 2, 3 and Z ′

l(x) < Z ′
l(x

∗) for at least one l. Therefore
truth and indeterminacy membership functions μl(Z ′

l(x))
and σl(Z ′

l(x)) are strictly decreasing with respect to the cor-
responding objective function Zl in [0, 1] respectively. Again
the falsity membership function νl(Z ′

l(x)) strictly increases
with respect to the objective function Z ′

l in [0, 1]. Hence
μl(Z ′

l(x)) ≥ μl(Z ′
l(x

∗)) ∀ l and μl(Z ′
l(x)) > μl(Z ′

l(x
∗))

for at least one l. Similarly σl(Z ′
l(x)) ≥ σl(Z ′

l(x
∗)) ∀ l and

σl(Z ′
l(x)) > σl(Z ′

l(x
∗)) for at least one l. Also νl(Z ′

l(x)) ≤
νl(Z ′

l(x
∗)) ∀ l and νl(Z ′

l(x)) < νl(Z ′
l(x

∗)) for at least one l.
Now, (θ+ξ−ζ )=min {μl(Z ′

l(x)), σl(Z ′
l(x)), νl(Z ′

l(x))}≥
min {μl(Z ′

l(x
∗)), σl(Z ′

l(x
∗)), νl(Z ′

l(x
∗))} = (θ∗ +ξ∗ −ζ ∗)

which is a contradiction that x∗ is an optimal solution of
Model 4C. Here θ∗, ξ∗ and ζ ∗ are the values of θ, ξ and ζ

at x∗, respectively. This completes the proof of the theorem.
��

4.2 Fuzzy programming (FP)

Since Models 3A and 3B provide the lower bound and upper
bound of the objective functions and the solutions are not
overall compromise solution of Model 2, therefore to find
overall compromise solution, we take the advantage of FP
to solve neutrosophic MFSTP. The FP was introduced by
Zimmermann (1978) for solving multi-objective linear pro-
gramming problem and it is very easy for solving this type
of problem. FP of Model 2 can be formulated as:

Find x = (x1, x2, . . . , xn)T such that minimize Z ′
l (l =

1, 2, 3) and subject to g j (X) ≤ 0, ( j = 1, 2, . . . ,m) and
xi ≥ 0, (i = 1, 2, . . . , n), with tolerance al (l = 1, 2, 3).
The membership function μl(Z ′

l(x)) (l = 1, 2, 3) is defined
in Def. 2.2. The goal is to maximize the degree of acceptance
of objective functions. Therefore to solve the proposedModel
2 in FP, we depict the following steps as:

– Step 4.2.1Transform the neutrosophic optimization prob-
lem into crisp problemwhich splits into two subproblem.

– Step4.2.2Solve each single-objective problemof the sub-
problem independently keeping all constraints as same.

– Step 4.2.3 Select the tolerance of each objective function.
– Step 4.2.4 Determine PIS and NIS defined in Step 4.1.3.
and formulate the membership function corresponding

to each objective function. Now maximize the degree of
acceptance of objective function and then the equivalent
crisp model of FP is designed as:
Model 5A

maximize θ

subject to Tl(Z
′
l(x)) ≥ θ (l = 1, 2, 3),

θ ∈ [0, 1],
constraints (13)−(21).

Model 5A is transformed into simplified form in Model
5B as:
Model 5B

maximize θ

subject to Z ′
l(x) + (UT

l − LT
l )θ ≤ UT

l (l = 1, 2, 3),

θ ∈ [0, 1],
constraints (13)−(21).

– Step 4.2.5: Solve Model 5B by LINGO 13 iterative
scheme with respect to parameter θ .

Theorem 4.2 If x∗ = (xi jk : i = 1, 2, . . . ,m; j =
1, 2, . . . , n; k = 1, 2, . . . , p) is an optimal solution ofModel
5B then it is also Pareto-optimal (non-dominated) solution
of Model 2.

