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Abstract
Predicting energy demand plays an important role in devising energy development plans for cities and countries. Available

data on energy demand usually consist of a nonlinear real-valued sequence, but the samples are often derived from

uncertain assessments without satisfying any statistical assumptions. This study thus establishes interval grey prediction

models without statistical assumptions by using data intervals to represent uncertainty in energy demand forecasting. The

proposed prediction models first apply nonlinear regression analysis using neural networks to determine the interval data.

The models then employ grey prediction to derive the tendency of the upper and lower limits of energy demand. Finally,

the best non-fuzzy performance value can be further obtained for each time point using the estimated upper and lower

limits. The advantage of the proposed models is that hyper-parameter settings involving residual modification and machine

learning are not a serious problem, and the construction is simple enough to implement as a computer program without any

statistical assumptions. The forecasting accuracy of the proposed models was verified using actual energy demand data.

The results showed that the proposed grey-prediction-based models using functional-link nets to modify residuals per-

formed well compared to other interval grey prediction models.
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1 Introduction

The U.S. Energy Information Administration (2019) in

International Energy Outlook 2019 projects that world

energy consumption will grow by nearly 50% between

2018 and 2050. Undoubtedly, the constant growth of

energy consumption and the requirement for more accurate

forecasts of energy demand enable the forecast of energy

demand to play a significant role in devising energy

development plans. However, although available energy

demand data usually consist of a sequence of real values

collected from a given time period, any single value is

imprecise. Furthermore, the data often fail to satisfy any

statistical assumptions (Moonchai and Chutsagulprom

2020; Suganthi and Samuel 2012; Xu et al. 2017). Insofar

as available data are often derived from uncertain assess-

ments, we were motivated to address energy demand

forecasting with uncertain observations. In practice, data

intervals ought to be estimated to represent uncertainty and

imprecision (Zeng et al. 2014; Xie et al. 2014). Grey pre-

diction models have drawn our attention because they do

not require that data conform to statistical assumptions (Liu

and Lin 2010; Liu et al. 2017). In the face of these prob-

lems of uncertainty and statistical assumptions, we were

inspired to develop interval grey prediction models for

energy demand. Two issues are thus addressed by this

study.

The first issue we address is how to establish nonlinear

interval models (NIMs). Nonlinear interval regression

analysis is an effective method because it is highly capable

of dealing with uncertain and imprecise data (Huang et al.

1998; Jeng et al. 2003; Neto and Carvalho 2017). Given

that neural networks (NNs) can represent nonlinear map-

pings, several studies indicate that a NIM can be effec-

tively established using two NNs to find the upper and
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lower limits of a data interval from a given dataset. Related

studies include fuzzy regression with radial basis function

networks (Cheng and Lee 2001), functional-link nets

(FLNs) for nonlinear interval regression analysis (Hu

2009), interval regression analysis using neural networks

(Huang et al. 1998), support vector interval regression

(Hwang et al. 2006), fuzzy regression using fuzzified NNs

(Ishibuchi and Nii 2001), and fuzzy regression analysis

(Ishibuchi and Tanaka 1992).

The second issue we are concerned about is how to deal

with that the available data often do not adhere to any

statistical assumption. Compared with artificial intelligence

techniques and statistical time series models, such as the

machine learning techniques (Cankurt and Subas, 2015),

improved models based on NNs (Lauret et al. 2008; Niu

et al. 2012; Ruiz et al. 2019; Xia et al. 2010; Yang et al.

2016), an ant colony optimization approach (Toksari

2009), and a framework for volatile behaviour in net

electricity consumption (Tutun and Chou 2015), grey

prediction models not only have the advantage of charac-

terizing an unknown system using limited samples, but also

do not require data to be in line with any statistical

assumption. A first-order grey model with one variable

(GM(1,1)) is the most frequently used time series model

among grey prediction models for short-term prediction

problems (Hu 2021; Liu et al. 2017). It turns out that the

mechanism of nonlinear interval regression analysis using

NNs and the GM(1,1) model can be helpful for solving the

problems we address.

Despite the usefulness of the GM(1,1) model, residual

modification is often employed to improve its prediction

accuracy by incorporating predicted residuals obtained

from the residual GM(1,1) model to revise the predicted

values from the original GM(1,1) model (Deng 1982; Hu

2020; Hu et al. 2019; Liu et al. 2017). The common focus

of the residual GM(1,1) model is residual sign estimation,

such as grey predictions for the global integrated circuit

industry (Hsu 2003), improved models for power demand

forecasting (Hsu and Chen 2003), applications in relation

to the trans-Pacific air passenger market (Hsu and Wen

1998), and energy consumption forecasting using genetic

programming (Lee and Tong 2011). To further improve

prediction performance of the GM(1,1) models, Hu (2017)

developed an effective residual modification model,

FLNGM(1,1), by using FLNs with effective function

approximation capability (Pao 1989, 1992; Park and Pao

2000) to estimate the modification range of each predicted

residual. In the light of this, we studied applying the

GM(1,1) and FLNGM(1,1) models to generate the upper

and lower limits for energy demand after the interval data

for model fitting have been determined by nonlinear

interval regression analysis.

Thus far, little attention has been paid to develop

interval grey prediction models, with some exceptions such

as the interval grey number prediction model (IGNPM) by

Zeng et al. (2010), the grey number grey modification

model (GGMM(1,1)) by Shih et al. (2011), and the interval

GM(1,1) (I-GM(1,1)) and nonlinear grey Bernoulli

GM(1,1) model (I-NGBM(1,1)) by Chen et al. (2019). This

study aims to develop the grey-prediction-based NIMs to

deal with the uncertainty arising from available energy

demand data that are not likely to follow any statistical

assumption. We first apply nonlinear interval regression

analysis to convert the real-valued data to interval ones.

Next, we developed NIMs using GM(1,1) and

FLNGM(1,1) to derive the overall tendency of the upper

and lower limits. With the best non-fuzzy performance

(BNP) values determined by the upper and lower limits for

individual time points, the forecasting performance of the

proposed interval models was verified using actual energy

demand data. The results showed that the proposed interval

models with FLNGM(1,1) performed well compared to

other interval grey prediction models.

The remainder of the paper is organized as follows.

Section 2 introduces nonlinear interval regression analysis

using NNs, and Sect. 3 demonstrates the GM(1,1) and

FLNGM(1,1) models. Then, in Sect. 4 we present our

proposed grey-prediction-based NIMs. Section 5 examines

the prediction accuracy of the proposed models using real

cases of energy demand. Finally, Sect. 6 discusses the

outcomes and presents conclusions.

2 Nonlinear interval regression analysis
using NNs

A flow chart of the proposed grey-prediction-based NIMs

is shown in Fig. 1. To build the proposed model, the first

step was to find the interval data for model fitting using

nonlinear interval regression with NNs. This was followed

by the development of nonlinear models, consisting of

upper and lower grey models (UGM and LGM), with grey

prediction from the GM(1,1) and FLNGM(1,1). The BNP

value was then determined for each time point.

In view of the capability of NNs for nonlinear regres-

sion, Ishibuchi and Tanaka (1992) employed two multi-

layer perceptrons (MLPs), NNu and NNl, to enhance the

usefulness of interval regression analysis, where NNu and

NNl are involved in determining the upper and lower limits

of an NIM, respectively. The principle of this approach is

that an NIM can be derived from two NNs. The mathe-

matical formulations in this section are based on those in

Ishibuchi and Tanaka (1992).
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2.1 Interval regression analysis

Let an original data sequence xð0Þ = (x
ð0Þ
1 ,x

ð0Þ
2 ,…,x

ð0Þ
n ) be

provided by one system consisting of n samples, and dp
denote the desired output at the p-th time point denoted by

tp (p = 1, 2,…, n). In consequence, (t1, d1), (t2, d2),…, and

(tn, dn) constitute a model-fitting dataset for NNu and NNl,

where (tp, dp) is the p-th input–output pattern at tp. Also, let

guðtÞ and glðtÞ be the output functions corresponding to t

from NNu and NNl, respectively. A nonlinear optimization

problem is formulated to determine a NIM as follows:

Minimize ðguðt1Þ � g1ðt1ÞÞ þ ðguðt2Þ � g1ðt2ÞÞ þ :::
þ ðguðtnÞ � g1ðtnÞÞ ð1Þ

subject to g1ðtpÞ � dp � guðtpÞ; p ¼ 1; 2; :::; n: ð2Þ

The objective of the above formulation is to determine

the NIM with the least sum of the widths of the predicted

intervals subject to the condition that the estimated data

interval includes all the given input–output pairs.

