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Abstract
The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this
process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate
decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback,
or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts
using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of
granulation (α1, α2) for its computed weight with an illustrative example. The obtained results are also compared with recently
available approaches on data with bipolar fuzzy attributes for validation.

Keywords Bipolar fuzzy set · Bipolar fuzzy concept · Formal fuzzy concept · Fuzzy concept lattice · Granular computing ·
Soft data · Uncertainty measurement

1 Introduction

Knowledge discovery and representation from the given data
sets are considered as one of themajor tasks by research com-
munities. The introduction of concept lattice theory byWille
(1982) has given a way to solve this issue via investigation
of extent–intent pair in the given context, due to which the
mathematical algebra of concept lattice (Ganter and Wille
1999) extended from unipolar (Vychodil 2005a; Ghosh et al.
2010) to bipolar fuzzy space (Singh and Cherukuri 2014a, b)
for adequate analysis of soft data. The bipolar fuzzy graph
representation of concept lattice given a way to deal with
positive and negative side of data simultaneously (Ali et al.
2021, Pal and Mondal 2019; Marsala and Bouchon 2000;
Singh 2019a, 2020). In this process, a problem is addressed
about selection of some important bipolar fuzzy concepts as
discussed by Singh (2019a) or finding bipolar fuzzy attribute
implications as shown by Singh (2022b) for multi-decision
process based on user requirements (Singh 2022a). The rea-

B Prem Kumar Singh
premsingh.csjm@gmail.com; premsingh.csjm@yahoo.com

1 Department of Computer Science and Engineering, Gandhi
Institute of Technology and Management–Visakhapatnam,
Visakhapatnam, Andhra Pradesh 530045, India

son is validation of information content available in the given
bipolar fuzzy concepts and its accuracy is one of the difficult
tasks. To resolve this issue, current paper focuses on intro-
ducing the entropy theory for randomness measurement of
bipolar fuzzy attributes, such that some important bipolar
fuzzy concepts can be selected based on user-defined infor-
mation granules. In this way, the proposed method will be
helpful while analysis of uncertainty in bipolar attributes at
micro–macro-level of granulation.

The bipolar information used to found frequently in any
soft data sets like customer feedback, opinion of people
which is basedonhumanquantumTuriyamawareness (Singh
2022a). It contains both positive and negative simultaneously
to represent any event as discussed by Dubois and Prade
(2012). It is used to be visualized as symmetry of positive
and negative side as shown in Fig. 1, as for example in Chi-
nese Yin–Yang of Taoism discussed by Welch H (1957) or
Yoni–Linga, Rudra–Akasha or Yama–Yami in Sanskrit.1 To
deal with these types of human thoughts based on its exis-
tence (i.e., 1) or nonexistence (i.e., 0) Boolean logic {0, 1} is
introduced by Boole (1854) motivated from Pingala binary
system2. In this case, a problem is addressedwhile dealing the

1 https://asiasociety.org/education/shakti-power-feminine
2 https://en.wikipedia.org/wiki/Pingala
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uncertainty and randomness in data sets which was precisely
handled by Shannon (1948) using combination of probabilis-
tic and logarithmic model [0, 1]. Zadeh (1965) introduced a
set to compute with the uncertainty in human cognition by a
defined fuzzy membership values in [0, 1] as non-dualism.3

The L-fuzzy set represents the acceptation and rejection part
via a single-valued membership which was unable to repre-
sent the bipolar information (Goguen 1967). Zhang (1994)
introduced bipolar fuzzy set, i.e., [−1, 0) × (0, 1] for precise
representation of bipolar information where [−1, 0) repre-
sents negative side and (0, 1] represents the positive side,
independently. This set has given a chance to represent the
character of love–hate, action–reaction, particle–antiparticle
as independent in bipolar fuzzy space as shown in Fig. 1
rather than dependent true and false region of intuitionistic
fuzzy set. Same time intuitionistic fuzzy set provides away to
compute hesitant part which is not available in bipolar fuzzy
set. The another difference is complement operation which
is available in intuitionistic fuzzy set but not in bipolar fuzzy
set. In this way, the bipolar fuzzy set provides a way to repre-
sent true and false membership values independently. It can
be observed in sports data where performance of player can
be analyzed using intuitionistic fuzzy set (Singh 2022c) but
its celebration of expression can be represented by bipolar
fuzzy set independently for India and Pakistan supporters.
The reason is celebration of expression for India–Pakistan
match is different for same wicket out like Indians may feel
happiness whereas Pakistani feels pain. In this case, cele-
bration of Indians increases does not means that the pain of
Pakistani supporter decreases as per intuitionistic fuzzy set
and vice versa. This type of bipolar relations exists, inde-
pendently without any hesitant part. Hence, the bipolarity
was mostly found in these types of international relations4

which cannot be represented via intuitionistic fuzzy set due to
independent true and false membership values. These types
of bipolar relations as for example USA–Russia relations,
India–Pakistan, Philistine–Israel do not contain any hesitant
part, i.e., 1 − t − f . It is totally independent from true
and false membership values. It can be represented only
via two independent mapping constituting same informa-
tion as : μP :Z→[0, 1] and μN :Z→[−1, 0] where μP (z)
represents the somewhat satisfaction degree of attributes
whereas μN (z) represents implicit counter-property. The
membership value 0 represents that the given attribute is
somewhat irrelevant to given context. These information can
be precisely represented by a defined bipolar fuzzy set Z={
(z, μP (z), μN (z))|z ∈ Z

}
(Zhang and Zhang 2004). It can

be visualized via a defined bipolar fuzzy graph G = (V , E)

(Akram 2011, 2013) for applications in several fields (Gulis-
tan et al. 2021; Rashmanlou et al. 2014a, b). The extensive

3 https://en.wikipedia.org/wiki/Nondualism
4 https://en.wikipedia.org/wiki/Polarity_(international_relations)

Fig. 1 Abipolar representation of given data set usingYin–Yang theory

properties of bipolar fuzzy graph (Rashmanlou et al. 2015)
and its product have given a way to utilize its algebra for
various applications (Rashmanlou et al. 2016; Talebi and
Rashmanlou 2014; Tahmasbpour et al. 2016)Motivated from
these studies, Singh and Cherukuri (2014a; 2014b) provided
hierarchical ordering among the bipolar fuzzy concepts for
knowledge processing task. In this process, a problem is
addressed while dealing randomness in bipolar fuzzy con-
cepts. The problem becomes more complex when an expert
wants to refine the bipolar fuzzy concepts based on his/her
requirement for decision-making process. There is less atten-
tion toward this direction till now as shown in Table 1.
This paper tried to fill this gap via introduction of Shan-
non entropy for dealing with bipolar fuzzy attributes with a
defined weighted granulation.

