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Abstract
The aim of this paper is the study of trapezoidal approximation operators, preserving more indicators of fuzzy numbers,
relationships between themand their applications. Initial results lead to achieve threemain trapezoidal approximation operators
that one of them preserves the core, value and the ambiguity, and another one preserves the core and the expected interval,
and third operator preserves the value, ambiguity and expected interval. The related concepts and the important properties
of these operators and also, comparisons between them are brought, in details. Finally, a ranking method, an approximation
operator preserving the most indicators of fuzzy numbers, and a trapezoidal approximation algorithm with its advantages and
comparative examples are given as practical applications of the obtained results.

Keywords Fuzzy numbers · Trapezoidal approximation · Approximation operators

1 Introduction

1.1 Importance and related works

In many science fields, the inaccurate and incomplete infor-
mation are usually displayed in the form of fuzzy numbers or
more generally fuzzy sets (see (Joshi andKumar 2017, 2018;
Vanegasa et al. 2016) as applications of fuzzy sets). In deal-
ing with fuzzy numbers the defuzzification methods cause
loss of the some information of fuzziness (see for instance
(Bodjanova 2005; Dubois and Prade 1987; Heilpern 1992)).
One of these methods is using a notion of an approximation
interval (called interval approximation, see (Chanas 2001;
Grzegorzewski and Mrowka 1998; Grzegorzewski 2002))
leads to the approximation problem in the fuzzy area is con-
verted into one in the interval arithmetic area, which reduces
the information loss. From this perspective, the approxi-
mation problem of fuzzy numbers as linear fuzzy number
(for example the triangular or trapezoidal fuzzy numbers) is
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one of important subjects in fuzzy arithmetic. So far, many
researchers have tried to find an appropriate triangular or
trapezoidal approximation operator (Abbasbandy andHajjiri
2010; Ban 2008; Ban et al. 2011; Ban 2009b, 2011; Ban et al.
2011; Yeh 2017, 2008b, 2009; Zeng and Li 2007). Themajor
idea in most of the proposed methods is employing a meter
defined on the set of fuzzy numbers and minimizing the dis-
tance between the initial fuzzynumber and its approximation.
Many studies are done on the approximation theory of fuzzy
numbers based on the Euclidean meter (defined as (13)), that
can be browsed as follows. The trapezoidal approximation
(Grzegorzewski andMrowka 2005, 2007) and some notes on
it Allahviranloo and Firozja (2007); Yeh (2007), the approx-
imations by interval, triangle and trapezoid by embedding
fuzzy numbers into a Hilbert space (Yeh 2009), trapezoidal
approximation preserving the expected interval (Ban 2008;
Yeh 2008b) with algorithms and properties (Grzegorzewski
2008, ?), triangular approximation using α-weighted valua-
tions (Abbasbandy et al. 2010) and remarks and corrections
on it Ban (2011), trapezoidal approximation preserving the
ambiguity and value (Ban et al. 2011), remarks and correc-
tions to the trapezoidal and triangular approximation (Ban
2009b, 2011), trapezoidal approximation preserving the core
and the expected value (Brandas 2011), the nearest paramet-
ric approximation of a fuzzy number (Nasibov and Peker
2008) and revisions on it (Ban 2009a), a notion of extended
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parametric fuzzy number and the metric properties of the
nearest extended parametric fuzzy number of a fuzzy number
(Ban and Coroianu 2011a), weighted trapezoidal and trian-
gular approximation of fuzzy numbers which is based on
assign the Euclidean meter by weighted functions (Ban et al.
2016; Yeh 2009; Zeng and Li 2007), and an improvement of
work done in (Zeng and Li 2007), by using the Euclidean
meter (Yeh 2008a).

1.2 Objective

Studies cited above in Subsection “Importance and related
works” are focused on finding an approximation operator
which preserves at most one or two indicators of fuzzy
numbers, in general case. Accordingly, the choice of an
approximation operator depends on what indicators of fuzzy
numbers are important for the decision-maker. Obviously,
the decision-maker tends to use an approximation oper-
ator which preserves many indicators of fuzzy numbers.
Consequently, knowing approximation operators that are
preserving most indicators of fuzzy numbers and finding
the relationships between them and their applications is
an important and necessary subject for the decision-maker
which makes up the main objective in this paper.

1.3 Novelties

In this paper, we first point out importance and role of
some characteristics related to fuzzy numbers such as the
core, value, ambiguity, fuzziness and expected interval in
the approximation theory of fuzzy numbers. The prelimi-
nary results lead to three important approximation operators.
These operators are 1- the approximation operator preserving
the core, value and ambiguity, 2- the approximation oper-
ator preserving the core and expected interval, and 3- the
approximation operator preserving the value, ambiguity and
expected interval. In sequel, the concepts related to these
operators are introduced and the important properties of them
such as scale invariance, identity, translation invariance, near-
ness criterion, linearity and continuity are investigated and
also, some results are found for comparing them. Finally,
some applications of the obtained results are proposed such
as a ranking method of fuzzy numbers based on the core,
value and ambiguity parameters and an approximation algo-
rithm which provides a trapezoidal approximation operator,
preserving most indicators of initial fuzzy number such that
it has least ambiguity. Further, some advantages of proposed
algorithmwith respect to previous approximation algorithms
and some comparative examples are presented.

2 Preliminaries

In this section, basic concepts of fuzzy set theory and some
necessary results and notions are presented.

Definition 2.1 (Dubois and Prade 1987). A fuzzy num-
ber A is defined as an ordered pair of functions A =(
AL(α), AU (α)

)
, α ∈ [0, 1], satisfying the following prop-

erties:
(i) AL(α) is a left continuous, bounded andnon-decreasing

function in (0, 1] and right continuous at 0,
(ii) AU (α) is a left continuous, bounded and non-

increasing function in (0, 1] and right continuous at 0,
(iii) AL(α) ≤ AU (α), α ∈ [0, 1].

The set of all fuzzy numbers defined on real line R is repre-
sentedby F(R). The representation [A]α = [

AL(α), AU (α)
]
,

α ∈ (0, 1] is called the α-cut form of fuzzy number A. Tradi-
tionally, [A]α can be denoted as the set

{
x ∈ R| A(x) ≥ α

}
,

where A(x) is the degree of membership of x in fuzzy
number A. The support of A is defined as the closure of{
x ∈ R| A(x) > 0

}
and it is denoted by Supp(A) =

[A]0 = [
AL(0), AU (0)

]
. The core or 1−cut of A is defined

by Cor(A) = [A]1 = [
AL(1), AU (1)

]
. Diameter or length

of α−cut of A is defined by diam[A]α = AU (α) − AL(α).
If A, B ∈ F(R) and λ ∈ R, then

[A + B]α = [
AL(α) + BL(α), AU (α) + BU (α)

]
,

[λA]α =
{[

λAL(α), λAU (α)
]; λ ≥ 0,[

λAU (α), λAL(α)
]; λ < 0,

and

[AB]α = [
min

(
AL(α)BL(α), AL(α)BU (α), AU (α)BL(α),

AU (α)BU (α)
)
,max

(
AL(α)BL(α), AL(α)BU (α),

AU (α)BL(α), AU (α)BU (α)
)]

.

A fuzzy number A with the membership function below is
said to be an LR type fuzzy number, (Bodjanova 2005; Bran-
das 2011),

A(x) =

⎧
⎪⎪⎨

⎪⎪⎩

�A(x) ; a ≤ x ≤ b,
1 ; b ≤ x ≤ c,
rA(x) ; c ≤ x ≤ d,

0 ; otherwise,

where a, b, c, d ∈ R, �A : [a, b] → [0, 1] is an increasing
and continuous function, �A(a) = 0, �A(b) = 1, called the
left side of the fuzzy number and rA : [c, d] → [0, 1] is a
decreasing and continuous function, rA(c) = 1, rA(d) = 0,
called the right side of the fuzzy number. For fuzzy number
A, it can be seen easily that AL and AU are inverse functions
of �A and rA, respectively. In fact, �−1

A : [0, 1] → [a, b] is
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an increasing and continuous function with �−1
A (0) = a and

�−1
A (1) = b and r−1

A : [0, 1] → [c, d] is a decreasing and
continuous function with r−1

A (0) = d and r−1
A (1) = c. So,

[A]0 = [a, d] = [�−1
A (0), r−1

A (0)] and for 0 < α ≤ 1, we
have

[A]α = {x ∈ R|A(x) ≥ α}
= {x ∈ [a, b]|�A(x) ≥ α} ∪ [b, c] ∪ {x ∈ [c, d]|rA(x) ≥ α}
=
{
x ∈ [a, b]|x ≥ �−1

A (α)
}

∪ [b, c]
∪
{
x ∈ [c, d]|x ≤ r−1

A (α)
}

= [
�−1
A (α), b

] ∪ [b, c] ∪ [
c, r−1

A (α)
]

= [
�−1
A (α), r−1

A (α)
]
.

Let us here consider three important families from LR
fuzzy numbers as the following forms:

A(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x−a
b−a

)n; a ≤ x ≤ b,

1; b ≤ x ≤ c,(
d−x
d−c

)n; c ≤ x ≤ d,

0; otherwise,

(1)

A(x) =

⎧
⎪⎨

⎪⎩

(
x−a
b−a

)n; a ≤ x ≤ b,

1; b ≤ x ≤ c,
0; otherwise,

(2)

A(x) =

⎧
⎪⎨

⎪⎩

1; b ≤ x ≤ c,(
d−x
d−c

)n; c ≤ x ≤ d,

0; otherwise,

(3)

where n is a positive real number. A fuzzy number A with
the membership function A(x), given by one of forms (1),
(2) or (3), will be represented by A = (a, b, c, d)n , where
a ≤ b ≤ c ≤ d. Let us denote the set of all fuzzy numbers
in forms (1), (2) and (3) by,

�1 = {A = (a, b, c, d)n | A ∈ F(R), a < b ≤ c < d, n > 0},
�2 = {A = (a, b, c, d)n | A ∈ F(R), d = c, n > 0},
�3 = {A = (a, b, c, d)n | A ∈ F(R), b = a, n > 0}.

respectively, and also, FT
n (R) = �1 ∪ �2 ∪ �3. It is easy

to see that if A = (a, b, c, d)n ∈ FT
n (R), then it has the

following parametric representation:

AL(α) = a + (b − a) n
√

α, AU (α) = d − (d − c) n
√

α,

α ∈ [0, 1].

In this paper, for simplicity, it is represented by FT (R)

instead FT
1 (R), and it is said the set of all trapezoidal fuzzy

numbers. If A ∈ FT (R), then it is written A = (a, b, c, d),
that is in parametric form A = (

a+ (b−a)α, d − (d − c)α
)
.

If A ∈ FT (R) satisfies one of the cases a < b = c < d,
a = b < c = d or a = b = c = d, then it said that the
fuzzy number A is triangular, a real interval or a real number,
respectively. Furthermore, the element A = (a, b, c, d)n ∈
FT
n (R) is called a quasi-symmetric fuzzy number if b− a =

d−c and also, the quasi-symmetric fuzzy number A is called
symmetric if it is a trapezoidal fuzzy number.

Definition 2.2 (Puri and Ralescu 1983). Let A, B ∈ F(R).
If there exists C ∈ F(R) such that, A = B + C then C is
called the H-difference of A, B and it is denoted A � B.

The following lemma is useful for some results in the paper.

Lemma 2.3 Suppose that A and B are two trapezoidal fuzzy
numbers such that Cor(A) = Cor(B). In this case, the H-
difference A � B exists if and only if Supp(B) ⊆ Supp(A).

Proof Let A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4)
be two trapezoidal fuzzy numbers and suppose that the H-
difference A � B exists. So,

A � B = (a1 − b1, a2 − b2, a3 − b3, a4 − b4).

But, the hypothesisCor(A) = Cor(B)means that [a2, a3] =
[b2, b3], which implies that a2 = b2 and a3 = b3. So that,

A � B = (a1 − b1, 0, 0, a4 − b4),

which implies a1 − b1 ≤ 0 and a4 − b4 ≥ 0. Therefore
a1 ≤ b1 ≤ b4 ≤ a4, that means that Supp(B) ⊆ Supp(A).
Conversely, the condition Supp(B) ⊆ Supp(A) can be writ-
ten as [b1, b4] ⊆ [a1, a4]. This provides the triangular fuzzy
number C = (a1 − b1, 0, 0, a4 − b4). It is easy to see that

B + C = (a1, b2, b3, a4),

which means B + C = A, because of Cor(A) = Cor(B).
Thus, C = A � B. 
�
Definition 2.4 (Grzegorzewski and Mrowka 2005). It is said
that an approximation operator T fulfills the nearness crite-
rion if for any fuzzy number A its output value T (A) is the
nearest trapezoidal fuzzy number to A with respect to metric
d, defined in the space of fuzzy numbers. In other words, for
any A ∈ F(R) we have

d
(
A, T (A)

) ≤ d(A, B), ∀ B ∈ FT (R).

Definition 2.5 (Delgado et al. 1998a; Dubois and Prade
1987). The value, ambiguity and fuzziness of A ∈ F(R) are
defined as follows, respectively,

V al(A) =
1∫

0

α
(
AL(α) + AU (α)

)
dα,
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Amb(A) =
1∫

0

α
(
AU (α) − AL(α)

)
dα,

Fuz(A) =
1
2∫

0

(
AU (α) − AL(α)

)
dα

−
1∫

1
2

(
AU (α) − AL(α)

)
dα.