2.2 Determining upper and lower limits

The following cost function Eu with weighting scheme xpu

is used to determine guðtÞ:

Eu ¼
Xn

p¼1

1

2
xpuðdp � guðtpÞÞ

2 ð3Þ

where xpu is defined as

xpu ¼
1;ifdp [ guðtpÞ
x;ifdp � guðtpÞ

n
: ð4Þ

To determine glðtÞ, the cost function El is defined as

El ¼
Xn

p¼1

1

2
xplðyp � glðtpÞÞ

2 ð5Þ

where weighting scheme xpl is defined as

xpl ¼
1;ifdp\glðtpÞ
x;ifdp � glðtpÞ

n
ð6Þ

and where x is a small positive value in the interval (0,

1). The data interval determined by the two NNs approx-

imately includes all the given data. For simplicity, we here

omit the back-propagation (BP) learning algorithms

derived by gradient descent to determine guðtÞ and glðtÞ.
For an NN-based NIM (NN-NIM), the BNP value for

x
ð0Þ
k is viewed as a representative point denoted by ~gðtpÞ
between two borders. Thus, ~gðtpÞ can be the centre of both

limits (Sun et al. 2016):

~gðtpÞ ¼ 1=2ðguðtpÞ þ g1ðtpÞÞ; p ¼ 1; 2; ::::; n: ð7Þ

3 GM(1,1) and FLNGM(1,1)

This section briefly introduces the GM(1,1) and

FLNGM(1,1). The mathematical formulations in Sects. 3.1

and 3.2 are based on those in Liu et al. (2017) and Hu

(2017), respectively.

Find interval data using
neural networks

Construct the UGM using 
grey prediction to produce the 
estimated upper limits

Data collection

Construct the LGM using 
grey prediction to produce the 
estimated lower limits

Compute the BNP value using the 
estimated upper and lower limits

Fig. 1 A flow chart of the

proposed grey-prediction-based

nonlinear interval models
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3.1 GM(1,1)

The main computational steps to construct a GM(1,1)

model include the following: computing the accumulated

generating operation (AGO), determining the developing

coefficient and control variable, and computing of the

inverse accumulated generating operation (IAGO). Ini-

tially, a new sequence, xð1Þ = (x
ð1Þ
1 ,x

ð1Þ
2 ,…,x

ð1Þ
n ), can be

generated from xð0Þ by the AGO as follows:

x
ð1Þ
k ¼

Xk

j¼1

x
ð0Þ
k ; k ¼ 1; 2; . . .; n ð8Þ

and x
ð1Þ
1 ,x

ð1Þ
2 ,…,x

ð1Þ
n can then be approximated by a first-

order differential equation,

dxð1Þ

dt
þ a xð1Þ ¼ b ð9Þ

where a and b are the developing coefficient and control

variable, respectively.

The predicted value for x
ð1Þ
k is obtained by solving the

differential equation with the initial condition x
ð1Þ
1 = x

ð0Þ
1 :

bxð1Þk ¼ x
ð0Þ
1 � b

a

� �
e�a k�1ð Þ þ b

a
ð10Þ

a and b can then be estimated by means of the grey

difference equations:

x
ð0Þ
k þ az

ð1Þ
k ¼ b; k ¼ 2; 3; . . .; n ð11Þ

where z
ð1Þ
k is defined as

z
ð1Þ
k ¼ ax

ð1Þ
k þ ð1�aÞxð1Þk�1 ð12Þ

where the interpolation coefficient a is usually specified as

0.5. a and b can be obtained using the ordinary least

squares (OLS):

½a; b�T ¼ BTB
� ��1

BTy ð13Þ

where

B ¼

�z
ð1Þ
2 1

�z
ð1Þ
3 1

..

. ..
.

�z
ð1Þ
n 1

2
66664

3
77775

ð14Þ

and

y ¼ ½xð0Þ2 ; x
ð0Þ
3 ; :::; xð0Þn �T: ð15Þ

Using the IAGO, the predicted value of x
ð0Þ
k is

x̂
ð0Þ
k ¼ x̂

ð1Þ
k � x̂

ð1Þ
k�1; k ¼ 2; 3; :::; n: ð16Þ

Therefore,

bxð0Þk ¼ ð1� eaÞ bxð0Þk � b

a

� �
e�a k � 1ð Þ; k ¼ 2; 3; . . .; n:

ð17Þ

Note that x̂
ð1Þ
1 = x̂

ð0Þ
1 holds.

Let x
ð0Þ
k denote the predicted value of x

ð0Þ
k . The mean

absolute percentage error (MAPE), which can be treated as

the benchmark to evaluate the prediction performance (Lee

and Shih, 2011; Makridakis, 1993), is formulated as

MAPE ¼ 1

n

X

k¼1::n

x
ð0Þ
k � x

0ð0Þ
k

���
���

x
ð0Þ
k

� 100%: ð18Þ

Here x
0ð0Þ
k is equal to x̂

ð0Þ
k .

Further, both the quasi-smoothness condition and the

quasi-exponential law can be used to verify whether the

GM(1,1) and its variants can be built on a generating

sequence. For xð1Þ, qk is defined as

qk ¼
x
ð0Þ
k

x
ð1Þ
k�1

; K ¼ 2; 3; :::; n: ð19Þ

xð1Þ satisfies the quasi-smoothness condition when qk-
[ [0, 0.5) (k C 3). Then, rk is defined as

rk ¼
x
ð1Þ
k

x
ð1Þ
k�1

; k ¼ 2; 3; . . .; n: ð20Þ

xð1Þ satisfies the quasi-exponential law when rk [ [d1,
d2] (k C 3), where d2 - d1 = 0.5.

3.2 FLNGM(1,1)

To construct the FLNGM(1,1) model, the original GM(1,1)

model is constructed first, followed by the residual

GM(1,1) model. Let eð0Þ = (eð0Þ2 , eð0Þ3 ,…, eð0Þn ) denote the

sequence of absolute residual values, where

eð0Þk ¼ x
ð0Þ
k � x̂

ð0Þ
k

���
���; k ¼ 2; 3; . . .; n: ð21Þ

Using the same construction as the original GM(1,1)

model, a residual model can be established for eð0Þ, and the

predicted residual of eð0Þk is

êð0Þk ¼ ð1�eaeÞ ðeð0Þ2 � be
ae
Þ e�aeðk�1Þ; k ¼ 3; 4; . . .; n ð22Þ

where ae and be are the developing coefficient and the

control variable, respectively.

Let wj (j = 1, 2,…, 5) be the connection weights, and h
be the bias to the output node. By presenting an enhanced

pattern, (k, sin(pk), cos(pk), sin(2pk), cos(2pk)) with

respect to x
ð0Þ
k , to the FLN, the corresponding actual output

value yk is
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yk ¼ tanhðw1k þ w2sinðpkÞ þ w3cosðpkÞ þ w4sinð2pkÞ
þ w5cosð2pkÞ þ hÞ

ð23Þ

where - 1 B yk B 1, and tanh denotes the hyperbolic

tangent function,

tanðzÞ ¼ ez � e�z

ez þ e�z
: ð24Þ

Based on the concept of three-sigma limits (Mont-

gomery 2005), the predicted value x̂
ð0Þ
kFLN

by the

FLNGM(1,1) model is formulated as follows:

x̂
ð0Þ
kFLN

¼ x̂
ð0Þ
k þ 3yk ê

ð0Þ
k ; k ¼ 2; 3; :::; n ð25Þ

where 3 êð0Þk refers to the data within the three residuals

from x̂
ð0Þ
k and represents the tolerable maximum range for

modifying x̂
ð0Þ
k . Hu (2017) used a genetic algorithm (GA) to

determine the parameter specifications of an FLN to con-

struct an FLNGM(1,1) model with high prediction accu-

racy. The reciprocal of the MAPE with x
0ð0Þ
k = x̂

ð0Þ
kFLN

is used

as the fitness function.

In particular, since six-sigma limits have been widely

applied to quality management (Harry and Schroeder

2006), this inspired us to incorporate sigma between three

and six into the rule of producing x̂
ð0Þ
kFLN as

x̂
ð0Þ
kFLN

¼ x̂
ð0Þ
k ¼ syk ê

ð0Þ
k ; k ¼ 2; 3; :::; n ð26Þ

where s is an adjustment coefficient such that s = 3, 4, 5, 6.

The effect of this new updating rule on the prediction

accuracy was examined in an empirical study, as described

in Sect. 5.

4 The proposed grey-prediction-based NIMs

After training NNu and NNl, two new data sequences were

created: x
ð0Þ
u by NNu and x

ð0Þ
l by NNl for the upper and

lower limits, respectively, where x
ð0Þ
u = (guðt1Þ,guðt2Þ,…,

guðtnÞ) = (x
ð0Þ
u;1,x

ð0Þ
u;2,…,x

ð0Þ
u;n), and x

ð0Þ
l = (glðt1Þ,glðt2Þ,…,

glðtnÞ) = (x
ð0Þ
l;1 ,x

ð0Þ
l;2 ,…,x

ð0Þ
l;n ). As a result, the estimation of

each available sample was automatically extended from a

single point to an interval. Sections 4.1 and 4.2 describe the

construction of the proposed GM-NIM and FLNGM-NIM,

respectively. Section 4.3 describes our evaluation of the

prediction accuracy.

