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Abstract
The optimal operation of microgrids consists of renewable energy sources (RESs) play a key role in reducing greenhouse

gasses and costs of operation. This paper suggests a stochastic optimal operation for an MG consisting of several RESs,

storage systems and plug-in hybrid electric vehicles (PHEVs). The uncertainties of the MG are modeled through Monte

Carlo simulation. The grasshopper optimization algorithm is employed here for optimizing the power management of the

MG and various charging uncertain characteristics of PHEVs. Several simulations are provided to confirm the usefulness of

the proposed model. The results validate that the recommended model can properly minimize the operation cost of the MG

and reduce environmental pollution. Moreover, the optimal operation of the MG is promoted with several economic and

technical benefits when integrating storage and PHEVs into the system.
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Abbreviations
P Charging rate

g Charger efficiency

tstart Start time of PHEV charging

BGi Bid of the DG unit i

Bsj Bid of the storage system j

SGi Start-up cost

Ssj Shut-down cost

Ng The total number of DG units

Ns Number of storage

PGrid Power transacted with the upstream grid

BGrid Cost of upstream grid

Pg Outputs of DG units,

Ug Commitment status vector of DGs

subscripts

max

Upper bounds

subscripts

min

Lower bounds

PS, charge Charging power of the battery

gcharge Efficiency in the charging mode

gdischarge Efficiency in the discharging mode

PGi(t) Outputs of the DG unit i

Psj(t) Outputs of the storage system j

PLk The value of the load level k

Nk Number of load levels

Wess,t Intertemporal feature of a device

WS0i Initial position of ith WS

Ub Upper bound vectors corresponding to vari-

ables’ maximum bounding values

Lb Lower bound vectors corresponding to vari-

ables’ minimum bounding values

randi Vector of random numbers with a uniform

distribution

nws The number of WSs

WSti Location of the ith water strider in the ith

cycle

R Distance between the male position and the

endpoint position

WStBL Position of WS with the best cost value
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PS,discharge Battery discharging

1 Introduction

The continuous increase in electricity consumption in the

world can lead to an increase in the installation of fossil-

fuel-based power plants, which will lead to environmental

pollution. On the other hand, fossil-fuel resources around

the world are running low and raising concerns about

electricity supply to consumers (Kuriqi et al. 2019; Ali

et al. 2019). Therefore, it is necessary to decrease the

development of fossil-fuel-based power plants and propose

new solutions to produce clean electricity (Kuriqi et al.

2019; Bejarano et al. 2019). One of the best solutions is to

move from passive distribution networks to active net-

works, including renewable-based distributed energy

resources (DERs) near the loads. Also, the use of active

distribution networks in the form of microgrids (MGs) can

provide numerous economic, technical and environmental

advantages for the distribution system (AL-Dhaifallah

2021; Gong et al. 2020). An MG is a smart system that

includes several small-scale distributed generations (DGs),

storage systems and controllable loads, electric vehicles

(EVs) and power electronic devices (Mohamed et al.

2020).

Optimal management of DERs in supplying loads within

the MG and its connection to the main grid can rise the

effectiveness of the power system and reduce environ-

mental problems caused by electricity generation. In fact,

maximizing the use of DERs within MGs and near the local

loads can effectively reduce generation in fossil-fuel-based

bulk power plants and also reduce power grid losses. The

use of storage systems and EVs along with DERs in these

networks can greatly increase the flexibility and provide

the possibility of peak shaving in critical peak situations

(Izadbakhsh et al. 2015; Rezvani et al. 2015). Objectives

such as reducing costs and environmental problems as well

as increasing efficiency and reliability are all achievable

with optimal management of MGs and their proper inter-

action to the main grid in compliance with the constraints

(Quynh et al. 2021). Reducing the price of electricity is

another important benefit of optimal operation of MGs,

which is beneficial for consumers. For operators, they can

increase stability, reduce pressure on large power plants, as

well as minimize losses in the power system (Javadi et al.

2021; Li et al. 2022). Therefore, it is essential to propose

improved methods for the scheduling of MGs in the pres-

ence of new technologies such as EVs.

Recent advances in the EV industry around the world

have increased their presence in today’s modern power

systems as PEVs due to their technical advantages (Li et al.