Table 1 shows that randomness measurement in bipolar
fuzzy attributes is considered as one of the major issues
while dealing the data with bipolar fuzzy attributes. This
issue arises when the large number of bipolar fuzzy con-
cepts generated from any given context as discussed recently
by Singh(2019a). In this case, uncertainty or randomness
may generate while analyzing the relevant information based
on expert requirements. To deal with this issue, researchers
tried to pay attention toward fuzzy concept lattice (Vychodil
2005a; Ghosh et al. 2010; Pocs 2012) and its reduction
(Cherukuri and Srinivas 2010; Kang et al. 2012; Vychodil
2005a) for finding some relevant concept (Zacpal 2005;
Macko 2001). It can be investigated using the object or
attribute attributed multi-adjoint concept lattice (Medina
2012). In case the expert unable to draw the concept lat-
tice weighted-based method can be useful as an alternative
tool for the content measurement of the formal concept (Wu
et al. 2009; Zhang et al. 2012). Another reason is that this
method provides a flexibility to select some of the rele-
vant concepts based on the user requirements as discussed
by Singh et al. (2017). In this regard, entropy theory intro-
duced by Shannon (1948) played an important role while
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Table 1 The basic understanding of research trends on the current topic

Author year-wise work Research findings Pitfall

Boole (1854) Law of thought {0, 1} Uncertainty measurement

Shannon (1948) Uncertainty in thought [0, 1] Unipolar space

Welch (1957) Taoism, i.e., Yin–Yang {−,+} Randomness measurement

Zadeh (1965) Fuzzy set (0, 1) for acceptance Bipolarity measurement

Goguen (1967) L-Fuzzy set Bipolarity measurement

Zhang (1994) Bipolar fuzzy set [−1, 0) × (0, 1] Graphs and lattice

Zacpal (2005) Fuzzy concept lattice Bipolarity measurement

Ghosh et al. (2010) Fuzzy graph-based lattice Bipolarity measurement

Cherukuri and Srinivas (2010) Concept lattice reduction Bipolarity measurement

Macko (2001) Selection of important concepts Uncertainty measurement

Bloch (2011) Lattices of bipolar fuzzy Uncertainty measurement

Akram (2011) Lattices of bipolar fuzzy Uncertainty measurement

Kang et al. (2012) Fuzzy lattice at granulation Bipolarity measurement

Li et al. (2012) Knowledge reduction Uncertainty measurement

Bloch (2012) Morphology of bipolar set Randomness measurement

Zhang et al. (2012) Weighted concepts Bipolarity measurement

Li et al. (2013) Entropy-based concepts Bipolarity measurement

Akram (2013) Bipolar fuzzy graph Lattice visualization

Singh (2014a; 2014b) Bipolar fuzzy concept lattice Randomness measurement

Talebi and Rashmanlou (2014) Complement of bipolar graphs Lattice visualization

Li et al. (2015) Granular-based concepts Unipolar space

Singh and Gani (2015) Entropy-based fuzzy lattice Bipolarity measurement

Tahmasbpour et al. (2016) Bipolar f -morphism Randomness measurement

Singh et al. (2017) Selection of fuzzy concepts Bipolarity measurement

Sumangali et al. (2017) Entropy-based concepts Bipolarity measurement

Sarwar and Akram (2018) Bipolar fuzzy applications Randomness measurement

Singh (2019a) Bipolar fuzzy concept distance Randomness measurement

Pal and Mondal (2019) Bipolar fuzzy matrix Randomness measurement

Singh (2019b) Vague entropy Bipolarity measurement

Ali et al. (2019) Bipolar parameter reduction Randomness measurement

Ali et al. (2020) Bipolar attribute reduction Randomness measurement

Marsala and Bouchon Bipolar and intuitionistic entropy Knowledge processing

Akram et al. (2020) Bipolar fuzzy TOPSIS method Randomness measurement

Akram et al. (2021b) Bipolar fuzzy graphs Lattice visualization

Riaz and Therim (2021) Bipolar fuzzy connection number Bipolarity measurement

Singh (2022a) Bipolar multi-fuzzy concept Randomness measurement

Singh (2022b) Bipolar fuzzy implication Randomness measurement

Singh (2022d) Complex fuzzy lattice entropy Bipolarity measurement

measuring the information loss. It provides the average infor-
mation weight for the generated concepts either in data with
binary attributes (Li et al. 2013; Singh et al. 2017; Suman-
gali et al. 2017), fuzzy attributes (Singh andGani 2015; Singh
2018), vague attributes (Singh 2019b) or complex attributes
(Singh 2022d). The lossless compression and encoding of
concepts via entropy theorymotivated the author to introduce
it for handling data with bipolar fuzzy attributes as discussed

by Singh and Gani (2015). The objective is select some of
the relevant bipolar fuzzy concepts based on user-required
(α1, α2)-granulation independently for true and false values
(Singh 2019b, 2022b). One of the significant outputs of the
proposed method is that provides flexibility of each user to
choose relevant concepts based on his/her required infor-
mation granules rather than drawing the concept lattice. In
addition, the proposed method encodes the obtained bipolar

123



9862 P. K. Singh

fuzzy concepts which can be useful for data security pur-
pose. In last, the analysis derived from the proposed method
is compared with subset-based bipolar fuzzy concept lattice
(Singh and Cherukuri 2014a, b) and its Euclidean distance
method (Singh 2019a) to validate the results. In this way, the
proposed method is distinct any of the available approaches
in following aspects:

(i) It provides an information content measurement for
data with bipolar fuzzy attributes using Shannon entropy,
and

(ii) It provides a way to encode the bipolar fuzzy concepts
for knowledge processing tasks which can be useful in data
security.

