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Abstract
Mobile robot path planning problem is a significant research area in industrial automation, which is to determine an optimal

path for a robot to reach the destination by avoiding obstacles. Path planning (PP) is one of the most researched topics in

mobile robotics. Deriving an optimal path from a huge number of feasible paths for a given environment is called a PP

problem. The existing optimization techniques are used to consider path safety, path length, and path smoothness. The

conventional optimization techniques implemented for the mobile robot path planning problem incur a lot of cost due to the

high complexity to solve. In order to find the optimal path for handling the mobile robot path planning problem, the mobile

robot path search based on multi-objective genetic algorithm (MRPS-MOGA) is proposed. The MRPS-MOGA is designed

with the novelty of genetic algorithm with multiple objective function to solve mobile robot path planning problems. Hence

the proposed MRPS-MOGA handles five different objectives such as safety, distance, smoothness, traveling time, and

collision-free path to obtain optimal path. The MOGA is applied to select an optimal path among multiple as well as

feasible paths. The population with feasible paths is initialized with randomly generated paths. The fitness value is

evaluated for the number of available candidate paths by applying objective functions for different objectives. Then the

fitness criterion determines the paths which are to be passed to participate in the next generation. MRPS-MOGA is

developed with the novelty of genetic algorithms such as tournament selection, ring crossover, and adaptive bit string

mutation for discovering the optimal path. For the successive generations, the population is selected using the tournament.

The genetic operator, crossover operator, is applied for swapping the input string to obtain offspring which is called ring

crossover. Consequently, another GA operator mutation is carried out randomly on the sequence to achieve diversity in the

population. Again the individual fitness criterion is verified to obtain an optimal path from the population. An experimental

study of the proposed MRPS-MOGA is carried out with different cases. The result reveals that the proposed MRPS-MOGA

is better in the case of optimal path selection with lower time complexity. Based on the experimental analysis, MRPS-

MOGA is a more efficient mobile robot path with higher safety, reduced energy consumption, lesser traveling time than the

existing methods.

Keywords Mobile robot path planning � Multiple objectives � Meta-heuristic search � Fitness � Tournament selection �
Ring crossover � Adaptive bit string mutation

1 Introduction

Robotics is the most significant researches in recent tech-

nology. Finding an optimal path for a robot is an essential

task in robot motion planning. A robot that needs to move

in a particular environment to carry out a definite task is the

path planning (PP) problem. Mobile robot path planning is

playing a significant role in the automobile industry,

underwater vehicles, and airport terminals. Based on these

applications and the robot’s ability, various objectives are

& K. S. Suresh

kssuresh@cse.sastra.edu

1 School of Computing, SASTRA Deemed University,

Thanjavur, Tamil Nadu, India

2 National Institute of Technology, Dimapur, Nagaland, India

123

Soft Computing (2022) 26:7387–7400
https://doi.org/10.1007/s00500-022-07300-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-022-07300-8&amp;domain=pdf
https://doi.org/10.1007/s00500-022-07300-8


defined in multi-objective mobile robot path planning.

Therefore, an optimal motion planning of the mobile robot

is performed along with multi-objective optimization; it

discovers an optimal path to reach the destination.

A novel multi-objective evolutionary technique based

on the Variable Neighborhood Search (MOVNS) was

developed in Hidalgo-Paniagua et al. (2016) to resolve the

path planning issue. The technique is failed to calculate

paths in dynamic environments since it only considers

static environments. Randomized Homotopy Classes Fin-

der (RHCF) was introduced in Palmieri et al. (2017) to

discover various paths among dynamic obstacles depend-

ing on weighted random walks. The time complexity of the

algorithm was not reduced and failed to generate a more

robust path by considering sensing and motion uncertainty.

Dijkstra’s algorithm was designed in Mac et al. (2017)

to discover a collision-free path using particle swarm

optimization with minimum path length and maximize path

smoothness. The optimization technique discovers an

optimal path with more execution time.

An evolutionary approach combined with the Artificial

Bee Colony algorithm was introduced in Contreras-Cruz

et al. (2015) to overcome the path planning problem of a

mobile robot using a set of local procedures. The evolu-

tionary approach failed to use an efficient mutation operator

in the global path optimization phase for finding optimal

probability values. A novel conflict resolution method was

developed in Shahriari and Biglarbegian (2018) for several

mobile robots while guaranteeing motion liveness in

dynamic environments. The method failed to focus on con-

sidering the dynamics of mobile robots’ path planning.

A path tracking technique was developed in Chen et al.

(2016) for the wheeled mobile robot (WMR) using a

B-spline algorithm to generate a smooth and obstacle-

avoidance path with minimum collision. The path tracking

method failed to predict the next position of the obstacle in

a dynamic environment. A geodesic-based path planning

algorithm was developed in Wu et al. (2016) for evading an

obstacle on a 3D terrain. An optimal path planning was not

carried out with minimum time.

In (Zhao et al. 2016), an ACO algorithm was introduced

for path planning of the mobile vehicle to link the start and

endpoint with obstacles. The ant colony algorithm failed to

consider more objectives for path planning. An Invasive

Weed Optimization (IWO) technique was introduced in

Mohanty and Parhi (2014) for optimal route planning of the

mobile robot in various challenging environments. This

approach failed to handle dynamic obstacles with a com-

plex environment and various mobile robots were not

considered instead of a single robot.