Remark 2.6 It is noteworthy that for each fuzzy number
A we have Amb(A) ≥ 0 and Fuz(A) ≥ 0, because of
diam[A]α = AU (α) − AL(α) is a non-negative and non-
increasing function. In special case, for triangular fuzzy
number A = (a, b, c), we easily obtain Amb(A) = c−a

6
and Fuz(A) = c−a

4 , that results Amb(A) ≤ Fuz(A).
This inequality does not hold for an arbitrary fuzzy num-
ber. For example, consider two trapezoidal fuzzy numbers
A = (0, 5

3 , 2, 3) and B = (0, 1, 2, 3). It is easy to obtain that

Amb(A) = 11

18
< Fuz(A) = 2

3

while

Amb(B) = 5

6
> Fuz(B) = 1

2
.

Definition 2.7 (Delgado et al. 1998a, b). A ranking method
with ordering ≺ for two numbers A, B ∈ F(R), based on
three parameters value, ambiguity and fuzziness is defined
as the following Algorithm:

1. If Val(A) = Val(B), then go to the next step. Otherwise
A ≺ B, if Val(A) < Val(B).
2. If Amb(A) = Amb(B), then go to the next step. Otherwise
A ≺ B, if Amb(A) < Amb(B).
3. If Fuz(A) = Fuz(B), then it is said that A is equivalent
to B. Otherwise A ≺ B, if Fuz(A) < Fuz(B).

Definition 2.8 (Chanas 2001; Dubois and Prade 1987;
Heilpern 1992; Wang et al. 2006). The expected interval,
the expected value and the width of a fuzzy number A =(
AL(α), AU (α)

)
are defined as follows, respectively

E I (A) = [
E∗(A), E∗(A)

] =
⎡

⎣
1∫

0

AL (α)dα,

1∫

0

AU (α)dα

⎤

⎦ ,

(4)

EV (A) = 1

2

1∫

0

(
AL (α) + AU (α)

)
dα, (5)

W (A) =
1∫

0

(
AU (α) − AL (α)

)
dα. (6)

Supposing A = (a, b, c, d)n ∈ FT
n (R), the following

equalities can be obtained easily

Val(A) = a + 2nb + 2nc + d

2(2n + 1)
, (7)

Amb(A) = d + 2nc − 2nb − a

2(2n + 1)
, (8)

Fuz(A) = n

n + 1

(
1 − 1

n
√
2

)
(b − a + d − c), (9)

E I (A) =
[
a + nb

n + 1
,
d + nc

n + 1

]
, (10)

EV (A) = a + nb + nc + d

2(n + 1)
, (11)

W (A) = d − nb + nc − a

n + 1
. (12)

Awell-knownmetric on fuzzynumbers,which is an exten-
sion of the Euclidean distance, is defined in (Grzegorzewski
and Mrowka 1998), by

D(A, B) =
⎧
⎨

⎩

1∫

0

(
AL(α) − BL(α)

)2
dα

+
1∫

0

(
AU (α) − BU (α)

)2
dα

⎫
⎬

⎭

1
2

, (13)

where [AL(α), AU (α)] and [BL(α), BU (α)] are α-cut form
of fuzzy numbers A and B, respectively.

An another well-known metric between fuzzy numbers is
the Hausdorff distance which is defined in (Dubois and Prade
1987), by

DH (A, B) = sup
0≤α≤1

dH
([A]α, [B]α)

where

dH
([A]α, [B]α) = max

{|AL (α) − BL (α)|, |AU (α) − BU (α)|}.
(14)

Moreover, we need to the following families of distances
which are based on indicators of fuzzy numbers. The m-
source distances between fuzzy numbers are defined in
(Amirfakhrian 2010), as follows:

DC .V .A
m (A, B) = 1

2

{|Val(A) − Val(B)|m + |Amb(A)

−Amb(B)|m + dmH
([A]1, [B]1)

}
, (15)
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where m is a positive integer number and dH is given by
(14). According to this definition, two fuzzy numbers A
and B are equivalent if Cor(A) = Cor(B), (that means
dH ([A]1, [B]1) = 0), Val(A) = Val(B) and Amb(A) =
Amb(B).

Similarly, we define a family of distances between two
fuzzy numbers as follows:

DC .E I
m (A, B) = 1

2

{
dmH

(
E I (A), E I (B)

)+ dmH
([A]1, [B]1)} ,

(16)

where m is a positive integer number. According to this
definition, two fuzzy numbers A and B are equivalent if
Cor(A) = Cor(B) and E I (A) = E I (B).

Theorem 2.9 If T : F(R) → FT (R) is a trapezoidal oper-
ator preserving the value or the ambiguity of fuzzy numbers,
then T is not a continuous operator with respect to distances
DC .E I
m .

Proof Take A ∈ F(R) with [A]α = [AL(α), AU (α)], α ∈
[0, 1], satisfying the following conditions

(i) AL(1) > 0, (i i)

1∫

0

AL(α)dα = 0,

(i i i)

1∫

0

αAL(α)dα �= 0,

(for example, [A]α = [3α2+2α−2,−α2−α+5]). Consider
the sequence of fuzzy numbers {An}n≥1, given by

{
(An)L(α) = 1

2 (AL(α) + αn AL(1)),
(An)U (α) = AU (α), α ∈ [0, 1]. (17)

It is clear that Cor(An) = Cor(A). Also, by the conditions
(i) and (i i), we get

dH (E I (An), E I (A)) = max

⎧
⎨

⎩

∣
∣∣∣
∣∣

1∫

0

((An)L (α) − AL (α)) dα

∣
∣∣∣
∣∣
,

∣
∣∣
∣∣∣

1∫

0

((An)U (α) − AU (α)) dα

∣
∣∣
∣∣∣

⎫
⎬

⎭

=
∣∣
∣∣∣
∣

1∫

0

(1
2
(AL (α) + αn AL (1)) − AL (α)

)
dα

∣∣
∣∣∣
∣

= AL (1)

2(n + 1)
.

Therefore, DC .E I
m (An, A) → 0 as n → +∞, for any positive

integer numberm. Let T be a continuous trapezoidal operator
with respect to DC .E I

m . Then, DC .E I
m (T (An), T (A)) → 0 as

n → +∞, where T (An) = (t1(n), t2(n), t3(n), t4(n)) and
T (A) = (t1, t2, t3, t4). This follows that

dH
([T (An)]1, [T (A)]1) = max

{|t2(n) − t2|, |t3(n) − t3|
} → 0,

as n → ∞ and by (10),

dH
(
E I (T (An), E I (T (A))

)

= max

{∣∣∣
t1(n) + t2(n)

2
− t1 + t2

2

∣∣∣,
∣∣∣
t3(n) + t4(n)

2
− t3 + t4

2

∣∣∣
}

→ 0,

as n → ∞. So that, limn→∞ti (n) = ti , for i ∈ {1, 2, 3, 4}.
By Lemma 2 in (Ban and Coroianu 2011b), this confirms that
T (A) is a trapezoidal fuzzy number. Now, if T preserves the
value of fuzzy numbers, then we get by (7), the following

Val
(
T (A)

) = t1 + 2t2 + 2t3 + t4
6

= lim
n→∞

t1(n) + 2t2(n) + 2t3(n) + t4(n)

6
= lim

n→∞ Val
(
T (An)

) = lim
n→∞ Val

(
An
)

= lim
n→∞

1∫

0

α
(
(An)U (α) + (An)L(α)

)
dα

= lim
n→∞

1∫

0

α
(
AU (α) + AL(α)

−1

2
AL(α) + 1

2
αn AL(1)

)
dα

= Val(A) − 1

2

1∫

0

αAL(α)dα,

which is a contradiction to
∫ 1
0 αAL(α)dα �= 0.

Similarly, if T preserves the ambiguity of fuzzy numbers,
then we will have

Amb
(
T (A)

) = Amb(A) + 1

2

1∫

0

αAL(α)dα.

Consequently, T does not preserve the value and ambigu-
ity of A. 
�
Theorem 2.10 If T : F(R) → FT (R) is a trapezoidal oper-
ator preserving the expected value or the width of fuzzy
numbers, then T is not a continuous operator with respect to
distances DC .V .A

m .
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Proof Take A ∈ F(R) with [A]α = [AL(α), AU (α)], α ∈
[0, 1], satisfying the following conditions

(i) AL(1) > 0, (i i)

1∫

0

AL(α)dα �= 0,

(i i i)

1∫

0

αAL(α)dα = 0,

(for example, [A]α = [2α2+3α−3,−α2−α+4]). Consider
the fuzzy numbers sequence {An}n≥1, given by (17). Since
A satisfies the conditions (i) and (i i i), it follows that

|Val(An) − Val(A)| =
∣∣
∣∣∣
∣

1∫

0

α
(
(An)U (α) + (An)L (α)

)
dα

−
1∫

0

α
(
AU (α) + AL (α)

)
dα

∣
∣∣∣
∣∣

= 1

2

∣
∣∣
∣∣∣

1∫

0

αn+1AL (1)dα −
1∫

0

αAL (α)dα

∣
∣∣
∣∣∣

= AL (1)

2(n + 2)
,

and similarly,

|Amb(An) − Amb(A)| = AL(1)

2(n + 2)
.

Therefore, DC .V .A
m (An, A) → 0 as n → +∞, for any pos-

itive integer number m. Let T be a continuous trapezoidal
operator with respect to DC .V .A

m . So, DC .V .A
m (T (An), T (A))

→ 0 as n → +∞, with T (An) = (t1(n), t2(n), t3(n), t4(n))

and T (A) = (t1, t2, t3, t4). As a result, the factors

∣∣
∣Val

(
T (An)

)− Val
(
T (A)

)∣∣
∣

=
∣∣
∣∣
t1(n) + 2t2(n) + 2t3(n) + t4(n)

6
− t1 + 2t2 + 2t3 + t4

6

∣∣
∣∣ ,

∣
∣∣Amb

(
T (An)

)− Amb
(
T (A)

)∣∣∣

=
∣
∣∣∣
t4(n) + 2t3(n) − 2t2(n) − t1(n)

6
− t4 + 2t3 − 2t2 − t1

6

∣
∣∣∣ ,

and

dH
([T (An)]1, [T (A)]1) = max

{|t2(n) − t2|, |t3(n) − t3|
}
,

tend to 0, as n → ∞, that result limn→∞ti (n) = ti , for
i ∈ {1, 2, 3, 4}. Now, if T preserves the expected value of
fuzzy numbers, then we get by (11), the following

EV
(
T (A)

) = t1 + t2 + t3 + t4
4

= lim
n→∞

t1(n) + t2(n) + t3(n) + t4(n)

4
= lim

n→∞ EV
(
T (An)

) = lim
n→∞ EV

(
An
)

= 1

2
lim
n→∞

1∫

0

(
(An)U (α) + (An)L (α)

)
dα

= 1

2
lim
n→∞

1∫

0

(
AU (α) + 1

2
(AL (α) + αn AL (1))

)
dα

= EV (A) − 1

4

1∫

0

AL (α)dα,

and similarly, if T preserves the width of fuzzy numbers,
then it will be obtained

W
(
T (A)

) = W (A) + 1

4

1∫

0

AL(α)dα.

Thus, we arrive at a contradiction because of A satisfies the
condition

∫ 1
0 AL(α)dα �= 0. 
�

3 Approximations preservingmost
indicators of fuzzy numbers

In this section, we investigate trapezoidal approximation
operators preserving most indicators, such as the value,
ambiguity, core, fuzziness and the expected value of fuzzy
numbers. Since a trapezoidal approximation operator is char-
acterized by four parameters, so, to ensure uniqueness of
the operator it is enough whose parameters satisfy uniquely
four linear equations. Therefore, we can search the required
operators by producing and solving 4 × 4 linear systems
with nonsingular matrices. To begin, let us consider three the
parameters, value, ambiguity and fuzziness of fuzzy num-
bers as given in Definition 2.5. An approximation operator,
preserving these parameters does not provide a unique trape-
zoidal approximation for a given fuzzy number, in general.
Because, it will be searched between solutions of a linear sys-
tem with three equations and four unknowns. For example,
let A = (0, 10

3 , 14
3 , 16

3 ) 1
2
. Each one of the trapezoidal fuzzy

numbers B = (1, 2, 4, 7) and C = (0, 5
2 ,

9
2 , 6) preserves the

value, ambiguity and fuzziness parameters of A. Indeed, by
using (7)–(9), it is easy to see that Val(A) = Val(B) =
Val(C) = 10

3 , Amb(A) = Amb(B) = Amb(C) = 5
3 and
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Fuz(A) = Fuz(B) = Fuz(C) = 1. Accordingly, we must
search an approximation operator which preserves the more
important indicators containing more information related to
fuzzy numbers. Let us to consider the core parameter. Since
this parameter is set of points that have the highest degree
membership in a fuzzy number, then it is an important param-
eter for the decision-maker. Therefore, it seems that a suitable
approximation operator must preserves the core parameter of
fuzzy numbers. Let A ∈ F(R) and consider two the follow-
ing systems for finding B ∈ FT (R):

(a) Cor(A)=Cor(B), Val(A)=Val(B), Amb(A)= Amb(B).

or

(b) Cor(A) = Cor(B), Val(A) = Val(B), Fuz(A) = Fuz(B).