2022; Roslan et al. 2021; Fan et al. 2021). Predictions in

the US show that the penetration of PEVs will reach 20%

by 2030 (Lee and Lovellette 2011). PEVs and plug-in

hybrid PHEVs can join the MGs for charging known as the

G2V equipment and also supply loads in peak times

through the V2G technology. Such technologies are

effective to manage the intermittent behavior of DERs in

MGs by charging and discharging ability and also to pro-

vide a flexible capability for MGs to responds to variable

loads (Tan et al. 2013). They also have the chance to

participate in the resurrected power market through PEV

aggregators (Druitt and Früh 2012). Contributing to the

power electricity market provides many economic benefits

for PEV owners (Honarmand et al. 2014). However, the

profit of the owners is extremely reliant on the charging/

discharging performance of the PEV. Although the pres-

ence of PHEVs can provide many benefits for distribution

networks, the existence of a large number of them without

proper management and coordination with other DERs can

provide some problems (Noori and Tatari 2016). To opti-

mize the aggregator profit with the presence of PHEVs, an

improved charging strategy considering price constraints is

proposed in Sortomme and El-Sharkawi (2011). In (Hon-

armand et al. 2014), optimal operation of MG considering

the intermittent behavior of RESs, spinning reserve issues

and PEVs is investigated. The PEVs are implemented in

the MG based on a smart parking lot. The charging/dis-

charging of PHEVs is performed based on the market

electricity price. According to the profit, the PEVs are

charged/discharged, contributing to the reserve market or

not. In (Shafie-khah et al. 2012), the agreement between

the owners of PEV and the aggregator is investigated to

analyze the effects of market regulation features. The real-

time characteristic of PEVs as a storage system is extracted

in Tehrani et al. (2013). For maximizing the profit of PEVs

in the electricity market, the PEVs are operated as ESSs.

Moreover, the capability of EVs for contributing in the

ancillary services is also assessed. The role of generating

companies in a restructured power system based on game

theory is analyzed for both the energy and reserve mark in.

A stochastic optimal operation for an MG consisting of

DERs, storage devices and PHEVs is suggested in

Kamankesh et al. (2016). The Monte Carlo simulations

(MCS) are used to model the uncertainty of under-study

MG. several algorithms are also used for the optimization

of MGs. One of the best algorithms with advantages like

not being trapped into local optima and fast convergence is

the modified shuffled frog leaping algorithm (MSFLA),

which is used widely for optimal operation of MGs (Eusuff

et al. 2006; Elbeltagi et al. 2007). This algorithm can

provide optimal solutions for MGs including several

renewable energies and PHEVs.
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This study suggests a stochastic optimal operation for an

MG containing DERs and PHEVs. The MCS is applied to

model the uncertain behavior of PHEVs which are three

various charging patterns comprising uncontrolled, con-

trolled and smart charging. The problem formulation for

this optimization has a nonlinear feature and needs an

improved optimization algorithm. To cope with this chal-

lenge, GOA algorithm as an effective tool to deal with

optimal operation of the MG is taken into account. Several

case studies are considered and the superiority of this

algorithm is confirmed by comparing it with conventional

methods.

This paper is arranged as: The charging patterns of

PHEVs are presented in Sect. 2. Section 3 presents the

mathematical formulation. The optimization algorithm is

given in Sect. 4. Simulations are provided in Sect. 5.

Section 6 contains the conclusions.

2 Charging behavior of PHEVS

Many factors affect the charging and discharging pattern of

electric vehicles. The most important factors include the

number of PHEVs that are in charge mode, the type and

rate of the charging services, the capacity of the battery and

SOC as well charting time and duration. Uncertainties in

electric vehicles are also one of the important factors that

in the conditions of connection of a large number of EVs

will greatly affect the behavior of the network. Uncer-

tainties in PHEVs are also one of the important factors that

in the conditions of connection of a large number of EVs

can greatly affect the behavior of the MGs. In this regard,

three scenarios are considered for investigating the charg-

ing pattern of PHEVs including: (i) uncoordinated charging

plan, (ii) coordinated charging plan, (iii) smart charging.

PHEVs have the ability to inject power into the grid at any

time of the day. Nevertheless, from the network’s point of

view, connecting at any time of the day is not suitable. In

this scenario, PHEVs leave the house in the morning and

return home in the evening to charge through the grid

around 18:00. The MCS is used for modeling the uncertain

behavior of PHEVs. The probability distribution function

(PDF) is taken into account for charging starting time as (1)

(Kamankesh et al. 2016; Rostami et al. 2015; Qian et al.

2010):

f ðtstartÞ ¼
1

b� a
a� tstart � b a ¼ 18; b ¼ 19 ð1Þ

Due to the high price of electricity in peak conditions,

owners of EVs try to charge at off-peak conditions where

the electricity tariff is low in the coordinated charging plan.

