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Abstract
Information quantification in numerical form for any given data is very useful in decision-making problems. In Atanassov

intuitionistic fuzzy sets (A-IFSs), such quantification becomes more important due to uncertainties such as intuitionism and

fuzziness. Distribution of these uncertainties is a key to determine knowledge associated with Atanassov intuitionistic

values (A-IFVs). In this paper, first distribution of the above-mentioned uncertainties and their relationship are discussed.

Then, knowledge measures are defined as a function of entropy and uncertainty index, with certain desired properties.

Existence of such knowledge measures has been established. Further, it is shown that how proposed knowledge measures

are useful in multi-criteria group decision-making (MCGDM) problems.

Keywords Fuzzy sets � Intuitionistic fuzzy sets � Entropy � Uncertainty index � Knowledge measure

1 Introduction

Fuzzy set theory is very useful to handle uncertainty

exhibited in many situations (Zadeh 1965). In fuzzy sets,

information about an element is represented by a mem-

bership degree from the interval [0, 1]. There are many

situations in daily life, where both positive and negative

aspects are attached to certain objects. In such circum-

stances, intuitionistic fuzzy sets theory as proposed by

Atanassov is very useful. Atanassov intuitionistic fuzzy

sets (A-IFSs in brief) theory is a generalization of fuzzy

sets theory (Atanassov 1986, 1999; Atanassov et al. 2010).

In A-IFSs, membership and non-membership degrees are

assigned to every element of a set under consideration.

These assignments of membership and non-membership

degrees are from the unit interval [0,1] and convey the

information in favor and against for an element to be in an

A-IFS. In (Szmidt and Kacprzyk 2014), such information is

termed as positive and negative. During past decades,

A-IFSs became popular among mathematicians, scientists,

researchers and practitioners, due to their various applica-

tions (De et al. 2001; Kharal 2009; Lin et al. 2007; Liu and

Wang 2007; Ouyang and Pedrycz 2016).

In A-IFSs, at least two types of uncertainties are

attached to every element of the universe set. The first one

is the uncertainty index (or hesitation margin or
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intuitionism). If lA xð Þ is the membership degree and cA xð Þ
is the non-membership degree associated with an element x

in A-IFS A, then its uncertainty index is given by

1� lA xð Þ � cA xð Þ. Second type of uncertainty associated

with them is the entropy. In order to define entropy in

A-IFSs, there are at least two different approaches. In the

first approach, given by Bustince and Burillo (1996) the

entropy measure of A-IFS refers to its intuitionism,

whereas in the second approach presented by Szmidt and

Kacprzyk (2001), it is related to its fuzziness. Some studies

where the entropy measures for A-IFSs have been dis-

cussed are given in Bustince and Burillo (1996), Chen

(2011), De et al. (2001), Farhadinia (2013); Nguyen

(2016), Nguyen (2015), Szmidt and Baldwin (2004),

Szmidt et al. (2009), Szmidt and Kacprzyk (2001).

Study of knowledge measures for different types of

fuzzy sets is an area of keen interest among the researchers

(Guo and Xu 2018; Lalotra and Singh 2020; Szmidt and

Kacprzyk 2014). As discussed above, the entropy measure

tells how much fuzzy is an A-IFS? Initially it was thought

that both entropy and knowledge measure might behave as

a dual of each other, for example, see (Nguyen 2016, 2015;

Szmidt et al. 2009). But later Szmidt and his colleagues

proposed that a knowledge measure must depend on both

entropy and uncertainty index. Therefore, they defined

knowledge measure in such a way that it was dependent

upon both entropy and uncertainty index (Szmidt and

Kacprzyk 2014). For a constant value of uncertainty index,

it was expected that both entropy and knowledge measure

would behave dual of each other. But on the contrary, it

was not the case. According to Guo (2016) and Guo and Xu

(2018), both entropy and knowledge measure are distinct

quantities; therefore, these must be treated independently.

Therefore, an axiomatic approach was adopted to define

knowledge measure (Guo 2016; Guo and Xu 2018). On a

closer look, it becomes clear that axioms for defining a

knowledge measure in Guo (2016); Guo and Xu 2018) are

closely linked with certain type of entropy. Different

knowledge measures have been defined for A-IFSs see

(Guo 2016; Guo and Xu 2018; Nguyen 2016, 2015; Szmidt

and Kacprzyk 2014). All of these can differentiate only

between a crisp sets and A-IFSs. These knowledge mea-

sures do not have ability to distinguish a fuzzy set from

A-IFS. It is well known that uncertainty index in case of

fuzzy sets is zero; therefore, such knowledge measures will

not produce reasonable results. In the available literature

on knowledge measures, almost all the authors have the

same view point that when entropy or uncertainty index is

decreasing, knowledge measure must be increasing and

vice versa, which means a knowledge measure must be a

decreasing function of both entropy and uncertainty index.

But according to the best of our knowledge, there is no

definition of knowledge measures available in the form of a

generic function of entropy and uncertainty index.

The aim of this paper is to show that knowledge mea-

sures should be defined by multi variable functions

depending on both entropy and uncertainty index and

having certain desired properties. Moreover, this estab-

lishes the existence of such functions.