Proof Let x∗ is not a Pareto-optimal (non-dominated) solu-
tion of Model 2. Therefore, from Def. 3.1, we consider that
there exists at least one x such that Z ′

l(x) ≤ Z ′
l(x

∗) for l =
1, 2, 3 and Z ′

l(x) < Z ′
l(x

∗) for at least one l. Thereforemem-
bership functionμl(Z ′

l(x)) is strictly decreasing with respect
to the corresponding objective function Z ′

l in [0, 1]. Hence
μl(Z ′

l(x)) ≥ μl(Z ′
l(x

∗))∀ l andμl(Z ′
l(x)) > μl(Z ′

l(x
∗)) for

at least one l. Now, θ =min {μl(Z ′
l(x))}≥ min {μl(Z ′

l(x
∗))}

= θ∗ which is a contradiction that x∗ is an optimal solution
of Model 5B. Here θ∗ is the value of θ at x∗. This completes
the proof of the theorem. ��

4.3 Global criterionmethod

Here we introduce a non-fuzzy approach, namely, GCM that
provides the compromise solution by minimizing distance
among some reference points of the feasible objective region.
Since Models 3A and 3B do not provide overall compromise
solution of Model 2, therefore to find overall compromise
solution, GCM of Model 2 can be depicted by the following
steps:

– Step 4.3.1Transform the neutrosophic optimization prob-
lem into crisp problem which splits into two subprob-
lems.
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– Step 4.3.2 Solve each single-objective problem for each
subproblem independently with subject to all constraints.

– Step 4.3.3 Determine the max (UT
l ) and min (LT

l ) value
of each objective function from Table 1 and formulate
the crisp model is as:
Model 6

minimize F(x) =
[ 3∑

l=1

(
Z ′
l(x) − LT

l

UT
l − LT

l

)2] 1
2

subject to constraints (13)−(21).

– Step 4.3.4 SolveModel 6 by LINGO 13 iterative scheme.

Definition 4.1 The compromise solution of GCM is defined
as the minimum distance between the ideal solution and the
desired solution. If Zl

∗ is the ideal solution of the objec-
tive function Z ′

l then the compromise solution of Model 2 is
defined as Zl

∗ = min ||Z ′
l
∗ − Z ′

l ||∞ ∀ l.

4.4 Differences among the solutionmethodologies

First of all, GCM is a non-fuzzy technique, i.e., this method
does not take into account indeterminacy in the optimiza-
tion problems. Therefore, we need not have to construct any
membership or non-membership functions, only we have to
build a single-objective optimization problem utilizing dif-
ferent norms such as L1, L2, L∞, etc. GCM is simple to use
in comparison with respect to FP and NLP. On the other
hand, FP is a fuzzy optimization technique which consid-
ers vagueness in optimization problems. Therefore, in FP
we have to build membership function for the objective
functions. Again, NLP is an extended version of FP, which
handles the indeterminacy occupied into the optimization
problem in neutrosophic manner, i.e., in NLP we have to
construct three membership functions namely truth, falsity
and indeterminacy. Hence, FP and NLP are interrelating, i.e.,
complementarily to each other.

5 Limitations of the study

From literature review, we observe that many researchers
formulated STP/MFSTP in different environments such as
fuzzy and IF optimization for the parameters of cost, time
and deterioration. But their formulated models have some
limitations which are listed here.

– Li and Lai (2000) solved MOTP using FP for controlling
the uncertainty. Majumder et al. (2019) solved uncertain
multi-item MFSTP with budget constraints. This prob-
lem was analyzed with the uncertainty for determining

truth and falsity but the problem did not provide about
indeterminacy that enrolled the system into neutrosophic.

– Rizk-Allah et al. (2018) used neutrosophic compro-
mise programming for solving MOTP, without choosing
neutrosophic number for the parameters of MOTP. In
neutrosophic number, there exists indeterminacy which
is an important factor for uncertainty.

– Ding et al. (2013) included carbon emission reduction
in transportation system and applied its potential effect
in China. But it was not connected with other factors in
multi-level system such as profit, budget, carbon capacity
and fixed-charge which are indirectly related to carbon
emission.

– Tarulescu et al. (2017) discussed about smart transporta-
tion of CO2 emission reduction strategies but did not
consider carbon capacity, budget and profit which are
indirectly related in transportation system with fuzzy, IF
or neutrosophic environment.