If A ∈ FT (R) satisfies the case (a) or (b), then by (7)–(9), it
is easy to deduce that A and B are identical. Therefore, the
trapezoidal fuzzy number, preserving the parameters core,
value and ambiguity or the parameters core, value and fuzzi-
ness of original fuzzy number is unique (if exists). But, the
value parameter is more important than ambiguity parameter
and the ambiguity parameter is more important than fuzzi-
ness parameter from a fuzzy number (see (Delgado et al.
1998a, b) for more information). Accordingly, a trapezoidal
approximation operator satisfying the case (a) includesmore
information of fuzzy numbers with respect to a trapezoidal
approximation operator satisfying the case (b). We thus,
abandon the case (b) and consider the case (a). Suppose
that B = TC .V .A(A) = (t1, t2, t3, t4) is fuzzy number
which satisfies the case (a), for A ∈ F(R), with α−cut
[A]α = [

AL(α), AU (α)
]
, α ∈ [0, 1]. Under this situation,

the system (a) can be written as the following system:

t2 = AL(1),

t3 = AU (1),

t1 + 2t2 + 2t3 + t4
6

=
1∫

0

α
(
AL(α) + AU (α)

)
dα,

t4 + 2t3 − 2t2 − t1
6

=
1∫

0

α
(
AU (α) − AL(α)

)
dα,

that results

t1 = 6

1∫

0

αAL(α)dα − 2AL(1), (18)

t2 = AL(1), (19)

t3 = AU (1), (20)

t4 = 6

1∫

0

αAU (α)dα − 2AU (1). (21)

According to monotonicity of two functions AL(α) and
AU (α) it is easy to deduce that t1 ≤ t2 ≤ t3 ≤ t4.

Now, let us to consider the other important characteris-
tic of fuzzy numbers that is named the expected interval.
The following result gives an advantage of the approxima-
tion operators which are preserving the expected interval.

Lemma 3.1 Consider an approximation operator T : F(R)

→ FT (R). This operator preserves expected interval of
fuzzy numbers if and only if it preserves two parameters the
expected value and the width of fuzzy numbers.

Proof Take A = (
AL(α), AU (α)

) ∈ F(R) and suppose
that T (A) = (a1, a2, a3, a4). By (4) and (10), the equality
E I (A) = E I

(
T (A)

)
implies

a1 + a2
2

=
1∫

0

AL(α)dα,

a3 + a4
2

=
1∫

0

AU (α)dα.

These equalities hold if and only if the following equalities
hold

a1 + a2 + a3 + a4
2

=
1∫

0

(
AL(α) + AU (α)

)
dα,

a4 + a3 − a2 − a1
2

=
1∫

0

(
AU (α) − AL(α)

)
dα,

that are EV (A) = EV
(
T (A)

)
and W (A) = W

(
T (A)

)
, by

(5), (6), (11), and (12). 
�

In the event that the decision-maker wants to have an approx-
imation operator which preserves the expected interval of
a given fuzzy number A, one of the systems for finding
B ∈ FT (R) can be considered as follows:

(c) Cor(A) = Cor(B), E I (A) = E I (B).

If we denote B = TC .E I (A) = (r1, r2, r3, r4), then the con-
ditions (c) are as follows:
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[r2, r3] = [
AL(1), AU (1)

]
,

[
r1 + r2

2
,
r3 + r4

2

]
=
⎡

⎣
1∫

0

AL(α)dα,

1∫

0

AU (α)dα

⎤

⎦ ,

that result the following unique solution

r1 = 2

1∫

0

AL(α)dα − AL(1), (22)

r2 = AL(1), (23)

r3 = AU (1), (24)

r4 = 2

1∫

0

AU (α)dα − AU (1). (25)

It is easy to see that r1 ≤ r2 ≤ r3 ≤ r4.

Remark 3.2 For A ∈ F(R), the numbers TC .V .A(A) and
TC .E I (A) can be considered as the best trapezoidal approxi-
mations of A. In fact, the numbers TC .V .A(A) and TC .E I (A)

are the only trapezoidal fuzzy numbers such that DC .V .A
m(

TC .V .A(A), A
) = 0 and DC .E I

m

(
TC .E I (A), A

) = 0,
(defined by (15) and (16)).

The other system for finding B ∈ FT (R), preserving the
expected interval of original fuzzy number A, can be consid-
ered as follows:

(d) Val(A) = Val(B), Amb(A) = Amb(B), E I (A) = E I (B).

If we denote B = T V .A.E I (A) = (s1, s2, s3, s4), then system
(d) can be written as follows:

s1 + 2s2 + 2s3 + s4
6

=
1∫

0

α
(
AL(α) + AU (α)

)
dα,

s4 + 2s3 − 2s2 − s1
6

=
1∫

0

α
(
AU (α) − AL(α)

)
dα,

[
s1 + s2

2
,
s3 + s4

2

]
=
⎡

⎣
1∫

0

AL(α)dα,

1∫

0

AU (α)dα

⎤

⎦ ,

that result the following unique solution

s1 = −6

1∫

0

αAL(α)dα + 4

1∫

0

AL(α)dα, (26)

s2 = 6

1∫

0

αAL(α)dα − 2

1∫

0

AL(α)dα, (27)

s3 = 6

1∫

0

αAU (α)dα − 2

1∫

0

AU (α)dα, (28)

s4 = −6

1∫

0

αAU (α)dα + 4

1∫

0

AU (α)dα. (29)

This operator was obtained by Grzegorzewski et al. (Grze-
gorzewski and Mrowka 2005) as the nearest trapezoidal
approximation with respect to metric D given in (13), which
preserves the expected interval of fuzzy numbers. But, the
approximation T V .A.E I (A) of given fuzzy number A is not
always a trapezoidal fuzzy number, as it was proved in
(Allahviranloo and Firozja 2007). In fact, it is a trapezoidal
fuzzy number, if s2 ≤ s3, that is

∫ 1
0 (1 − 3α)(AU (α) −

AL(α))dα ≤ 0, (for other more information we propose
(Grzegorzewski and Mrowka 2007) and (Grzegorzewski
2008)). In other words, A ∈ S, where

S = {
A ∈ F(R)| W (A) ≤ 3Amb(A)

}
.

Furthermore, Ban et al. (Ban et al. 2011) (Theorem 7, (i) or
Corollary 8, (i)), have proven that if A ∈ S, then the approxi-
mation T V .A.E I (A) is the nearest trapezoidal approximation
(with respect to metric D), which preserves two the parame-
ters value and ambiguity of A. In fact, the condition (33) from
Theorem 7 in (Ban et al. 2011), means that A ∈ S and also,
equations (39)–(42) in (Ban et al. 2011), are respectively, the
same mentioned equations (26)–(29).

We now try to extent the operator T V .A.E I of S to F(R)

which is needed to complete some results in the next sections.
Let A be an arbitrary fuzzy number and B be a fuzzy number
satisfying the condition 3Amb(B) − W (B) ≥ 1. Consider
the fuzzy number

AB
s = A + k(A)B,

where

k(A) = 1

2

(|W (A) − 3Amb(A)| + W (A) − 3Amb(A)
)
.

We show that AB
s belongs to S. Indeed,

3Amb(AB
s ) − W (AB

s ) = 3

1∫

0

α
(
(AB

s )U (α) − (AB
s )L (α)

)
dα

−
1∫

0

(
(AB

s )U (α) − (AB
s )L (α)

)
dα

= 3

1∫

0

α
(
AU (α) + k(A)BU (α) − AL (α) − k(A)BL (α)

)
dα
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−
1∫

0

(
AU (α) + k(A)BU (α) − AL (α) − k(A)BL (α)

)
dα

= 3Amb(A) + 3k(A)Amb(B) − W (A) − k(A)W (B)

≥ 3Amb(A) − W (A) + k(A) ≥ 0.

To make AB
s which only depends on k(A), choosing an

appropriate fuzzy number B may be useful. It is clear that
B can not be a real number. So, in the simplest possible
form B is a real interval. Let B = [a, b] be a real inter-
val. Let us to consider the problem finding the numbers a
and b which minimize D(AB

s , A) subject to a ≤ b and
3Amb(B) − W (B) = b−a

2 ≥ 1. By consideration

D(AB
s , A) = k(A)D(B, 0) = k(A)

√
a2 + b2,

it is easy to deduce that this optimization problem has the
unique solution a = −1 and b = 1.

Consequently, in the rest of paper, we fix B = [−1, 1] and
for simplicity, denote the transfer function as follows:

As = A + k(A)[−1, 1], ∀A ∈ F(R).

Proposition 3.3 Let A be a fuzzy number. Then

(i) Val(As) = Val(A), and Amb(As) = Amb(A) + k(A).

(i i) DC .V .A
m (A, As) = DC .E I

m (A, As) = km(A),

f or each posi tive integer number m.

(i i i) D2(T V .A.E I (As), A
) = D2(T V .A.E I (As), As

)+ D2(A, As).

Proof We have (As)L(α) = AL(α)− k(A) and (As)U (α) =
AU (α) + k(A), for all α ∈ [0, 1], which easily provide the
results in (i). Also, we observe that

∣∣(As)L(1) − AL(1)
∣∣ = ∣∣(As)U (1) − AU (1)

∣∣ = k(A),

and

∣∣∣∣
∣∣

1∫

0

(
(As)L(α) − AL(α)

)
dα

∣∣∣∣
∣∣

=
∣∣∣∣∣
∣

1∫

0

(
(As)U (α) − AU (α)

)
dα

∣∣∣∣∣
∣
= k(A),

which imply dH
([As]1, [A]1) = k(A) and dH

(
E I (As),

E I (A)
) = k(A), respectively. Thus, the results in (i i) are

readily available.

(i i i) Since T V .A.E I (As) preserves the expected interval
of As , then

1∫

0

(T V .A.E I (As))L(α)dα =
1∫

0

(As)L(α)dα.

By using this equality, we get

1∫

0

(
(T V .A.E I (As))L(α) − AL(α)

)2
dα

=
1∫

0

(
(T V .A.E I (As))L(α) − (As)L(α) − k(A)

)2
dα

=
1∫

0

(
(T V .A.E I (As))L(α) − (As)L(α)

)2
dα + k2(A)

=
1∫

0

(
(T V .A.E I (As))L(α) − (As)L(α)

)2
dα

+
1∫

0

(
(As)L(α) − AL(α)

)2
dα.

By similar reasoning it can be deduced that

1∫

0

(
(T V .A.E I (As))U (α) − AU (α)

)2
dα

=
1∫

0

(
(T V .A.E I (As))U (α) − (As)U (α)

)2
dα

+
1∫

0

(
(As)U (α) − AU (α)

)2
dα.

The sum of two sides of these equalities leads to the required
conclusion. 
�
We now define the operator T V .A.E I

S : F(R) → FT (R) as
an extension of operator T V .A.E I over all fuzzy numbers by

T V .A.E I
S (A) := T V .A.E I (As),

The following theorem is a completed version of obtained
results in (Ban et al. 2011; Ban 2009a; Grzegorzewski and
Mrowka 2007; Grzegorzewski 2008).

Theorem 3.4 For each A ∈ F(R) the fuzzy number T V .A.E I
S

(A) is the nearest trapezoidal fuzzy number to As, with
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respect to metric D. Moreover, T V .A.E I
S (A) is only trape-

zoidal fuzzy number which preserves the value, ambiguity
and expected interval of As.

Proof It is enough to prove that

D
(
T V .A.E I
S (A), A

) ≤ D(B, A), ∀B ∈ FT (R), ∀A ∈ S.

Let B = (x1, x2, x3, x4) be a trapezoidal fuzzy number and
consider the problemof finding such real numbers x1 ≤ x2 ≤
x3 ≤ x4 that minimize

D2(B, A) =
1∫

0

(x1 + (x2 − x1)α − AL(α))2dα

+
1∫

0

(x4 − (x4 − x3)α − AU (α))2dα.

Thus, denoting f (x1, x2, x3, x4) = D2(B, A), we have to
calculate partial derivatives of f and then to solve

∂ f

∂x1
= 2

1∫

0

(
x1 + (x2 − x1)α − AL(α)

)
(1 − α)dα = 0,

∂ f

∂x2
= 2

1∫

0

(
x1 + (x2 − x1)α − AL(α)

)
αdα = 0,

∂ f

∂x3
= 2

1∫

0

(
x4 − (x4 − x3)α − AU (α)

)
αdα = 0,

∂ f

∂x4
= 2

1∫

0

(
x4 − (x4 − x3)α − AU (α)

)
(1 − α)dα = 0.

It easily obtained that x j = s j , j = 1, 2, 3, 4, described by
(26)–(29). Moreover, since the values

det

[
∂2 f

∂xi∂x j

]
= 1

9
, det

[
∂2 f

∂xi∂x j

]

i=1,2,3, j=1,2,3
= 2

9
,

det

[
∂2 f

∂xi∂x j

]

i=1,2, j=1,2
= 1

3
, det

[
∂2 f

∂x21

]

= 2

3

are positive, then x j = s j , j = 1, 2, 3, 4 given by (25)–(28),
actually minimize D(B, A). 
�
For completing, the following linear systems with A as arbi-
trary fuzzy number and B ∈ FT (R) as unknown fuzzy
number, should be considered

(e) Cor(A) = Cor(B), Val(A) = Val(B), W (A) = W (B),

( f ) Cor(A) = Cor(B), Val(A) = Val(B), EV (A) = EV (B),

(g) Cor(A) = Cor(B), Amb(A) = Amb(B), W (A) = W (B),

(h) Cor(A) = Cor(B), Amb(A) = Amb(B), EV (A) = EV (B).