In Yu (2014), Yu has suggested confidence aggregation

operators for IFVs. These operators are very useful in

MCGDM problems. However, in Yu (2014), it is not

suggested how confidence related to certain IFVs will be

calculated. Proposed knowledge measures provide an

insight to know about level of confidence related to an IFV

for a particular alternative.

Arrangement of the sequel of this paper is as follows. In

Sect. 2, some basic notions linked with A-IFSs are given.

Section 3 is devoted for a detailed discussion on intu-

itionism and entropy of A-IFSs. Relationship between

entropy and intuitionism and their distribution in set of

A-IFVs are discussed in detail. In Sect. 4, existing

knowledge measures have been criticized. A framework for

new knowledge measures is given in Sect. 5. In Sect. 6, it

is shown with help of an example how proposed knowledge

measures are useful in MCGDM problems.

2 Preliminaries

In this section, some basic notions related to A-IFS are

given.

Definition 1 Atanassov (1986) Let X be a fixed set, then

an Atanassov intuitionistic fuzzy set (A-IFS) A on X is

defined as,

A ¼ x; lA xð Þ; cA xð Þð Þ : lA xð Þ þ cA xð Þ� 1 for all x 2 Xf g

where lA : X ! 0; 1½ � and cA : X ! 0; 1½ � are two func-

tions. lA xð Þ is the membership degree and cA xð Þ is the non-
membership degree of x 2 X, such that lA xð Þ þ cA xð Þ� 1.

The values lA xð Þ and cA xð Þ indicate the degree up to which

the element x satisfies and does not satisfy the property

described by A, respectively. If there is no confusion, then

briefly an A-IFS A is denoted by order pair A ¼ lA; cAð Þ.

Definition 2 Atanassov (1999) Let A ¼ lA; cAð Þ be an A-

IFS on a set X. The quantity pA xð Þ ¼ 1� lA xð Þ � cA xð Þ is
called degree of hesitation or uncertainty index of the

element x 2 X. If pA xð Þ ¼ 0 for all x 2 X; then A-IFS will

reduce to an ordinary fuzzy set.

Notion of Atanassov intuitionistic fuzzy values (A-

IFVs) is given by Xu and Yager (2006).
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Definition 3 Xu and Yager (2006) An A-IFV a ¼ la; cað Þ
is an ordered pair such that la; cað Þ 2 0; 1½ �2 and

la þ ca � 1:

The set of all A-IFVs can be denoted by H. Geometri-

cally H can be represented by the region bounded by right

triangle OAB as shown in Fig. 1.

The quantity pa ¼ 1� la � ca is called uncertainty

index associated with a. If value of pa is higher, then there

is a small information about a. Hence, a higher risk is

involved about accepting or rejecting and object has this

value a. As in the case of fuzzy sets

pa ¼ 0)1� la � ca ¼ 0)ca = 1� la. Therefore, a ¼
la; cað Þ or a ¼ 1� ca; cað Þ.

3 Uncertainty index (intuitionism)
and entropy (fuzziness)

There are at least two types of uncertainties associated with

A-IFSs: one is related to Intuitionism is called uncertainty

index, whereas the other is associated with fuzziness called

entropy. In this section, notions of uncertainty index and

entropy will be studied in detail. It will be seen that how

these are distributed in H, the set all Atanassov intuition-

istic fuzzy values.

3.1 Classification of A-IFVs by uncertainty index

Define a relation � p on H as follows:

For a; b 2 H; a� pb if and only if pa ¼ pb.
It is easy to see that � p is an equivalence relation on H.

This means that a classification of A-IFVs is available with

respect to uncertainty index. In this classification, all A-

IFVs with the same values of uncertainty index are the

members of the same class. Denote all such classes by H/

� p. That is, H/� p = a½ �� p
: a 2 H

n o
Here a½ �� p

is

representing the class containing a 2 H. Geometrical rep-

resentation of some such classes is given in Fig. 2.

From Fig. 2, it can be seen that each class a½ �� p
is a

straight line segment parallel to the line lþ c ¼ 1. It may

be considered that these line segments have their initial

point on l� axis; whereas the terminal point on the

c� axis. Length of these line segments varies from 0 to

p
2. In general, any point on these line segments can rep-

resent the whole class of A-IFV. As it has been seen that

the line segments representing a class have same l and c
intercepts; therefore, any initial or terminal point of the line

segment can represent the whole class. Now a; 0ð Þ where

0� a� 1, is the initial point of some class in H/� p.

Therefore, a; 0ð Þ½ �� p
represents the class containing A-IFV

a; 0ð Þ.

3.2 Classification of A-IFVs by entropy

In fuzzy sets theory, fuzziness is measured by entropy. It is

a non-probabilistic concept different from that was intro-

duced by Shannon (1948). De Luca and Termini in Luca

and Termini (1972) introduced the concept of entropy in

fuzzy sets. Many authors studied this notion in context of

fuzzy sets. Liu (2007) gave a survey on entropy for fuzzy

variable with reference to credibility theory. Study of

entropy in case of A-IFSs attracted many authors. There is

a long list of contributions to this theory, for example, see

(Bustince et al. 2013; Bustince and Burillo 1996; Hung and

Yang 2006; Szmidt and Baldwin 2004, 2003, 2006; Szmidt

et al. 2006, 2009; Szmidt and Kacprzyk 2001, 2004, 2014).