– Das et al. (2016) solved breakable multi-stagemulti-item
STPunder budgetwithGaussian type-2 fuzzy parameters
but did not include with neutrosophic system.

– Khalil et al. (2018) discussed time neutrosophic soft set
and its applications, but we see that the paper was defined
only fundamental definitions, examples and operations
on time neutrosophic set without discussing the real-life
application or any programming problem.

– Song and Leng (2012) analyzed about single-period
problem under carbon emission policies but did not
incorporate multi-level or multi-period problem and not
defined for fuzzy or IF or neutrosophic environment.

6 Advances of the proposed study

– Neutrosophic sets are characterized by three independent
membership degrees, namely truth-membership degree
(T ), indeterminacy-membership degree (I ) and
falsity-membership degree (F) which are more capable
to handle imprecise parameters.

– IFSs can only handle the incomplete information not
indeterminate. But neutrosophic set can tackle both
incomplete and indeterminate information. Therefore the
neutrosophic set is more applicable to tackle uncertainty
than the IFS.

– Decision makers (DMs) in NLP want to increase the
degree of truth-membership function and the degree
of indeterminacy but to decrease the degree of falsity-
membership function,which aremore realistic in real-life
problem.

– Relating with transportation system, carbon emission
increases the rate of air pollution and thereafter increases
the carbon emission charge. Hence profit of the system
decreases and therefore to obtain maximum profit, car-
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bon emission reduction is an important factor which are
chosen in this study.

– To obtain maximum profit, budget constraints and car-
bon capacity are also included in this problem and these
extra restrictions help to find minimum deterioration and
minimum time of the proposed problem.

7 Real-life experiment

In this section, we include a real-life example to illustrate
the applicability of the proposed study with maximum profit,
minimum deterioration and minimum time in transportation.
Considering two source points ofWestBengal that export two
types of sea fishes to other states (e.g., Bihar and Jharkhand)
in transportation system. For heavy duty of vehicle in trans-
portation, carbon emission charge includes with other costs
such as selling price, purchasing cost, transportation cost and
fixed-charge. Again for conservation strategy of data, dete-
rioration cost is included. For transporting data with long
distance, time factor must be added. According to various
complicated factors, transportation cost per unit item from
source to destination with fixed-charge, deterioration cost,
time, carbon emission charge are all NNs which are supplied
in Tables 2, 3, 4 and 5, respectively. Transportation cost, dete-
rioration cost and carbon emission charge are considered in
hundred dollar ($) per unit and time in hour per unit.

The selling price, purchasing cost, carbon tax, source,
demand, conveyance, budget and carbon capacity are cho-
sen here as NNs. The aim is to obtain maximum profit by
minimizing purchasing cost, carbon emission charge, trans-
portation charge and fixed-charge, and maximizing selling
price. Time and deterioration are minimized such that the
budget and carbon capacity must be bounded. Therefore the
problem becomes MFSTP due to describe such conditions,
where the objective functions are contradicted to each other.
The formulation of mathematical form of this problem are
Models 7A and 7B which are obtained from Models 3A and
3B, respectively. Solution of the problem is now illustrated
thereafter. In addition to that we assume the following in the
proposed study.

Selling price = (s̃nj ): {s̃
n
1 = 50 + 5I ; s̃n2 = 60 + 5I};

Purchasing cost = ( p̃ni ): { p̃
n
1 = 5+ I ; p̃n2 = 6+2I}; Carbon

tax = (α̃n) : {α̃n = 2+ I}; Source = (ãni ): {ã
n
1 = 230+ 5I ;

ãn2 = 240 + 10I}; Demand = (b̃nj ): {b̃
n
1 = 100 + 5I ; b̃n2 =

120 + 10I}; Conveyance = (ẽnk ): {ẽ
n
1 = 270 + 5I ; ẽn2 =

290 + 10I}; Budget = (B̃n
j ): {B̃

n
1 = 3900 + 100I ; B̃n

2 =
3500 + 100I}; Carbon capacity=(c̃nk ): {c̃

n
1 = 360 + 40I ;

c̃n2 = 420 + 40I}. Here we consider I = [0, 1] is the
indeterminacy.