A new framework was introduced in Hyun et al. (2017)

for avoiding the problem of optimal path planning of

rectangular robots. The comparisons between the proposed

and the existing approach did not show the difference in the

computation time and the feasibility.

The certain issues are determined from the above-said

works of literature such as high time complexity, failed to

select an optimal path with minimum time, failed to predict

the position of the robot with multiple objectives and so on.

To overcome the above said issues in mobile path plan-

ning, motivated by, MRPS-MOGA is introduced.

The major contribution of the MRPS-MOGA approach

is described as follows:

• The main contribution of MRPS-MOGA is developed

to solve the mobile robot path planning problem and

finds the optimal path. The MRPS-MOGA handles five

diverse objectives namely path distance, smoothness of

the path, collision-free path, safety, and travelling time

while avoiding obstacles to achieve an accurate and

efficient mobile robot path. The paths are randomly

generated as a population to employ the proposed

MRPS-MOGA technique. Based on the fitness values

derived from the fitness functions for the multiobjective

of the population, an optimal path is selected among the

feasible paths. The paths which are satisfying the

above-mentioned objectives are promoted to the next

generation of population.

• MRPS-MOGA is designed with the novelty of a genetic

algorithm namely tournament selection, ring crossover,

and adaptive bit string mutation to find the optimal

path. Tournament selection is applied to select the best

individual path from the population to satisfy the fitness

criterion. The Ring crossover is employed to swap the

strings for generating new adapted ones to determine a

near-optimal path. Adaptive bit string mutation is to

randomly interchange the bit. Next, the fitness criterion

is checked again to find optimal solutions. If the

criterion is satisfied, then the path is chosen as optimal

with minimum time. Therefore, improving the mobile

path planning performance.

The rest of the paper is ordered as follows: Sect. 2

introduces the background and reviews the related works.

Section 3 provides a brief description of the proposed

MRPS-MOGA with a neat diagram. In Sect. 4, experi-

mental evaluation is presented with a dataset and the

analysis of results is explained in Sect. 5. The performance

result discussion is explained in Sect. 6. Concluding

remarks of the paper are presented in Sect. 7.

2 Related works

A particle swarm optimization (PSO) algorithm was

designed in Ever (2017) to avoid the problem of mobile

robot path planning. The efficiency of mobile robot path

7388 Application of soft computing

123



planning was not improved using PSO algorithm. An off-

line Kinect-based optimal collision-free path planning was

carried out in Bakdi et al. (2017) for obtaining collision-

free smoothed path. The approach was not validated in

non-static obstacles.

Curvature-bounded traversability analysis (CBTA)was

performed in Cowlagiand and Tsiotras (2014) for mobile

robot motion planning through model predictive control.

The analysis was not carried with multiple objective

functions for path planning problem. In (Wei et al. 2012), a

staying-alive and energy-efficient path planning algorithm

(SLEEP) was introduced for path planning of mobile robots

with minimum energy consumption. The SLEEP algorithm

was not implemented stay-alive obstacle prevention.

A neural network approach provided with statistical

dimension reduction methods was developed in Shams-

fakhr and Sadeghibigham (2017) to perform exact and

rapid robot direction-finding and also avoid the obstacles.

The neural network method was not selecting an optimal

route path with multiple objective functions. A Dynamic

Window Approach (DWA) was introduced in Henkel et al.

(2016) for mobile robot path planning with minimum

energy consumption using a linear regression model. The

approach failed to handle energy-efficient path planning.

An improved artificial fish swarm algorithm (IAFSA)

was introduced in Zhang et al. (2016) for detecting the path

of the mobile robot in a real environment. The IAFSA was

not considered multi-objective optimization. A bacterial

foraging technique was developed in Liang et al. (2013) for

robot path planning to discover an optimal collision-free

path in the environment with obstacles. The model failed to

use multi-objective optimizer for searching the optimal

path.

Bellman’s dynamic programming (DP)-based path

planning of a robot was developed in Korayem and Nekoo

(2016) to find the best path by minimizing energy and

preventing obstacle collision. These techniques were not

efficiently selected as an optimal path with multiple

objectives. A self-adaptive learning particle swarm opti-

mization (SLPSO) technique was developed in Li and

Chou (2018) for solving the problem of mobile robot path

planning. This optimization technique failed to reduce the

travelling time of a mobile robot.

Hybridized Particle Swarm Optimization-Modified Fre-

quency Bat (PSO-MFB) algorithm was introduced in Ajeil

et al. (2020) for mobile robot path planning problems. An

improved particle swarm optimization (IPSO) with evolu-

tionary operators (EOPs) was developed in Das and Jena

(2020) for creating an optimal collision-free path. An

efficient Q-Learning (EQL) algorithm was introduced in

Maoudj and Hentout (2020) to ensure the collision-free

path with minimum time. The designed EQL algorithm

failed to improve the efficiency of the mobile robot path.

3 Mobile robot path search based on multi-
objective genetic algorithm

An efficient and reliable path planning strategy is a great

benefit to mobile robots by adopting with multi-objective

optimization principle. The mobile robot path planning is a

significant problem in mobile robotics for discovering

between two specified locations namely start and endpoint.