In the literature, many entropy measures for both A-IFSs

and A-IFVs exist. Notion of the entropy for A-IFSs has

been introduced by Bustince and Burillo in Bustince et al.

(2013); Bustince and Burillo 1996). This entropy measure

Fig. 2 Representation of some classes obtained by uncertainty index

Fig. 1 Geometrical

representation of set of A-IFVs

Fig. 3 Representation of some classes by entropy Es
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refers to intuitionism in A-IFS. Axioms for the entropy

measure in A-IFSs introduced by Burillo and Bustince can

be found in Bustince and Burillo (1996).

Another approach for defining the entropy measure for

A-IFS is given by Szmidt and Kacprzyk in Szmidt and

Kacprzyk (2001). This entropy measure tells about fuzzi-

ness in A-IFSs.

Definition 4 Pal et al. (2013) A function E : H ! 0; 1½ �
may be called an entropy measure if the following hold:

E að Þ ¼ 0 iff a ¼ 1; 0ð Þ or a ¼ 0; 1ð Þ
E að Þ ¼ 1 iff la ¼ ca

E að Þ ¼ E acð Þ

(E4) For 8a; b 2 H;E að Þ�E bð Þ ifla � lb and ca �
cb for lb � cb ifla � lb and ca � cb for lb � cb:

An entropy measure ES for any x 2 H is defined in

Szmidt and Kacprzyk (2001) as follows.

ES xð Þ ¼ Min l xð Þ; c xð Þð Þ þ p xð Þ
Max l xð Þ; c xð Þð Þ þ p xð Þ ð1Þ

where l; c and p are the membership, non-membership,

and the hesitation margin, respectively.

Another entropy measure EX is given in Wei and Liang

(2013) by Xia et al.

For any x 2 H,

EX xð Þ ¼ 1� l xð Þ � c xð Þj j þ p xð Þ
1þ p xð Þ ð2Þ

Nguyen (2015) criticized (E2) in definition 4. According

to his suggestion E að Þ ¼ 1 iff p að Þ ¼ 1: That is, fuzziness

is maximum if and only intuitionism is maximum.

Nguyen (Nguyen 2015) defined the entropy measure EN

as given below. For any x 2 H,

EN xð Þ ¼ 1� 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l xð Þð Þ2þ c xð Þð Þ2þ 1� p xð Þð Þ2

q
ð3Þ

Entropy based on ratios of Hamming distances from

1; 0ð Þ and 0; 1ð Þ is discussed in Szmidt and Kacprzyk

(2014).

Definition 5 Szmidt and Kacprzyk (2014) Normalized

hamming distance between two A-IFSs A and B given by:

DIFS A;Bð Þ ¼ 1

2n

Xn
i¼1

lA xið Þ � lB xið Þ þj jcA xið Þ � cB xið Þj jð Þ

Definition 6 Szmidt and Kacprzyk (2014) Entropy ESK xð Þ
of an A-IFV x is defined as follows:

ESK xð Þ ¼ a

b

where a = shorter normalized Hamming distance of x from

either 1; 0ð Þ or 0; 1ð Þ and b = larger normalized Hamming

distance of x from either 1; 0ð Þ or 0; 1ð Þ.

Recently, question of distribution of entropy has gained

importance (Guo and Xu 2018). Distribution of entropy

mainly depends on its definition. In order to study this

concept in A-IFSs, a very nice idea is to see what types of

classifications of H are produced by different entropies.

In (Nguyen 2015), the following entropy EN is given as:

EN xð Þ ¼ 1� 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l xð Þð Þ2þ c xð Þð Þ2þ 1� p xð Þð Þ2

q

Here concept of maximum entropy (fuzziness) is the

same as the maximum uncertainty index (intuitionism).

Perhaps this notion limits importance of both concepts.

This entropy will not be discussed further in this paper.

As entropy measures reflect the fuzziness of A-IFVs, in

the following their distribution is discussed in detail.

Define a relation on H as follows. For a; b 2 H,

For a; b 2 H; a� Eb if and only if E að Þ ¼ E bð Þ where E
is an Entropy measure.

Here � E is an equivalence relation. Now H/

� E = a½ �� E
: a 2 H

n o
is the set of all classes obtained by

the entropy measure.

First of all it is seen that geometrically what type of

classes of H are produced when entropy measure

ES xð Þ ¼ Min l xð Þ; c xð Þð Þ þ p xð Þ
Max l xð Þ; c xð Þð Þ þ p xð Þ

is considered. All classes H/� ES
= a½ �� ES

: a 2 H
n o

in

this set are part of straight lines passing through the point

1; 1ð Þ with slopes ranging from 0 to 1. The class 1; 0½ �� ES

is a set with two elements 1; 0ð Þ and 0; 1ð Þ. The class

0; 0½ �� ES
has only one line segment with initial point 0; 0ð Þ

and terminal point 0:5; 0:5ð Þ. All other classes have exactly
two line segments as their members, one above the class

0; 0½ �� ES
and other below it. The two line segments which

Fig. 4 Representation of some classes by entropy Ex
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are members of the same class have same length. Shapes of

some classes are given in Fig. 3.