Table 2 Neutrosophic transportation cost c̃ni jk and the fixed-charge f̃ ni jk

D1 D2 ai
k = 1 k = 2

c11k (6 + 4I ) (8 + 3I ) (230 + 5I )

c12k (15 + 2I ) (4 + I )

f11k (10 + 8I ) (9 + 7I )

f12k (25 + 2I ) (7 + 2I )

c21k (4 + 2I ) (10 + 4I ) (240 + 10I )

c22k (3 + I ) (5 + 2I )

f21k (6 + 2I ) (13 + 10I )

f22k (7 + 2I ) (15 + 2I )

b j (100 + 5I ) (120 + 10I )

Table 3 Neutrosophic deterioration cost d̃ni jk

D1 D2 ai
k = 1 k = 2

d11k (4 + 2I ) (5 + 2I ) (230 + 5I )

d12k (5 + I ) (3 + 2I )

d21k (3 + I ) (4 + 2I ) (240 + 10I )

d22k (2 + I ) (2 + I )

b j (100 + 5I ) (120 + 10I )

Table 4 Neutrosophic time t̃ ni jk

D1 D2 ai
k = 1 k = 2

t11k (12 + 3I ) (15 + 5I ) (230 + 5I )

t12k (8 + 2I ) (11 + 4I )

t21k (6 + 4I ) (9 + 5I ) (240 + 10I )

t22k (10 + 5I ) (14 + 6I )

b j (100 + 5I ) (120 + 10I )

Table 5 Carbon emission charge ẽni jk

D1 D2 ai
k = 1 k = 2

e11k (2 + 4I ) (3 + 3I ) (230 + 5I )

e12k (3 + 2I ) (2 + I )

e21k (2 + 3I ) (2 + I ) (240 + 10I )

e22k (2 + 2I ) (3 + 2I )

b j (100 + 5I ) (120 + 10I )

Model 7A

minimize Z ′L
1 = 2x111 + x112 + 5x121 − 31x122 − 13x211

+4x212 − 27x221 − 13x222

minimize Z ′L
2 = 4x111 + 5x112 + 5x121 + 3x122 + 3x211
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Table 6 Pay-off matrix for Z ′
l
L
(l = 1, 2, 3)

Z ′
1
L Z ′

2
L Z ′

3
L

X1
L −5093.23∗ 719.99′ 2126.63

X2
L −2550.77′ 621.54∗ 2216.92′

X3
L −4680 680 1980∗

+4x212 + 2x221 + 2x222

minimizeZ ′L
3 = 12x111 + 15x112 + 8x121 + 11x122 + 6x211

+9x212 + 10x221 + 14x222

subject to x111 + x112 + x121 + x122 ≤ 235, (22)

x211 + x212 + x221 + x222 ≤ 250, (23)

x111 + x112 + x211 + x212 ≥ 100, (24)

x121 + x122 + x221 + x222 ≥ 120, (25)

x111 + x121 + x211 + x221 ≤ 275, (26)

x112 + x122 + x212 + x222 ≤ 300, (27)

34x111 + 35x112 + 29x211 + 31x212

≤ 4000, (28)

13x111 + 19x112 + 14x211 + 20x212

≤ 3900, (29)

38x121 + 20x122 + 24x221 + 30x222

≤ 3600, (30)

26x121 + 13x122 + 13x221 + 17x222

≤ 3500, (31)

2x111 + 3x121 + 2x211 + 2x221 ≤ 360, (32)

6x111 + 5x121 + 5x211 + 4x221 ≤ 400, (33)

3x112 + 2x122 + 2x212 + 3x222 ≤ 420, (34)

6x112 + 3x122 + 3x212 + 5x222 ≤ 460, (35)

xi jk ≥ 0,∀ i, j, k. (36)

Model 7B

minimize Z ′U
1 = −30x111 − 27x112 − 14x121 − 45x122

−35x211 − 22x212 − 45x221 − 33x222

minimize Z ′U
2 = 6x111 + 7x112 + 6x121 + 5x122 + 4x211

+6x212 + 3x221 + 3x222

minimize Z ′U
3 = 15x111 + 20x112 + 10x121 + 15x122 + 10x211

+14x212 + 15x221 + 20x222

subject to constraints (22)−(36).