Therefore, the mobile robot has to discover an optimal path

with multiple objective functions are minimum path length

(i.e. distance), safety, collision-free path, travelling time,

and energy consumption are taken between to navigate

over the path. According to these criteria, the path planning

problem is considered an optimization problem. Based on

this motivation, MRPS-MOGA is introduced. The mobile

robot path planning strategy is shown in Fig. 1.

As shown in Fig. 1, the mobile robot path planning

strategy is described. In general, several feasible paths

P1;P2; . . .;Pn are available between source and destination

points. Among the several paths, the mobile robot chooses

an optimal path for reaching its target point with minimum

time. Therefore, the PP issue plays a major role to control a

mobile robot motion in a certain environment which has

static obstacles. From the figure, three different paths

P1;P2;P3 are taken as sample paths for the given envi-

ronment. The start point of the mobile robot is represented

as A and the endpoint is denoted as B. Among these three

paths, the mobile robot (MR) path planning satisfies some

criteria are path distance, path smoothness, collision-free

path, safety and travelling time. Therefore, MR has to

discover an optimal path which reduces the number of

steps to be taken to reach the destination. The proposed

MRPS-MOGA aims to improve path optimization with the

above said multiple objectives with less complexity. An

flow process of the MRPS-MOGA is shown in Fig. 2.

Figure 2 shows an flow process of the MRPS-MOGA to

select an optimal mobile robot path in an environment. By

applying a meta-heuristic mobile robot path search-based

multi-objective genetic algorithm, the n number of gene

population is initialized. After that, the fitness function is

B

MR

A

P1

P2

P3

Obstacles

Fig. 1 Mobile robot path planning
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calculated based on multiple objective functions namely as

path distance, path smoothness, safety, travelling time, and

collision-free path. Then, the multiple objective functions

are measured based on the fitness function. Subsequently,

the path which satisfies the above fitness criterion (i.e.,

higher safety, minimum path distance, path smoothness,

travelling time, and collision-free path) is selected as MR

optimal path to reach the endpoint for robot movement.

The path does not satisfy the fitness criterion; then the

MRPS-MOGA utilizes bio-inspired operators such as

tournament selection, ring crossover, and adaptive bit

string mutation. After applying these parameters, the fit-

ness criterion is verified. This procedure is continued until

one optimal path is chosen for the mobile robot. A brief

description of the MRPS-MOGA is presented in the

forthcoming sections.

3.1 Description of MRPS-MOGA

A new MRPS-MOGA is designed to overcome the path

planning problem. MRPS-MOGA performs meta-heuristic-

based mobile robot path search where a meta-heuristic is a

higher-level process to find a heuristic (i.e. partial search)

that provides a sufficiently best solution for mobile robot

path optimization problem. It is employed to search the

optimal path of the mobile robot. The search-based multi-

objective genetic algorithm is used in MRPS-MOGA for

obtaining a better solution. The first step in the functioning

of an MRPS-MOGA is the generation of an initial popu-

lation. A population of candidate solutions also termed as

an individual (i.e. path) is selected. The candidate solution

comprises a set of properties (i.e. chromosomes) that are

mutated and changed. The initial population of paths for a

mobile robot is denoted as,

P ¼ P1;P2;P3; . . .:Pnf g ð1Þ

From the above equations, the population is generated

randomly. After the mobile robot paths population initial-

ization, the fitness function of each individual (i.e. path) is

determined based on the five objective functions. The fit-

ness function is an objective function that is used for path

planning optimization. The fitness of the individual path is

measured based on multiple objective functions as follows:

FF ¼ minD A;Bð Þ þmaxðsmoothnessÞ þ CFPþ safety

þmin TTð Þ
ð2Þ

Mobile robot 

(Starting location)

Initialize the gene population

Calculate fitness function with 

multiple objectives

If criterion 

satisfied

Yes

Apply bio-inspired operators

Tournament selection

Ring crossover

Adaptive bit string 

mutation

MR selects optimal 

paths to reach end point 

No

Fig. 2 flow process of the

MRPS-MOGA
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From (2), FF denotes a fitness function with five objective

functions as minimum distance, smoothness of the path

(related to energy consumption), collision-free path CFPð Þ,
safety and min TTð Þ denotes a least travelling time of

mobile robot to reach the goal.

3.1.1 Path distance

The first objective function of the MRPS-MOGA is a path

distance. During the optimal path finding, the shortest path

from the starting point to the endpoint is selected. For this

reason, the path distance objective function is considered

for mobile robot path planning problem. The distance

among start and endpoint are computed using Manhattan

distance. The Manhattan distance is so appropriate for the

grid based applications instead of geometric distance

between the given points in the environment. Manhattan

distance is the summation of the differences of their related

coordinates. Given two dimensional vector, the distance is

measured as follows:

D A;Bð Þ ¼
Xn

i¼1

ai � bij j ð3Þ

From (3),D A;Bð Þ denotes a distance between the two

points of the path. a and b denote a coordinate in two-

dimensional vector. The mobile robot selects the path with

the minimal distance which is expressed as follows:

MR ! arg min D A;Bð Þ ð4Þ

Based on the equation, the shortest distance path is selected

for mobile robot motion.