This causes EV owners to charge their PHEVs after 9:00

p.m. to reduce their electricity costs. To model the

coordinated charging plan the following PDF is considered

(Rostami et al. 2015; Qian et al. 2010):

f tstartð Þ ¼ 1

b� a
a� tstart � b a ¼ 21; b ¼ 24 ð2Þ

The smart charging pattern allows the owners of EVs to

get the most advantageous conditions so that their charging

time is in the situations of the lowest price of electricity, as

well as the least amount of demand and even in case of

overproduction in the generation. In fact, in this plan, most

benefits are provided to both owners of EVs and the util-

ities. For showing the complexity of used smart charging

plans and identifying the charging start time, a normal PDF

is applied as (Rostami et al. 2015; Qian et al. 2010):

f ðtstartÞ ¼
1

r
ffiffiffiffiffiffi

2p
p e ��1

2

tstart�l
rð Þ2

� �

l ¼ 1 ; r ¼ 3 ð3Þ

After connecting the PHEV to the charger at home, the

battery started to charge. The SOC of the PHEV can be

identified by having the traveled mile by the EV during the

day. The ratio of existing energy to maximum storable

energy in the battery is the SOC. The daily driven mile of

an EV is stated to track a log-normal PDF as (Kamankesh

et al. 2016; Rostami et al. 2015; Li and Zhang 2012):

f ðmÞ ¼ 1

mrm
ffiffiffiffiffiffi

2p
p e

� ln mð Þ � lmð Þ2

2rm2
m�0 ð4Þ

In plug-in mode, the SOC is determined through the

driven mile of the EV and its all-electric range (AER) as:

SoC ¼
0 m�AER
AER� m

AER
� 100% M�AER

(

ð5Þ

According to AER, there exist several PHEVs such as

PHEV-20, PHEV-30, PHEV-40 and PHEV-60 (Kaman-

kesh et al. 2016; Rostami et al. 2015; Li and Zhang 2012).

The numerical subscript shows the vehicle AER in miles.

Here PHEV-20 is taken into account for the study. The

below formula is used to calculate the charging duration of

the PHEV as:

tD ¼ Cbat � ð1� SOCÞ �MaxDOD

g� P
ð6Þ

As seen, at home charging points, Level 1 and 2

chargers are used. Moreover, Level 3 is suitable for com-

mercial and public transportation. It is not used for this

study. Nevertheless, the recommended model can be

developed to consider such chargers as well. Figure 1

shows four various characteristics of PHEV to make an

alteration between PHEV factors and battery capabilities.

As the market share can be considered as a discrete dis-

tribution the type of a PHEV is accidentally chosen based

on the given market shares.
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3 Problem formulation

As mentioned before, MGs consist of several DERs, stor-

age devices and controllable loads at the distribution sys-

tem voltage level providing numerous advantage for the

power systems. They can function in grid-tied and island

mode. However, the operation of MGs when new tech-

nologies such as EVs are integrated into them is very

challenging. In the following subsections, the problem

formulation for optimal operation of MG for this study is

presented.

3.1 Objective function

In this part, the objective function of this paper based on

minimizing the cost of MG is introduced. According to (7),

it contains four parts. The first part is the cost of fuel owing

to generating power by DGs. The next part is related to the

start-up and shut-down costs. The third and final parts are

the costs of the storage device and the power imported

from the main grid (Izadbakhsh et al. 2015; Rezvani et al.

2015; Moghaddam et al. 2011):

Min f xð Þ ¼
X

T

t¼1

Costt

¼
X

T

t¼1

X

Ng

i¼1

ui tð ÞpGi tð ÞBGi tð Þ þ SGi ui tð Þ � ui t � 1ð Þj j½ �
(

þ
X

Ns

j¼1

uj tð ÞPsjBsj tð Þ þ Ssj uj tð Þ � uj t � 1ð Þ
�

�

�

�

�

þPGrid tð ÞBGrid tð Þ�
)

ð7Þ

Considering X as the vector of state variables, the real

power of DGs and their commitment status can be given as

(Rezvani et al. 2015; Moghaddam et al. 2011).