Solving Model 7A and Model 7B using LINGO 13 itera-
tive scheme, we derive the solutions and calculate the value
of the objective functions that are reflected in Tables 6 and
7. Since the solutions are contradict to each other and to find
the overall compromise solution we solveModel 4C with the
help of proposed NLP. The PIS and NIS are obtained from
Tables 6 and 7 and they are denoted by ∗ and ′, respectively.

Table 7 Pay-off matrix for Z ′
l
U

(l = 1, 2, 3)

Z ′
1
U Z ′

2
U Z ′

3
U

X1
U −9239.85∗ 1106.65 3079.95

X2
U −7323.08 923.08∗ 3341.54′

X3
U −5706.52′ 1240.01′ 2813.33∗

Finally we design Model 8 with help of NLP to find the
compromise solution of Model 2.

Model 8

maximize θ + ξ − ζ

subject to Z ′L
l (x) + (UL

l − LL
l )θ ≤ UL

l ,

Z ′L
l (x) + (UL

l − LL
l )(ξ − 1)s1l ≤ LL

l ,

Z ′L
l (x) − (UL

l − LL
l )ζ(1 − t1l) ≤ UL

l ,

Z ′U
l (x) + (UU

l − LU
l )θ ≤ UU

l ,

Z ′U
l (x) + (UU

l − LU
l )(ξ − 1)s2l ≤ LU

l ,

Z ′U
l (x) − (UU

l − LU
l )ζ(1 − t2l) ≤ UU

l ,

θ + ξ + ζ ≤ 3, θ ≥ ζ, θ ≥ ξ,

θ, ξ, ζ ∈ [0, 1], (l = 1, 2, 3)

constraints (22)−(36).

where UL
l =NIS of ZLl , Ll

L=PIS of Zl
L;Ul

U=NIS of Zl
U,

Ll
U=PIS of Zl

U. The solutions for Model 8 are obtained as:
θ = 1, ξ = 1, ζ = 0.002368; x122 = 59.08542, x211 =
54.82179, x212 = 45.17821, x221 = 31.47276, x222 =
29.442, x111 = x112 = x121 = 0; ZL

1 = 6323.33, ZL
2 =

644.26, ZL
3 = 50; ZU

1 = 9294.01, ZU
2 = 963.53, ZU

3 =
74.

Therefore the compromise solutions of proposed Model 1
in NLP is Z1 = [6323.33, 9294.01], Z2 = [644.26, 963.53],
Z3 = [50, 74]. The solutions of FP and GCM are,
respectively, given as: Z1 = [5900.82, 9482.29], Z2 =
[719.97, 1048.82], Z3 = [58, 84]; and Z1 = [5906.9,
11941.13], Z2 = [720.49, 1056.57], Z3 = [52, 74].

7.1 Results and discussion

Solving Model 2 with help of NLP, FP and GCM, the solu-
tions are depicted in Sect. 7. Therefore the values of three
objective functions obtained by three methods are displayed
in Table 8 as:

Comparing the results that calculated from the NLP, FP
and GCM, we conclude that optimal values of the objective
functions (Z1, Z2, Z3) that received from NLP always pro-
vides better result than FP and GCM.

From the analysis, it is very much essential to include the
extra restriction on carbon capacity in the formulated prob-
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Table 8 Solution of NLP, FP and GCM

Methods Z1 Z2 Z3

NLP (6323.33, 9294.01) (644.26, 963.53) (50, 74)

FP (5900.82, 9482.29) (719.97, 1048.82) (58, 84)

GCM (5906.9, 11941.13) (720.49, 1056.57) (52, 74)

lem to save the environment and to obtain maximum profit in
transportation system by minimizing the total transportation
cost.

The main criteria for comparing the solutions are (i) to
detect a better Pareto-optimal solution, (ii) to check that either
fuzzy or non-fuzzy technique is appropriate to determine the
final Pareto-optimal solution in uncertain environment, (iii)
to find what is the appropriateness of neutrosophic environ-
mentwithNLP formulti-objective decisionmaking problem.