3.1.2 Smoothness of path

The second objective function is the path smoothness

which is measured based on energy consumption. Path

smoothness is an objective that is directly related to the

robot’s energy consumption. The energy consumption of

the mobile robot is an important issue for the mobile robot

path. The smoothness of the path is also maximized by

reducing the number of turns over the robot navigational

path. Generally, the mobile robot is moved in the direction

of forward, backward, right and left. During the motion of

the mobile robot in an environment, the several obstacles

may exist in an environment. If more obstacles are present

in a path, energy consumption is increased. In order to

handle the smoothness of the path and measured it in terms

of energy consumption. By minimizing the number of

obstacles on the desired path, the energy consumption is

minimized. The robot has to interact with the obstacles

present in the environment. The obstacles are objects that

create challenges in the direction of movement of the

mobile robot. The energy consumption of the path is

reduced by obtaining with least distance between the robot

and the obstacles. In order to calculate the smoothness of a

particular path, the number of obstacles in a path is mini-

mized. Also, it reduces energy consumption. It is measured

in terms of a joule.

EC tð Þ ¼ 1Pn
i¼1ðDA � OiÞ

ð5Þ

From (5), EC tð Þ denotes energy consumed for mobile robot

path planning. DA denotes a distance of starting point and

its proximate obstacle ðOiÞ. By minimizing the number of

obstacles on the desired path, the energy consumption is

minimized.

3.1.3 Collision free path

One of the significant objectives is to derive a path for the

robot movement which interacts with the minimum number

of obstacles in the environment. By reducing the collision

with obstacle, energy consumption and time to reach the

goal also get reduced. Hence, the problem is solved by

determining the collision-free path that satisfies the chosen

criteria for shortest distance and path smoothness. The path

smoothness is directly related to the robot energy con-

sumption. In order to calculate the smoothness of a par-

ticular path, the number of obstacles in a path is

minimized. Based on obstacles avoidance, the multi-ob-

jective collision-free path is obtained.

3.1.4 Safety

Safety is the major objective in mobile robot path planning

problem. During the navigation of a mobile robot, safety is

an essential objective to protect the robot by means of

reducing the number of obstacles and collisions along the

path. The robot has to be guarded against the collision with

obstacle. The path which has the minimum number of

obstacles and minimum collisions chooses the available

path to ensure the physical safety of the robot.

3.1.5 Travelling time

Travelling time represents the total time consumed by a

mobile robot to reach the target from the source. It is

measured as follows:

TT ¼ TB � TA ð6Þ

From (6),TT denotes a travelling time at which the mobile

robot arrives at the end point ðTB) from the starting point

(TAÞ.
Based on the above objective functions, the fitness

function is calculated for all the paths of the population. If
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the path satisfies all objective functions criterion, then the

path is chosen for the next generation in the process of

selection of optimal path. Otherwise, the MRPS-MOGA

uses three bio-inspired operators such as selection, cross-

over and mutation. The processes of the genetic operators

in the genetic algorithm are explained. The genetic algo-

rithm uses tournament selection, ring crossover, and

adaptive bit string mutation operation. At first, the tour-

nament selection is carried out for selecting the paths that

are satisfying fitness criteria. Next, the ring crossover is

used for generating the offspring by swapping the bit

string. Lastly, adaptive bit string mutation is employed to

swap the bit of chromosome randomly, by using bio-in-

spired operators such as tournament selection, ring cross-

over, and adaptive bit string mutation for selecting the

optimal path to improve the path planning performance.

3.1.5.1 Tournament selection Selection is one of the bio-

inspired operators for selecting an individual from a pop-

ulation as the principle of fittest one will survive among the

population for the next generation. Tournament selection is

the method for choosing an individual from the population

with higher fitness in a random manner. For each tourna-

ment, the winner is chosen with the best fitness for cross-

over. Individual selection is utilized to generate

consecutive generations. By applying the selection

approach, the fitness of each individual is measured. The

selection of each individual is carried out with their prob-

ability which is defined as follows:

P ¼ FFiPn
j¼1 FFj

ð7Þ

From (7), selection probability (P) of every individual and

FFi denotes an average fitness of the population in jth

individual. Each generation fitness value and selection

probability of each path get changed. It means the first

suitable individual from the tournament is selected with

probability (P). The next suitable individual selection

probability is defined as,

p � 1� pð Þ ð8Þ

The third best individual with probability is selected as,

p � 1� pð Þ2 ð9Þ

Similarly, the entire best individuals are selected along

with their selection probability. If the tournament size is

high, weak individuals include a lesser possibility for

tournament selection.

3.1.5.2 Ring crossover The crossover is the process of

handling more than one parent solutions and producing

offspring through swapping process. The ring crossover

operator is used in MRPS-MOGA for optimal mobile robot

path selection. The ring operator consists of four steps for

generating the offspring from the parent solution. At first

step two-parent chromosomes a and b are defined.

a ! 101001

b ! 011010

Secondly, the chromosomes of parents are combined to

form of a ring. Thirdly, a random cutting point is applied at

any point of the ring. The one of the offspring is created in

the clockwise direction; the other one is generated in an

anticlockwise direction.

In the fourth steps, the offspring are obtained by the

swapping of the two-parent chromosome.

As shown in Fig. 3, the process of ring crossover is

described to generate offspring from parent solutions. The

crossover is performed based on the combination of two

well-defined parent solutions which provides the new

adapted ones. As the string length of the ring is similar to

the total string length of both parents and offspring are

created along with a cut at random point of the ring.

Crossover is a significant process which helps to discover

an optimal robot path.