The rest of the paper is organized as follows: Section
2 provides some basic mathematics to understand the data
with bipolar fuzzy attributes and its representation. Section
3 contains the proposed method with its illustration in Sect.
4. Section 5 provides discussion followed by conclusions,
acknowledgments and references.

2 Data with bipolar fuzzy attributes

This section provides preliminaries about bipolar fuzzy con-
text, bipolar fuzzy concepts and its concept lattice for better
understanding as given below:

Definition 1 (Formal fuzzy context) (Burusco and Fuentes-
Gonzales 1994): The triplet K = (X, Y, R) is called as formal
fuzzy context, in which X represents set of objects, Y repre-
sents set of fuzzy attributes and R is an L-relation among
X and Y as: X×Y→ L. In this way, the fuzzy relation
R(x, y) ∈ L represents the single-valued fuzzy membership
value at which the object x ∈ X has the fuzzy attribute y ∈ Y
in [0, 1]. The L-relation is a support set of a residuated lattice
Lwhich defines the generalization and specialization among
them. To achieve this goal, several algorithms are proposed
to generate the pattern from a given fuzzy context called as
formal fuzzy concepts.

Definition 2 (Formal fuzzy concepts) (Vychodil 2005b): The
formal fuzzy concepts can be generated for any L-set A∈
LX of objects, and B∈ LY of fuzzy attributes then a L-set
A↑ ∈ LY of attributes and L-set B↓ ∈ LX of objects can be
investigated as follows:

(1) A↑(y) = ∧x∈X(A(x) → R̃(x, y)),
(2) B↓(x) = ∧y∈Y(B(y) → R̃(x, y)).
The A↑(x) is interpreted as the L-set of attribute y ∈ Y

shared by all objects from A. Similarly, B↓(x) is interpreted
as theL-set of all objects x∈ X having the attributes fromB in
common. The formal fuzzy concepts is a pair of (A,B)∈ LX×
LY satisfyingA↑ = B and B↓ = A. The fuzzy set of objects A
called as an extent and the fuzzy set of attributesB is called as

an intent. This pattern can be generated for the given bipolar
fuzzy context based on positive and negative membership
values as discussed by Singh and Cherukuri (2014b).

Definition 3 (Bipolar fuzzy context) Singh and Cherukuri
(2014a; 2014b) : A bipolar fuzzy context is an extension
of fuzzy context F = (X, Y, R̃) where X is a set of objects, Y
is a set of bipolar fuzzy attributes and R̃ represents bipolar
fuzzy relation among X and Y as: X×Y→ [−1, 1]. In this
way, R̃(x, y) represents the bipolar fuzzy membership value
at which the object x ∈ X has the fuzzy attribute y ∈ Y in (0,
1] or not in [-1, 0). In case, the attribute the irrelevant then it
can be represented using (0, 0). It means the entries of bipo-
lar fuzzy matrix can be written as : R̃=(μP

R̃
, μN

R̃
):X×Y→[-1,

0]×[0, 1] where μP
R̃
(x1, y1) ∈ [0, 1] and μN

R̃
(x1, y1) ∈

[−1, 0]. The problem arises while investigating some useful
pattern from the given bipolar fuzzy context for knowledge
processing tasks.

Definition 4 (Bipolar fuzzy concepts) Singh and Cherukuri
(Singh and Cherukuri 2014a, b) : A bipolar fuzzy concepts
is a pair (A, B) which contains set of bipolar fuzzy set of
objects and bipolar fuzzy set of attributes which shares max-
imal positive and negative membership values in the given
bipolar fuzzy context. The bipolar fuzzy set of objects and
attributes set (A, B) is called as bipolar fuzzy concepts iff:

(B, (μP (B), μN (B)))↓= (A,min(μP (A), μN (A))) and,
(A, (μP (A), μN (A)))↑= (B,min(μP (B), μN (B))).
The (↓) operator can be applied on the set of bipolar fuzzy

attributes to find the maximal covering bipolar fuzzy set
of objects while integrating the information from positive
and negative membership value. Consequently, the opera-
tor (↑) can be applied on the bipolar fuzzy set constituted
by these covering objects set resulting from integrating the
positive and negative membership values among objects and
attributes set. It means (↓, ↑) provides a pair of maximal
bipolar fuzzy set of objects and attributes with respect to
integrating the information from them in given bipolar fuzzy
space [−1, 0) × (0, 1]. After that, any bipolar fuzzy set of
attributes (or objects) cannot be found which can make the
membership valueof the obtainedpair bigger, if the pair of the
set of objects and the set constituted by its covered attributes
forms a bipolar formal fuzzy concept. It can be easily visual-
ization via Hasse diagram as discussed by Zhang and Zhang
(2004) for dealing the quantum data (Zhang 2021) and its
changes as discussed by Singh (2020).

Definition 5 (Complete lattice) (Ganter and Wille 1999) :
The complete lattice provides an infimum and a supremum
for any given two formal concepts which are generated from
the given context. It can be discovered as follows :

• ∧ j∈J (A j , Bj ) = (
⋂

j∈J A j , (
⋃

j∈J B j )
↓↑),
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Table 2 A bipolar fuzzy subset
of V for Example 1

v1 v2 v3

μP
I 0.5 0.7 0.6

μN
I − 0.3 − 0.4 − 0.5

Table 3 A bipolar fuzzy subset
of E for Example 1

v1v2 v2v3 v3v1

μP
J 0.5 0.6 0.5

μN
J − 0.3 − 0.4 − 0.3

Fig. 2 Abipolar fuzzy complete graph representation for Tables 2 and 3

• ∨ j∈J (A j , Bj ) = ((
⋃

j∈J A j )
↑↓,

⋂
j∈J B j ).