When entropy

EX xð Þ ¼ 1� l xð Þ � c xð Þj j þ p xð Þ
1þ p xð Þ

given in Wei and Liang (2013) is considered, all classes H/

� EX
= a½ �� EX

: a 2 H
n o

in this set are part of straight

lines passing through the point 1; 1ð Þ with slopes ranging

from 0 to 1. The class 1; 0½ �� EX
is a set with two elements

1; 0ð Þ and 0; 1ð Þ. Class 0; 0½ �� EX
is represented by a single

line segment with initial point 0; 0ð Þ and terminal point

0:5; 0:5ð Þ. All other classes have exactly two line segments

as their members, one above the class 0; 0½ �� EX
and other

below it. The two line segments which are members of the

same class have same length.

From the above discussion and Figs. 3 and 4, it can be

concluded that entropies defined by Eqs. (1) and (2) clas-

sify H in the same manner, through same set of lines which

pass through the point 1; 1ð Þ:
Geometrical representations of some classes for the

entropy measure Esk given in definition 6 are shown in

Fig. 5.

All classes in the set H/� ESk
= a½ �� ESk

: a 2 H
n o

are

parallel straight lines with slope 1. The class 0; 0½ �� ESk
is a

line segment with initial point 0; 0ð Þ and terminal point

0:5; 0:5ð Þ; whereas the class 1; 0½ �� ESk
has only two ele-

ments 1; 0ð Þ and 0; 1ð Þ. All the remaining classes are rep-

resented by two line segments; one is above the line l ¼ c
and the other below the line l ¼ c. In Fig. 5, lines

equidistant from the line l ¼ c represent the single class.

3.3 Entropy in a class a; 0½ �~p

In any class a; 0½ � � p
entropy is lowest at the end points

a; 0ð Þ and 0; að Þ: From a; 0ð Þ to the middle point a
2
; a
2

� �
; it

increases gradually and attains its maximum value 1 at
a
2
; a
2

� �
. Then, from a

2
; a
2

� �
to 0; að Þ its value decreases

gradually from 1 to a minimum in this particular class.

Actually the line l ¼ c with maximum entropy has divided

the class a; 0½ �� p
into two equal parts. A-IFVs in these two

parts, which are equidistant from the line,l ¼ c; have the

same value of the entropy measure.

For example, in Fig. 6 the points A 0:4; 0:1ð Þ and

B 0:1; 0:4ð Þ are equidistant from l ¼ c and they have the

same entropy.

3.4 Uncertainty index in a class a; 0½ �~E

Consider E 2 ES;EX;ESK

� �
: Before discussing the behavior

of uncertainty index in any general class, it is appropriate

to study it in the classes 0; 0½ � � E
and 1; 0½ �� E

first. In class

0; 0½ �� E
uncertainty index attains all possible values that is

from 1 to 0. At 0; 0ð Þ uncertainty index is 1, which

decreases gradually to 0 along the elements of this class

from (0,0) to (0.5,0.5). At 0:5; 0:5ð Þ uncertainty index is 0.

When the class 1; 0½ � � E
is considered, it has only two

elements 1; 0ð Þ and 0; 1ð Þ for these two elements uncer-

tainty index is 0.

When any class a; 0½ �� E
where 0\a\1 is considered, it

is represented by two segments with initial points on l�
axis and c� axis and terminal points on the line lþ c ¼ 1.

Uncertainty index is maximum in these classes at initial

points a; 0ð Þ and 0; að Þ; then, it gradually decreases to 0 as

Fig. 5 Representation of some classes by Esk

Fig. 6 Behavior of entropy E in a class obtained by uncertainty index

Fig. 7 Positive of A-IFVS

Another view on knowledge measures in atanassov intuitionistic fuzzy sets 6511
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we move along the line segments from initial points to

terminal points.

4 Knowledge measure

In this section, some notions about the knowledge measure

are discussed. The term knowledge measure for A-IFV is a

numerical value to quantify how much information is

available in it. Initially, it was thought that a knowledge

measure is a dual of the entropy (Nguyen 2015; Szmidt and

Kacprzyk 2010). Later on it was realized that both of these

must be dealt separately (Szmidt and Kacprzyk 2014).

Definition 7 (Nguyen 2015) For an A-IFS A on a set X ¼
fx1; x2; . . .; xng; the knowledge measure K Að Þ is defined as

K Að Þ ¼ 1� E Að Þ, where E Að Þ is the entropy of A.

Example 1 Nguyen (2015) Let A be an A-IFS on a set

X ¼ x1; x2; . . .; xnf g. Then, the KN Að Þ defined as follows is

a knowledge measure for A:

KN Að Þ ¼ 1

n
ffiffiffi
2

p
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA xið Þð Þ2þ cA xið Þð Þ2þ 1� pA xið Þð Þ2

q

For an A-IFV a, the knowledge measure is defined as:

KN að Þ ¼ 1ffiffiffi
2

p
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l að Þð Þ2þ c að Þð Þ2þ 1� p að Þð Þ2

q

In the above given knowledge measure KN , it is clear

that it provides information based on membership and non-

membership grades, but aspect of associated fuzziness has

been ignored completely. Therefore, real-life application of

this has difficulties (Guo and Xu 2018). Later on, it was

thought that both entropy (fuzziness) and uncertainty index

(intuitionism) of an A-IFS/A-IFV must be considered when

a Knowledge measure is defined for it.