4.1 Constructing the GM-NIM

To predict the tendency of guðtÞ, a GM(1,1) model called

‘‘upper GM(1,1)’’ (UGM(1,1)) was constructed using x
ð0Þ
u

such that the predicted value of x
ð0Þ
u;k is

x̂
ð0Þ
u;k ¼ ð1�eauÞ x

ð0Þ
u;1�

bu
au

� �
e�auðk�1Þ; k ¼ 2; 3; . . .; n:

ð27Þ

The other GM(1,1) model called ‘‘lower GM(1,1)’’

(LGM(1,1)) was constructed using x
ð0Þ
l to predict the ten-

dency of glðtÞ such that the predicted value of x
ð0Þ
l;k is

x̂
ð0Þ
l;k ¼ ð1�eal Þ x

ð0Þ
l;1�

bl
al

� �
e�alðk�1Þ; k ¼ 2; 3; . . .; n: ð28Þ

Notably, UGM(1,1) and LGM(1,1) constitute the GM-

NIM. The BNP value ~x
ð0Þ
k for x

ð0Þ
k can be formulated as:

~x
ð0Þ
k ¼ 1=2ðx̂ð0Þu;k þ x̂

ð0Þ
l;k Þ; k ¼ 1; 2; . . .; n ð29Þ

4.2 Constructing the FLNGM-NIM

In contrast to the GM-NIM, the FLNGM-NIM comprises

two FLNGM(1,1) models: one is a kind of UGM, the upper

FLNGM(1,1) (UFLNGM(1,1)); the other is a kind of LGM,

the lower FLNGM(1,1) (LFLNGM(1,1)). The predicted

value x̂
ð0Þ
u;kFLN

with respect to x
ð0Þ
u by the UFLNGM(1,1) is

derived as follows:

x̂
ð0Þ
u;kFLN

¼ x̂
ð0Þ
u;k þ syu;k̂

ð0Þ
u;k ; k ¼ 2; 3; . . .; n ð30Þ

where - 1 B yu,k B 1, and êð0Þu;k is

êð0Þu;k ¼ ð1�eau;eÞ ðeð0Þu;2�
bu;e
au;e

Þe�au;eðk�1Þ; k ¼ 3; 4; . . .; n:

ð31Þ

For x
ð0Þ
l the predicted value x̂

ð0Þ
l;kFLN by the LFLNGM(1,1)

is as follows:

x̂
ð0Þ
l;kFLN ¼ x̂

ð0Þ
l;k þ syl;k ê

ð0Þ
l;k ; k ¼ 2; 3; . . .; n ð32Þ

where - 1 B yl,k B 1, and êð0Þl;k is

êð0Þl;k ¼ ð1�eal;eÞ ðeð0Þl;2�
bl;e
al;e

Þ e�al;eðk�1Þ; k ¼ 3; 4; . . .; n: ð33Þ

Therefore, UFLNGM(1,1) and LFLNGM(1,1) constitute

the FLNGM-NIM. The BNP value ~x
ð0Þ
kFLN for x

ð0Þ
k can be

formulated as:

~x
ð0Þ
kFLN ¼ 1=2ðx̂ð0Þu;kFLN

þ x̂
ð0Þ
l;kFLN

Þ; k ¼ 1; 2; . . .; n: ð34Þ
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5 Experiments

Experiments were conducted using real datasets to com-

pare the energy demand forecasting capability of the pro-

posed grey-prediction-based NIMs to that of other interval

grey prediction models. To evaluate the prediction accu-

racy of an interval model, the MAPE in Sect. 3.1 was taken

into account by replacing x
0ð0Þ
k with the BNP value with

respect to x
ð0Þ
k .

5.1 Parameter settings

Two kinds of parameters are addressed for the proposed

interval models: one is the parameters that can be auto-

matically determined by learning algorithms including

a and b in GM(1,1) and connection weights in FLN, the

other is the hyper-parameters used to control the learning

process (Kunche and Reddy 2016), including the adjust-

ment coefficient in the rule of producing new forecasts,

learning rate and configuration of NNs (the number of

hidden units and the number of hidden layers), and GA

parameters.

Since it is reasonable to tune these hyper-parameters by

following the suggestions of the related studies, the hyper-

parameters involving the construction of the proposed

NIMs are given as follows:

(1) In terms of NNs, this study followed parameter

settings and the network architecture mentioned in

Ishibuchi and Tanaka (1992). The reason is that the

construction of NIMs using two MLPs is the

foundation of this study. It turns out that we assigned

0.25 and 0.9 to the learning and momentum rates,

respectively, and used 10,000 iterations to train an

MLP with an incremental mode. Besides, an MLP

had a single input, five hidden units, a single output,

and one hidden layer.

(2) As for the GA parameters involving the construction

of the FLNGM(1,1), as suggested by Hu (2017), we

assigned 1000, 200, 0.7, and 0.01 to the number of

generations, population size, crossover, and mutation

probabilities, respectively.

(3) About the adjustment coefficient, we examined how

s in the new updating rule influences the forecasting

accuracy of the proposed FLNGM-NIM. Figures 2

and 3 depict the MAPEs of the proposed FLNGM-

NIM for model fitting and ex post testing, respec-

tively. Figure 2 indicates that the prediction accuracy

for model fitting was not sensitive to s. We can see

that the MAPE trended down with an increase in

s. Even though Fig. 3 shows that s has a certain

impact on the prediction accuracy in ex post testing,

especially with regard to the total energy demand in

China, this did not seem to be a serious problem. For

each dataset, the proposed FLNGM-NIM with the

smallest MAPE for model fitting was used as a

comparison with the other prediction models. There-

fore, the proposed FLNGM-NIM with s = 5

(MAPE = 4.32), 6 (MAPE = 2.56), and 6 (MAPE =

1.52) were considered for predictions of the elec-

tricity demand in China, energy demand in China,

and energy demand in Taiwan, respectively.

Altogether, the settings of hyper-parameters are not a

serious problem for the construction of the proposed NIMs.

5.2 Considered interval grey prediction models

Besides NN-NIM, the considered interval grey prediction

models including IGNPM (Zeng et al. 2010), GGMM(1,1)

(Shih et al. 2011), and I-NGBM(1,1) (Chen et al. 2019) are

briefly described below. The mathematical formulations in

this section are based on those shown in the corresponding

studies. It is noted that IGNPM and GGMM(1,1) are free of

hyper-parameters, because they simply apply the OLS to

derive the required parameters. Despite that the I-

NGBM(1,1) optimized interpolation coefficient, develop-

ing coefficient, and control variable, it is free of hyper-

parameters as well. As mentioned above, the NN-NIM is

constructed by applying the BP algorithm to optimize

connection weights of MLPs with the specification for the

values of several hyper-parameters.

(1) IGNPM: The principle of the IGNPM is that

estimating the upper (x̂
ð0Þ
u;1, x̂

ð0Þ
u;2,…, x̂

ð0Þ
u;n) and lower

(x̂
ð0Þ
l;1 , x̂

ð0Þ
l;2 ,…, x̂

ð0Þ
l;n ) limits can be determined by

several grey number layers and the middle point of

each grey number layer’s middle position line. The

area of the k-th grey number layer s
ð0Þ
k is defined as

s
ð0Þ
k ¼

x
ð0Þ
u;k � x

ð0Þ
l;k þ x

ð0Þ
u;kþ1 � x

ð0Þ
l;kþ1

2
: ð35Þ

A GM(1,1) can be set up using the sequence

(s
ð0Þ
1 ,s

ð0Þ
2 ,…,s

ð0Þ
n�1) where ŝ

ð0Þ
k is defined as

ŝ
ð0Þ
k ¼ ð1�easÞ s

ð0Þ
1 � bs

as

� �
e�asðk�1Þ; k ¼ 2; 3; . . .; n� 1:

ð36Þ

A formulation with respect to x̂
ð0Þ
u;k - x̂

ð0Þ
l;k can then be

further derived as
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x̂
ð0Þ
u;k � x̂

ð0Þ
1;k ¼

2ð1� easÞðsð0Þ1 � bs
asÞe�asðk�2Þð1� ð�easÞk�2Þ
1þ eas

þ ð�1Þkðxð0Þu;2 � x
ð0Þ
l;2 Þ:

ð37Þ

The middle point w
ð0Þ
k of the k-th grey number layer’s

middle position line is defined as

w
ð0Þ
k ¼

x
ð0Þ
u;k þ x

ð0Þ
l;k þ x

ð0Þ
u;kþ1 þ x

ð0Þ
l;kþ1

4
: ð38Þ

Subsequently, the sequence (w
ð0Þ
1 ,w

ð0Þ
2 ,…,w

ð0Þ
n�1) is used

to construct a GM(1,1) such that ŵ
ð0Þ
k is defined as

ŵ
ð0Þ
k ¼ ð1�eawÞ ðwð0Þ

1 � bw
aw

Þ e�awðk�1Þ; k ¼ 2; 3; . . .; n� 1:

ð39Þ

A formulation with respect to x̂
ð0Þ
u;k ? x̂

ð0Þ
l;k can then be

further derived as

x̂
ð0Þ
u;k þ x̂

ð0Þ
1;k ¼

4ð1� eawÞðwð0Þ
1 � bw

aw
Þe�awðk�2Þð1� ð�eawÞk�2Þ
1þ eaw

þ ð�1Þkðxð0Þu;2 þ x
ð0Þ
l;2 Þ:

ð40Þ

Thus, x̂
ð0Þ
u;k and x̂

ð0Þ
l;k can be obtained using both x̂

ð0Þ
u;k - x̂

ð0Þ
l;k

and x̂
ð0Þ
u;k ? x̂

ð0Þ
l;k . In particular, both x

ð0Þ
u and x

ð0Þ
l generated

from two MLPs are used to construct IGNPM as well,

because IGNPM required available sequences to be inter-

val-valued.