The complete lattice provides specialization and generaliza-
tion among the concepts which is useful in multi-decision
process. In similar way, the complete lattice of bipolar fuzzy
concepts can be visualized using the algebra of bipolar fuzzy
complete graph as discussed bySingh andCHerukuri (2014a;
2014b).

Definition 6 (Bipolar fuzzy complete graph) (Akram 2011) :
A bipolar fuzzy graph G=(I, J) is complete iff:

μP
J ({v1, v2}) = min(μP

I (v1), μ
P
I (v2)) and,

μN
J ({v1, v2}) = max(μN

I (v1), μ
N
I (v2))

for all v1, v2 ∈ V and (v1, v2) ∈ V × V .

Example 1 Let us suppose, a graph G having set of vertices
V= (v1, v2, v3), and set of edges E= (v1v2, v2v3, v3v1). The
bipolar fuzzy set based on given vertices I and their edges E
can be written through the properties of bipolar fuzzy set as
shown in Tables 2 and 3. These sets can be visualized through
a fuzzy complete graph shown in Fig. 2 (Akram 2013).

The bipolar fuzzy complete graph can be useful to visu-
alize the lattices of bipolar fuzzy set as discussed by (Bloch
2011); 2013) and others (Singh and Cherukuri 2014a, b).
The problem arises when the bipolar fuzzy concept lattice
and its graphical visualization become huge even for small

Table 4 Some of the defined nomenclature used for the proposed
method in this paper

Nomenclature Meaning

K Formal fuzzy context

L Scale of truth degree

X Set of objects

x An object

Y Set of attributes

y An attribute

P Probability

Z Bipolar fuzzy set

pi i th-object Probability

R L-relation between X and R

R̃ Bipolar fuzzy relation between X and R

μP Positive membership values

μN Negative membership values

(↑,↓) Galois connection

A Extent

B Intent
⋃

Union
⋂

Intersection

∧ Infimum

∨ Supremum

α1, α2 Window of Granulation

E Average information weight
∑

Summation

m Total number of attributes

w j Weight of attribute

Wj Weight of j th formal concept

C1–C6 Bipolar fuzzy concept

FCF Set of fuzzy formal concepts

xi i th-object

y j j th-attribute

bipolar context. In this case, selection of some important
bipolar fuzzy concepts (Singh 2019a) or attributes reduction
(Ali et al. 2020) become major issues. To resolve this issue,
entropy (Shannon 1948) and granular computing (Yao 2004)
is considered as one of the prominent tools for controlling
the formal concepts (Li et al. 2013; Sumangali et al. 2017),
fuzzy concepts (Singh et al. 2017) and its lattice structure
(Singh and Gani 2015; Singh 2022d). These studies moti-
vated the author to utilize the Shannon entropy for selection
of bipolar fuzzy concepts in the next section. To understand
the proposed method, some nomenclature and its meaning
are comprised in Table 4.
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3 Proposedmethod

It is well known that the concept lattice reduction is one of
the major issues for knowledge processing tasks as discussed
by (2010). This inherited to its extension into bipolar space
also as discussed by Singh and Cherukuri (2014a; 2014b). In
this section, a new method is proposed to measure the infor-
mation content of the given bipolar fuzzy concepts using the
calculus of Shannon entropy. To select some of the relevant
bipolar fuzzy concepts based onuser-required granulation for
the computed weight, the mathematical paradigm of gran-
ular computing provides a way to zoom in and zoom out
the given context based on user-required window of infor-
mation as granules (Yao 2004). The information granules
are nothing but collections of relevant information to refine
the knowledge. It means the relevant of information can be
based on computed weight (Singh 2018), similarity index
(Macko 2001) or indistinguishable attributes Singh (2019a).
In this way, the granulation provides several window, i.e.,
(α1, α2) to modularize the complex problem into a series of
well-defined sub-problems at micro–macro-level of defined
window (0≤ α1 ≤ α2 ≤1) (Singh 2022c). In this way, the
granular computing provides another alternative way to ana-
lyze the average information content and its quantification
for multi-decision process (Singh 2022a), due to which the
algebra of granular computing is used for controlling the
binary concept lattice (Wu et al. 2009; Zhang et al. 2012),
fuzzy concept lattice (Singh et al. 2017; Singh 2022d), bipo-
lar fuzzy concept lattice (Singh and Cherukuri 2014a,b) as
well as Plithogenic context (Singh2022c). This paper focuses
on dealing the data with bipolar fuzzy attributes using Shan-
non entropy as given below:

Definition 7 (Entropy) (Shannon 1948): It measures the ran-
domness and uncertainty in the given attributes. Themore the
randomness higher the entropy and vice versa. It is consid-
ered as one of the important metrics to quantify the diversity
of randomness with lossless compression. The advantages
of entropy are that it compresses the data including same
information with less redundancy, less time and space as:
E(pi ) = -pi log2(pi ). It represents the objects possessing
the corresponding j th-attribute (1,0)

y j
∈ Y can be computed

by pi = P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

. Recently, it is applied for dealing

fuzzy concept lattice (Singh and Gani 2015) and its exten-
sion to complex space for extraction of important concepts
(Singh 2022d). This paper focused on utilizing its properties
for reducing the bipolar fuzzy concepts using the paradigm
of granular computing.