X ¼ Pg; Ug

� �

1�2nT

Pg ¼ PG; PS½ �
n ¼ Ng þ Ns þ 1

ð8Þ

The active power of the DGs and their commitment

status vectors can be rewritten as:

PG ¼ PG;1; PG;2; :::;PG;Ng

� �

PG;i ¼ PG;i 1ð Þ; PG;i 2ð Þ; :::;PG;i Tð Þ
� �

i ¼ 1; 2; :::;Ng þ 1

Ps ¼ Ps;1;Ps;2; :::Ps;Ns

� �

PS;i ¼ PS;j 1ð Þ; PS;j 2ð Þ; :::;PS;j Tð Þ
� �

j ¼ 1; 2; :::;Ns

ð9Þ

3.2 Limitations

3.2.1 Balancing generation with load demand

The equality of production and consumption in the MG at

any time is one of the most necessary constraints for the

proper operation of the MGs (Moghaddam et al. 2011). The

power equilibrium constraint in the studied MG without

considering the losses is given in the following equation

X

Ng

i¼1

PG;i tð Þ þ
X

Ns

i¼1

Ps;j tð Þ þ
X

Ng

i¼1

PGrid tð Þ

¼
X

NL

k¼1

PL;k tð Þ þ
X

NPHEV

l¼1

PPHEV;l tð Þ ð10Þ

3.2.2 DG generation limitation

The constraint on power generation of DGs and the

exchange power with the utility are given as (Moghaddam

et al. 2011):
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Fig. 1 Features of various

classes of PHEV

9372 Z. M. Ali et al.

123



PGi;min tð Þ�PGi tð Þ�PGi;max

Pgrid;min tð Þ�PGrid tð Þ�Pgrid;max tð Þ
ð11Þ

3.2.3 Constraint of battery and charger operation

The limitations of the storage system contain the available

energy, the restrictions on the stored energy and the

charging/discharging rates as given in below (Moghaddam

et al. 2011):

Wess tð Þ ¼ Wess t � 1ð Þ

þ gchargePs;chargeDt �
1

gdischarge
Ps;dischargeDt

Wess;min �Wess tð Þ�Wess;max

Ps;charge tð Þ�Pcharge;max

Ps;discharge tð Þ�Pdischarge;max

8

>

<

>

:

ð12Þ

The available energy in the battery is given at each time

slot Dt.

Fig. 2 MG under study

Table 1 Costs and limitations of DGs (Rezvani et al. 2015;

Moghaddam et al. 2011)

Type FC PV MT WT Utility Bat

PMinkw 3 0 6 0 - 30 - 30

PMaxkw 30 25 30 15 30 30

Bid€ct/kwh 0.294 2.584 0.457 1.073 – 0.38

SUD/SDC €ct 1.65 – 0.96 – – –

Fig. 3 PV and WT power

Fig. 4 Market price and load

demand
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Table 2 Comparison of costs
Method Std (€ct) Mean (€ct) WS (€ct) BS (€ct)

GA (Rezvani et al. 2015) 13.442 290.432 304.588 277.744

PSO (Rezvani et al. 2015) 10.182 288.876 303.379 277.323

FSAPSO (Rezvani et al. 2015) 8.33 280.684 291.756 276.786

AMPSO-L (Rezvani et al. 2015) 0.092 274.564 274.731 274.431

GOA algorithm 0009 263.615 263.987 262.784
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4 Grasshopper optimization algorithm

Mirjalili et al. has introduced in 2018 the GOA as a new

efficient swarm intelligence-based method (Saremi et al.

2017). It is noted that the grasshoppers produce a sound

when they are in the farm and its major items of the swarm

in the larval level are the steady progress and small paces.

However, the abrupt wide-area progress is the vital

behavior of the swarm when they get adult. It is noted that

the presented GOA would control and manage the voltage

and current of the solar PV system delivered to the tied

converter. The position of the members of the population

of grasshoppers indicated by Xi which is stated in (13)

specifies a feasible solution (Luo et al. 2018).

Xi ¼ Si þ Gi þ Ai ð13Þ

It is noted that the social contact and the gravity force

sensed by the grasshopper i are denoted by Si and Gi,

respectively. Besides, the wind advection is shown by Ai.

By using these three items, the grasshoppers’ movements

would be thoroughly simulated. However, the major item is

the social contact among grasshoppers determined as

follows:

Si ¼
X

N

j¼1
j 6¼i

s dij
� �

d̂ij ð14Þ

In this regard, the distance between the two grasshop-

pers i and j is denoted by dij which is determined as

follows:

dij ¼ xj � xi
�

�

�

� ð15Þ

Table 3 Cost function Comparison

Method BS (€ct) WS (€ct) Mean (€ct) Std (€ct)