It is easy to check that two systems ( f ) and (g) do not have
unique solution. Also, the systems (e) and (h) have unique
solution, respectively, as B = TC .V .W (A) = (u1, u2, u3, u4)
and B = TC .A.EV (A) = (v1, v2, v3, v4), described by

u1 = 3Val(A) − W (A) − 3

2
AL(1) − 1

2
AU (1), (30)

u2 = AL(1), (31)

u3 = AU (1), (32)

u4 = 3Val(A) + W (A) − 1

2
AL(1) − 3

2
AU (1), (33)

and

v1 = −3Amb(A) + 2EV (A) − 3

2
AL(1) + 1

2
AU (1), (34)

v2 = AL(1), (35)

v3 = AU (1), (36)

v4 = 3Amb(A) + 2EV (A) + 1

2
AL(1) − 3

2
AU (1). (37)

The following example shows that (30)–(33) and (34)-(37)
do not always give fuzzy numbers.

Example 3.5 Consider two fuzzynumbers A = (0, 1, 2, 20) 1
2

and B = (−20, 0, 1, 2)2. By using (7) and (12), we attain
Val(A) = 23

4 and W (A) = 41
3 and by using (8) and (11),

we attain Amb(B) = 13
5 and EV (B) = − 8

3 . Then for fuzzy
number A, the equations (30) and (31), imply

u1 = 13

12
> 1 = u2,

and for fuzzy number B the equations (36) and (37), imply

v3 = 1 >
29

30
= v4.

Therefore, TC .V .W (A) and TC .A.EV (B) are not fuzzy num-
bers.

The following theorem provides necessary and sufficient
conditions, under which TC .V .W (A) and TC .A.EV (A) are
trapezoidal fuzzy numbers, for given fuzzy number A.

Theorem 3.6 Let A ∈ F(R), [A]α = [AL(α), AU (α)], ∀α ∈
[0, 1]. Then

(a) TC .A.EV (A) is valid as a fuzzy number if and only if

6

1∫

0

αAL(α)dα ≤ 2

1∫

0

AL(α)dα + AL(1), (38)
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6

1∫

0

αAU (α)dα ≥ 2

1∫

0

AU (α)dα + AU (1), (39)

and further

TC .A.EV (A) = 1

2

{
TC .V .A(A) + TC .E I (A)

−(TC .V .A(A) � TC .E I (A)
)}

. (40)

(b) TC .V .W (A) is valid as a fuzzy number if and only if

6

1∫

0

αAL(α)dα ≥ 2

1∫

0

AL(α)dα + AL(1), (41)

6

1∫

0

αAU (α)dα ≤ 2

1∫

0

AU (α)dα + AU (1), (42)

and further

TC .V .W (A) = 1

2

{
TC .V .A(A) + TC .E I (A)

−(TC .E I (A) � TC .V .A(A)
)}

. (43)

Proof (a) The inequality (38) can be written as

6

1∫

0

αAL(α)dα − 2AL(1) ≤ 2

1∫

0

AL(α)dα − AL(1),

that is t1 ≤ r1, by (18) and (22). Similarly, the inequality (39)
is r4 ≤ t4, by (21) and (25). Therefore t1 ≤ r1 ≤ r4 ≤ t4,
which is equivalent to

Supp
(
TC .E I (A)

)=[r1, r4] ⊆ [t1, t4] = Supp
(
TC .V .A(A)

)
.

Consequently, by Lemma 2.3, the H-difference TC .V .A(A)�
TC .E I (A) exists if and only if both conditions (38) and (39)
hold. Now, let T1(A) be the trapezoidal fuzzy number in the
right-hand side of (40), meaning that

T1(A) = 1

2

{
TC .V .A(A) + TC .E I (A) − (

TC .V .A(A) � TC .E I (A)
)}

.

By substituting (18)–(21) and (22)–(25) into this equality, it
follows that

T1(A) =
⎛

⎝3

1∫

0

αAL (α)dα − 3

1∫

0

αAU (α)dα

+
1∫

0

AL (α)dα +
1∫

0

AU (α)dα

−3

2
AL (1) + 1

2
AU (1), AL (1), AU (1), 3

1∫

0

αAU (α)dα

−3

1∫

0

αAL (α)dα +
1∫

0

AU (α)dα +
1∫

0

AL (α)dα

−3

2
AU (1) + 1

2
AL (1)

)

=
(

− 3Amb(A) + 2EV (A) − 3

2
AL (1) + 1

2
AU (1), AL (1),

AU (1), 3Amb(A) + 2EV (A) + 1

2
AL (1) − 3

2
AU (1)

)
,

that is the same TC .A.EV (A), described by (34)–(37).
(b) Conditions (41) and (42) are the inverse of conditions

(38) and (39). Then, similar to reasoning of case (a), the con-
ditions (41) and (42) are equivalent to that the H-difference
TC .E I (A)�TC .V .A(A) exists.Moreover, similar to case (a),
if T2(A) is trapezoidal fuzzy number given in (43), then it
can be obtained that

T2(A) =
(
3Val(A) − W (A) − 3

2
AL(1) − 1

2
AU (1), AL(1),

AU (1), 3Val(A) + W (A) − 1

2
AL(1) − 3

2
AU (1)

)
,

that is the same TC .V .W (A), described by (30)–(33). 
�
At the end of this section, let us to consider the operators

TC .V .A, TC .E I and T V .A.E I
S on the set FT

n (R).

Corollary 3.7 If A = (a, b, c, d)n ∈ FT
n (R), then

(i) TC .V .A(A) = (t1, t2, t3, t4), wi th

t1 = 3a + 2(n − 1)b

2n + 1
, t2 = b, t3 = c, t4 = 3d + 2(n − 1)c

2n + 1
.

(i i) TC .E I (A) = (r1, r2, r3, r4), wi th

r1 = 2a + (n − 1)b

n + 1
, r2 = b, r3 = c, r4 = 2d + (n − 1)c

n + 1
.

(i i i) T V .A.E I
S (A) = (s1, s2, s3, s4), wi th

s1 = (5n + 1)a + 2n(n − 1)b

(n + 1)(2n + 1)
− k(A),

s2 = 2n(n + 2)b − (n − 1)a

(n + 1)(2n + 1)
− k(A),

s3 = 2n(n + 2)c − (n − 1)d

(n + 1)(2n + 1)
+ k(A),

s4 = 2n(n − 1)c + (5n + 1)d

(n + 1)(2n + 1)
+ k(A).

Proof Since AL(α) = a + (b − a) n
√

α and AU (α) = d −
(d − c) n

√
α are the lower and upper functions related to α-

cut of fuzzy number A = (a, b, c, d)n , it is easy to obtain
AL(1) = b, AU (1) = c, and

1∫

0

AL (α)dα = a + nb

n + 1
,

1∫

0

AU (α)dα = d + nc

n + 1
,
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1∫

0

αAL (α)dα = a + 2nb

2(2n + 1)
,

1∫

0

αAU (α)dα = d + 2nc

2(2n + 1)
.

Also, it can be seen that As = (
a − k(A), b − k(A), c +

k(A), d + k(A)
) ∈ FT

n (R). By substituting these values into
(18)–(21), (22)–(25), and (26)–(29), the results are straight-
forward. 
�

4 Concepts, Common properties and
Comparisons

Consider three trapezoidal approximation operators
TC .V .A, TC .E I and T V .A.E I , respectively, described by (18)–
(21), (22)–(25), and (26)–(29). In this section, we introduce
the new concepts related to these operators and their common
important properties, and also comparisons between them.

4.1 Concepts

Carlsson and Fuller (Carlsson and Fuller 2001) defined the
lower and upper possible mean values of a fuzzy number A,
[A]α = [

AL(α), AU (α)
]
, ∀α ∈ [0, 1], as follows:

M∗(A) = 2

1∫

0

αAL(α)dα,

and

M∗(A) = 2

1∫

0

αAU (α)dα,

respectively, and introduced the notation

M(A) = [
M∗(A), M∗(A)

]
,

which called the interval-valued possibilistic mean of A. It
can be seen M∗(A) = Val(A) − Amb(A) and M∗(A) =
Val(A) + Amb(A), then any approximation operator, pre-
serving the value and ambiguity is preserving the lower and
upper possible mean values, too. So that, the interval M(A)

can be called the interval Value-Ambiguity related to fuzzy
number A. In fact, M(A) is only interval that preserves both
value and ambiguity of A. In other words,

Val(A) = M∗(A) + M∗(A)

2
= Val

(
M(A)

)
,

and

Amb(A) = M∗(A) − M∗(A)

2
= Amb

(
M(A)

)
.

It is noteworthy that the nearest interval, preserving the ambi-
guity of fuzzy numbers based on metric D is found in (Ban
and Coroianu 2012), Theorem 6.

To describe the non-specificity and the spread of the left-
hand part and the right-hand part of the core of a fuzzy
number, we propose the following definition. Before it,
we comment that the concepts of left-hand ambiguity and
right-hand ambiguity of a fuzzy number were defined by
Grzegorzewski in (Grzegorzewski 2008).

Definition 4.1 For any fuzzynumber A, [A]α = [
AL(α), AU

(α)
]
, α ∈ [0, 1], we define the concepts the core-left-hand

ambiguity, core-right-hand ambiguity, core-left-hand width
and core-right-hand width of A as follows:

�L(A) = 2

1∫

0

α
(
AL(α) − AL(1)

)
dα,

�U (A) = 2

1∫

0

α
(
AU (α) − AU (1)

)
dα,

δL(A) =
1∫

0

(
AL(α) − AL(1)

)
dα,

δU (A) =
1∫

0

(
AU (α) − AU (1)

)
dα,

respectively.

The following property of the approximation operators is
immediate.

Proposition 4.2 If A is a fuzzy number then
(i) TC .V .A(A) preserves the core-left-hand ambiguity and

core-right-hand ambiguity of A.
(i i) TC .E I (A) preserves the core-left-hand width and

core-right-hand width of A.

Proof We have

�L(A) = 2

1∫

0

α
(
AL(α) − AL(1)

)
dα

= 2

1∫

0

αAL(α)dα − AL(1)

1∫

0

2αdα

= M∗(A) − AL(1),

and similarly, we have �U (A) = M∗(A) − AU (1). Since
the operator TC .V .A preserves M∗(A), M∗(A) and Cor(A),
then the statement (i) is true. Analogously, the statement (i i)
is resulted, because δL(A) = E∗(A) − AL(1) and δU (A) =
E∗(A) − AU (1). 
�
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Remark 4.3 If AL(α) and AU (α) are the constant functions
on [0, 1], then it is clear that �L(A) = δL(A) = 0 and
�U (A) = δU (A) = 0, respectively. Also, by Lemma 1 cases
(i) and (ii) in (Ban 2008), it is easy to deduce that

δL(A) ≤ �L(A) ≤ 0 ≤ �U (A) ≤ δU (A),

for each A ∈ F(R). Furthermore, if we set �(A) =[
�L(A),�U (A)

]
and δ(A) = [

δL(A), δU (A)
]
, then these

intervals separate the core parameter from intervals M(A)

and E I (A). In fact, we have M(A) = �(A) + Cor(A) and
E I (A) = δ(A) + Cor(A).

Sometimes the α−cut representation of the present approx-
imation operators might be useful. For fuzzy number A,
[A]α = [

AL(α), AU (α)
]
, α ∈ [0, 1] we have, by (18)–(21),

the following

[
TC .V .A(A)

]α = [t1 + (t2 − t1)α, t4 − (t4 − t3)α]

=
⎡

⎣6

1∫

0

αAL (α)dα − 2AL (1) +
⎛

⎝−6

1∫

0

αAL (α)dα + 3AL (1)

⎞

⎠α,

6

1∫

0

αAU (α)dα − 2AU (1) −
⎛

⎝6

1∫

0

αAU (α)dα − 3AU (1)

⎞

⎠α

⎤

⎦ ,

that is

[
TC .V .A(A)

]α = [AL(1) + 3(1 − α)�L(A), AU (1)

+3(1 − α)�U (A)] , ∀α ∈ [0, 1]. (44)

Similarly, we obtain, by (22)–(25),

[
TC .E I (A)

]α = [AL(1) + 2(1 − α)δL(A), AU (1)

+2(1 − α)δU (A)] . (45)

For finding
[
T V .A.E I
S (A)

]α
, we first obtain

�L(As) = 2

1∫

0

α
(
(As)L(α) − (As)L(1)

)
dα

= 2

1∫

0

α
(
AL(α) − k(A)

−AL(1) + k(A)
)
dα = �L(A),

and similarly, we obtain the equalities �U (As) = �U (A),
δL(As) = δL(A) and δU (As) = δU (A). So that, by employ-
ing (26)–(29) for fuzzy number A, we obtain

[
T V .A.E I
S (A)

]α = [AL(1) − k(A) − 3(1 − 2α)�L (A)

+2(2 − 3α)δL(A), AU (1)

+k(A) − 3(1 − 2α)�U (A) + 2(2 − 3α)δU (A)] . (46)

Easily seen that

E I (A) =
[
TC .E I (A)

] 1
2
,

M(A) =
[
TC .V .A(A)

] 2
3
,

and

E I (A) + k(A)[−1, 1] =
[
T V .A.E I
S (A)

] 1
2
,

M(A) + k(A)[−1, 1] =
[
T V .A.E I
S (A)

] 2
3
.