The entropy and granular computing can be used as fol-
lows to select some of the relevant bipolar fuzzy concepts
based on user requirements for knowledge processing tasks:

Let us consider a bipolar fuzzy concepts (A, B) hav-
ing j th-attribute (1,0)

y j
∈ Y which covers bipolar fuzzy

set of object (A), i.e., (μP (xi ),μN (xi ))
xi

∈ X in the given
bipolar fuzzy context F. The probability of bipolar fuzzy

set of objects— (μP (xi ),μN (xi ))
xi

possessing the correspond-

ing j th-attribute (1,0)
y j

∈ Y can be computed by pi =

P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

. It provides number of (1,0)
y j

∈ Y covers the

bipolar fuzzy set of objects (μP (xi ),μN (xi ))
xi

divided by the total

number of objects having the membership (μP (xi ),μN (xi ))
xi

.
The number of attributes having bipolar fuzzy relation as
(μP (xi , y j ) ≥ μP (xi )) and (μP (xi , y j ) ≤ μN (xi )) at par-
ticular row–column. The information weight for this bipolar

objects, i.e., (μP (xi ),μN (xi ))
xi

∈ X to possess the attribute (1,0)
y j

can be computed by Entropy E(pi ) = -pi log2(pi ). In case
the concept (B) contains k-number of objects to possess
the attributes (1,0)

y j
∈ Y . The total information weight can

be computed as, i.e., w j=
∑n

i=1 E(pi ). The average infor-

mation weight can be computed as Weight(Bk) =
∑

(wi )

n
where n is number of bipolar fuzzy set of objects which pos-
sess the attributes. In this way, the randomness in bipolar
fuzzy attributes can be considered as computed using Shan-
non entropy within interval [0, 1] for knowledge processing
tasks as shown in Fig. 3.

The steps of theproposedmethodcanbedefinedas follows
based on the flowchart shown in Fig. 3:

Step 1 Let us consider, a bipolar fuzzy concepts (A, B)
having j th-attribute (1,0)

y j
∈ Y .

Step 2 List all of its covering bipolar fuzzy set of objects
(μP (xi ),μN (xi ))

xi
∈ X possess the attribute (1,0)

y j
∈ Y .

Step 3 Compute its probability to possess the j th-attribute

as: pi = P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

.

Step 4 The number of attributes having bipolar fuzzy rela-
tion as (μP (xi , y j ) ≥ μP (xi )) and (μP (xi , y j ) ≤ μN (xi ))
at particular row–column.

Step 5 Compute the information weight for the object as:

E(pi ) = -P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

log2(P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

). The n

represents total number of bipolar fuzzy set of objects which
possess the attributes, i.e., (1,0)

Y .
Step 6 Sum the information weight for each bipolar fuzzy

set of objects (A) which possess the attribute (1,0)
y j

∈ Y asw j

=
∑n

i=1 E(pi )
Step 7 The average information weight for the bipolar

fuzzy concepts (A, B) using their intent (B) can be computed

as Wj =
∑

(w j )

n . The n represents total number of bipolar

fuzzy attributes which covers the attribute (1,0)
y j

∈ Y .
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Fig. 3 The flowchart of the proposed method

Step 8 In similar way the information weight for each
bipolar fuzzy concepts can be found.

Step 9 The proposed method can be applied using the
extent also as vice versa via fixing (1, 0) for object set.

Step 10Thebipolar fuzzy concepts havingmaximumaver-
age informationweight can be considered as an important for
knowledge processing tasks and others can be removed.

Step 11 In case the expert wants to select some specific
bipolar fuzzy concepts then windows for granulation can be
defined (α1, α2) to refine the concepts based on their weight.

Step 12 The bipolar fuzzy concepts can be selected iff the
computedweight in the definedwindow as: (α1 ≤ w j ≤ α2).

Step 13 The bipolar fuzzy concepts which weight are not
in the defined window of granulation can be removed.

Step 14 Interpret the obtained bipolar fuzzy concepts for
knowledge processing tasks.

Step 15 The pseudocode for the proposed algorithm is
shown in Table 5.

Complexity: Let us suppose the bipolar fuzzy context F
contains n—number of objects and m—number of bipolar
fuzzy attributes. In this case, the proposed method may take
O (n × log(n)) time to compute the entropy weight for the
maximal acceptance of attributes (1,0)

y j
∈ Y . In addition, it

computes the bipolar fuzzy relations and its computation for
m—number of attributes. In this case, the maximum time

complexity that can be taken by the proposed method is
O(m × n × log(n)).

4 Illustration

Recent time dealing the data with bipolar fuzzy attributes
is considered as one of the major issues (Singh 2019a, b;
Riaz and Therim 2021) for multi-decision process (Ali et al.
2019; Akram et al. 2020) and other applications (Akram et al.
2021a, b; Sarwar and Akram 2018; Singh 2022a, c). In this
process, a problem arises while dealing with large number of
bipolar fuzzy concepts as discussed by Singh and Cherukuri
(2014a; 2014b). The problem becomes more crucial in case
the expert wants some of the relevant bipolar fuzzy concepts
based on his/her requirement to refine the pattern as dis-
cussed by Singh 2019a. To achieve this goal, entropy theory
introduced by Shannon (1948) has played a major role in
computing the information weight of formal concepts (Singh
and Gani 2015; Singh et al. 2017; Singh 2018; Sumangali
et al. 2017; Singh 2022d). Motivated from these studies, the
current paper focused on measuring the information content
of bipolar fuzzy attributes using Shannon entropy and its
selection by user-defined information granules. To achieve
this goal, a method is proposed in Sect. 3 which is illustrated
step by step in this section as given below:

Example 2 Let us suppose, a company manufactures set of
cars (objects)= {x1, x2, x3} considering some parameters
(y1=Modern Technology, y2=Cost, y3=Fuel efficient) using
the customer feedback as discussed in Singh and Cherukuri
(2014(a,b). Now suppose, 30 percent customers given posi-
tive feedback about car x1 considering itsmodern technology
y1, 20 percent satisfied with price details (y2) and only 10
percent customer convinced due to its fuel efficiency (y3).
This type of positive feedback or rating can be collected for
other cars (x2, x3) which can be written in a matrix format
as shown in Table 6. In case, the 30 percent customer given
positive feedback means 70 percent rejected or given nega-
tive feedback about the car. The negative side also need to be
considered for precise analysis of decision making as shown
in Table 7.