GA 333.7594 344.1411 335.9641 16.6365

PSA 326.3611 339.2623 330.6371 12.1344

FSAPSO 325.4651 334.2671 330.4697 9.4261

GOA algorithm 299.8513 300.4261 300.4587 0.005
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Furthermore, the social force is shown by S obtained as

below:

s rð Þ ¼ fe
�r
l � e�r ð16Þ

The attraction intensity is also indicated by f while its

length scale is shown by l. Accordingly, the unit vector

between two grasshoppers is denoted by d̂ij which is

derived as follows:

d̂ij ¼
xj � xi
dij

ð17Þ

Function s indicates the effects of the social contact of

grasshoppers. In case the distance is equal to the repulsion

force, there would be no attraction and repulsion, and the

area is named comfort area (Luo et al. 2018). Although this

function is associated with many advantages if grasshop-

pers are located far from each other, not a powerful force

would be induced between them. Hence, this distance must

be either mapped or normalized. In this respect, the com-

ponent G indicating the gravity constant would be deter-

mined as follows:

Gi ¼ �gêg ð18Þ

Besides, the unity vector to the earth center is shown by

êg. Component A would be obtained as below using the

constant drift u and êw which is a unity vector toward the

wind direction:

Ai ¼ uêw ð19Þ

Accordingly, relationship (13) would be rewritten as

follows:

Xi ¼
X

N

j¼1
j 6¼i

s xj � xi
�

�

�

�

� � xj � xi
dij

� gêg þ uêw ð20Þ

It is noteworthy that the population size of the

grasshoppers is indicated by N. An efficient stochastic

method with effective exploitation and exploration should

be used to achieve a highly precise approximation of the

global optimal solution of the problem. Particular param-

eters must be utilized for the proposed model to indicate

the exploitation and exploration at each stage of the

Fig. 8 a and 9b. Optimal

operation for he controlled

charging pattern_ Scenario 1
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optimization process. Thus, the mathematical model would

be as (21):

Xd
i ¼ c

X

N

j¼1
j6¼i

c
ubd � lbd

2
s xdj � xdi

�

�

�

�

�

�

� 	 xj � xi
dij

0

B

B

@

1

C

C

A

þ T̂d ð21Þ

It is noted that the maximum and minimum values of the

dimension d are depicted by ubd and lbd, respectively,

while the value of the dimension d in the most updated

value of the objective function is stated by T̂d. Moreover, a

reducing coefficient c is applied for narrowing the comfort,

repulsion, and attraction areas. Besides, it is worth men-

tioning that S is nearly similar to the S component repre-

sented in (13). It is noted that the wind direction is

constantly toward T̂d. The inner c would help reduce the

repulsion and attraction forces existing among grasshop-

pers proportionally to the number of iterations. On the

contrary, the outer c mitigates the search coverage sur-

rounding the T̂d as the iterations rise. c would be updated

using the relationship (22) to alleviate the explorations and

raise exploitation proportionally to the number of

iterations.

c ¼ cmax � l
cmax � cmin

L
ð22Þ

where l indicates the present iteration and L shows the total

number of iterations. The values selected for the maximum

and minimum bounds of c, which are denoted by cmax and

cmin, are 1 and 0.00001, respectively. Algorithm 1 shows

the pseudo-code of the proposed method.

It is worth noting that the subsequent location of any

grasshopper would be specified by using the present loca-

tion, the global best value, and also the location of the

remaining search agents, implying that every search agent

should be included to obtain the subsequent location of any

grasshopper. In addition, the second part mitigates the

movements of the agent near the target, indicating that the

exploitation and exploration of the whole swarm near the

target are taken into consideration. Particularly, it is sup-

posed that c1 mitigates the movements of grasshoppers near

the target, showing that c1 is indeed supposed for making

the exploitation and exploration of the whole swarm
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balanced near the target. Meanwhile, c2 narrows the

attraction, comfort, and repulsion areas existing between

the grasshoppers. This issue indicates that the area would

be linearly mitigated to direct grasshoppers toward finding

the optimum in the search area.

5 Results of simulation

The considered MG for this study for optimal operation

consists of several sources such as FC, a WT, an MT, a PV

and a NiMH-Battery as the storage system. The structure of

the under study MG in connection of the man grid is given

in Fig. 2. The optimal operation of the MG is performed

for 24 h with the aim of determining the output power of

sources with minimum cost.

Table 1 provides the technical limitations of DERs and

the bid coefficients in cents of Euro (€ct) per kilowatt-hour
(kWh). The forecasted output power of WT’s and PV’s,

load data and market energy prices are depicted in Figs. 3

and 4. In this paper, DGs generate only active power at the

unity power factor. In other words, reactive power man-

agement is not considered in this study. The type of loads

are electrical and heat loads are not taken into account in

this paper. The MG is in the connection with the upscale

grid and can import/export power into the upscale grid

during various hours of the day. Two different scenarios

according to the battery initial charging and DGs’ condi-

tion are taken into account to verify the effectiveness of the

GOA algorithm in optimal operation of the PHEVs in this

MG.