In Szmidt and Kacprzyk (2014), it is pointed out that the

following four characteristics are associated with a

knowledge measure.

Definition 8 For an A-IFV a, the quantity K að Þ is a

knowledge measure if it satisfies the following;

1. 0�K að Þ� 1

2. K að Þ ¼ K acð Þ
3. For the fixed E að Þ;K að Þ increases while p að Þ

decreases:

4. For a fixed pðaÞ;KðaÞ behaves dually to an entropy

measure (that is 1� EðaÞ).
where E að Þ is the entropy measure and p að Þ is the hesita-

tion margin associated with a 2 H.

Example 2 Szmidt and Kacprzyk (2014) For any a 2 H,

KS að Þ defined as follows.

KS að Þ ¼ 1� 0:5 E að Þ þ p að Þð Þ ð4Þ

is a knowledge measure.

Proposition 1 For any a ¼ a; að Þ 2 H, we have

KS að Þ ¼ a.

Proof Let a ¼ a; að Þ 2 H. Then, clearly E að Þ ¼ 1 for any

E 2 ES;EX;ESK

� �
and p að Þ ¼ 1� 2a. As

KS að Þ ¼ 1� 0:5 E að Þ þ p að Þð Þ, KS að Þ ¼ a.

The above proposition shows that the knowledge mea-

sure KS að Þ for an A-IFVs on the line l ¼ c is just mem-

bership or non-membership grade.

In view of Guo (2014), Guo and Xu (2018), the

knowledge measures and the entropy measures are two

distinct quantities, so these must be independent of each

other. Guo and Xu (2018) defined two types of knowledge

measures one is based on axiomatic approach while the

other is parametric. Here only axiomatic approach is con-

sidered as discussed in Guo and Xu (2018).

Definition 9 Guo and Xu (2018) Let KG be a mapping

from the set of A-IFSs on a set Xto½0; 1�. Then, KG is a

knowledge measure if the following hold:

1. KGðAÞ ¼ 1 iff A is a crisp set

2. KG Að Þ ¼ 0 iff pA xð Þ ¼ 1 for all x 2 X

3. KGðAÞ�KGðBÞ if A-IFS A is less fuzzy than A-IFS B.

In Definition 9, axiom 2 considers only one extreme

case when pA xð Þ ¼ 1. This happens only for one A-IFV

x ¼ 0; 0ð Þ. But in reality pA xð Þ may have any value from

the interval 0; 1½ � when x 2 H. Therefore, scope of this

definition is very limited while considering uncertainty

index pA xð Þ. The above definition for knowledge measure

apparently does not depend on the entropy. However, some

of its connections in particular situations have been dis-

cussed in Guo and Xu (2018).

(1) All the knowledge measures KN ;KG and KS given

above do not differentiate between a fuzzy set and an

A-IFS. However, these differentiate between the

crisp set and A-IFS.

(2) The knowledge measure KS is merely the member-

ship degree or non-member ship degree for A-IFVs

lying on the line l ¼ c, that is;KS að Þ ¼ l ¼ c for

any entropy measure E.

(3) In general, KS að Þ does not behave dually to the

entropy measure for any fixed value of p. It happens
only when E að Þ ¼ p að Þ for some a 2 H. However,

for some fixed p, KS að Þ�KS bð Þ iff E að Þ�E bð Þ for
all a; b 2 H. On the other hand for a fixed value of E,

KS að Þ�KS bð Þ iff p að Þ� p bð Þ for all a; b 2 H.
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(4) The knowledge measure KS að Þ does not differentiate
among the A-IFVs (0:5; 0:5Þ; 0:5; 0ð Þ; ð0; 0:5) for

E 2 ES;ESK

� �
. For all these three A-IFVs, knowl-

edge measure is 0.5.

5 Generalized knowledge measures for A-
IFVs

In previous section, different knowledge measures and

their shortcomings have been discussed. Perhaps these

short comings are due to the fact that these knowledge

measures are given without defining any function which

regulate the role of both entropy and uncertainty index. In

this section, a generic definition based on the above-men-

tioned function is given. Then, existence of such functions

has been established. A knowledge measure is a numerical

value form the interval 0; 1½ � to show how much informa-

tion is associated with A-IFV/A-IFS. Therefore, in Szmidt

and Kacprzyk (2014), it is explained that a knowledge

measure must take into account both entropy (fuzziness)

and degree of hesitation (intuitionism). As in fuzzy sets no

degree of hesitation is involved, a knowledge measure for

A-IFSs must be able to differentiate between fuzzy sets and

A-IFSs. As explained above knowledge measure KN ;KG

and KS cannot differentiate between fuzzy sets and A-IFSs.