It is well known that both positive and negative side of
feedback are integral part of cars (x1, x2, x3) which can be
represented using a bipolar fuzzy context as shown in Table
8. The following problem arises with Car company that need
to analyze the customer feedback which car is more prefer-
able or relevant for the given customer. It will be helpful to
increase the production of car as well as profit. Same time
company wants that which car production need to be stopped
due to customer negative feedback. This issue can be resolved
when some useful pattern fromTable 8 as discussed by Singh
and Cherukuri (2014a; 2014b). In this process, a problem
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Table 5 A Proposed algorithm
for computing the weight of
bipolar fuzzy concepts

Input: A bipolar fuzzy concepts having attribute (1,0)
y j

∈ Y

Outputs: Weight of bipolar concepts Wj

Steps of the proposed method Time complexity

(1) Let us consider the bipolar concept (Wj ) O (1)

having the attribute (1,0)
y j

∈ Y .

(2) Write the objects which possess the (1,0)
y j

as: O(n)

(μP (xi ),μN (xi ))
xi

∈ X .

(3). for i = 1, ..., n O(n × m)

where n represents total number of bipolar objects.

(4). Compute the probability to possess the attribute (1,0)
y j

:

pi = P

(
(1,0)
y j

(μP (xi ),μ
N (xi ))

xi

)

.

(5). Information weight, i.e., E(pi )=-pi log2(pi ). O(n × log(n))

(6). Weight, i.e., w j =
∑n

i=1 E(pi ) . O(m × n × log(n))

(7). Average Weight, i.e., Wj =
∑

(w j )

n . O(m × n × log(n))

(8). Return the weight Wj

(9). end for

(10). Set the granulation window [α1, α2] in [0, 1]. O(n)

(11). if (α1 ≤ Wj ≤ α2) O(m × n)

(12). Select the concepts.

(13). else

(14). Remove the concepts.

(15). Interpret the concepts.

Total time complexity of the proposed method O(m × n × log(n))

Table 6 A positive feedback of
customer toward the car

y1 y2 y3

x1 0.3 0.2 0.1

x2 0.5 1.0 0.6

x3 0.4 1.0 0.3

is addressed while dealing with large number of concepts.
Same time the problem arises while investigation of some
relevant bipolar fuzzy concepts based on user requirement
as discussed by Singh (2019a). It means the relevancy may
change based on each customer. The current paper addressed
this problem and try to fix it using the entropy theory and its
computed weight for distinct granulation. To achieve this
goal, a method is proposed in Sect. 3 . The obtained results
from proposed method are compared with its concept lattice
structure for validating the information.

Let us consider the bipolar fuzzy context shown in Table
8. The subset-based method was introduced by Singh and
Cherukuri (2014a; 2014b) to generate the distinct bipolar
fuzzy concepts using maximal acceptance of attributes (1, 0)
as shown in Fig. 4. It represents following information:

C1 { (1,0)
x1

+ (1,0)
x2

+ (1,0)
x3

,
}.

Table 7 The negation of context
shown in Table 6 as negative
feedback

y1 y2 y3

x1 –0.7 –0.8 –0.9

x2 –0.5 –0.0 –0.4

x3 –0.6 –0.0 –0.7

Table 8 The bipolar fuzzy context representation of Table 6 and 7

y1 y2 y3

x1 (0.3, –0.7) (0.2, –0.8) (0.1, –0.9)

x2 (0.5, –0.5) (1.0, –0.0) (0.6, –0.4)

x3 (0.4, –0.6) (1.0, –0.0) (0.3, –0.7)

Information: It shows that none of car satisfied each
parameter of the customer.

C2 { (0.2,−0.8)
x1

+ (1.0,0.0)
x2

+ (1.0,0.0)
x3

,
(1.0,0.0)

y2
}.

Information: The customer prefers Car x2 and x3 due to
its cost.

C3 { (0.3,−0.7)
x1

+ (0.5,−0.5)
x2

+ (0.4,−0.6)
x3

,
(1.0,0.0)

y1
}.

Information: The Car x2 contains half traditional and half
modern for better understanding of old and young customers.

C4 { (0.2,−0.7)
x1

+ (0.5,0.0)
x2

+ (0.4,0.0)
x3

,
(1.0,0.0)

y1
+ (1.0,0.0)

y2
}.
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Fig. 4 A bipolar fuzzy concept lattice generated from Table 8

Information: The Car x2 is preferred more by half young
and half old people due to its cost and technology.

C5 { (0.1,−0.7)
x1

+ (0.5,0)
x2

+ (0.3,0.0)
x3

,
(1.0,0.0)

y1
+ (1.0,0.0)

y2
+

(1.0,0.0)
y3

}
Information: The Car x2 is first preference of the cus-

tomers based on each parameters.
C6 { (0.1,−0.8)

x1
+ (0.6,0.0)

x2
+ (0.3,0.0)

x3
}, { (1.0,0.0)

y2
+ (1.0,0.0)

y3
}

Information: The Car x2 preferred 60 percent by cus-
tomers due to its cost and fuel efficiency.

The above generated bipolar fuzzy concepts represent that
Car (x2)will be first preferencewhereasCar x3 will be second
preferenceof customer basedon thegiven feedback.Very few
customers want to purchase the Car (x1) due to its traditional
technology, cost and less fuel efficiency. This will help the
production team while manufacturing the car as well as sells
team.

The problem arises when the expert wants to analyze cars
and its relevancy based on customer requirements and its
given feedback. In this case, the expert requires single-valued
weighted representation to deal the bipolar opinion given
by customer. To deal with this problem, Shannon entropy is
considered as one of the prominent information theoretical
measurements as discussedbyLi et al. (2013) aswell asSingh
and Gani (2015). The current paper utilized it for dealing the
datawith bipolar fuzzy attributes in this paper. To achieve this
goal, a method is proposed in Sect. 3 which is illustrated in
this section. The proposed method is illustrated using extent
as formal concepts can be uniquely identified either by extent
or intent vice versa.