5.1 First scenario

Simulations are done for a day-ahead horizon. Neverthe-

less, it is possible to extend this scheduling for 168 h or

even for longer periods without any change in the problem

formulation. As shown in Fig. 5a–c, under the low price of

electricity, the battery begins to absorb the power, and also

DGs with high cost reduce their output power. Also, stor-

age systems inject power into the grid during peak load

conditions when the energy tariff is high. It is also cost-

effective for the MG to sell power to the main grid when

the price of electricity is high. In other words, in conditions

with a high tariff, all DGs inside the MG operate at their

maximum power. According to the above description, the
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Fig. 10 a and b. Optimal

operation for the uncontrolled

charging pattern_ Scenario 2

Optimal operation and scheduling of a multi-generation microgrid using grasshopper... 9379

123



MT output power is reduced when the energy price is low

while the output power of the MT is maximized when the

electricity price is high over intervals 9–17. Also, due to

the fact that the FC has a low operating cost, the MG

management plans to FC generate at its maximum capacity

so that it can supply the load. As depicted in Fig. 5b, the

battery is charging at the first hours of the day over inter-

vals 8–14. The best solution (BS), worst solution (WS),

mean value (Mean) and standard deviation (Std) are con-

sidered as Table 2 for comparing the recommended

methods with the conventional schemes. The results of

comparisons show that the proposed algorithm has many

advantages such as a high convergence rate in comparison

with other techniques. Figure 5c shows the time required to

solve each algorithm for considered case studies. Accord-

ing to the figure, the time for the proposed algorithm is

5.87 s, while for GA, PSO equal to 12.14 s and 10.22 s,

correspondingly.

5.2 Second scenario

Here, all DGs can turn off or started up throughout the

study and also the battery is not charged primarily. PV and

WT can generate power at their maximum rate. Maximum

generation in WT and PV systems is an encouraging policy

for investors because such DERs have to produce after the

first time capital investment. According to Fig. 6, the MT is

charging the battery during this time as an expensive DG.

By selling the storage device energies at peak times to the

utility grid, the cost of the MG is significantly reduced. The

main grid and the output power of FC are at their maximum

at the first hours of the day to charge the battery to be used

in peak hours.

Even though the MT generates power in the first hours

of the day, it is not considered as a cost-effective DG.

Consequently, for reducing the MG cost, the operator shut

down it in some hours. The outcomes of the comparison

between the recommended the GOA algorithm and tradi-

tional approaches such as GA, PSO, FSAPSO are displayed

in Table 3. The simulation results specify that the proposed

the GOA algorithm can provide a lower cost for the MG
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than other conventional methods. Figure 6c displays the

time required to address each algorithm for considered case

studies. According to the figure, the time for the suggested

algorithm is 5.79 s, which is much lower than GA, PSO.

5.3 PHEVs considered for fist scenario
and second scenario

The aim of this part is to evaluate the charging demands of

PHEVs. The penetration rate of PHEVs out of 70 EVs in

the MG is considered equal to 30%. The uncertainties

include the charging demand of PHEVs, load demand, the

price of electricity and the output of PV and WT. Uncon-

trolled charging, controlled charging and smart charging of

PHEVs are considered for the PHEVs. Figures 7, 8, 9, 10,

11, 12 illustrate the simulation results.

To maximize power production, some changes are

required in the utility. In fact, the MG cannot supply the

PHEV charging demand without modification in the utility

characteristics. In uncontrolled charging mode, the impor-

ted power of the main grid is increased and batteries are

charged at light-load hours as shown in Fig. 8. The MT

also generates at minimum possible power because of high

cost of power generation.

According to Fig. 9, the MT is shut down and the main

grid is responsible for supplying power in the controlled

charging of PHEVs mode. The minimum cost for the MG

is obtained in the controlled and smart charging schemes.

Fig. 12 a and b. Optimal

operation for the smart charging

pattern_ Scenario 2

Table 4 Best solutions for various cases Scenario 1

Method Uncontrolled

charging method

(€ct)

Controlled

changing method

(€ct)

Smart charging

method (€ct)

GA 705.9762 428.3269 379.3621

PSO 702.3654 423.6358 376.3549

GOA 675.4259 390.4521 337.2845

Table 5 Best solutions of different algorithms Scenario 2

Method Uncontrolled

charging method

(€ct)

Controlled

charging method

(€ct)

Smart charging

method (€ct)

GA 695.6314 426.9874 366.3214

PSO 690.3251 421.6314 362.3894

GOA 663.7146 388.4474 325.6365

Optimal operation and scheduling of a multi-generation microgrid using grasshopper... 9381

123



Comparing among various pattern show that the

uncontrolled mode has the highest cost for the MG and in

this mode the MG supply with the utility grid is between 15

and 17. In contrast, the lowest cost is related to the smart

charging scheme as the main grid is transferred power into

the MG during the off-peak period of 1–4.