(2) GGMM(1,1): For a sequence x
ð0Þ
m = (x

ð0Þ
m ,x

ð0Þ
mþ1,…,

x
ð0Þ
n ) = (x

ð0Þ
m;1,x

ð0Þ
m;2,…,x

ð0Þ
m;n�mþ1) (1 B m B n - 3),

x
ð0Þ
m;1 is replaced with x

ð1Þ
n to obtain x̂

ð0Þ
m;k to capture

the latest tendency (Dang et al. 2004):

x̂
ð0Þ
m;k ¼ ð1�eamÞ ðxð1Þn � bm

am
Þ e�amðk�nÞ; k

¼ 2; 3; . . .; n� mþ 1: ð41Þ

Since there are m different sequences, x̂
ð0Þ
u;k and x̂

ð0Þ
l;k are

defined as

x̂
ð0Þ
u;k ¼ max

1::r
fx̂ð0Þm;kg ð42Þ

x̂
ð0Þ
l;k ¼ max

1::r
fx̂ð0Þm;kg ð43Þ

where r = min{k, m}. In particular, am and bm are estimated

by a grey difference equation:

x
ð0Þ
m;k þ amz

ð1Þ
k ¼ bm ð44Þ

where z
ð1Þ
k is defined as

Fig. 2 MAPE of the FLNGM-

NIM with different adjustment

coefficients for model fitting

Fig. 3 MAPE of the FLNGM-

NIM with different adjustment

coefficients for ex post testing
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z
ð1Þ
k ¼ x

ð0Þ
k

ln
x
ð0Þ
k

x
ð0Þ
k�1

þ x
ð1Þ
k � ðxð0Þk Þ2

x
ð0Þ
k � x

ð0Þ
k�1

: ð45Þ

The BNP values for IGNPM and GGMM(1,1) are the

same as those for the GM-NIM.

(3) I-NGBM(1,1): A linear regression line is created by

x
ð0Þ
1 ,x

ð0Þ
2 ,…,x

ð0Þ
n , and they are then separated into two

sequences. Those data whose residuals are positive

form the upper wrapping sequence

x
ð0Þ
u0 = (x

ð0Þ
u0;1,x

ð0Þ
u0;2,…,x

ð0Þ
u0;n1

), and the other data consti-

tute the lower wrapping sequence

x
ð0Þ
l0 = (x

ð0Þ
l0;1,x

ð0Þ
l0;2,…,x

ð0Þ
l0;n2

), where n1 ? n2 = n. A lin-

ear regression line ut (t = 1, 2,…), generated by

x̂
ð0Þ
u0;2,x̂

ð0Þ
u0;3,…,x̂

ð0Þ
u0;n1

obtained from the GM(1,1) model,

can be used to estimate the upper limits. Likewise,

x̂
ð0Þ
l0;2,x̂

ð0Þ
l0;3,…,x̂

ð0Þ
l0;n2

can be used to generate a linear

regression line lt to estimate the lower limits. It turns

out that ut and lt constitute the I-NGBM(1,1). The I-

NGBM(1,1) can be set up with the optimized

NGBM(1,1), a variant of GM(1,1) (Wang et al.

(2011). The BNP value fk for x
ð0Þ
k can be formulated

as

fk ¼ 1=2ðlk þ ukÞ; k ¼ 1; 2; . . .; n: ð46Þ

5.3 Applications to energy demand forecasting

5.3.1 Data description

Three real cases of energy demand were considered in the

empirical study. The first and second experiments (Cases I

and II) were conducted based on historical annual elec-

tricity and energy demand in China, using data from the

China Statistical Yearbook, 2017. The third experiment

(Case III) was conducted based on historical annual energy

demand in Taiwan, using data from the Taiwan Energy

Bureau. In each case, data from 2001 to 2012 were used for

model fitting, and data from 2013 and 2014 were used for

ex post testing.

China is very iconic because it uses the most energy in

Asia. Because of global warming, China’s energy policy

not only impacts China’s own sustainable development, but

it also hugely influences the global energy distribution.

China’s 13th Five-Year Plan (FYP) for the development of

energy was released by the Chinese National Energy

Administration in 2017, and it reflected China’s determi-

nation to overcome environmental problems, such as car-

bon emission, resulting from economic growth and

increasing energy demand. Energy consumption in China

has been mainly satisfied by fossil fuels (National Bureau

of Statistics of China 2016). However, the 13th FYP

anticipates primary energy consumption derived from coal

decreasing from its current proportion of 62% to 58%.

Undoubtedly, energy demand prediction plays a significant

role in devising energy development plans for China.

With the horizontal axis denoting the serial number of

each sample, the results of the quasi-smoothness condition

and quasi-exponential law are shown in Figs. 4, 5 and 6.

For xð1Þ, x
ð1Þ
u , and x

ð1Þ
l in each case, we can see that only q3

was slightly greater than 0.5, such that the quasi-smooth-

ness condition was almost satisfied. Furthermore, the quasi-

exponential law was almost met. Therefore, it was appro-

priate to apply the GM(1,1) and its variants to work on the

generating sequences in each case.

5.3.2 Case I: Electricity demand of China

The forecasting results obtained from the different pre-

diction models for China’s historical annual electricity

demand are summarized in Tables 1 and 2. The real data

are shown in the column titled ‘‘Actual’’. Table 1 shows

that the MAPEs of NN-NIM, GM-NIM, IGNPM,

GGMM(1,1), I-NGBM(1,1), and FLNGM-NIM for model

fitting were 5.00, 7.16, 9.32, 4.98, 11.48, and 6.43%,

respectively. In ex post testing, the MAPEs of NN-NIM,

GM-NIM, IGNPM, GGMM(1,1), I-NGBM(1,1), and

FLNGM-NIM were 5.92, 8.69, 8.09, 2.70, 5.41, and 2.46%,

respectively. Table 2 summarizes the predictive accuracy

obtained by applying the point forecasting models includ-

ing MLP, the GM(1,1), the autoregressive integrated

moving average (ARIMA), and the FLNGM(1,1) to the

original data sequence.

The results presented in Tables 1 and 2 show that the

FLNGM(1,1) outperformed the other prediction models

considered for model fitting. Furthermore, the FLNGM-

NIM was superior to the other grey prediction models

considered for ex post testing. Although the FLNGM-NIM

was slightly inferior to the FLNGM(1,1) for model fitting,

ex post testing is the primary norm used to examine the

predictive power of a forecasting model.

Table 2 includes the results obtained by the simple

linear regression (SLR) as well. We can see that the SLR

performed well and outperformed the other prediction

models considered for ex post testing. It was found that the

t-statistics of the regression coefficient (year) is 20.79

which is highly significant at the 5% level. However, a

nonstationary series can give rise to the spurious regression

(Montgomery et al. 2008). That is, the results obtained by

the SLR become meaningless statistically for a nonsta-

tionary series. In Cases II and III, the results obtained by

the SLR still have the problem with spurious regression.
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5.3.3 Case II: Total energy demand of China

The forecasting results obtained from the different pre-

diction models for China’s total energy consumption are

summarized in Tables 3 and 4. Table 3 shows the MAPEs

of the different NIMs. The MAPEs of the NN-NIM, GM-

NIM, IGNPM, GGMM(1,1), I-NGBM(1,1), and FLNGM-

NIM for model fitting were 2.14, 4.78, 8.12, 8.88, 4.49, and

2.56%, respectively. In ex post testing, the MAPEs of NN-

NIM, GM-NIM, IGNPM, GGMM(1,1), I-NGBM(1,1), and

FLNGM-NIM were 3.23%, 8.74%, 9.80%, 4.51%, 3.27%,

and 1.01%, respectively. Table 4 shows the forecasting

results obtained by applying MLP, ARIMA, GM(1,1), and

FLNGM(1,1) to the original data sequence.