Table 9 Extent(A) for fuzzy formal concepts shown in Fig. 4

Bipolar Concepts Extent shown in Fig. 4

C1 { (1,0)
x1

+ (1,0)
x2

+ (1,0)
x3

}
C2 { (0.2,−0.8)

x1
+ (1.0,0.0)

x2
+ (1.0,0.0)

x3
}

C3 { (0.3,−0.7)
x1

+ (0.5,−0.5)
x2

+ (0.4,−0.6)
x3

}
C4 { (0.2,−0.7)

x1
+ (0.5,0.0)

x2
+ (0.4,0.0)

x3
}

C5 { (0.1,−0.7)
x1

+ (0.5,0)
x2

+ (0.3,0.0)
x3

}
C6 { (0.1,−0.8)

x1
+ (0.6,0.0)

x2
+ (0.3,0.0)

x3
}

Table 10 Computing
probability and entropy of each
bipolar objects of Table 9 using
Table 8

Bipolar object P(xi ) E(xi )

(0.1,−0.7)
x1

1 0
(0.1,−0.8)

x1
1 0

(0.2,−0.7)
x1

0.66 0.40
(0.2,−0.8)

x1
0.66 0.40

(0.3,−0.7)
x1

0.33 0.53
(1.0,0.0)

x1
0 0

(0.5,−0.5)
x2

1 0
(0.5,0.0)

x2
1 0

(0.6,0.0)
x2

0.66 0.40
(1.0,0.0)

x2
0.33 0.53

(0.3,0.0)
x3

1 0
(0.4,−0.6)

x3
0.66 0.40

(0.4,0.0)
x3

0.66 0.40
(1.0,0.0)

x3
0.33 0.53

To measure the information of bipolar fuzzy concepts
shown in Fig. 4, its extent is shown in Table 9. Table 10
represents the computation of information entropy for each
bipolar fuzzy set of objects shown in Table 8. Table 11 rep-
resents the average information weight computation of each
bipolar fuzzy concepts shown in Table 9. Now the some of
the relevant bipolar fuzzy concepts based on user-required
information granules can be selected for knowledge process-
ing tasks as shown in Table 12.

The information weight of Fig. 4 is 1.55 as per the pro-
posed method. It is one of the advantages of the proposed
method which transforms the bipolar fuzzy concepts into
numerical format. It will be helpful in encoding the data
derived from bipolar fuzzy context.

In case the expert wants to select of the important con-
cepts from Fig. 4 then the concept having maximum weight
inTable 11 can be considered an important. It can be observed
that the concept C2 { (0.2,−0.8)

x1
+ (1.0,0.0)

x2
+ (1.0,0.0)

x3
,

(1.0,0.0)
y2

}
having maximum weight, i.e., 0.49 as per Table 11. It repre-
sents that each customer gave first importance to cost while
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purchasing the car. In similar way the second important
parameter can be analyzed. These types of important bipo-
lar fuzzy concepts cannot be selected using the subset-based
method discussed in Singh and Cherukuri (2014a; 2014b).
Same time the company wants to select some of the impor-
tant concepts based on their closed window of granulation
(α1, α2) in [0, 1]. It can be also achieved using the proposed
method as shown in Table 12. To achieve this goal, the pro-
posed method just take O(m × n × log(n)) rather than 2m .
It is one of the major significant advantages of the proposed
method while dealing with bipolar fuzzy attributes.

5 Discussion

The precise analysis of human thought is one of the major
concern for research communities. The first problem arises
with its precise representation due to uncertainty and ran-
domness as discussed by Shannon (1948). Boole (1854) tried
to introduce a method for representation of human thought
using the binary logic {0, 1}. In this case, the problem arises
while dealing the soft words like tall and young. To compute
these types of linguistics words, Zadeh (1965) introduced
fuzzy logic. The problem arises with fuzzy logic is that it
used to represent the acceptation and rejection part via a
single-valued membership values. The Taoism theory stated
that positive–negative sides exist simultaneously to repre-
sent the information (Welch 1957). This type of bipolarity
is depicted in Sanskrit as an example called as charac-
ter of half man–half woman https://en.wikipedia.org/wiki/
Ardhanarishvara. Same time action–reaction, love–hate and
many bipolar information exists in dark data sets as discussed
by (Singh 2022a). It became indeed requirements to dealwith
bipolar information while measuring the soft data sets as
discussed by Akram et al. (Akram et al. 2021a, b) recently.
The problem arises when the experts want to analyze the
uncertainty and randomness in customer feedback for multi-
decision process. To deal with these type of information the
algebra of bipolar fuzzy sets in [-1, 0) × [0, 1) (Zhang 1994)
and its graphical representation (Akram 2011) is introduced

Table 12 The reduction of bipolar concepts based on window
(α1, α2)of granulation

Weight at granulation (W( j)) Selected bipolar fuzzy concepts

0 ≤ Wj ≤ 1 C1, C2, C3, C4, C5, C6

0 ≤ Wj ≤ 0.48 C1, C3, C4, C5, C6

0 ≤ Wj ≤ 0.34 C3, C4, C5, C6

0 ≤ Wj ≤ 0.30 C4, C5, C6

0 ≤ Wj ≤ 0.26 C5, C6

0 ≤ Wj ≤ 0.12 C5

for bipolar concept lattice visualization (Singh andCherukuri
2014a, b). In this case, a problem is addressed while deal-
ing the large number of bipolar fuzzy concepts generated
from a given context. One of the solutions is to find some
of the relevant bipolar fuzzy concepts based on its similar-
ity or indistinguishably as discussed by Singh (2019a). The
another solution is informationmeasurement using the Shan-
non (1948) entropy as applied for dealing the data with fuzzy
attributes (Singh and Gani 2015; Singh 2018); Singh et al.
(2017); (Singh 2022d)) and vague attributes Singh (2022b). It
is considered that the informationmeasurement may save the
information loss (Li et al. 2013; Sumangali et al. 2017) while
considering the attribute reduction method (Ali et al. 2020).
This motivated to introduce the entropy theory for dealing
with data of bipolar fuzzy attributes to tackle the following
issues:

• Is it possible to measure the information content in the
bipolar fuzzy concept lattice ?