Therefore, there is a need to define new knowledge mea-

sures which not only depend on both intuitionism and

fuzziness of AIFVs but also be able to differentiate

between fuzzy sets and A-IFSs. For this purpose, first

define a function

G : 0; 1½ � � 0; 1½ � � 0; 1½ �

such that.

(G1) G x; yð Þ ¼ 1 iff either of x ¼ 0 or y ¼ 0:

(G2) G is decreasing in x when y is fixed.

G is decreasing in y when x is fixed.

(G3) G x; yð Þ ¼ G y; xð Þ for all x; y 2 0; 1½ �:

Now with the help of this function knowledge measures

can defined as follows.

Definition 10 A function K : H ! 0; 1½ � may be called

knowledge measure if:

K að Þ ¼ G E að Þ; p að Þð Þ

where E að Þ is any entropy and p að Þ the hesitation margin

for all a 2 H.

For an A-IFS A on a set X, knowledge measure K may

be considered as: K Að Þ ¼ 1
n

P
x2X

G E lA xð Þ; cA xð Þð Þ;ð

p lA xð Þ; cA xð Þð ÞÞFrom (G1), it is clear that.

K að Þ ¼ 1 , G E að Þ; p að Þð Þ
¼ 1 , E að Þ ¼ 0orp að Þ ¼ 0. That is, if p að Þ ¼ 0 then a 2
1; 0½ �� p

if E að Þ ¼ 0 then a 2 1; 0½ �� E
that is

a ¼ 1; 0ð Þora ¼ 0; 1ð Þ. This means the knowledge measure

K has ability to differentiate among crisp sets, fuzzy set

and A-IFS.

Theorem 1 For any fixed finite positive integer p, the

function Kp
I :H ! 0; 1½ � defined by.

Kp
I að Þ ¼ 1� E að Þp að Þ½ �

1
p ð5Þ

for all a 2 H where E að Þ and p að Þ are, respectively, the

entropy measure and the hesitation margin associated with

a [ H is a knowledge measure.

Proof Let Kp
I að Þ ¼ 1 for some a 2 H

, 1� E að Þp að Þ½ �
1
p¼ 1 , E að Þp að Þ½ �

1
p¼ 0.

, E að Þp að Þ ¼ 0 if only if either E að Þ ¼ 0orp að Þ ¼ 0.

Now let for any a;b 2 H, such that E að Þ ¼ E bð Þ and

p að Þ� p bð Þ , E að Þp að Þ�E bð Þp bð Þ
, 1� E að Þp að Þ½ �

1
p

� 1� E bð Þp bð Þ½ �
1
p, Kp

I að Þ�Kp
I bð Þ.

Similarly, for E að Þ�E bð Þ , Kp
I að Þ �Kp

I bð Þ when

p að Þ ¼ p bð Þ.
Also Kp

I að Þ ¼ 1� E að Þp að Þ½ �
1
p ¼ 1� p að ÞE að Þ½ �

1
p

When p ¼ 1;K1
I að Þ ¼ 1� E að Þp að Þ for all a 2 H

When p ¼ 2;K2
I að Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E að Þp að Þ for all a 2 H

p

Another knowledge measure can be defined as below:

Theorem 2 For any fixed finite positive integer p, the

function K
0p
I að Þ : H ! 0; 1½ � defined by.

K
0p
I að Þ ¼ ½1� E að Þp að Þ�

1
p ð6Þ

where E að Þ and p að Þ are, respectively, the entropy measure

and the hesitation margin associated with a 2 H, is a

knowledge measure.

It can be seen that for p ¼ 1;Kp
I að Þ ¼ K

0p
I að Þ.

Further, a new knowledge measure can be defined.

Theorem 3 For any fixed p ¼ 1 or 2, the function K
	p
I :

H ! 0; 1½ � defined by.

K
	p
I ¼

1; if E að Þ ¼ 0 and p að Þ ¼ 0

1� p
E að Þp að Þ

E að Þ þ p að Þ

� �
; Otherwise

8<
:

ð7Þ

Another view on knowledge measures in atanassov intuitionistic fuzzy sets 6513

123



where E að Þ and p að Þ are, respectively, the entropy measure

and the hesitation margin associated with a 2 H, is a

knowledge measure.

Proof It is easy to see that K
	p
I að Þ ¼ 1 if only if either

E að Þ ¼ 0 or p að Þ ¼ 0. Further, let for any a; b 2 H, such

that E að Þ ¼ E bð Þ and p að Þ� p bð Þ , E að Þp að Þ�
E bð Þp bð Þ.

, p
E að Þp að Þ

E að Þ þ p að Þ

� �
� p

E bð Þp bð Þ
E bð Þ þ p bð Þ

� �

, 1� p
E að Þp að Þ

E að Þ þ p að Þ

� �
� 1� p

E bð Þp bð Þ
E bð Þ þ p bð Þ

� �

, K
	p
I að Þ�K

	p
I bð Þ

Similarly for

E að Þ�E bð Þ , K
	p
I að Þ�K

	p
I bð Þwhenp að Þ ¼ p bð Þ

.

Further

;K
	p
I ¼ 1� p

E að Þp að Þ
E að Þ þ p að Þ

� �
¼ 1� p

p að ÞE að Þ
p að Þ þ E að Þ

� �

when either of p að Þ or E að Þ is nonzero.