Fig. 4 a The quasi-smoothness condition for Case I. b The quasi-exponential law for Case I

Fig. 5 a The quasi-smoothness condition for Case II. b The quasi-exponential law for Case II

Fig. 6 a The quasi-smoothness condition for Case III. b The quasi-exponential law for Case III
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Tables 3 and 4 show that the results obtained using the

NN were better than those obtained using the other pre-

diction models considered for model fitting, and that the

proposed FLNGM-NIM was superior to the other predic-

tion models considered for ex post testing. Table 4 also

includes the results obtained by the SLR with the highly

significant t-statistics with respect to the year (29.24) at the

5% level.

Table 1 Prediction accuracy obtained by different interval models for China electricity demand (unit: 100 million kWh)

Year Actual NN-NIM GM-NIM IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-NIM

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE

2001 14,633.46 14,300.67 2.27 14,300.67 2.27 16,390.77 12.01 14,633.46 0.00 17,480.72 19.46 14,300.67 2.27

2002 16,331.45 16,896.3 3.46 19,918.03 21.96 16,896.3 3.46 17,100.29 4.71 20,267.14 24.10 16,961.64 3.86

2003 19,031.60 19,869.09 4.40 21,914.41 15.15 24,537.58 28.93 20,285.82 6.59 23,053.57 21.13 21,264.71 11.73

2004 21,971.38 23,127.66 5.26 24,112.97 9.75 21,084.28 4.04 22,267.95 1.35 25,840 17.61 23,304.19 6.07

2005 24,940.32 26,568.33 6.53 26,534.39 6.39 29,148.86 16.87 23,979.10 3.85 28,626.43 14.78 25,844.27 3.62

2006 28,587.97 30,087.24 5.24 29,201.5 2.15 26,161.65 8.49 26,167.56 8.47 31,412.86 9.88 28,675.50 0.31

2007 37,211.80 33,590.06 9.73 32,139.49 13.63 34,739.44 6.64 31,033.86 16.60 34,199.29 8.10 31,792.50 14.56

2008 34,541.35 36,997.67 7.11 35,376.16 2.42 32,317.31 6.44 35,095.77 1.61 36,985.72 7.08 35,069.15 1.53

2009 37,032.14 40,248.17 8.68 38,942.18 5.16 41,517.28 12.11 36,746.24 0.77 39,772.15 7.40 38,477.49 3.90

2010 41,934.49 43,296.46 3.25 42,871.42 2.23 39,780.23 5.14 39,545.96 5.70 42,558.57 1.49 41,983.04 0.12

2011 47,000.88 46,112.69 1.89 47,201.26 0.43 49,734.53 5.82 43,678.58 7.07 45,345 3.52 45,569.75 3.04

2012 49,762.64 48,680.08 2.18 51,972.95 4.44 48,828.04 1.88 48,243.27 3.05 48,131.43 3.28 49,351.45 0.83

MAPE 5.00 7.16 9.32 4.98 11.48 4.32

2013 54,203.41 50,992.52 5.92 57,232.05 5.59 59,696.86 10.13 53,064.90 2.10 50,917.86 6.06 53,707.08 0.92

2014 56,383.69 53,052.18 5.91 63,028.87 11.79 59,797.33 6.05 58,246.18 3.30 53,704.29 4.75 58,639.40 4.00

MAPE 5.92 8.69 8.09 2.70 5.41 2.46

Table 2 Prediction accuracy obtained by point forecasting models for China electricity demand (unit: 100 million kWh)

Year Actual MLP ARIMA GM(1,1) FLNGM(1,1) LR

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE

2001 14,633.46 16,398.85 12.06 14,633.46 0.00 14,633.46 0.00 14,633.46 0.00 13,091.30 10.54

2002 16,331.45 17,533.93 7.36 14,937.32 8.54 18,481.63 13.17 16,297.24 0.21 16,362.27 0.19

2003 19,031.60 19,207.48 0.92 18,984.30 0.25 20,423.29 7.31 18,832.58 1.05 19,633.24 3.16

2004 21,971.38 21,518.08 2.06 22,888.61 4.17 22,568.94 2.72 21,733.65 1.08 22,904.20 4.25

2005 24,940.32 24,483.08 1.83 26,655.28 6.88 24,940.00 0.00 25,027.63 0.35 26,175.17 4.95

2006 28,587.97 28,004.94 2.04 30,289.16 5.95 27,560.17 3.60 28,482.36 0.37 29,446.14 3.00

2007 37,211.80 31,880.39 14.33 33,794.93 9.18 30,455.61 18.16 31,923.40 14.21 32,717.11 12.08

2008 34,541.35 35,855.23 3.80 37,177.11 7.63 33,655.24 2.57 35,316.92 2.25 35,988.08 4.19

2009 37,032.14 39,694.69 7.19 40,440.06 6.61 37,191.02 0.43 38,720.22 4.56 39,259.04 6.01

2010 41,934.49 43,231.85 3.09 43,587.98 3.94 41,098.26 1.99 42,211.10 0.66 42,530.01 1.42

2011 47,000.88 46,379.42 1.32 46,624.93 0.80 45,415.99 3.37 45,941.81 2.25 45,800.98 2.55

2012 49,762.64 49,114.49 1.30 49,554.81 0.42 50,187.34 0.85 50,241.02 0.96 49,071.95 1.39

MAPE 4.78 4.53 4.51 2.33 4.48

2013 54,203.41 51,454.11 5.07 52,381.41 3.36 55,459.96 2.32 55,406.60 2.22 52,342.91 3.43

2014 56,383.69 53,434.01 5.23 55,108.35 2.26 61,286.52 8.70 61,445.34 8.98 55,613.88 1.37

MAPE 5.15 2.81 5.51 5.60 2.40
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5.3.4 Case III: Energy demand of Taiwan

The forecasting results obtained from the different pre-

diction models are summarized in Tables 5 and 6. Table 5

shows the MAPEs of the different NIMs. The MAPEs of

the NN-NIM, GM-NIM, IGNPM, GGMM(1,1),

I-NGBM(1,1), and FLNGM-NIM for model fitting were

1.47, 2.06, 4.07, 3.83, 2.55, and 1.52%, respectively. In ex

post testing, the MAPEs of NN-NIM, GM-NIM, IGNPM,

GGMM(1,1), I-NGBM(1,1), and FLNGM-NIM were 3.58,

Table 3 Prediction accuracy obtained by different interval models for China energy demand (unit: 10.4 TCE)

Year Actual NN-NIM GM-NIM IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-NIM

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE Predicted APE

2001 155,547 155,192.3 0.23 155,192.3 0.23 155,192.3 0.23 155,547.0 0.00 176,110.3 13.22 155,192.3 0.23

2002 169,577 179,166.6 5.66 204,220.9 20.43 179,166.6 5.66 181,873.0 7.25 196,836 16.07 179,055.6 5.59

2003 197,083 204,882.3 3.96 219,078.6 11.16 245,988.9 24.81 205,972.0 4.51 217,561.8 10.39 214,854.1 9.02

2004 230,281 231,240.3 0.42 235,017.6 2.06 210,298.1 8.68 226,111.9 1.81 238,287.6 3.48 234,816.6 1.97

2005 261,369 257,237.5 1.58 252,116.6 3.54 279,400 6.90 237,579.5 9.10 259,013.4 0.90 257,359.4 1.53

2006 286,467 282,082.5 1.53 270,460.1 5.59 246,155.6 14.07 243,364.6 15.05 279,739.1 2.35 280,511.9 2.08

2007 311,442 305,239.6 1.99 290,138.5 6.84 317,883.1 2.07 238,889.8 23.30 300,464.9 3.52 302,932.5 2.73

2008 320,611 326,413.2 1.81 311,249.1 2.92 287,456.7 10.34 202,225.8 36.92 321,190.7 0.18 324,366.0 1.17

2009 336,126 345,498.4 2.79 333,896.3 0.66 362,208.4 7.76 330,565.5 1.65 341,916.5 1.72 344,537.6 2.50

2010 360,648 362,525.4 0.52 358,191.7 0.68 335,027.6 7.10 349,885.9 2.98 362,642.2 0.55 363,172.1 0.70

2011 387,043 377,609.6 2.44 384,255.5 0.72 413,262.7 6.77 374,269.3 3.30 383,368 0.95 380,334.6 1.73

2012 402,138 390,914.0 2.79 412,216.4 2.51 389,820.3 3.06 399,611.6 0.63 404,093.8 0.49 396,270.4 1.46