For example, ring crossover is applied to the sequence

(i.e. chromosome) for identifying the optimal path of the

mobile robot. Let us consider the following sequence of

decimal numbers 10, 32, 35, 41, 46, 50, 52, 55, 58, 60. The

equivalent binary strings of these sequence are shown in

Table 1.

Table 2 shows the offspring generation from two-parent

chromosomes. In Table 2, let us consider the two parent

chromosomes 41; 26; their equivalent binary strings are

101,001 and 011,010. A cut point is used in a random

manner to generate two offspring; 001,010, 101,011 are

generated. The new offspring 001,010 is selected, and the

other 101,011 is discarded. These two offspring generated

in two directions, i.e. clockwise and anticlockwise. These

processes are explained briefly in Fig. 3.

After the two-point crossover, the two new offspring

001,010, 101,011 are generated and their decimal equiva-

lents are 10 and 43, respectively. The generated offerings are

verified with Table 1. The generated offspring 001,010, i.e.

10, is matched with the existing points of an equivalent

binary string. This offspring is selected and it is more suit-

able to discover the optimal path for a mobile robot. The

generated offspring 101,011, i.e. 43, does not match with the

existing binary string of points and then this offspring is

discarded. If two offspring does not match with the existing

binary string of the points, then the other two points are taken

for generating the new offspring. The selected offspring is

used for adaptive bit string mutation to obtain optimal path

for mobile robot among the several paths. As a result of the
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ring crossover, the process is not able to create diversity

within a population of paths. Therefore, diversity is main-

tained by using another bio-inspired mutation operator.

3.1.5.3 Adaptive bit string mutation After generating an

offspring, adaptive bit string mutation operation is carried

out to preserve genetic diversity from one generation of a

population of chromosomes to the next generation. MRPS-

MOGA uses adaptive bit string mutation which takes the

resultant offspring and inverts the bits flips at random

positions. A bit flip is a process of inverting the bit into the

other value. By applying adaptive mean mutation, the

formula is expressed as follows:

ŷ0 ¼ ŷþ r1n 0; 1ð Þ þ r2c 0; 1ð Þ ð10Þ

From (10),ŷ0 newly generated offspring value by

inverting the bit from the population and ŷ represents an

offspring created from a crossover. r1 and r2 are the

standard deviation parameter. n 0; 1ð Þ represents a Gaussian
normally distributed random number with 0 mean and

variance 1, and c 0; 1ð Þ represents a cache operator. The bit
flip process is performed as shown in Fig. 4.

Figure 4 shows adaptive bit string mutation of offspring

value of string ‘0’ is randomly changed with the exact

chromosome string of ‘1’. A mutation is a randomly

inverting a bit for generating the new offspring to select an

optimal path for a mobile robot. After that, the previously

selected individual is replaced by a new individual. Fitness

criterion is verified again to obtain optimal solutions. This

process is continued for all candidate paths in a population

and discovers the most suitable path with the obstacle-free

environment. Figure 5 shows the multi-objective optimal

path for the mobile robot from the possible paths. This

optimal path satisfies the fitness criterion than the other paths

to get an optimal solution in mobile robot path planning.

The algorithmic description of MRPS-MOGA is pre-

sented as follows.

Fig. 3 Ring crossover

Table 1 Binary representation of chromosome

S.no Point (i.e. chromosome) Equivalent binary string

1 10 001,010

2 26 011,010

3 32 100,000

4 35 100,011

5 41 101,000

6 46 101,110

7 50 110,010

8 52 110,100

9 58 111,010

10 60 111,100

Table 2 Offspring generation from two chromosomes

Point (i.e.

chromosome)

Equivalent binary

string

Offspring

41 101,001 001,010 Selected

26 011,010 101,011 Discarded
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The above algorithm 1 clearly describes the selection of

the mobile robot’s path movements successfully to navi-

gate over the environment by avoiding obstacles. The

MRPS-MOGA is employed for determining an optimal

path with multiple objective functions. At first, the num-

bers of paths population are initialized. After that, the

multiple objective functions are calculated to measure the

fitness of the individual path. The path satisfies the fitness

criterion; then the path is selected as an optimal for a

mobile robot. Or else, tournament selection is performed

for selecting the best individual from the population with

their probability. Then the swapping of the two chromo-

somes is carried out to generate the new offspring using

ring crossover. Finally, the adaptive bit string mutation is

performed to interchange the input bit string randomly.

After performing genetic operators, the fitness of that path

is calculated and checks the fitness criterion. Above said

process is repeated till the specified condition is met. As a

result, MRPS-MOGA finds an obstacle-free path to reach

an endpoint.