Please notice that the above representation of α−cuts of
T V .A.E I
S could be useful. In fact, it shows that some impor-

tant properties of the operators TC .V .A and TC .E I such as
linearity, can be investigated only on the operator T V .A.E I

S .
Moreover, the condition A ∈ S, i.e. W (A) ≤ 3Amb(A) can
be rewritten as follows:

1∫

0

AU (α)dα − AU (1) −
1∫

0

AL (α)dα + AL (1)

−3

2

⎛

⎝2

1∫

0

αAU (α)dα − AU (1)

⎞

⎠

+3

2

⎛

⎝2

1∫

0

αAL (α)dα − AL (1)

⎞

⎠− 1

2
AU (1) + 1

2
AL (1) ≤ 0,

that is

(
2δU (A) − 3�U (A)

)− (
2δL (A) − 3�L (A)

) ≤ AU (1) − AL (1).

(47)

Theorem 4.4 Let A ∈ F(R). Then

TC .V .A(A) = TC .E I (A) = T V .A.E I
S (A),

if and only if

δL(A) = 3

2
�L(A), (48)

and

δU (A) = 3

2
�U (A). (49)
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Proof For A ∈ F(R), the equality of operators given as (44),
(45) and (46), directly concludes the equalities (48) and (49)
and that A belongs to S. Conversely, if the equalities (48) and
(49) hold for given fuzzy number A, then A clearly satisfies
the inequality (47). So that, A ∈ S and the consequent is
straightforward. 
�
Remark 4.5 It is noteworthy that the conditions (48) and (49)
are actually the equality case of inequalities (38) and (39).
Therefore, the statement of Theorem 4.4 is true for operators
TC .A.EV in (40) and TC .V .W in (43), too. But the lower and
upper functions of a fuzzy number A are rarely satisfied the
conditions (48) and (49). For instance, consider A ∈ FT

n (R),
according to Corollary 3.7, the conditions (48) and (49) are
held for A, only when n = 1.

Example 4.6 Let ε ∈ (0, 1) be fixed and consider the fuzzy
number Aε , given by

Aε
L(α) = εeα2

, Aε
U (α) = 5 − α.

We have

�L(Aε) = 2ε

1∫

0

αeα2
dα − Aε

L(1) = −ε,

�U (Aε) = 2

1∫

0

α(5 − α)dα − Aε
U (1) = 1

3
,

δL(Aε) = ε

1∫

0

eα2
dα − Aε

L(1)

∼= ε

1∫

0

(1 + α2)dα − Aε
L(1) = (

4

3
− e)ε,

δU (Aε) =
1∫

0

(5 − α)dα − Aε
U (1) = 1

2
.

It is observed that the equality (49) is satisfied but the equality
(48) is not satisfied. Indeed,

δL(Aε) − 3

2
�L(Aε) ∼= 0.12ε,

which, according to Theorem 4.4, implies that whatever ε

is closer to 0, then the approximation operators are closer
together. For instance, by substituting the above values into
(44) and (45), for ε = 0.5, we obtain, for all α ∈ [0, 1]
[
TC .V .A(A0.5)

]α ∼= [−0.14 + 1.5α, 5 − α],
[
TC .E I (A0.5)

]α ∼= [−0.03 + 1.38α, 5 − α].

It is easy to check that A0.5 satisfies condition (47), so,
k(A0.5) = 0, and we get by (46), the following

[
T V .A.E I (A0.5)

]α ∼= [0.09 + 1.15α, 5 − α], ∀α ∈ [0, 1].

4.2 Common properties

Theorem 4.7 Consider three approximation operators
T C .V .A, T C .E I and T V .A.E I

S .
(i) These operators are invariant to translation.
(i i) The operators T C .V .A and TC .E I are linear on F(R)

and the operator T V .A.E I
S is linear on S.

(i i i) These operators fulfill the identity criterion.
(iv) The operators T C .V .A and TC .E I fulfill the nearness

criterion on F(R) and the operator T V .A.E I
S fulfills the near-

ness criterion on S.

Proof (i) The proof of the property (i) for operator T V .A.E I
S

simply results that the operators TC .V .A and TC .E I have the
same property. Suppose that A ∈ F(R) and z ∈ R. First, by
Definition 4.1, we get

�L(A + z) = 2

1∫

0

α(A + z)L(α)dα − (A + z)L(1)

= 2

1∫

0

α
(
AL(α)+z

)
dα−(AL(1)+z

)=�L(A).

Similarly,�U (A+z) = �U (A). Also, it can be obtained that
δL(A + z) = δL(A), δU (A + z) = δU (A), and k(A + z) =
k(A). Therefore, using the representation of (46), we have

[
T V .A.E I
S (A + z)

]α = [
(A + z)L (1) − k(A + z) − 3(1 − 2α)

�L (A + z) + 2(2 − 3α)δL (A + z),

(A + z)U (1) + k(A + z) − 3(1 − 2α)�U (A + z) + 2(2 − 3α)δU (A + z)
]

= [
AL (1) + z − k(A) − 3(1 − 2α)�L (A) + 2(2 − 3α)δL (A),

AU (1) + z + k(A) − 3(1 − 2α)�U (A) + 2(2 − 3α)δU (A)
]

=
[
T V .A.E I
S (A)

]α + z.

(i i)The linearity of operator T V .A.E I
S on set S, simply results

that the operators TC .V .A and TC .E I are linear on F(R). Let
A, B ∈ S and λ ∈ R. We have A + λB ∈ S, because

W (A + λB) = W (A)+|λ|W (B)≤3Amb(A)+3|λ|Amb(B)

= 3Amb(A + λB).

We get

�L (A + λB) = 2

1∫

0

α(A + λB)L (α)dα − (A + λB)L (1)

=
{
2
∫ 1
0 α(AL (α) + λBL (α))dα − (AL (1) + λBL (1)); λ ≥ 0,

2
∫ 1
0 α(AL (α) + λBU (α))dα − (AL (1) + λBU (1)); λ < 0,
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= �L (A) +
{

λ�L (B); λ ≥ 0,
λ�U (B); λ < 0.

Similarly, it can be seen that

�U (A + λB) = �U (A) +
{

λ�U (A); λ ≥ 0,
λ�L(A); λ < 0,

δL(A + λB) = δL(A) +
{

λδL(B); λ ≥ 0,
λδU (B); λ < 0,

δU (A + λB) = δU (A) +
{

λδU (B); λ ≥ 0,
λδL(B); λ < 0.

By substituting these results into (46), it is easy to deduce
that
[
T V .A.E I
S (A + λB)

]α =
[
T V .A.E I
S (A)

]α

+λ
[
T V .A.E I
S (B)

]α
, ∀α ∈ [0, 1].

(i i i) Since for given fuzzy number A, each one of the
approximations TC .V .A(A), TC .E I (A) and T V .A.E I

S (A) are
uniquely obtained, then, for A ∈ FT (R), we have

TC .V .A(A) = TC .E I (A) = T V .A.E I
S (A) = A.

(iv) This property is obvious. Because the operators
TC .V .A, TC .E I fulfill the nearness criterion, with respect
to distances DC .V .A

m , DC .E I
m , respectively, and the operator

T V .A.E I
S fulfills the nearness criterion, with respect to dis-

tance D on set S, by Theorem 3.4. 
�
Theorem 4.8 For each A, B ∈ F(R), if A � B exists, then

TC .V .A(A � B) = TC .V .A(A) � TC .V .A(B),

TC .E I (A � B) = TC .E I (A) � TC .E I (B),

T V .A.E I
S (A � B) = T V .A.E I

S (A) � T V .A.E I
S (B)

+(k(A � B) − k(A) + k(B)
)[−1, 1].

Proof The following equalities are easy for obtaining

�L(A � B) = �L(A) − �L(B),

�U (A � B) = �U (A) − �U (B),

and

δL(A�B)=δL(A)−δL(B), δU (A�B)=δU (A)−δU (B).

Considering (44), (45) and (46) for fuzzy number A� B and
by consideration

k(A � B) = 1

2

(|W (A � B) − 3Amb(A � B)| + W (A � B) − 3Amb(A � B)
)

= 1

2

(
∣∣∣
∣∣∣

1∫

0

(
(A � B)U (α) − (A � B)L(α)

)
dα − 3

1∫

0

α
(
(A � B)U (α) − (A � B)L(α)

)
dα

∣∣∣
∣∣∣

+
1∫

0

(
(A � B)U (α) − (A � B)L(α)

)
dα − 3

1∫

0

α
(
(A � B)U (α) − (A � B)L(α)

)
dα

)

= 1

2

(
∣∣∣∣∣
∣

1∫

0

(
AU (α) − BU (α) − AL(α) + BL(α)

)
dα − 3

1∫

0

α
(
AU (α) − BU (α) − AL(α) + BL(α)

)
dα

∣∣∣∣∣
∣

+
1∫

0

(
AU (α) − BU (α) − AL(α) + BL(α)

)
dα − 3

1∫

0

α
(
AU (α) − BU (α) − AL(α) + BL(α)

)
dα

)

= 1

2

(|W (A) − W (B) − 3Amb(A) + 3Amb(B)| + W (A) − W (B) − 3Amb(A) + 3Amb(B)
)

≥ 1

2

(|W (A) − 3Amb(A)| − |W (B) − 3Amb(B)| + W (A) − W (B) − 3Amb(A) + 3Amb(B)
)

= k(A) − k(B),

the requested properties are straightforward. 
�
The following result gives us the continuity property of the
present approximation operators. We note that the operators
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TC .V .A and TC .E I are not continuous with respect to metric
D, because they are preserving the core parameter of fuzzy
numbers, (see (Ban and Coroianu 2011b), Theorem 4).

Theorem 4.9 The trapezoidal approximation operators
T C .V .A, T C .E I and T V .A.E I

S are continuous with respect to
distances DC .V .A

m , DC .E I
m and D, respectively.

Proof Let {An}n≥1, be a sequence of fuzzy numbers such

that An
DC .V .A
m−→ A, when n → ∞, the integerm ≥ 1 fixed and

A be a fuzzy number. We have, for each n ≥ 1,

DC .V .A
m

(
TC .V .A(An), T

C .V .A(A)
)

≤ DC .V .A
m

(
TC .V .A(An), An

)+ DC .V .A
m (An, A)

+DC .V .A
m

(
TC .V .A(A), A

) = DC .V .A
m (An, A).

Similarly, we obtain

DC .E I
m

(
TC .E I (An), T

C .E I (A)
) ≤ DC .E I

m (An, A)

if An
DC .E I
m−→ A.

In the event that An
D−→ A, An = (

AnL(α), AnU (α)
)
and

A = (
AL(α), AU (α)

) ∈ F(R), we get AnL(α) −→ AL(α)

and AnU (α) −→ AU (α), for each α ∈ [0, 1]. Then, using
the continuity of integral function, it follows that

W (A) = lim
n→∞ W (An),

and

Amb(A) = lim
n→∞ Amb(An).

Applying these equalities and the continuity of the abso-
lute value function, we get

k(A) = lim
n→∞ k(An).

On the other hand, by the proof of Proposition 8 in (Grze-
gorzewski and Mrowka 2005), we have

D
(
T V .A.E I (A), T V .A.E I (B)

) ≤ 4D(A, B), ∀A, B ∈ S.

We thus obtain

D
(
T V .A.E I
S (An), T

V .A.E I
S (A)

)

= D
(
T V .A.E I ((An)s), T

V .A.E I (As)
)

≤ 4D
(
(An)s, As

)

= 4D
(
An + k(An)[−1, 1], A + k(A)[−1, 1])

≤ 4D
(
An, A) + 4D

(
k(An)[−1, 1], k(A)[−1, 1])

= 4D(An, A) + 4
∣∣k(An) − k(A)

∣∣,

which completes the proof. 
�
Now, let us to consider the present approximation opera-
tors on set Fn(R). The following proposition is obtainable
directly from the Corollary 3.7.

Proposition 4.10 If A ∈ �i , i ∈ {1, 2, 3}, then the numbers
TC .V .A(A), T C .E I (A) and T V .A.E I

S (A) are belong to�i , too.

The next result shows that in a special class of Fn(R), the
present approximation operators can have more shared infor-
mation.

Proposition 4.11 Suppose that A ∈ FT
n (R) is a quasi-

symmetric fuzzy number. Then, T C .V .A(A) preserves the
expected value, and TC .E I (A) preserves the value of A.

Proof Let A = (a, b, c, d)n with TC .V .A(A) = (t1, t2, t3, t4)
and TC .E I (A) = (r1, r2, r3, r4). Because A is quasi-
symmetric, then b+c = d+a, we conclude via the equalities
(7) and (11),

EV (A) = a + d + n(b + c)

2(n + 1)
= a + d

2
,

and

Val(A) = a + d + 2n(b + c)

2(2n + 1)
= a + d

2
.

Also, for n = 1, we get

EV
(
TC .V .A(A)

) = 1

4
(t1 + t2 + t3 + t4),

and

Val
(
TC .E I (A)

) = 1

6
(r1 + 2r2 + 2r3 + r4).