MAPE 2.14 4.78 8.12 8.88 4.49 2.56

2013 416,913 402,622.7 3.43 442,212.5 6.07 472,067.4 13.23 426,246.3 2.24 424,819.5 1.90 412,051.7 1.17

2014 425,806 412,923.8 3.03 474,392.0 11.41 452,930.9 6.37 454,703.4 6.79 445,545.3 4.64 429,438.7 0.85

MAPE 3.23 8.73 9.80 4.51 3.27 1.01

Table 4 Prediction accuracy obtained by point forecasting models for China energy demand (unit: 10.4 TCE)

Year Actual MLP ARIMA GM(1,1) FLNGM(1,1) LR

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE

2001 155,547 153,991.4 1.00 155,547.0 0.00 155,547 0.00 155,547.0 0.00 158,965.3 2.20

2002 169,577 174,080.0 2.66 165,288.4 2.53 199,729.7 17.78 171,845.2 1.34 181,855.4 7.24

2003 197,083 199,580.0 1.27 176,837.9 10.27 215,113.7 9.15 205,310.2 4.17 204,745.6 3.89

2004 230,281 227,262.3 1.31 189,194.4 17.84 231,682.7 0.61 224,675.2 2.43 227,635.7 1.15

2005 261,369 253,609.9 2.97 202,414.3 22.56 249,527.8 4.53 244,595.4 6.42 250,525.8 4.15

2006 286,467 277,251.0 3.22 216,557.9 24.40 268,747.4 6.19 266,787.4 6.87 273,415.9 4.56

2007 311,442 298,977.4 4.00 231,689.8 25.61 289,447.4 7.06 288,855.8 7.25 296,306.1 4.86

2008 320,611 320,261.7 0.11 247,879.0 22.69 311,741.8 2.77 311,139.2 2.95 319,196.2 0.44

2009 336,126 342,082.6 1.77 265,199.5 21.10 335,753.4 0.11 334,025.6 0.62 342,086.3 1.77

2010 360,648 364,493.4 1.07 283,730.2 21.33 361,614.5 0.27 357,940.6 0.75 364,976.4 1.20

2011 387,043 386,718.4 0.08 303,555.7 21.57 389,467.5 0.63 383,719.8 0.86 387,866.6 0.21

2012 402,138 407,554.8 1.35 324,766.6 19.24 419,465.9 4.31 411,508.0 2.33 410,756.7 2.14

MAPE 1.73 17.43 4.45 3.00 2.82

2013 416,913 425,857.6 2.15 347,459.5 16.66 451,774.8 8.36 441,824.7 5.98 433,646.8 4.01

2014 425,806 440,879.5 3.54 371,738.1 12.70 486,572.3 14.27 475,173.2 11.59 456,536.9 7.22

MAPE 2.84 14.68 11.32 8.78 5.62
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0.95, 3.73, 1.33, 1.23, and 0.62%, respectively. Table 6

shows the forecasting results obtained by applying MLP,

ARIMA, GM(1,1), and FLNGM(1,1) to the original data

sequence.

Tables 5 and 6 show that the results obtained using the

FLNGM(1,1) were better than those obtained using the

other prediction models considered for model fitting, and

that the proposed FLNGM-NIM and GM-NIM were

superior to the other prediction models considered for ex

Table 5 Prediction accuracy obtained by different interval models for Taiwan energy demand (unit: 10.4 kLOE)

Year Actual NN-NIM GM-NIM IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-NIM

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE

2001 91,333.4 92,222.6 0.97 92,222.6 0.97 92,222.6 0.97 91,333.4 0.00 98,075.8 7.38 92,222.6 0.97

2002 95,385.9 96,977.9 1.67 101,567.3 6.48 96,977.9 6.48 97,463.4 2.18 99,653.7 4.47 97,293.0 2.00

2003 99,252.5 100,972.1 1.73 102,859.1 3.63 107,376.6 3.63 100,689.8 1.45 101,231.6 1.99 102,674.8 3.45

2004 103,553.3 104,180.7 0.61 104,167.4 0.59 99,487.7 0.59 104,298.3 0.72 102,809.4 0.72 104,082.3 0.51

2005 105,700.9 106,626.1 0.88 105,492.3 0.20 109,917.2 0.20 106,626.8 0.88 104,387.3 1.24 105,739.0 0.04

2006 107,773.8 108,398.4 0.58 106,834.2 0.87 102,059.5 0.87 109,862.2 1.94 105,965.2 1.68 107,027.0 0.69

2007 113,024.6 109,638.7 3.00 108,193.1 4.27 112,520.6 4.27 110,826.3 1.95 107,543.1 4.85 108,561.3 3.95

2008 109,819.2 110,493.4 0.61 109,569.4 0.23 104,694.8 0.23 106,287.3 3.22 109,121.0 0.64 109,684.5 0.12

2009 107,677 111,082.4 3.16 110,963.3 3.05 115,188.4 3.05 100,195.6 6.95 110,698.9 2.81 110,919.9 3.01

2010 114,368 111,492.4 2.51 112,374.9 1.74 107,395.3 1.74 143,562.3 25.53 112,276.8 1.83 111,582.0 2.44

2011 113,105.3 111,781.6 1.17 113,804.6 0.62 117,922.0 0.62 113,244.6 0.12 113,854.7 0.66 112,783.4 0.28

2012 112,870.8 111,988.6 0.78 115,252.5 2.11 110,162.6 2.11 114,043.2 1.04 115,432.6 2.27 113,733.0 0.76

MAPE 1.47 2.06 4.07 3.83 2.55 1.52

2013 115,893.7 112,138.8 3.24 116,718.8 0.71 120,723.2 4.17 114,553.4 1.16 117,010.5 0.96 115,153.0 0.64

2014 116,826.5 112,249.1 3.92 118,203.9 1.18 112,998.2 3.28 115,079.3 1.50 118,588.3 1.51 116,136.7 0.59

MAPE 3.58 0.95 3.73 1.33 1.23 0.62

Table 6 Prediction accuracy obtained by point forecasting models for Taiwan energy demand (unit: 10.4 kLOE)

Year Actual MLP ARIMA GM(1,1) FLNGM(1,1) LR

Forecast APE Forecast APE Forecast APE Forecast APE Forecast APE

2001 91,333.4 92,243.1 1.00 91,333.4 4.24 91,333.4 0.00 91,333.4 0.00 95,762.7 4.85

2002 95,385.9 94,827.3 0.59 95,203.1 4.60 100,267.5 5.12 95,373.6 0.01 97,652.3 2.38

2003 99,252.5 99,289.9 0.04 99,774.9 4.03 101,798.4 2.57 100,707.4 1.47 99,541.9 0.29

2004 103,553.3 103,431.8 0.12 103,256.6 2.27 103,352.8 0.19 103,386.4 0.16 101,431.5 2.05

2005 105,700.9 106,385.7 0.65 105,907.9 2.11 104,930.8 0.73 105,760.3 0.06 103,321.0 2.25

2006 107,773.8 108,411.0 0.59 107,927.1 1.57 106,533.0 1.15 107,746.0 0.03 105,210.6 2.38

2007 113,024.6 109,834.3 2.82 109,464.7 2.11 108,159.6 4.30 109,331.4 3.27 107,100.2 5.24

2008 109,819.2 110,865.3 0.95 110,635.7 1.56 109,811.1 0.01 110,512.3 0.63 108,989.8 0.76

2009 107,677 111,630.7 3.67 111,527.4 4.21 111,487.7 3.54 111,319.5 3.38 110,879.3 2.97

2010 114,368 112,208.7 1.89 112,206.5 1.44 113,190.0 1.03 111,880.9 2.17 112,768.9 1.40

2011 113,105.3 112,649.6 0.40 112,723.6 0.01 114,918.3 1.60 112,416.1 0.61 114,658.5 1.37

2012 112,870.8 112,987.4 0.10 113,117.5 0.48 116,672.9 3.37 113,133.8 0.23 116,548.1 3.26

MAPE 1.07 7.16 1.97 1.00 2.43

2013 115,893.7 113,145.8 2.37 113,417.4 1.79 118,454.36 2.21 114,147.6 1.51 118,437.6 2.20

2014 116,826.5 113,302.8 3.02 113,645.8 2.72 120,263.00 2.94 115,479.3 1.15 120,327.2 3.00

MAPE 2.70 2.26 2.58 1.33 2.60
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post testing. Also, the results obtained by the SLR with the

highly significant t-statistics with respect to the year (6.94)

at the 5% level are shown in Table 6. The SLR performed

moderately but the results have the problem arising from

the spurious regression.

5.3.5 Statistical analysis

Figure 7 shows the ex post testing results for different

prediction models. We employed the nonparametric

Friedman test, recommended by Demšar (2006), for sta-

tistical analysis of the interval grey prediction models

considered over the datasets for ex post testing. The dis-

tribution-free Friedman test ranks the prediction models for

each dataset separately, with the best method ranked as 1,

the second best ranked as 2, and so on. Average ranks are

assigned in the case of ties.