Theorem 4 For any a 2 H;K
	2
I að Þ�K2

I að Þ�KS:

6 Application of the proposed knowledge
measures in MCGDM problems

In (Yu 2014), Yu defined different confidence aggregate

operators for IFVs. These operators involve level of con-

fidence during the aggregation process. It is not mentioned

in Yu (2014) how to determine the level of confidence. In

this paper, we are of the view that confidence level is

directly associated with the notion how much knowledge is

associated with a certain IFV. That is if higher value of

knowledge measure is associated with some IFV, then

more confidently that IFV can be selected.

In (Ali et al. 2019), it is shown that there does not exist

any natural ordering among IFVs. Therefore, comparison

of ordering among the IFVs with respect to two distinct

criteria is not suitable. In this paper, for the ranking IFVs,

graphical method proposed in Ali et al. (2019) will be

employed.

In this section, an application of knowledge measure in

MAGDM under confidence level approach is discussed.

First, we describe the framework of MAGDM under con-

fidence level approach. Let Y ¼ x1; x2; . . .; xmf g represent

the alternatives and the set C ¼ c1; c2; . . .; cnf g represents

the attributes (criteria). Some IFV is allotted to each

alternative xi, 1� i�m against criteria cj, 1� j� n.

Moreover, each criterion cj, 1� j� n has some predeter-

mined weight -j; 1� j� n, where -j � 0 and
Pn

j¼1 -j ¼ 1:

Let D ¼ d1; d2; . . .; drf g be the group of experts/ decision

makers with weights !l; 1�!l � r. Each expert gives his/

her preferences for each alternative according to each cri-

terion on the basis of his best knowledge and experience.

An IF decision matrix Al ¼ alij

h i
mxn

is obtained for each

expert, with alij ¼ llij; c
l
ij

	 

, where llij represents the

membership (favor) and clij the non-membership (against)

degrees by ‘th expert for ith alternative and jth criterion. To

assimilate the thought of confidence level, the decision

makers simultaneously also assign the values that they are

familiar with the assessed alternatives. The confidence

levels for IFVs are calculated by the proposed knowledge

measure.

To understand the complete procedure for decision-

making problems, we have the following steps.

Step I: The individual decision maker assessment related

to each alternative is obtained in the form of IFVs which

composed of ‘, IF decision matrices

Al ¼ alij

h i
mxn

¼ llij; c
l
ij

	 

mxn

. The confidence level klij for

each IFV is calculated by using any of the knowledge

measures Kp
I ;K

0p
I andK

	p
I . All IF decision matrices Al are

converted to Al ¼ llij; c
l
ij

	 

; klij by including the confidence

level values klij for each IFV llij; c
l
ij

	 

.

Step II: Normalize the IF decision matrix Al for each

expert according to the benefit and cost criteria as follows:

alij ¼
llij; c

l
ij

	 

; for benefit criteria

clij; l
l
ij

	 

; for cost criteria

8<
:

Since the knowledge measure Kp
I is symmetric, the

value of confidence level for each IFV remains unchanged.

Step III: For each normalized IF decision matrix Al, we

apply IF weighted average operator under confidence level

(CIFWA) defined by Yu (2014) to aggregate the informa-

tion from each IF decision matrix Al as follows:

Zl
i ¼ CIFWA- ali1; a

l
i2; a

l
i3; . . .. . .. . .; a

l
in

� �

¼ -1a
l
i1 
 -2a

l
i2 
 -3a

l
i3 
 . . .:-na

l
in ð8Þ

¼ 1�
Yn
j¼1

1� llij

	 
klij-j

;
Yn
j¼1

ðclijÞ
klij-j

¼ llzi ; c
l
zi

	 

.
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Here the IFV Zl
i ¼ llzi ; c

l
zi

	 

represents the individual

overall evaluation values of alternatives xi by lth expert,

i.e., we obtain Zl ¼ Zl
1; Z

l
2; . . .::; Z

l
m

� �
for each individual

lth expert.

Step IV: To calculate the weights of each individual

expert di, we use knowledge measure Kp
I . The knowledge

measure Kp
I of Zl by lth expert is calculated as follows:

Kp
I Zl
� �

¼ 1

m

Xm
i¼1

1� E Zl
i

� �
:p Zl

i

� �� �1
p

	 

ð9Þ

Then, the expert weight vector ! ¼ !1;!2; . . .::;!rð ÞT
is calculated as follows:

!l ¼
KP
I Zl
� �

Pr
l¼1 K

P
I Zlð Þ ; l ¼ 1; 2; 3; . . .. . .; r ð10Þ

Step V: For all alternatives xi, the information is

aggregated from the overall evaluation values Zl calculated

in Step III by using CIFWA operator as follows:

Zi ¼ CIFWA! z1i ; z
2
i ; . . .:; z

r
i

� �

¼ !1z
1
i 
 !2z

2
i 
 . . .
 !rz

r
i ð11Þ

¼ 1�
Yr
l¼1

1� lli
� �!i

;
Yr
i¼1

cli
� �!i

¼ lzi;czi
� �

Step VI: To rank the alternatives xi, the graphical

method for ordering the IFVs based on the uncertainty

index and entropy is used. The graphical method for

ranking the IFVs was proposed by Ali et al. (2019), where

we have seen that the most of the already proposed ranking

methods are not locally orthodox criterion.