Using the case (i) of Corollary 3.7, we get

EV
(
TC .V .A(A)

) = 1

4

(3a + 2(n − 1)b

2n + 1
+ b + c + 3d + 2(n − 1)c

2n + 1

)

= 3(a + d) + (4n − 1)(b + c)

4(2n + 1)

= a + d

2
,

and using the case (i i) of Corollary 3.7, we get

Val
(
TC .E I (A)

) = 1

6

(2a + (n − 1)b

n + 1
+ 2b + 2c + 2d + (n − 1)c

n + 1

)

= 2(a + d) + (3n + 1)(b + c)

6(n + 1)

= a + d

2
.

Consequently, EV
(
TC .V .A(A)

) = EV (A) and Val(
TC .E I (A)

) = Val(A). 
�
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4.3 Comparisons

Sincemetric D is an extension of theEuclidean distance, then
it is an efficient tool to express the distance between two
fuzzy numbers. Accordingly, we first compare the present
approximation operators under the metric D. For simplicity,
let us denote

D2(A, B) = DL(A, B) + DU (A, B), ∀A, B ∈ F(R),

where DL(A, B) = ∫ 1
0

(
AL(α)−BL(α)

)2
dα and DU (A, B)

= ∫ 1
0

(
AU (α) − BU (α)

)2
dα.

Theorem 4.12 Let A ∈ F(R). Then

D
(
T V .A.E I
S (A), A

)
− D(A, As) ≤ D

(
TC .E I (A), A

)

≤ D
(
TC .V .A(A), A

)
.

Proof Suppose that A = (
AL(α), AU (α)

)
, ∀α ∈ [0, 1].

Using (44) and (45), we obtain

DL

(
TC .V .A(A), A

)
− DL

(
TC .E I (A), A

)

=
1∫

0

(
AL (α) − AL (1) − 3(1 − α)�L (A)

)2
dα

−
1∫

0

(
AL (α) − AL (1) − 2(1 − α)δL (A)

)2
dα

= 9�2
L (A)

1∫

0

(1 − α)2dα − 6�L (A)

1∫

0

(
AL (α) − AL (1)

)
(1 − α)dα

−4δ2L (A)

1∫

0

(1 − α)2dα + 4δL (A)

1∫

0

(
AL (α) − AL (1)

)
(1 − α)dα

= 3�2
L (A) − 6�L (A)

(
δL (A) − 1

2
�L (A)

)− 4

3
δ2L (A)

+4δL (A)
(
δL (A) − 1

2
�L (A)

)

= 2

3

(
2δL (A) − 3�L (A)

)2
.

Similarly, we obtain

DU

(
TC .V .A(A), A

)
− DU

(
TC .E I (A), A

)

= 2

3

(
2δU (A) − 3�U (A)

)2
.

We thus conclude that

D2
(
TC .E I (A), A

)
= DL

(
TC .E I (A), A

)
+ DU

(
TC .E I (A), A

)

≤ DL

(
TC .V .A(A), A

)
+ DU

(
TC .V .A(A), A

)

= D2
(
TC .V .A(A), A

)
.

So that,

D
(
TC .E I (A), A

)
≤ D

(
TC .V .A(A), A

)
.

To achieve the other required inequality, we first infer

DL

(
TC .E I (A), A

)
=

1∫

0

((
TC .E I (A)

)
L (α) − AL (α)

)2
dα

=
1∫

0

(
AL (1) + 2(1 − α)δL (A) − AL (α)

)2
dα

=
1∫

0

(
AL (1) − k(A)

+2(1 − α)δL (A) − AL (α) + k(A)
)2
dα

=
1∫

0

(
(As)L (1) + 2(1 − α)δL (As) − (As)L (α)

)2
dα

= DL

(
TC .E I (As), As

)
,

and similarly

DU

(
TC .E I (A), A

)
= DU

(
TC .E I (As), As

)
,

which result

D
(
TC .E I (A), A

)
= D

(
TC .E I (As), As

)
.

By this equality and Theorem 3.4, we obtain

D
(
T V .A.E I
S (A), A

)
− D(A, As) = D

(
T V .A.E I (As), A

)
− D(A, As)

≤ D
(
T V .A.E I (As), As

)

≤ D
(
TC .E I (As), As

)

= D
(
TC .E I (A), A

)
.

Consequently, the proof is completed. 
�
To express next result we first give the following lemma

which can be interesting.

Lemma 4.13 Let A ∈ F(R). Then

D
(
TC .E I (As), T

C .V .A(As)
)

= D
(
TC .E I (As), T

V .A.E I (As)
)

=
√
3

3
D
(
TC .V .A(As), T

V .A.E I (As)
)

.

(50)

Proof Suppose that [A]α = [
AL(α), AU (α)

]
, α ∈ [0, 1]

belongs to the set S. We have
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DL

(
TC .E I (A), T V .A.E I (A)

)

=
1∫

0

(
AL (1) − 3(1 − 2α)�L (A) + 2(2 − 3α)

δL (A) − AL (1) − 2(1 − α)δL (A)
)2
dα

= (
2δL (A) − 3�L (A)

)2
1∫

0

(1 − 2α)2dα = 1

3

(
2δL (A) − 3�L (A)

)2
,

and

DL

(
TC .V .A(A), TC .E I (A)

)

=
1∫

0

(
AL (1) + 2(1 − α)δL (A) − AL (1) − 3(1 − α)�L (A)

)2
dα

= (
2δL (A)−3�L (A)

)2
1∫

0

(1 − α)2dα= 1

3

(
2δL (A) − 3�L (A)

)2
,

and also,

DL

(
TC .V .A(A), T V .A.E I (A)

)

=
1∫

0

(
AL(1) − 3(1 − 2α)�L(A) + 2(2 − 3α)δL(A)

−AL(1) − 3(1 − α)�L(A)
)2
dα

= (
2δL(A) − 3�L(A)

)2
1∫

0

(2 − 3α)2dα

= (
2δL(A) − 3�L(A)

)2
.

Similarly, we obtain

DU

(
TC .E I (A), T V .A.E I (A)

)
= DU

(
TC .V .A(A), TC .E I (A)

)

= 1

3
DU

(
TC .V .A(A), T V .A.E I (A)

)

= 1

3

(
2δU (A) − 3�U (A)

)2
.

The above results clearly produce the equalities (50). 
�
Lemma 4.13 shows that for given A ∈ F(R), if TC .V .A(As)

is close to TC .E I (As), with respect to metric D, then
TC .E I (As) is the same amount close to T V .A.E I (As), with
respect to D.

Theorem 4.14 Let A ∈ F(R). Then

D2
(
TC .V .A(As), As

)
= 3D2

(
TC .E I (As), As

)

−2D2
(
T V .A.E I (As), As

)
(51)

Proof According to Proposition 1 from (Ban et al. 2011), for
any A ∈ S, we have

D2
(
TC .V .A(A), A

)
= D2

(
TC .V .A(A), T V .A.E I (A)

)

+D2
(
T V .A.E I (A), A

)

and

D2
(
TC .E I (A), A

)
= D2

(
TC .E I (A), T V .A.E I (A)

)

+D2
(
T V .A.E I (A), A

)
.

These equalities with Lemma 4.13 simply produce the equal-
ity (51). 
�
Now,we compare the approximation operators via parameter
ȳ(A), called the y-coordinate of centroid point associated
with a fuzzy number A, (see (Grzegorzewski 2008; Wang
et al. 2006)) which can be written as follows:

ȳ(A) = Amb(A)

W (A)
.

It is clear that for each fuzzy number A, we have

ȳ
(
T V .A.E I
S (A)

) = ȳ(As) = Amb(A) + k(A)

W (A) + k(A)
.

Theorem 4.15 Let A ∈ F(R) be a non-real fuzzy number.
Then
∣∣∣ȳ
(
TC .E I (A)

)− ȳ(A)

∣∣∣ ≤
∣∣∣ȳ
(
TC .V .A(A)

)− ȳ(A)

∣∣∣ . (52)

Proof By α−cut forms (44) and (45), it is easy to obtain that

W
(
TC .V .A(A)

) = 3Amb(A) − AU (1) − AL(1)

2
(53)

and

Amb
(
TC .E I (A)

) = 1

3
W (A) + AU (1) − AL(1)

6
. (54)

Applying (53), we obtain

∣∣∣ȳ
(
TC .V .A(A)

)− ȳ(A)

∣∣∣

=
∣∣
∣
Amb

(
TC .V .A(A)

)

W
(
TC .V .A(A)

) − Amb(A)

W (A)

∣∣
∣

=
∣
∣∣

Amb(A)

3Amb(A) − AU (1)−AL (1)
2

− Amb(A)

W (A)

∣
∣∣

= Amb(A)

W (A)
(
6Amb(A) − (

AU (1) − AL(1)
))
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|2W (A) − 6Amb(A) + AU (1) − AL(1)|. (55)

Similarly, by applying (54), we have

∣∣∣ȳ
(
TC .E I (A)

)− ȳ(A)

∣∣∣ =
∣∣∣
Amb

(
TC .E I (A)

)

W
(
TC .E I (A)

) − Amb(A)

W (A)

∣∣∣

=
∣
∣∣
2W (A) + AU (1) − AL (1)

6W (A)
− Amb(A)

W (A)

∣
∣∣

= 1

6W (A)
|2W (A) − 6Amb(A) + AU (1) − AL (1)|.

(56)

Considering (55) and (56), we obtain

∣
∣∣ȳ
(
TC .E I (A)

)− ȳ(A)

∣
∣∣ = 6Amb(A) − (

AU (1) − AL(1)
)

6Amb(A)∣∣∣ȳ
(
TC .V .A(A)

)− ȳ(A)

∣∣∣ .

Since

0 ≤ 6Amb(A) − (AU (1) − AL(1))

6Amb(A)
≤ 1,

then the inequality (52) is obtained and the proof is com-
pleted. 
�

As a consequence of abovementioned theorems, the oper-
ator T V .A.E I

S on the set S is preferable rather than the other
two operators TC .V .A and TC .E I . But, considering the repre-
sentations (44), (45) and (46), the operator T V .A.E I

S requires
more computation to be found. Furthermore, aswill be shown
below, the set S does not contain a broad class of fuzzy num-
bers.

Corollary 4.16 Let A = (a, b, c, d)n ∈ FT
n (R) be a non-real

fuzzy number such that b = c and n > 1. Then A /∈ S.

Proof Since b = c, then, according to (47), it must be shown
that

(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)
> 0.

Using the proof of Corollary 3.7 and after simplifying, we
obtain

(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)

= (d − a)(n − 1)

(n + 1)(2n + 1)
,

which is positive, because n > 1 and A is a non-real fuzzy
number. 
�
Finally,we compare the twoparameters Fuzziness andAmbi-
guity related to the present approximation operators.

Theorem 4.17 Let A ∈ F(R). The inequalities

(a) Fuz
(
T V .A.E I
S (A)

)
≤ Fuz

(
TC .E I (A)

)

≤ Fuz
(
TC .V .A(A)

)
,

and
(b) Amb

(
TC .E I (A)

)
≤ Amb(A),

hold, if and only if
(
2δU (A) − 3�U (A)

) − (
2δL(A) −

3�L(A)
) ≤ 0.

Proof (a) Applying the α-cut form (46), we calculate

Fuz
(
T V .A.E I
S (A)

)
=

1
2∫

0

{(
T V .A.E I
S (A)

)

U
(α) −

(
T V .A.E I
S (A)

)

L
(α)

}
dα

−
1∫

1
2

{(
T V .A.E I
S (A)

)

U
(α) −

(
T V .A.E I
S (A)

)

L
α)
}
dα

=
1
2∫

0

{(
AU (1) − AL (1)

)− 3(1 − 2α)
(
�U (A) − �L (A)

)

+2(2 − 3α)
(
δU (A) − δL (A)

)+ 2k(A)
}
dα

−
1∫

1
2

{(
AU (1) − AL (1)

)− 3(1 − 2α)
(
�U (A) − �L (A)

)

+2(2 − 3α)
(
δU (A) − δL (A)

)+ 2k(A)
}
dα,

which easily results

Fuz
(
T V .A.E I
S (A)

)
= −3

2

(
�U (A) − �L(A)

)

+3

2

(
δU (A) − δL(A)

)
. (57)

Similarly, by applying (44) and (45), we obtain, respectively,

Fuz
(
TC .V .A(A)

)
= 3

4

(
�U (A) − �L(A)

)
, (58)

Fuz
(
TC .E I (A)

)
= 1

2

(
δU (A) − δL(A)

)
. (59)

The equalities (57) and (59) give

Fuz
(
T V .A.E I
S (A)

)
− Fuz

(
TC .E I (A)

)

= 1

2

{(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)}
,

(60)

and the equalities (58) and (59), give

Fuz
(
TC .E I (A)

)
− Fuz

(
TC .V .A(A)

)

= 1

4

{(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)}
.

(61)
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Consequently, the statement of Theorem case (a) is true, by
the equalities (60) and (61).

(b) We obtain

Amb
(
TC .E I (A)

)
− Amb(A)= Amb

(
TC .E I (A)

)
−Amb

(
TC .V .A(A)

)

=
1∫

0

α
(
AU (1) + 2(1 − α)δU (A) − AL (1) − 2(1 − α)δL (A)

)
dα

−
1∫

0

α
(
AU (1) + 3(1 − α)�U (A) − AL (1) − 3(1 − α)�L (A)

)
dα

= 1

6

{(
2δU (A) − 3�U (A)

)− (
2δL (A) − 3�L (A)

)}
,

that completes the proof. 
�
It is noteworthy that by Proposition 3.3, (i), we have

Amb
(
TC .V .A(A)

)
= Amb(A) ≤ Amb(As) = Amb

(
T V .A.E I
S (A)

)
,

∀A ∈ F(R).