Let rj denote the average rank of the j-th model (j = 1,

2,…, 6). With the null hypothesis, (r1 = r2 = … = r6),

statistic FF distributed according to the F distribution with

k1 - 1 and (k1 - 1)(k2 - 1) degrees of freedom is for-

mulated as follows:

FF ¼ ðk2 � 1Þv2F
k2ðk1 � 1Þ � v2F

ð47Þ

where k1 and k2 are the number of models and the number

of data sequences, respectively, and v2F is the Friedman

statistic. The average ranks of individual models are shown

in Table 7. Since the Friedman statistic of 10.25 was

greater than the critical value of F(5, 10) = 3.33 at the 5%

level, the null hypothesis was rejected. This means that

there was a significant difference among the interval grey

prediction models considered. From the perspective of

average ranks, the proposed FLNGM-NIM was superior to

the other interval models considered.

6 Discussion and conclusions

Energy management is a significant issue for economic

growth and environmental security (Suganthi and Samuel

2012). Because of the uncertain and imprecise nature of the

available energy demand data, interval estimation can be

used to represent these data and provide useful information.

This study used a simplified version of fuzzy regression

analysis (Tanaka, 1987; Tanaka et al. 1982), namely,

interval regression analysis, to provide the interval data.

Because the available energy demand data usually exhibit

nonlinear tendencies, the NN-NIM created by two two-

layer NNs was taken into account.

Energy demand forecasting can be regarded as a grey

system problem (Pi et al. 2010; Suganthi and Samuel,

2012), because factors such as income and population

influence energy demand. As such, the precise manner of

the effect is unclear. Therefore, it is reasonable to apply

grey prediction to energy demand forecasting. Grey pre-

diction models have played an important role in energy

demand prediction, because they require only a few sam-

ples to construct a prediction model, and the samples do

not need to satisfy particular statistical assumptions. Thus,

we combined grey prediction with the interval data esti-

mated by two NNs, namely, the GM(1,1) and FLNGM(1,1)

models, to develop two new NIMs: the GM-NIM and the

FLNGM-NIM. Furthermore, a new updating rule for the

FLNGM-NIM was presented with six-sigma limits. We

found that the MAPE for model fitting and ex post testing

improved when s was greater than three. It is thus rea-

sonable to expect more accurate predictions when s is

appropriately adjusted.

As for the computing time analysis, since the considered

interval grey prediction models are constructing on the

basis of GM(1,1), the total number of GM(1,1) that can be

generated by individual interval models is a basis of

comparing the time complexity.

(1) As far as the construction of a GM(1,1), because

OLS dominates the construction, the time

Fig. 7 Forecasting performance

of different prediction models
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complexity is O(n3). Since IGNPM, GGMM(1,1),

and I-NGBM(1,1) have to establish two GM(1,1),

nine GM(1,1), and two NGBM(1,1), respectively, the

time complexity of constructing each of them is

O(n3).

(2) Next, the proposed GM-NIM involves training of

two MLPs by the BP algorithm and the establishment

of two GM(1,1) including UGM(1,1) and LGM(1,1).

Let m1 and m2 denote the number of hidden nodes

and iterations used to train an MLP, respectively.

The time complexity of constructing the GM-NIM

turns out to be O(n3 ? m1m2).

(3) Finally, the proposed FLNGM-NIM involves train-

ing of two MLPs, the establishment of two GM(1,1)

and two residual GM(1,1), and the construction of

UFLNGM(1,1) and LFLNGM(1,1) by GA. Let m3

and m4 denote the number of generations and

population size in GA, respectively. As a result,

compared to the other interval models considered,

the construction of the FLNGM-NIM has a higher

time complexity, O(n3 ? m1m2 ? m3m4n).

Real energy demand data were used to evaluate the

forecasting performance of the proposed GM-NIM and

FLNGM-NIM. The results showed that the proposed

FLNGM-NIM provided satisfactory prediction accuracy,

and that it was superior to the other grey prediction models

considered for ex post testing using energy demand data

from China and Taiwan. In some economies, the FLNGM-

NIM can be helpful to facilitate energy plans. For instance,

almost 98% of Taiwan’s energy is imported, and its cost

reaches 13%–15% of the gross domestic product. Fur-

thermore, the supply of energy is currently highly

dependent on the importation of fossil fuels, which is the

leading cause of high carbon dioxide emissions.

In addition to the MAPE, a variant of the MAPE by

naive predicted values (MAPEN) can be further used to

evaluate the forecasting capability, formulated as follows:

MAPEN ¼
X

k¼n1::n2

x
ð0Þ
k � x0

ð0Þ
k

���
���

x
ð0Þ
k

/
X

k¼n1::n2

x
ð0Þ
k � x0

ð0Þ
k

���
���

x
ð0Þ
k

ð48Þ

where x
ð0Þ
1 = x

ð0Þ
0 and x

ð0Þ
k�1 is treated as the naive predicted

value of x
ð0Þ
k . In the experiments for model fitting, n1 and n2

are 1 and 12, respectively; while n1 and n2 are 13 and 14,

respectively, for ex post testing. For a prediction model, its

MAPEN is less than one which indicates that using its

predicted values is better than simply using naive predicted

values. The smaller the MAPEN, the better forecasting

capability a prediction model has. From Tables 8, 9 and 10,

we can see that the MAPENs of the proposed FLNGM-

NIM for model fitting and ex post testing were all less than

one. Compared with the other prediction models consid-

ered, the MAPENs of the proposed FLNGM-NIM for ex

post testing were encouraging.

Additionally, there are some issues that remain for

future study. First, the FLN used the hyperbolic tangent

function, which assumed the additivity property of inter-

action among the individual variables in the enhanced

pattern. Because the criteria are not always independent

(Hu 2009; Jiang et al. 2021; Onisawa et al. 1986; Wang

et al. 2005), we will explore the ability of a non-additive

version of the FLNGM(1,1) to forecast energy demand.

Second, as mentioned above, several factors can influence

predictions. Therefore, we will look into developing

Table 7 Average ranks of

individual interval models
Phase Model

NN-NIM GM-NIM IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-NIM

Average rank 3.67 (r1) 4.33 (r2) 5.67 (r3) 3.33 (r4) 3 (r5) 1 (r6)

Table 8 MAPEN of different prediction models for China electricity demand

Phase Model

Model fitting NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

0.468 0.670 0.872 0.466 1.074 0.404

NN ARIMA GM(1,1) FLNGM(1,1)

0.447 0.424 0.422 0.218

Ex post testing NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

0.982 1.441 1.342 0.448 0.897 0.408

NN ARIMA GM(1,1) FLNGM(1,1)

0.854 0.466 0.914 0.929
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multivariate grey prediction models (MGPMs) by com-

bining the proposed grey-prediction-based NIMs with the

GM(1, N) model. The GM(1, N) model with N variables is

fundamental to MGPMs and has been widely applied to

time series forecasting (Hu et al. 2021; Liu et al. 2017).

Third, in addition to energy demand, there are other

important prediction problems, such as predicting carbon

dioxide emissions. In fact, accurate forecasts of carbon

dioxide emissions are crucial when formulating public

policy (Wang and Ye 2017). Indeed, our experimental

results demonstrated the applicability of the proposed

FLNGM-NIM to other prediction problems.
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Demšar J (2006) Statistical comparisons of classifiers over multiple

data sets. J Mach Learn Res 7:1–30

Harry MJ, Schroeder R (2006) Six sigma: the breakthrough manage-

ment strategy revolutionizing the world’s top corporations.

Crown Business

Table 9 MAPEN different prediction models for China energy demand

Phase Model

Model fitting NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

0.285 0.636 1.081 1.182 0.598 0.341

NN ARIMA GM(1,1) FLNGM(1,1)

0.230 2.320 0.592 0.399

Ex post testing NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

1.147 3.100 3.480 1.601 1.161 0.359

NN ARIMA GM(1,1) FLNGM(1,1)

1.008 5.213 4.200 3.118

Table 10 MAPEN different prediction models for Taiwan energy demand

Phase Model

Model fitting NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

0.535 0.750 1.481 1.394 0.928 0.553

NN ARIMA GM(1,1) FLNGM(1,1)

0.389 2.605 0.717 0.364

Ex post testing NN-

NIM

GM-

NIM

IGNPM GGMM(1,1) I-NGBM(1,1) FLNGM-

NIM

2.102 0.558 2.190 0.781 0.722 0.364

NN ARIMA GM(1,1) FLNGM(1,1)

1.585 1.327 1.515 0.781

Nonlinear interval regression analysis with neural networks and… 6543

123



Hsu CC, Chen CY (2003) Applications of improved grey prediction

model for power demand forecasting. Energy Convers Manage

44:2241–2249

Hsu CI, Wen YU (1998) Improved Grey prediction models for trans-

Pacific air passenger market. Transp Plan Technol 22:87–107

Hsu LC (2003) Applying the grey prediction model to the global

integrated circuit industry. Technol Forecast Soc Change

70(6):563–574

Hu YC (2009) Functional-link nets with genetic-algorithm-based

learning for robust nonlinear interval regression analysis.