4 Experimental settings

Experimental evaluation of MRPS-MOGA is implemented

in Java language with Mobile Robots Data Set taken from

UCI machine learning repository. (https://archive.ics.uci.

edu/ml/datasets/Mobile?Robots). By using this dataset,

movement of the mobile robot, direction and position of

the mobile robot are identified in path planning. The

dataset contains the certain attributes information such as

trace, time, sensor orientation, gradient, distance, sensor

coordinates, objects, edge, sensor class (set of front side,

Before Adaptive bit string mutation 

After Adaptive bit string mutation

0 0 1 0 1 0

0 0 1 1 1 0

Fig. 4 Adaptive bit string mutation

Obstacles

B

MR

A

P1

Fig. 5 Multi-objective optimal path for mobile robot

Algorithm 1: Pseudo code for MRPS-MOGA

Input: Number of paths

Output: Select an optimal path for mobile robot

1: Begin

2: Initialize the path population 

3:  Calculate the fitness value with the help of multiple objective functions using (2)

4:   if (fitness criteria satisfied then

5:           Selects an optimal path for mobile robots

6: else

7:           Select the individual from the population with probability P using (7)

8:           Generate new offspring using ring operator 

9:           Perform Adaptive bit string mutation for inverting the bit string 

10:         Replace old individual into a new one

11: Go to step 3

12:   Terminate the algorithm until the specified condition is satisfied

13:   end if

14: end

7394 Application of soft computing
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right side, backside, left side), movement of mobile robot

(set of parallel, diagonal), mobile robot move direction,

(forward, backward, right, left), perception direction (set of

front, rear, right, left), perceptual features. This data set is

employed to analyze the mobile robot path for selecting the

obstacles free path.

The proposed MRPS-MOGA is evaluated with an

existing multi-objective evolutionary approach based on

the Variable Neighborhood Search (MOVNS) (Hidalgo-

Paniagua et al. 2016) and Randomized Homotopy Classes

Finder (RHCF) (Palmieri et al. 2017) in terms different

constraints and various cases.

5 Result analyses

Result analysis of MRPS-MOGA is described in this sec-

tion with the impact of four different cases for selecting an

optimal path with Mobile Robots Data Set. The MRPS-

MOGA is compared against the two existing methods

namely MOVNS (Hidalgo-Paniagua et al. 2016) and RHCF

(Palmieri et al. 2017). Experimental results are compared

and analyzed with the help of the appropriate tables and

charts.

Case 1: Path Distance versus Travelling Time

In this case, to guarantee the statistical importance of the

obtained results, 10 separate runs are evaluated. In case 1,

let us consider two different objectives, namely path dis-

tance and travelling time for mobile robot path planning.

Most of the time this objective is directly related to the

robot operation time; thus, a shorter path implies less time

in order to move the mobile robot. The path distance D(A,

B) is directly proportional to the travelling time that means

if the distance of the path is high, then the mobile robot

travelling time also increased.

D A;Bð ÞaTT ð11Þ

From (11), D A;Bð Þ denotes a path distance between two

points A and B and TT denotes a travelling time to reach

the goal point. The path distance is measured in terms of a

meter (m), and travelling time is calculated as milliseconds

(ms). The performance of travelling time and different path

distance with three different methods namely proposed

MRPS-MOGA, existing MOVNS (Hidalgo-Paniagua et al.

2016), RHCF (Palmieri et al. 2017). The simulation results

of these three methods are shown in Fig. 6.

Figure 6 illustrates the graphical performances of path

distance and travelling time with three different methods.

In this case, the aim of path planning is to discover a

collision-free optimal path between start and end points

which satisfying the optimization criteria such as travelling

distance and time. Let us consider, path distance is taken in

‘x’ axis and the travelling time of the robot is considered in

‘y’ axis. The obtained results are mapped into two-di-

mensional spaces for obtaining a clear vision of path dis-

tances versus travelling time.

An evaluation results for this case, MRPS-MOGA uses

Manhattan distance for finding the path length from the

start point (A) to endpoint (B). In two-dimensional vector

space, the coordinates a, b are selected to measure the

distance between the points. The start point A is the point

where the mobile robot begins to move. The endpoint is

also called a target point where the mobile robot to reach.

The distance is calculated for all possible paths from which

an optimal path is selected. In addition, the travelling time

is defined as the difference between the times of mobile

robot starts to move from the start point and it arrived at the

endpoint. The distance of a path is directly related to the

robot travelling time. Various paths are usually available in

dynamic environments. Thus, the shortest path is chosen by

the robot for reaching the destination with minimum trav-

elling time. Let us consider path distance is measured as

120 m and the robot travelling time of that distance is

25 ms using proposed MRPS-MOGA. The existing

MOVNS (Hidalgo-Paniagua et al. 2016) takes 36 ms and

RCHF (Palmieri et al. 2017) takes 43 ms for travelling the

distance of 120 m. Similarly, all the possible paths distance

and mobile robot travelling time are calculated. Based on

the distance and time calculation, an MRPS-MOGA sear-

ches the available paths to reach the target point with

minimum distance. This shortest path is also selected by

applying the multi-objective genetic algorithm. As a result,

the mobile robot discovers an optimal path with minimum

distance and travelling time. Thus results proved that the

distance of path is related to the travelling time of the

mobile robot.

• From the results, MRPS-MOGA reduces the travelling

time by 31% and 42% when compared to existing

MOVNS (Hidalgo-Paniagua et al. 2016) and RCHF

(Palmieri et al. 2017) respectively.

Case 2 Number of obstacles versus Path Smoothness

In case 2, the number of obstacles versus smoothness of

the paths is considered for mobile robot path planning.

During the movement of mobile robots, the obstacles

presented in a path are determined for calculating the path

smoothness. The smoothness of the path is measured in

terms of energy consumption. If more obstacles present in a

path, energy consumption is increased. The smoothness of

the path is also obtained by reducing energy consumption.

The number of obstacles versus path smoothness with three

different methods MRPS-MOGA, MOVNS (Hidalgo-
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Paniagua et al. 2016) and RCHF (Palmieri et al. 2017) is

shown in Table 3.