As seen, the results of the GOA algorithm and tradi-

tional approaches such as GA, PSO and FSAPSO in case of

total operating costs are presented in Tables 4 and 5. The

simulation outcomes specify that the recommended the

GOA algorithm can provide a lower cost for the MG than

other conventional methods. Figure 13a and b shows the

Mean simulation time for the smart charging plan Scenario

1 and Scenario 2, respectively. The time for solving the

problem in the first Scenario and second scenario are 6.65

and 7.17 with the presented model.

Simulations with and without considering the PHEVs in

the first and second test systems are performed and shown

in Fig. 14. As seen, the power imported from the main grid

is increased and the energy is stored in the battery at light-
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load hours in the uncontrolled charging mode. In addition,

because of the high cost of the MT, it is OFF in this mode.

6 Conclusion

Low environmental pollution and cost as well as high

efficiency are achieved by optimal operation of MGs. In

this paper, optimal operation for an MG including several

DERs and PHEV considering uncertainties is suggested.

Three various charging patterns consist of the uncontrolled,

controlled and smart charging schemes are taken into

account for the PHEVs. An improved the GOA algorithm

is used for optimization objective with fast response. The

MCS is used for modeling the uncertainties in the problem

formulation. The proposed model is simulated in different

case studies and compared with the conventional GA and

PSO. The outcomes show that the proposed method has

good performance when considering PHEVs in the MG

than the dispatch model without PHEVs. The recom-

mended model affords novel insight for the use of PHEVs

in MG, with aim of providing more flexibility for the MG

with low cost.

Funding This study was not funded any institution and organization.

Data availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest Authors declares that he has no conflict of

interest.

Ethical approval This article does not contain any studies with ani-

mals performed by any of the authors.

References

AL-Dhaifallah M, Ali ZM, Alanazi M, Dadfar S, Fazaeli MH (2021)

An efficient short-term energy management system for a

microgrid with renewable power generation and electric vehi-

cles. Neural Comput Appl 33(23):16095–111

Ali R, Kuriqi A, Abubaker S, Kisi O (2019) Hydrologic alteration at

the upper and middle part of the Yangtze river, China: towards

sustainable water resource management under increasing water

exploitation. Sustainability 11(19):5176

Bejarano MD, Sordo-Ward A, Gabriel-Martin I, Garrote L (2019)

Tradeoff between economic and environmental costs and

benefits of hydropower production at run-of-river-diversion

schemes under different environmental flows scenarios.

J Hydrol 1(572):790–804

Druitt J, Früh WG (2012) Simulation of demand management and

grid balancing with electric vehicles. J Power Sour

15(216):104–116

Elbeltagi E, Hegazy T, Grierson D (2007) A modified shuffled frog-

leaping optimization algorithm: applications to project manage-

ment. Struct Infrastruct Eng 3(1):53–60

Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm:

a memetic meta-heuristic for discrete optimization. Eng Optim

38(2):129–154

Fan L, Zhang J, He Y, Liu Y, Hu T, Zhang H (2021) Optimal

scheduling of microgrid based on deep deterministic policy

gradient and transfer learning. Energies 14(3):584

Gong X, Dong F, Mohamed MA, Abdalla OM, Ali ZM (2020) A

secured energy management architecture for smart hybrid

microgrids considering PEM-fuel cell and electric vehicles.

IEEE Access 5(8):47807–47823

Honarmand M, Zakariazadeh A, Jadid S (2014) Optimal scheduling

of electric vehicles in an intelligent parking lot considering

vehicle-to-grid concept and battery condition. Energy

1(65):572–579

Honarmand M, Zakariazadeh A, Jadid S (2014) Integrated scheduling

of renewable generation and electric vehicles parking lot in a

smart microgrid. Energy Convers Manage 1(86):745–755

Izadbakhsh M, Gandomkar M, Rezvani A, Ahmadi A (2015) Short-

term resource scheduling of a renewable energy based micro

grid. Renew Energy 75:598–606

Javadi M, Gong Y, Chung CY (2021) Frequency stability constrained

microgrid scheduling considering seamless Islanding. IEEE

Trans Power Syst 37(1):306–316

Kamankesh H, Agelidis VG, Kavousi-Fard A (2016) Optimal

scheduling of renewable micro-grids considering plug-in hybrid

electric vehicle charging demand. Energy 1(100):285–297

Kuriqi A, Pinheiro AN, Sordo-Ward A, Garrote L (2019) Influence of

hydrologically based environmental flow methods on flow

alteration and energy production in a run-of-river hydropower

plant. J Clean Prod 20(232):1028–1042

Kuriqi A, Pinheiro AN, Sordo-Ward A, Garrote L (2019) Flow regime

aspects in determining environmental flows and maximising

energy production at run-of-river hydropower plants. Appl

Energy 15(256):113980

Lee H, Lovellette G (2011) Will electric cars transform the US

market?