• Is it possible to select some of the important bipolar fuzzy
concepts?

• Is it possible to reduce the bipolar fuzzy concepts based
on user-required granulation?

To deal with above issues, the current paper proposed fol-
lowing methods in this paper:

Table 11 Computed average
weight W( j) for bipolar extent
shown in Table 10

Concept–Extent(A) w j=
∑n

i=1 E(pi ) Wj =
∑

(w j )

n

C1 { (1,0)
x1

+ (1,0)
x2

+ (1,0)
x3

} 0+0.53+0.53=1.06 0.35

C2 { (0.2,−0.8)
x1

+ (1.0,0.0)
x2

+ (1.0,0.0)
x3

} 0.40+0.53+0.53=1.46 0.49

C3 { (0.3,−0.7)
x1

+ (0.5,−0.5)
x2

+ (0.4,−0.6)
x3

} 0.53+0+0.40=0.93 0.31

C4 { (0.2,−0.7)
x1

+ (0.5,0.0)
x2

+ (0.4,0.0)
x3

} 0.40+0+0.40=0.80 0.27

C5 { (0.1,−0.7)
x1

+ (0.5,0)
x2

+ (0.3,0.0)
x3

} 0+0+0=0 0

C6 { (0.1,−0.8)
x1

+ (0.6,0.0)
x2

+ (0.3,0.0)
x3

} 0+0.40+0=0.40 0.13

Total computed weight of Fig. 4 1.55
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Table 13 Comparison of the
proposed method with recent
studies on bipolar fuzzy
concepts

Singh and Cherukuri (2014a, b) Singh (2019a, b) Proposed algorithm

1 Subset-based method Euclidean distance Bipolar entropy

2. Bipolar concept lattice Similar bipolar concepts Similar bipolar concepts

3. (α, β)-cut (α, β)-cut (α1, α2)-cut

4. Specialization and Ordering of Important bipolar

Generalization Bipolar concepts Fuzzy concepts

5. Introduced bipolar Introduced neighbor Introduced average

Concept lattice Bipolar concepts Information weight

6. Small context Small or Medium context Small or Large context

7. Resembled information Resembled information Resembled information

From Table 7 From Table 7 From Table 7

8. Do not Encode the Encode the

Encode Fig. 4 Fig. 4 Fig. 4

9. Takes more time Takes less time take less space and time

10. Graph visualization No graph No graph

11. Pattern Similar concepts Randomness measurement

12. (2m × n) (m2 × n) O(m × n × log(n))

• The proposed method measures the average information
weight of the bipolar fuzzy concepts using entropy as
shown in Sect. 3 ,

• Theproposedmethod provides away to decide the impor-
tance of bipolar fuzzy concepts based on their computed
weight as shown in Sect. 4,

• In last, the important bipolar fuzzy concepts and its selec-
tion at user-defined (α1, α2)-level of granulation as shown
in Table 12.

The proposed method shown in Sect. 3 is illustrated for the
bipolar fuzzy concepts generated from Table 8 as shown
in Sect. 4. The obtained results from the proposed method
is compared with its bipolar fuzzy concept lattice shown
in Fig. 4. It can be observed that both of the information
echo with each other whereas the proposed method pro-
vides a way to select some of the relevant concepts based
on user-required granulation. To achieve this goal, the pro-
posed method does not draw any graph or concept lattice. It
just measures the information content of given bipolar fuzzy
attributes within logarithmic time complexity. In this way,
the proposed method is distinct from any of the available
approaches on data with bipolar fuzzy attributes as shown in
Table 13.

It can be observed that the proposed method in this paper
is distinct from each of the available approaches for han-
dling data with bipolar fuzzy attributes as shown in Table 13.
The proposed method tried to resolve the issue of random-
ness arises in bipolar fuzzy concepts due to expert opinion.
Same time it provides an alternative way to select some of
the important bipolar fuzzy concepts based on its information
content within O(m × n × log(n)) time complexity. It can

be observed that the knowledge discovered by the proposed
method resembled with subset-based method (Singh and
Cherukuri 2014a,b) and bipolar Euclidean distance (Singh
2019a,b) with less time complexity. Subsequently, the pro-
posed method provides a way to convert the information
weight of bipolar fuzzy concept lattice shown in Fig. 4 into
numerical format. It is one of the major advantages of the
proposed method which will help in lossless bipolar fuzzy
concepts compression and its encoding. However, the pro-
posed method provides single-valued measurement due to
algebra of Shannon entropy. In this case, the biasness mea-
surement in expert decision and its interpretation may be
complex. To resolve this issue, author will focus on explor-
ing other metric (Akram et al. 2021a; Riaz and Therim 2021)
for controlling the bipolar fuzzy concept and its implications
(Singh 2022a). Same time the authorwill focus on dealing the
superposition of human quantum cognition and its dynamic
changes at given phase of time Singh (2020)

6 Conclusions and Future Research

This paper aimed at measuring the information weight in
bipolar fuzzy concepts using Shannon entropy in [0, 1]-
interval. The analysis derived from the proposed method
is compared with recently available approaches on bipo-
lar fuzzy graph representation of concept lattice as shown
in Table 12. It can be observed that the proposed method
resembled the obtained information within time complex-
ity O(m × n × log(n)) rather than m × 2m . Same time the
important bipolar fuzzy concepts are selected based on their
computed weight at defined window of granulation (α1, α2).
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In addition, the proposed method encodes the bipolar fuzzy
concept lattice into numerical format which will be useful in
encoding. It is one of the major advantages of the proposed
method while dealing space-time trade-off. It distinguishes
the proposed method from any of the available approaches
as shown in Table 13.

In near future, the author work will focus on other appli-
cations of bipolar fuzzy concepts, bipolar fuzzy entropy and
its dynamic changes at given phase of time for dealing the
superposition of human cognition.
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