Neurocomputing 72(7–9):1808–1816

Hu YC (2017) Grey prediction with residual modification using

functional-link net and its application to energy demand

forecasting. Kybernetes 46(2):349–363

Hu YC, Jiang P, Lee PC (2019) Forecasting tourism demand by

incorporating neural networks into Grey-Markov models. J Op

Res Soc 70(1):12–20

Hu YC (2020) Energy demand forecasting using a novel remnant

GM(1,1) model. Soft Comput 24(18):13903–13912

Hu YC (2021) Forecasting the demand for tourism using combina-

tions of forecasts by neural network-based interval grey predic-

tion models. Asia Pacific J Tour Res 26(12):1350–1363

Hu YC, Jiang P, Jiang H, Tsai JF (2021) Bankruptcy prediction using

multivariate grey prediction models. Grey Syst: Theor Appl

11(1):46–62

Huang L, Zhang BL, Huang Q (1998) Robust interval regression

analysis using neural networks. Fuzzy Sets Syst 97:337–347

Hwang C, Hong DH, Seok KH (2006) Support vector interval

regression machine for crisp input and output data. Fuzzy Sets

Syst 157:1114–1125

Ishibuchi H, Tanaka H (1992) Fuzzy regression analysis using neural

networks. Fuzzy Sets Syst 50:257–265

Ishibuchi H, Nii M (2001) Fuzzy regression using asymmetric fuzzy

coefficients and fuzzified neural networks. Fuzzy Sets Syst

119:273–290

Jeng JT, Chuang CC, Su SF (2003) Support vector interval regression

networks for interval regression analysis. Fuzzy Sets Syst

138:283–300

Jiang P, Wang WB, Hu YC, Chiu YJ, Tsao SR (2021) Pattern

classification using tolerance rough sets based on nonadditive

grey relational analysis and DEMATEL. Grey Syst: Theor Appl

11(1):166–182

Kunche P, Reddy KVVS (2016) Metaheuristic applications to speech

enhancement. Springer

Lauret P, Fock E, Randrianarivony RN, Manicom-Ramasamy JF

(2008) Bayesian neural network approach to short time load

forecasting. Energy Convers Manage 49:1156–1166

Lee SC, Shih LH (2011) Forecasting of electricity costs based on an

enhanced gray-based learning model: a case study of renewable

energy in Taiwan. Technol Forecast Soc Chang 78:1242–1253

Lee YS, Tong LI (2011) Forecasting energy consumption using a grey

model improved by incorporating genetic programming. Energy

Convers Manage 52:147–152

Liu S, Lin Y (2010) Grey information: theory and practical

applications. Springer-Verlag

Liu S, Yang Y, Forrest J (2017) Grey data analysis: methods models

and applications. Springer

Makridakis S (1993) Accuracy measures: theoretical and practical

concerns. Int J Forecast 9(4):527–529

Montgomery DC (2005) Statistical quality control. Wiley

Montgomery DC, Jennings CL, Kulahci M (2008) Introduction to

time series analysis and forecasting. Wiley

Moonchai S, Chutsagulprom N (2020) Short-term forecasting of

renewable energy consumption: augmentation of a modified

grey model with a Kalman filter. Appl Soft Comput 84:105994

National Bureau of Statistics of China (2016), China Statistical

Yearbook 2016, Beijing, China Statistics Press

Neto EDL, Carvalho FDD (2017) Nonlinear regression applied to

interval-valued data. Pattern Anal Appl 20(3):809–824

Niu DX, Shi HF, Wu DD (2012) Short-term load forecasting using

bayesian neural networks learned by Hybrid Monte Carlo

algorithm. Appl Soft Comput 12:1822–1827

Onisawa T, Sugeno M, Nishiwaki MY, Kawai H, Harima Y (1986)

Fuzzy measure analysis of public attitude towards the use of

nuclear energy. Fuzzy Sets Syst 20:259–289

Pao YH (1989) Adaptive pattern recognition and neural networks.

Addison-Wesley

Pao YH (1992) Functional-link net computing: theory, system

architecture, and functionalities. Computer 25(5):76–79

Park GH, Pao YH (2000) Unconstrained word-based approach for off-

line script recognition using density-based random-vector func-

tional-link net. Neurocomputing 31(1–4):45–65

Pi D, Liu J, Qin X (2010) A grey prediction approach to forecasting

energy demand in China. Energy Sourc, Part a: Recovery, Utiliz

Environ Effects 32:1517–1528

Ruiz LGB, Capel MI, Pegalajar MC (2019) Parallel memetic

algorithm for training recurrent neural networks for the energy

efficiency problem. Appl Soft Comput 76:356–368

Shih CS, Hsu YT, Yeh J, Lee YP (2011) Grey number prediction

using the grey modification model with progression technique.

Appl Math Model 35(3):1314–1321

Suganthi L, Samuel AA (2012) Energy models for demand forecast-

ing-a review. Renew Sustain Energy Rev 16:1223–1240

Sun X, Sun W, Wang J, Gao Y (2016) Using a Grey-Markov model

optimized by Cuckoo search algorithm to forecast the annual

foreign tourist arrivals to China. Tour Manage 52:369–379

Tanaka H (1987) Fuzzy data analysis by possibilistic linear models.

Fuzzy Sets Syst 24:363–375

Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with

fuzzy model. IEEE Trans Syst Man Cybern 12:903–907

The U.S. Energy Information Administration (2019). International

Energy Outlook 2019 (IEO2019), https://www.eia.gov/outlooks/

ieo/. Accessed August 1, 2021.

Toksari MD (2009) Estimating the net electricity energy generation

and demand using ant colony optimization approach: case of

Turkey. Energy Policy 37:1181–1187

Tutun S, Chou CA, Canıyılmaz E (2015) A new forecasting
framework for volatile behavior in net electricity consumption:

a case study in Turkey. Energy 93:2406–2422

Wang ZX, Hipel KW, Wang Q, He SW (2011) An optimized

NGBM(1,1) model for forecasting the qualified discharge rate of

industrial wastewater in China. Appl Math Model 35:5524–5532

Wang W, Wang Z, Klir GJ (2005) Applying fuzzy measures and

nonlinear integrals in data mining. Fuzzy Sets Syst 156:371–380

Wang ZX, Ye DJ (2017) Forecasting Chinese carbon emissions from

fossil energy consumption using non-linear grey multivariable

models. J Clean Prod 142:600–612

Xia C, Wang J, McMenemy KS (2010) Medium and long term load

forecasting model and virtual load forecaster based on radial

basis function neural networks. Electr Power Energy Syst

32:743–750

Xie N, Liu S, Yuan C, Yang Y (2014) Grey number sequence

forecasting approach for interval analysis: a case of China’s

gross domestic product prediction. J Grey Syst 26(1):45–58

Xu N, Dang Y, Gong Y (2017) Novel grey prediction model with

nonlinear optimized time response method for forecasting of

electricity consumption in China. Energy 118:473–480

Yang Y, Chen Y, Wang Y, Li C, Li L (2016) Modelling a combined

method based on ANFIS and neural network improved by DE

algorithm: a case study for short-term electricity demand

forecasting. Appl Soft Comput 49:663–675

6544 Y.-C. Hu and W.-B. Wang

123

https://www.eia.gov/outlooks/ieo/
https://www.eia.gov/outlooks/ieo/


Zeng B, Liu SF, Xie NM, Cui J (2010) Prediction model for interval

grey number based on grey band and grey layer. Control Decis

25(10):1585–1592

Zeng B, Li C, Zhou XY, Long XJ (2014) Prediction model of interval

grey number with a real parameter and its application. Abstr

Appl Anal. https://doi.org/10.1155/2014/939404

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Nonlinear interval regression analysis with neural networks and… 6545

123

https://doi.org/10.1155/2014/939404

	Nonlinear interval regression analysis with neural networks and grey prediction for energy demand forecasting
	Abstract
	Introduction
	Nonlinear interval regression analysis using NNs
	Interval regression analysis
	Determining upper and lower limits

	GM(1,1) and FLNGM(1,1)
	GM(1,1)
	FLNGM(1,1)

	The proposed grey-prediction-based NIMs
	Constructing the GM-NIM
	Constructing the FLNGM-NIM

	Experiments
	Parameter settings
	Considered interval grey prediction models
	Applications to energy demand forecasting
	Data description
	Case I: Electricity demand of China
	Case II: Total energy demand of China
	Case III: Energy demand of Taiwan
	Statistical analysis


	Discussion and conclusions
	Data availability
	References