Li G, Zhang XP (2012) Modeling of plug-in hybrid electric vehicle

charging demand in probabilistic power flow calculations. IEEE

Trans Smart Grid 3(1):492–499

Li Y, Li K, Yang Z, Yu Y, Xu R, Yang M (2022) Stochastic optimal

scheduling of demand response-enabled microgrids with renew-

able generations: an analytical-heuristic approach. J Clean Prod

1(330):129840

Luo J, Chen H, Xu Y, Huang H, Zhao X (2018) An improved

grasshopper optimization algorithm with application to financial

stress prediction. Appl Math Model 1(64):654–668

Moghaddam AA, Seifi A, Niknam T, Pahlavani MR (2011) Multi-

objective operation management of a renewable MG (micro-

grid) with back-up micro-turbine/fuel cell/battery hybrid power

source. Energy 36(11):6490–6507

Mohamed MA, Almalaq A, Awwad EM, El-Meligy MA, Sharaf M,

Ali ZM (2020) A modified balancing approach for renewable

based microgrids using deep adversarial learning. IEEE Trans

Ind Appl

Noori M, Tatari O (2016) Development of an agent-based model for

regional market penetration projections of electric vehicles in the

United States. Energy 96:215–230

Qian K, Zhou C, Allan M, Yuan Y (2010) Modeling of load demand

due to EV battery charging in distribution systems. IEEE Trans

Power Syst 26(2):802–810

Quynh NV, Ali ZM, Alhaider MM, Rezvani A, Suzuki K (2021)

Optimal energy management strategy for a renewable-based

Optimal operation and scheduling of a multi-generation microgrid using grasshopper... 9383

123



microgrid considering sizing of battery energy storage with

control policies. Int J Energy Res 45(4):5766–5780

Rezvani A, Gandomkar M, Izadbakhsh M, Ahmadi A (2015)

Environmental/economic scheduling of a micro-grid with

renewable energy resources. J Clean Prod 87:216–226

Roslan MF, Hannan MA, Ker PJ, Begum RA, Mahlia TI, Dong ZY

(2021) Scheduling controller for microgrids energy management

system using optimization algorithm in achieving cost saving

and emission reduction. Appl Energy 15(292):116883

Rostami MA, Kavousi-Fard A, Niknam T (2015) Expected cost

minimization of smart grids with plug-in hybrid electric vehicles

using optimal distribution feeder reconfiguration. IEEE Trans

Industr Inf 11(2):388–397

Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation

algorithm: theory and application. Adv Eng Softw 1(105):30–47

Shafie-khah M, Moghaddam MP, Sheikh-El-Eslami MK, Rahmani-

Andebili M (2012) Modeling of interactions between market

regulations and behavior of plug-in electric vehicle aggregators

in a virtual power market environment. Energy 40(1):139–150

Soleymani S, Ranjbar AM, Shirani AR (2007) New approach for

strategic bidding of Gencos in energy and spinning reserve

markets. Energy Convers Manage 48(7):2044–2052

Sortomme E, El-Sharkawi MA (2011) Optimal scheduling of vehicle-

to-grid energy and ancillary services. IEEE Trans Smart Grid

3(1):351–359

Tan X, Li Q, Wang H (2013) Advances and trends of energy storage

technology in microgrid. Int J Electr Power Energy Syst

44(1):179–191

Tehrani NH, Shrestha GB, Wang P (2013) Vehicle-to-grid service

potential with price based PEV charging/discharging. In 2013

IEEE Power and Energy Society General Meeting, (pp. 1–5).

IEEE

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

9384 Z. M. Ali et al.

123


	Optimal operation and scheduling of a multi-generation microgrid using grasshopper optimization algorithm with cost reduction
	Abstract
	Introduction
	Charging behavior of PHEVS
	Problem formulation
	Objective function
	Limitations
	Balancing generation with load demand
	DG generation limitation
	Constraint of battery and charger operation


	Grasshopper optimization algorithm
	Results of simulation
	First scenario
	Second scenario
	PHEVs considered for fist scenario and second scenario

	Conclusion
	Data availability
	References