Table 3 shows the results of the number of obstacles

versus path smoothness with three different methods

MRPS-MOGA, MOVNS (Hidalgo-Paniagua et al. 2016)

and RCHF (Palmieri et al. 2017). From the table, the first

column refers to the number of obstacles presented in the

path. The second, third and the fourth columns indicate the

results obtained by the energy consumption of three

methods to select the paths specified by the different cases.

A number of obstacles in the path are represented in the x-

axis, where the y axis refers to the energy consumption (i.e.

path smoothness). In complicated environments, it gener-

ally contains the number of obstacles, whose position

information is occasionally known whose position infor-

mation is uncertain. In the concept of path planning,

obstacles are reduced for the energy savings of mobile

robots. When the path is free, then the energy consumption

is said to be minimized. When the obstacles are present in

the path, the mobile robot moves in different directions

such as forward, backward, right, left. Subsequently, the

number of steps gets increased. As a result, the energy

utilization of the mobile robot also increased. In this case,

optimal path planning was not achieved. During the

movement of the mobile robot, the energy optimal path is

selected for improving the mobile robot path planning in a

certain environment. MRPS-MOGA selects the shortest

path by using the multi-objective genetic algorithm. The

energy consumption of the path is also reduced by

obtaining the shortest path from a given position to the

target end. From the table values, two obstacles in a path,

the energy consumption is 112-J using MRPS-MOGA,

whereas 132 J, 147 J of energy consumption is obtained by

using MOVNS (Hidalgo-Paniagua et al. 2016) and RCHF

(Palmieri et al. 2017). As a result, less number of obstacles

is reduced energy consumption.

Fig. 6 Graphical presentations of path distance and travelling time

Table 3 Tabulation for Number of obstacles versus path smoothness

Number of obstacles Path smoothness (J)

MRPS-MOGA MOVNS RHCF

2 110 132 157

4 122 143 169

6 136 163 197

8 142 167 200

10 145 170 204

12 148 173 205

14 156 193 221

16 174 210 243

18 186 224 254

20 193 228 256
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• As a result, the percentage of energy consumption is

minimized by 15% and 31% when compared to existing

MOVNS (Hidalgo-Paniagua et al. 2016) and RCHF

(Palmieri et al. 2017) respectively

• Case 3 Path smoothness versus travelling time versus

Path distance

In case 3, three different objective functions are

described in mobile robot path planning. These three

objectives are related to each other. When the distance to

reach the target point from the source of a mobile robot is

less, the travelling time of the robot and the energy con-

sumption also reduced. If the path satisfies these objective

functions, then this path is chosen as optimal for the motion

of the mobile robot.

Table 4 shows the performance results of three objective

functions namely Path smoothness versus travelling time

versus Path distance. In this case, the results of the pro-

posed MRPS-MOGA are improved than the existing

methods MOVNS (Hidalgo-Paniagua et al. 2016) and

RCHF (Palmieri et al. 2017). From the table, the first three

columns represent path smoothness in terms of energy. The

next three columns include travelling time of mobile robot

and the last three columns represents a distance of path in

meters for the corresponding methodologies. These three

objective functions results are mapped into three-dimen-

sional views and it is represented in Fig. 7.

As shown in Fig. 7, the graphical results of path

smoothness versus travelling time versus path distance are

measured. As shown in the figure, a three-dimensional

view of the objectives is described with three different axis

namely x, y, and z. The x-axis represents path smoothness

and y-axis represents a travelling time of mobile robot for

the navigation. z-axis represents a distance between the

points. The three-dimensional view of the proposed MRPS-

MOGA and existing methods MOVNS (Hidalgo-Paniagua

et al. 2016) and RCHF (Palmieri et al. 2017) are shown in

Fig. 7.

The path smoothness is an objective which is directly

related to the robot energy consumption. In order to cal-

culate the smoothness for a particular path, the number of

obstacles in a path is minimized. Based on obstacles

avoidance, the collision-free path is obtained. As a result,

safety is increased and minimizes the complexity of the

path planning. Let us consider, the distance is 123 m, the

travelling time of the mobile robot is 29 ms, and their

energy consumption is 115 J. The existing MOVNS

(Hidalgo-Paniagua et al. 2016) technique obtains the

energy consumption of 130 J and 35 ms travelling time

with the path distance 135 m. Similarly, the existing RCHF

(Palmieri et al. 2017) obtains the energy consumption is

145 J and travelling time of robot is 38 ms with the path

distance is 144 m. Regarding the associated interquartile

range values, the results obtained by applying the MRPS-

MOGA are better than the two existing methods MOVNS

(Hidalgo-Paniagua et al. 2016) and RCHF (Palmieri et al.

2017). In these cases, the results obtained by applying the

MRPS-MOGA are generally more reliable in terms of path

smoothness, travelling time and path distance.