8 Sensitivity analysis

To explain and interpret the effect of change to the coef-
ficients of the objective functions, sensitivity analysis is a
compulsive and concerning procedure in optimization prob-
lem. Now, it is difficult to analyze the range of all parametric
values and its slide change such that the optimal value
remains same. There exist some research papers on sensitive
analysis about transportation problem with linear program-
ming. Whenever there exist large change of variables and
constraints, then a complexity arises such that the values of
basic variables are changed. To tackle these complexity, we
introduce sensitivity analysis of MFSTP with NLP such that
all the basic variables remain fixed. Now to find the ranges
of these parameters in neutrosophic MFSTP, we define the
steps as follows:

– Step 8.1: Taking all the basic variables as fixed for the
optimal solution of MFSTP.

– Step 8.2: Change the values of each parameter at a time
with fixing other parameters and solve the MFSTP by
LINGO 13 iterative scheme.

– Step 8.3: Continue Step 8.2, until change the basic vari-
able or no feasible solution arises in optimal solution.

– Step 8.4: Find the range of each parameter in Step 8.3.
Sensitivity analysis for supply, demand and conveyance
parameters changes as:
Let ai change to a∗

i as a
∗
i = ai +γi , (i = 1, 2), b j change

to b∗
j as b

∗
j = b j + η j , ( j = 1, 2) and ek change to e∗

k as
e∗
k = ek + τk, (k = 1, 2). Using the described procedure,
we derive the values of a∗

i , b
∗
j , and e∗

k which are shown
in Table 9.

Table 9 Range of supply, demand and conveyance

Actual values of ai , b j and ek Changes values of ai , b j and ek

a1 = 230 10.5 ≤ a∗
1 < ∞

a2 = 240 120.1 ≤ a∗
2 < ∞

b1 = 100 94.4 ≤ b∗
1 ≤ 115.1

b2 = 120 113.6 ≤ b∗
2 ≤ 136.6

e1 = 270 80.3 ≤ e∗
1 < ∞

e2 = 290 120.1 ≤ e∗
2 < ∞

9 Conclusion and future research scopes

Transportation system is always depended on various fac-
tors. Most of the common factors of transportation are time,
profit, budget, deterioration, carbon emission, purchasing
cost, selling price, fixed-charge, etc. Since all the data are col-
lected from real-world application, therefore there exist some
complexity, restriction and uncertainty. The aim of the trans-
portation problem is to overcome such complexity under
neutrosophic environment and to determine the compromise
solution. Here we take all the data as NNs. Carbon emission
is included here to save the environment and we see that this
improves the profit, aswell as reduces the air pollution. Three
methods, namely FP, NLP and GCM, have been executed to
obtain the compromise solutions by solving the MOTP. Out
of which NLP has provided the best solution by maximizing
the truth-membership value, the indeterminacy-membership
value andminimizing falsity-membership value. Themethod
is very simple, suitable and applicable for multi-objective
decision making problem. Fuzzy set and IFS only find the
uncertainty with membership and non-membership value,
but neutrosophic system adds an extra important aspect as
indeterminacy membership value which is independent on
membership and non-membership values. Therefore neutro-
sophic system is more reliable than fuzzy system or IFS for
clearly defining the incomplete and indeterminate informa-
tion on real-life problems. The applicability of the proposed
approach has been clarified through a real-life example.
Moreover, the stable ranges of some parameters have been
revealed by the sensitivity analysis. Finally, some decisions
regarding the budget and carbon emission during trans-
portation have been discussed which can be very helpful to
organizations or companies for resolving the economical and
environmental issues.

In future scope of research, neutrosophic system can be
extended as bipolar-neutrosophic system and can be applied
for linear or nonlinear problem.Also carbon emission system
will be taken as cap and trade policy with neutrosophic num-
ber. Neutrosophic programming with neutrosophic number
can be applied in fractional problemormulti-item transporta-
tion. Different uncertainties such as type-2 neutrosophic,
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type-2 uncertain variable, uncertain-random, type-2 intu-
itionistic fuzzy, Pythagorean fuzzy or Pythagorean hesitant
fuzzy (Ghosh et al. 2022) can be developed in the proposed
model. Furthermore, several heuristics, meta-heuristics and
hybrid methods can be developed to solve the large instances
of our proposed problem.
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