For observing inequalities in Theorem 4.17, we give the
following example.

Example 4.18 Consider two fuzzynumbers A = (1, 2, 3, 4) 1
3

and B = (1, 2, 3, 4)3. By applying the results, in the proof
of Corollary 3.7, we obtain

δU (A) = −δL(A) = 3

4
, �U (A) = −�L(A) = 3

5
,

δU (B) = −δL(B) = 1

4
, �U (B) = −�L(B) = 1

7
.

Therefore

(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

) = −3

5
(
2δU (B) − 3�U (B)

)− (
2δL(B) − 3�L(B)

) = 1

7
.

These values imply that the inequality (47) holds for numbers
A and B. So, A, B ∈ S. By (57)-(59), we get

Fuz
(
T V .A.E I
S (A)

)
= 0.45 ≤ Fuz

(
TC .E I (A)

)

= 0.75 ≤ Fuz
(
TC .V .A(A)

)
= 0.9

and

Fuz
(
T V .A.E I
S (B)

)
= 0.32 ≥ Fuz

(
TC .E I (B)

)

= 0.25 ≥ Fuz
(
TC .V .A(B)

)
= 0.21.

Also, by (9), it can be resulted Fuz(A) = 0.44 and
Fuz(B) = 0.31. About the ambiguity parameter, we get,

by (8) and the proof of case (b) of Theorem 4.17,

Amb
(
TC .E I (A)

)
= 1 ≤ Amb(A) = 1.1

and

Amb
(
TC .E I (B)

)
= 0.66 ≥ Amb(B) = 0.64.

5 Applications

In this section, we suggest some practical applications of
obtained results in the previous sections which can be useful
in the approximation theory of fuzzy numbers.

5.1 Ranking fuzzy numbers based on the
parameters core, value and ambiguity

A ranking method (with ordering ≺′) of fuzzy numbers can
be introduced by the parameters core, value and ambiguity,
similar to Definition 2.7, which is considered with ordering
≺ .

Definition 5.1 Consider the ranking method given by Defi-
nition 2.7, in which step 3 is replaced by the following step

3’. If diam[A]1 = diam[B]1, then they are equivalent
(denoted by A ∼ B). Otherwise, A ≺′ B, if diam[A]1 >

diam[B]1.

Example 5.2 Consider two fuzzy numbers A = (1, 2, 6, 7) 1
2

and B = (1, 9
4 ,

823
140 ,

242
35 ) 1

3
. It is easy to check that Val(A) =

Val(B) = 4, Amb(A) = Amb(B) = 5
2 and Fuz(A) =

Fuz(B) = 1
2 . Then, according to Definition 2.7, the number

A is equivalent to B, while according to Definition 5.1, we
have A ≺′ B, because diam[B]1 = 127

35 < diam[A]1 = 4.

Proposition 5.3 Let A, B and C be arbitrary fuzzy numbers.
Then, the following hold.

(i) A ∼ A.
(i i) If A �′ B and B �′ A, then A ∼ B.
(i i i) If A �′ B and B �′ C, then A �′ C.
(iv) Let [A]α = [AL(α), AU (α)] and [B]α = [BL(α),

BU (α)], ∀α ∈ [0, 1]. If AU (0) < BL(0), then A ≺′ B.
(v) Assume that S1 and S2 are two arbitrary finite sets of

fuzzy numbers and A and B belong to S1 ∩ S2, then A ≺′ B
on S1 if and only if A ≺′ B on S2.

(vi) A ≺′ B if and only if A + C ≺′ B + C.
(vi i) If A � C and B � C exist, then A ≺′ B implies

A � C ≺′ B � C.
(vi i i) If AU (0) < 0 and BL(0) > 0, then A ≺′ B, and if,

in addition, CL(0) > 0, then AC ≺′ BC.
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Proof An ordering index, based on Definition 5.1, can be
designed and employed as follows:

M(A, B) = Val(A) − Val(B) + (Amb(A)

−Amb(B))χ{0}(Val(A) − Val(B))

+(diam(B) − diam(A))χ{0}(Val(A)

−Val(B))χ{0}(Amb(A) − Amb(B)),

for all A, B ∈ F(R), where χU (t) =
{
1; t ∈ U
0; t /∈ U

, and U

is a subset of real numbers. In fact, it is easy to see that
A ≺′ B, if and only if M(A, B) < 0 and A ∼ B, if and only
if M(A, B) = 0. Then, the statement (i) is obvious and the
statement (i i) is simply resulted from which the inequality
M(A, B) ≤ 0 is equivalent to the inequality M(B, A) ≥ 0.

(i i i) Since A �′ B, that is, M(A, B) ≤ 0, then, only one
of the following is satisfied:

(a) Val(A) < Val(B), or
(b) Val(A) = Val(B) and Amb(A) < Amb(B), or
(c) Val(A) = Val(B), Amb(A) = Amb(B) and

diam(B) ≤ diam(A).
Similarly, since M(B,C) ≤ 0, only one of the following

is satisfied:
(a′) Val(B) < Val(C), or
(b′) Val(B) = Val(C) and Amb(B) < Amb(C), or
(c′) Val(B) = Val(C), Amb(B) = Amb(C) and

diam(C) ≤ diam(B).
Considering each one of cases (a), (b) and (c) with each

one of cases (a′), (b′) and (c′), it is easy to deduce that
M(A,C) ≤ 0.

(iv)Since the lower andupper functions of a fuzzynumber
are respectively non-decreasing and non-increasing and since
AU (0) < BL(0), we get

AL(α)+AU (α) ≤ 2AU (α)≤2AU (0)<2BL(0) ≤ 2BL(α)

≤ BL(α) + BU (α),

which gives

1∫

0

α
(
AL(α) + AU (α)

)
dα <

1∫

0

α
(
BL(α) + BU (α)

)
dα,

that is Val(A) < Val(B). Thus, A ≺′ B.
(v) In the ordering approach, by ordering≺′, ranking order

of A and B is solely dependent on the value M(A, B) and
has nothing to do with any other fuzzy number in S1 or S2.
Therefore, when A and B are ranked on S1 and S2, the same
ranking order will be obtained.

(vi) Since Val(A + B) = Val(A) + Val(B), Amb(A +
B) = Amb(A)+ Amb(B) and diam(A+ B) = diam(A)+
diam(B) for each A, B ∈ F(R), then, it is easy to obtain

that M(A + C, B + C) = M(A, B), which provides the
requirement result.

(vi i) There are E, F ∈ F(R) such that A = C + E and
B = C + F . So, A ≺′ B means C + E ≺′ C + F , which
implies E ≺′ F , by (vi).

(vi i i) It follows that AL(α) ≤ AU (α) < 0 and 0 <

BL(α) ≤ BU (α), which clearly give Val(A) < 0 and
Val(B) > 0. So, A ≺′ B. In addition, since CL(0) > 0,
then (AC)U (0) = AU (0)CL(0) < 0 and (BC)L(0) =
BL(0)CL(0) > 0, which give the requirement result. 
�

The statements (i) to (vi) of proposition 5.3 are respec-
tively the same as axioms A1 to A6, introduced in (Wang
and Kerre 2001), as the reasonable properties for an ordering
approach of fuzzy numbers. Then, the statements (i) to (vi)
of proposition 5.3 show that ordering ≺′ satisfies the reason-
able properties A1 to A6, respectively. Also, the other axiom
A7 is introduced in (Wang and Kerre 2001) which can be
expressed as follows:

A7: Let M be an ordering method with ordering ≺̂. Let
A, B,C ∈ F(R) and [C]α includes non-negative real num-
bers for any α ∈ [0, 1]. In this case, the condition A≺̂B
implies AC≺̂BC .

The following example shows the axiom A7 does not hold
under ordering ≺′.
Example 5.4 Consider three fuzzy numbers A, B and C with
[A]α = [2α2, 4 − α2], [B]α = [2√α, 4 − √

α] and [C]α =
[2α, 4−α], ∀α ∈ [0, 1]. We get Val(A) = 9

4 and Val(B) =
12
5 , So A ≺′ B. Although [C]α includes non-negative real
numbers for any α ∈ [0, 1], we have BC ≺′ AC , because

Val(AC) =
1∫

0

α
(
(2α2)(2α)+(4−α2)(4−α)

)
dα= 20

3
,

Val(BC)=
1∫

0

α
(
(2

√
α)(2α)+(4−√

α)(4−α)
)
dα = 682

105
.

Since the operator TC .V .A preserves the core, value and
ambiguity of fuzzy numbers, so it is order invariant under
ordering ≺′, means that

A ≺′ B ⇐⇒ TC .V .A(A) ≺′ TC .V .A(B).

The last relationship is an advantage of ordering ≺′ com-
paring to ordering ≺, as shown in the following example.

Example 5.5 Consider two fuzzy numbers A and B, as given
in Example 5.2. By using the case (i) of Corollary 3.7, we
obtain

TC .V .A(A) =
(
1

2
, 2, 6,

15

2

)
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and

TC .V .A(B) =
(
0,

9

4
,
823

140
,
271

35

)
.

By (9), we get

Fuz
(
TC .V .A(A)

) = 3

4
< Fuz

(
TC .V .A(B)

) = 36

35
.

Therefore, TC .V .A(A) ≺ TC .V .A(B), while according to
Example 5.2, the number A is equivalent to B, under ordering
≺.

The following result shows that the ordering ≺′ in the
space of fuzzy numbers is equivalent to the ordering ≺ in
the space of trapezoidal approximations, preserving the core,
value and ambiguity.

Theorem 5.6 Let A, B ∈ F(R). Then

A ≺′ B ⇐⇒ TC .V .A(A) ≺ TC .V .A(B).

Proof Consider A, B ∈ F(R) and suppose that Val(A) =
Val(B) and Amb(A) = Amb(B). We thus, get by (58)

Fuz
(
TC .V .A(A)

)

= 3

4

⎛

⎝2

1∫

0

αAU (α)dα − AU (1) − 2

1∫

0

αAL (α)dα + AL (1)

⎞

⎠

= 3

4

⎛

⎝2

1∫

0

αBU (α)dα − 2

1∫

0

αBL (α)dα − AU (1) + AL (1)

⎞

⎠

= 3

4
(�U (B) − �L (B)) + 3

4
(BU (1) − BL (1) − AU (1) + AL (1))

= Fuz
(
TC .V .A(B)

)
+ 3

4

(
diam[B]1 − diam[A]1) ,

which simply completes the proof. 
�

5.2 Trapezoidal approximation operator preserving
themost indicators of fuzzy numbers

If the decision-maker is willing to employ an approximation
operator which preserves the most indicators of fuzzy num-
bers, then, based on the results given in the previous section,
the operator T : F(R) → FT (R) can be proposed as fol-
lows:

T (A) =
⎧
⎨

⎩

T V .A.E I (A); A ∈ S,

TC .E I (A); A /∈ S.

(62)

However, this operator is not a continuous operator with
respect to distances DC .E I

m , DC .V .A
m and D, as it is shown

in Theorem 4 in (Ban and Coroianu 2011b) and Theorems
2.9 and 2.10.

5.3 Trapezoidal approximation algorithm
preserving themost indicators of fuzzy numbers
with the least ambiguity

Let us point out that the ambiguity parameter may be seen
as the global spread which represents the degree of the inac-
curacy of a fuzzy number. Based on the extension principle,
the use of a fuzzy number with large ambiguity in fuzzy
arithmetic leads to the increase of inaccuracy in the results.
Therefore, if the ambiguity parameter of a fuzzy number
is less than that of its approximation, then employing the
approximation is not suitable in fuzzy arithmetic. It is pos-
sible that the operator T , defined as (62), provides such an
approximate. In fact, for given fuzzy number A, if A /∈ S,
then by (47), we get

(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)

> AU (1) − AL(1) ≥ 0,

that results Amb(T (A)) = Amb
(
TC .E I (A)

)
> Amb(A), by

Theorem 4.17, (b). For overcome this shortcoming, we pro-
pose the following approximation algorithm, which gives us
a trapezoidal approximation with the least ambiguity, pre-
serving the most indicators of initial fuzzy number.

Algorithm
Take A ∈ F(R)

Step 1: If
(
2δU (A)− 3�U (A)

)− (
2δL(A)− 3�L(A)

)
>

AU (1)− AL(1), then apply operator TC .V .A given as α−cut
form (44), else

Step 2: If
(
2δU (A)−3�U (A)

)−(2δL(A)−3�L(A)
) ≤ 0,

then apply operator TC .E I given as α−cut form (45), else
Step 3: apply operator T V .A.E I given as α−cut form (46).
Now, we introduce some advantages of the trapezoidal

approximation operator given by the above algorithm with
respect to previous proposed approximation operators.

1. The trapezoidal approximation under present algo-
rithm contains more information of the fuzzy number under
study. The previous proposed algorithms are at most pre-
serve two characteristics of fuzzy numbers. For instance, the
trapezoidal approximation operator, preserving the value and
ambiguity dose not preserve the core parameter of any fuzzy
number, (see Examples 6 and 9, in (Ban et al. 2011)). Also,
the trapezoidal approximation operator, preserving expected
interval dose not preserve the value, and the ambiguity, in
general case (see Example 14, in (Ban 2008)).