Case 4 Number of iterations versus time complexity

Time complexity is defined as an amount of time

required to derive an optimal path by employing multiple

objective functions and for implementing genetic algorithm

operators, such as crossover, mutation and selection oper-

ators. The time complexity of this algorithm is expressed as

follows which depends on the population size,

TC ¼ n � time to derive an optimal pathð Þ ð12Þ

From (12), TC denotes a time complexity, n denotes a

number of paths in the generated population. For each

iteration, the number of possible paths is detected with

multiple objectives. From the available paths, an optimal

path is selected. The experimental results of time com-

plexity are considerably reduced using MRPS-MOGA

when compared to existing MOVNS (Hidalgo-Paniagua

Table 4 Energy consumption versus travelling time versus path distance

Objective functions

Path smoothness (J) Travelling time (ms) Path distance (m)

MRPS-MOGA MOVNS RHCF MRPS-MOGA MOVNS RHCF MRPS-MOGA MOVNS RHCF

115 130 142 29 35 38 123 135 144

118 133 149 32 39 42 128 148 153

122 140 154 38 44 48 132 151 158

127 145 163 42 48 54 135 153 167

130 148 169 46 53 59 143 157 170
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et al. 2016) and RCHF (Palmieri et al. 2017) are illustrated

in Fig. 8.

Figure 8 depicts the graphical results of the number of

iterations versus time complexity with three different

methods namely, MRPS-MOGA and existing MOVNS

(Hidalgo-Paniagua et al. 2016) and RCHF (Palmieri et al.

2017). As shown in the figure, it is clearly evident that the

time complexity for path planning is considerably reduced

than the existing methods. This is because of MRPS-

MOGA performs efficient mobile robot optimal path search

with multiple objectives. At first, the population of the

multiple paths is initialized for selecting the optimal one.

Then the fitness of each individual is measured with five

objective functions such as high path security, minimum

path distance, minimum energy consumption, collision-free

path and least travelling time. If the path satisfies these

fitness criteria then it is selected as an optimal. If the path

does not satisfy these fitness criteria, tournament selection

is performed to select the best individual from the popu-

lation. After that, the ring crossover is carried out to obtain

the best offspring’s. Finally, adaptive bit string mutation is

performed for inverting the bit randomly. Once the muta-

tion is performed, the fitness value for the path is deter-

mined. If the criterion is satisfied, then the path is selected

as an optimal with minimum time.

• As a result, the time complexity using proposed MRPS-

MOGA is considerably reduced by 20% and 33% when

compared to existing MOVNS (Hidalgo-Paniagua et al.

2016) and RCHF (Palmieri et al. 2017) respectively.

As a result, MRPS-MOGA effectively solves the mobile

robot path planning by using search-based optimization.

6 Performance result discussion

This study compares the proposed MRPS-MOGA with the

existing MOVNS (Hidalgo-Paniagua et al. 2016) and

RHCF (Palmieri et al. 2017) using Mobile Robots Data Set

datasets based on various parameters, such as travelling

time, path smoothness, path distance, and time complexity.

The MRPS-MOGA is developed to solve the path planning

problem and finds an efficient mobile robot path. The

multiple objectives namely path distance, path smoothness,

safety, travelling time and the collision-free path is con-

sidered for mobile robot path planning. The distance of a

path is directly connected to the robot’s travelling time.

MRPS-MOGA is used to select the shortest path with aid of

a multi-objective genetic algorithm for reducing the trav-

elling time. The travelling time is minimized using

Fig. 7 Graphical representation

of path smoothness versus

travelling time versus path

distance
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proposed MRPS-MOGA by 31% and 42% as compared to

existing MOVNS (Hidalgo-Paniagua et al. 2016) and

RCHF (Palmieri et al. 2017), respectively. The path

smoothness is computed in energy consumption. The

energy optimal path is chosen to enhance the mobile robot

path planning. MRPS-MOGA is applied for choosing the

shortest path with minimum energy consumption. The

energy consumption is minimized by using the proposed

MRPS-MOGA by 15% and 31% as compared to existing

MOVNS (Hidalgo-Paniagua et al. 2016) and RCHF (Pal-

mieri et al. 2017) respectively. Time complexity is an

important issue in mobile robot paths. MRPS-MOGA is

developed with aid of genetic algorithm operators namely

crossover, mutation, and selection operators to reduce the

time complexity. Time complexity is minimized using

proposed MRPS-MOGA by 20% and 33% as compared to

existing MOVNS (Hidalgo-Paniagua et al. 2016) and

RCHF (Palmieri et al. 2017) respectively.

7 Conclusion

This paper proposed an efficient algorithm called mobile

robot path search-based multi-objective genetic algorithm

(MRPS-MOGA) which is introduced to find the optimized

path with multi-objectives by randomly generated

population of paths. The proposed MRPS-MOGA handles

five different objectives namely path distance, smoothness

of the path, collision-free path, safety, and travelling time.

The fitness is determined by using a multiobjective func-

tion in dynamic environments. The path which satisfies the

fitness criterion is chosen as optimal for robot movement.

Or else, the MRPS-MOGA employs bio-inspired operators

namely tournament selection, ring crossover, and adaptive

bit string mutation for verifying the fitness criterion. As a

result, MRPS-MOGA determines the obstacle-free path.

The experimental evaluation is performed with a mobile

robot dataset to show the performance of the proposed

MRPS-MOGA and existing methods by using different

performance parameters such as path distance, smoothness

of the path, travelling time, and time complexity. In the

context of the performance results, it can be concluded that

the proposed MRPS-MOGA selected the optimal robot

path with minimum time complexity as compared to state-

of-the-art approaches. In future work, a novel optimization

technique with more multiobjective parameters is used for

handling the mobile robot path planning problem.
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