2. The trapezoidal approximation under present algorithm
preserves the structure of fuzzy numbers. This means that, if
the fuzzy number under study A, is shaped like a trapezoid
(triangle) then the present algorithm gives us a trapezoidal
(triangular) approximation, too. Approximations such as tri-
angular (Abbasbandy et al. 2010) and semi-trapezoidal (Yeh
2011) do not have this feature (see Example 8.3, in (Abbas-
bandy et al. 2010) and Example 6.1, in (Yeh 2011)). Also,
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Fig. 1 Approximation related to fuzzy number B from Example 5.8

trapezoidal approximation operator, preserving the ambigu-
ity and the value, and trapezoidal approximation operator,
preserving the ambiguity do not preserve the structure of
fuzzy numbers (see Example 16, in (Ban et al. 2011) and
Example 11, in (Ban and Coroianu 2012)).

Finally, for the sake of better clarify the effect of present
approximation operator and algorithm, we give some com-
parative examples.

Example 5.7 (Brandas 2011). Consider the fuzzy number
A = (1, 100, 105, 200)2. The best trapezoidal approxima-
tion, preserving the core and the expected value under metric
D, introduced by Brandas 2011, is as follows:

TBr (A) = (40.6, 100, 105, 162).

We here obtain

(
2δU (A) − 3�U (A)

)− (
2δL(A) − 3�L(A)

)

= 194

15
> AU (1) − AL(1) = 5.

Then, the our Algorithm suggests the approximation
TC .V .A(A), which is the same as TBr (A), by using the case
(i) of Corollary 3.7.

Example 5.8 (Yeh 2008b). Consider the fuzzy number B =
(−1+ α2, 1− √

α), α ∈ [0, 1]. The nearest fuzzy number,
preserving the expected interval of B, which was obtained
by Yeh 2008, is as follows:

TY (B) =
(

−143

120
,− 7

60
,− 7

60
,
91

120

)
.

Since

(
2δU (B) − 3�U (B)

)− (
2δL(B) − 3�L(B)

) = − 1

10
,

then the ourAlgorithm suggests the following approximation

TC .E I (B) = (−4

3
, 0, 0,

2

3
),

by applying (22)-(25). Since

Val(B) = − 3

20
< Val

(
TC .E I (B)

) = −1

9

then B ≺′ TC .E I (B).
See Fig. 1 for the comparison these approximations.

Example 5.9 Consider two fuzzy numbersC = (1, 2, 4, 35)2
and D = (3α, 7 − 3α), α ∈ [0, 1]. The best trapezoidal
approximation, preserving the value and ambiguity of C is
found by Ban and et al. (Example 16, in (Ban et al. 2011)),
as follows:

TBa(C) =
(
7

5
, 2, 2,

133

5

)
.

Similarly, by using the case (i) of Theorem 7 or Corollary 8
in (Ban et al. 2011), it can be obtained that

TBa(D) = T V .A.E I (D) = (0.84, 2.8, 4.2, 6.16).

But, we have

(
2δU (C) − 3�U (C)

)− (
2δL(C) − 3�L(C)

)

= 32

15
> CU (1) − CL(1) = 2,

and

(
2δU (D) − 3�U (D)

)− (
2δL(D) − 3�L(D)

) = −0.39.

Thus, based on given Algorithm, we should, respectively,
consider TC .V .A(C) and TC .E I (D) as approximations of C
and D, that are

TC .V .A(C) =
(
7

5
, 2, 4,

113

5

)
,

and

TC .E I (D) = (0.64, 3, 4, 6.36),

by using (18)–(21) and the case (i i) of Corollary 3.7, respec-
tively.

One can notice that based on the ranking method, given
by Definition 5.1, the number TC .V .A(C) is equivalent to
C , and since diam[C]1 = 2 > diam[TBa(C)]1 = 0, then
C ≺′ TBa(C). Also, we result that

TC .E I (D) ≺′ TBa(D) ≺′ D,
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Fig. 2 Approximation related to fuzzy number C from Example 5.9
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Fig. 3 Approximation related to fuzzy number D from Example 5.9

by the following considerations
Val(TC .E I (D)) = Val(TBa(D)) = Val(D) = 3.5,
Amb(TC .E I (D)) = 1.29 < Amb(TBa(D)) = Amb(D)

= 1.35,
diam[D]1 = 1 < diam[TBa(D)]1 = 1.4.
See Figs. 2 and 3 for the comparison these results.

Example 5.10 (Ban andCoroianu2012).Let E = (1, 2, 3, 4)2.
The nearest trapezoidal fuzzy number which preserves the
ambiguity of E is given by Ban 2012, as follows:

TBa(E) =
(
19

15
,
31

15
,
44

15
,
56

15

)
.

We have

(
2δU (E) − 3�U (E)

)− (
2δL(E) − 3�L(E)

)

= 2

15
< EU (1) − EL(1) = 1.

Thus, the our Algorithm proposes the approximation
T V .A.E I (E), which is the same as TBa(E), by using the case
(i i i) of Corollary 3.7.

6 Conclusion and further research

In this paper we have exposed trapezoidal approximation
operators that are preserving the most indicators of fuzzy
numbers. It is shown that the obtained approximation oper-
ators have the important properties that are attributable to
an approximation operator of fuzzy numbers such as scale
invariance, identity, translation invariance, and nearness cri-
terion. The results of relationships between these operators
and their comparison are found.Moreover,wehave presented
some applications of obtained results with some comparative
examples.

For further research,we propose the study of other approx-
imation operators of fuzzy numbers such as the piecewise
linear approximation, symmetric trapezoidal approximation
and weighted trapezoidal approximation that are preserving
the most indicators of fuzzy numbers. In addition, apply-
ing the results of this paper in some scientific issues may be
interesting, for example, the fuzzy linear systems, fuzzy lin-
ear programming, fuzzy risk analysis, fuzzy error analysis,
etc.

Funding The authors have not disclosed any funding.

Data availability Enquiries about data availability should be directed to
the authors.

Declarations

Conflict of interest The author declares that he has no known competing
financial interests or personal relationships that could have appeared to
influence the work reported in this work.

Ethical approval The author certifies that this paper consists of origi-
nal, unpublished work which is not under consideration for publication
elsewhere and states that this article does not contain any studies with
human participants performed by the author.

References

Abbasbandy S, Ahmady E, Ahmady N (2010) Triangular approxima-
tions of fuzzy numbers using α-weighted valuations. Soft Comput
14:71–79

Abbasbandy S, Hajjiri T (2010) Weighted trapezoidal approximation-
preserving core of a fuzzy number. Comput Math Appl 59:3066–
3077

Allahviranloo T, Adabitabar FM (2007) Note on “Trapezoidal approx-
imation of fuzzy numbers“. Fuzzy Sets Syst 158:755–756

Amirfakhrian M (2010) Properties of the nearest parametric form
approximation operator of fuzzy numbers. An St Univ Ovidius
Constanta 18:23–34

Ban AI (2008) Approximation of fuzzy numbers by trapezoidal
fuzzy numbers preserving the expected interval. Fuzzy Sets Syst
159:1327–1344

BanAI, BrandasA,CoroianuL,NegrutiuC,NicaO (2011)Approxima-
tions of fuzzy numbers by trapezoidal fuzzy numbers preserving
the ambiguity and value. Comput Math Appl 61:1379–1401

123



Trapezoidal approximation operators preserving... 7105

Ban AI (2009) On the nearest parametric approximation of a fuzzy
number-revisited. Fuzzy Sets Syst 160:3027–3047

Ban AI (2009) Trapezoidal and triangular approximations of
fuzzy numbers-inadvertences and corrections. Fuzzy Sets Syst
160:3048–3058

Ban AI (2011) Remarks and corrections to the triangular approxima-
tions of fuzzy numbers using α-weighted valuations. Soft Comput
15:351–361

Ban AI, Coroianu LC, Grzegorzewski P (2011) Trapezoidal approxi-
mation and aggregation. Fuzzy Sets Syst 177:45–59

Ban AI, Coroianu LC (2011) Metric properties of the nearest extended
parametric fuzzy number and applications. Int J Approx Reason
52:488–500

Ban AI, Coroianu LC (2011) Discontinuity of the trapezoidal fuzzy
number-valued operators preserving core. Comput Math Appl
62:3103–3110

Ban AI, Coroianu LC (2012) Nearest interval, triangular and trape-
zoidal approximation of a fuzzy number preserving ambiguity. Int
J Approx Reason 53:805–836

Ban AI, Coroianu LC, Khastan A (2016) Conditioned weighted L-R
approximations of fuzzy numbers. Fuzzy Sets Syst 283:56–82

Bodjanova S (2005) Median value interval of a fuzzy number. Inform
Sci 172:73–89

Brandas A (2011) Approximation of fuzzy numbers by trapezoidal
fuzzy numbers preserving the core and the expected value. Stud
Univ Babes-Bolyai Math 56:247–259

Carlsson C, Fuller R (2001) On possibilistic mean value and variance
of fuzzy numbers. Fuzzy Sets Syst 122:315–326

Chanas S (2001) On the interval approximation of a fuzzy number.
Fuzzy Sets Syst 122:353–356

DelgadoM,VilaMA,VoxmanW (1998)A fuzzinessmeasure For fuzzy
numbers: applications. Fuzzy Sets Syst 94:205–216

DelgadoM, Vila MA, VoxmanW (1998) On a canonical representation
of fuzzy numbers. Fuzzy Sets Syst 93:125–135

Dubois D, Prade H (1987) The mean value of a fuzzy number. Fuzzy
Sets Syst 24:279–300

Grzegorzewski P,MrowkaE (1998)Metrics and orders in space of fuzzy
numbers. Fuzzy Sets Syst 97:83–94

Grzegorzewski P, Mrowka E (2005) Trapezoidal approximations of
fuzzy numbers. Fuzzy Sets Syst 153:115–135

Grzegorzewski P, Mrowka E (2007) Trapezoidal approximations of
fuzzy numbers -revisited. Fuzzy Sets Syst 158:757–768

Grzegorzewski P (2008) Trapezoidal approximations of fuzzy numbers
preserving the expected interval-Alghoritms and properties. Fuzzy
Sets Syst 159:1354–1364

Grzegorzewski P (2002) Nearest interval approximation of fuzzy num-
bers. Fuzzy Sets Syst 130:321–330

Grzegorzewski P (2008) New algorithms for trapezoidal approximation
of fuzzy numbers preserving the expected interval. IPMU 08:117–
123

Heilpern S (1992) The expected value of a fuzzy number. Fuzzy Sets
Syst 47:81–86

Joshi R, Kumar S (2017) A new exponential fuzzy entropy of order-
(α,β) and its application in multiple attribute decision-making
problems. Commun Math Stat 5:213–229

Joshi R, Kumar S (2018) An (R, S)-norm fuzzy information measure
with its applications inmultiple attribute decisionmaking. Comput
Appl Math 37:2943–2964

Nasibov EN, Peker S (2008) On the nearest parametric approximation
of a fuzzy number. Fuzzy Sets Syst 159:1365–1375

Puri M, Ralescu D (1983) Differentials of fuzzy functions. J Math Anal
Appl 91:552–558

VanegasaMC, Blochb I, Ingladac J (2016) Fuzzy constraint satisfaction
problem for model-based image interpretation. Fuzzy Sets Syst
286:1–29

Wang X, Kerre EE (2001) Reasonable properties for the ordering of
fuzzy quantities (I). Fuzzy Sets Syst 118:375–385

Wang YM, Yang JB, Xu DL, Chin KS (2006) On the centroids of fuzzy
numbers. Fuzzy Sets Syst 157:919–926

Yeh CT (2007) A note on trapezoidal approximation of fuzzy numbers.
Fuzzy Sets Syst 158:747–754

Yeh C.T (2009) Approximations by interval, triangular and trapezoidal
fuzzy numbers, IFSA-EUSFLAT, 143-148

YehCT (2017) Existence of interval, triangular, and trapezoidal approx-
imations of fuzzy numbers under a general condition. Fuzzy Sets
Syst 310:1–13

YehCT (2008)On improving trapezoidal and triangular approximations
of fuzzy numbers. Internat J Approx Reason 48:297–313

Yeh CT (2008) Trapezoidal and triangular approximations preserving
the expected interval. Fuzzy Sets Syst 159:1345–1353

Yeh CT (2011) Weighted semi-trapezoidal approximations of fuzzy
numbers. Fuzzy Sets Syst 165:61–80

Yeh CT (2009) Weighted trapezoidal and triangular approximations of
fuzzy numbers. Fuzzy Sets Syst 160:3059–3079

ZengW, Li H (2007)Weighted triangular approximation of fuzzy num-
bers. Int J Approx Reason 46:137–150

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Trapezoidal approximation operators preserving the most indicators of fuzzy numbers-relationships and applications
	Abstract
	1 Introduction
	1.1 Importance and related works
	1.2 Objective
	1.3 Novelties

	2 Preliminaries
	3 Approximations preserving most indicators of fuzzy numbers
	4 Concepts, Common properties and Comparisons
	4.1 Concepts
	4.2 Common properties
	4.3 Comparisons

	5 Applications
	5.1 Ranking fuzzy numbers based on the parameters core, value and ambiguity
	5.2 Trapezoidal approximation operator preserving the most indicators of fuzzy numbers
	5.3 Trapezoidal approximation algorithm preserving the most indicators of fuzzy numbers with the least ambiguity

	6 Conclusion and further research
	References