In the following, an example of anonymous review

process of the doctoral dissertation in Chinese universities

is discussed. Data for this example are borrowed from Yu

(2014).

Example 3 In certain universities, doctoral dissertation is

assessed by a panel of thee experts. This review is made for

the following criteria including topic selection and litera-

ture review, innovation, theory basis and special knowl-

edge, capacity of scientific research and thesis writing.

Certain weights are given to the attributes. Experts assess

the dissertation of a student for the above-mentioned

criteria and give their preferences in the form of IFVs.

Three IF decision matrix A‘ (‘ = 1; 2; 3) one from each

expert are presented in Tables 1, 2, and 3.

Secondly, we apply the CIFWA operator in each IF

decision matrix Al by using Eq. 8. The weight vector

associated with the attributes is - ¼ 0:15; 0:3;f
0:2; 0:2; 0:15gT . After calculations, the individual overall

evaluation values of alternatives xi by each expert are

obtained as follows:

Z1 ¼ z11 ¼ 0:70029; 0:199462ð Þ;
�

z12 ¼ 0:649582; 0:24375ð Þ; z13 ¼ 0:765296; 0:219848ð Þ;
z14 ¼ 0:69184; 0:261813ð Þ; z15 ¼ 0:572542; 0:381246ð Þ

�

ð12Þ

Z2 ¼ z21 ¼ 0:712566; 0:216161ð Þ;
�

z22 ¼ 0:585145; 0:24534ð Þ;
z23 ¼ 0:705859; 0:207089ð Þ;
z24 ¼ 0:686481; 0:233446ð Þ; z25 ¼ 0:729018; 0:258013ð Þ

�

ð13Þ

Z3 ¼ z31 ¼ 0:687086; 0:215376ð Þ;
�

z32 ¼ 0:6184; 0:35403ð Þ; z33 ¼ 0:648666; 0:202875ð Þ;
z34 ¼ 0:655817; 0:28158ð Þ; z35 ¼ 0:748349; 0:201808ð Þ

�

ð14Þ

Next, to calculate the weights of each individual expert

dl, the knowledge measure Kp
I p ¼ 2ð Þ in Eq. 9 is used. The

values of knowledge measure are Kp
I Z1ð Þ ¼ 0:839865,

Kp
I Z2ð Þ ¼ 0:820715;Kp

I Z3ð Þ ¼ 0:824165. The weights of

the experts are calculated by using Eq. 10, and results are

!1 ¼ 0:338008;!2 ¼ 0:330302 and !3 ¼ 0:33169:

The information obtained in Eqs. 12–14 is aggregated

with expert’s weights by using CIFWA operators defined in

Eq. 11. The aggregated A-IFVs are

z1 ¼ 0:700144; 0:210112ð Þ; z2 ¼ 0:618863; 0:276468ð Þ;
z3 ¼ 0:710923; 0:209881ð Þ

z4 ¼ 0:678504; 0:258241ð Þ; z5 ¼ 0:691547; 0:271371ð Þ

The graphical method for ordering A-IFVs given in Ali

et al. (2019) is employed. The uncertainty index of alter-

natives zi is calculated as follows:

Table 1 IF decision matrix A1

C1 C2 C3 C4 C5

X1 0:8; 0:1; 0:85ð Þ 0:8; 0:1; 0:85ð Þ 0:8; 0:1; 0:85ð Þ 0:7; 0:3; 1ð Þ 0:5; 0:4; 0:71ð Þ
X2 0:6; 0:1; 0:64ð Þ 0:5; 0:4; 0:71ð Þ (0:7; 0:2; 0:81Þ 0:8; 0:1; 0:85ð Þ 0:9; 0:1:1ð Þ
X3 0:9; 0:1; 1ð Þ 0:5; 0:5; 1ð Þ 0:9; 0:1; 1ð Þ 0:7; 0:2; 0:81ð Þ 0:8; 0:2; 1ð Þ
X4 0:8; 0:2; 1ð Þ 0:6; 0:4; 1ð Þ 0:7; 0:1; 0:74ð Þ 0:7; 0:3; 1ð Þ 0:8; 0:2; 1ð Þ
X5 0:7; 0:3; 1ð Þ 0:5; 0:5; 1ð Þ 0:6; 0:4; 1ð Þ 0:4; 0:5; 0:71ð Þ 0:8; 0:1; 0:85ð Þ
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p z1ð Þ ¼ 0:0897436; p z2ð Þ ¼ 0:104669; p z3ð Þ ¼ 0:0791964;

p z4ð Þ ¼ 0:0632544;

p z5ð Þ ¼ 0:0370824

From Fig. 7, It is clear that the A-IFVs attached to each

alternative are below the line l ¼ c: Therefore, A-IFVs

with a lower value of uncertainty index will be preferred

over those with higher uncertainty index.

p z5ð Þ\p z4ð Þ\p z3ð Þ\p z1ð Þ\p z2ð Þ

We have

x5�x4�x3�x1�x2

The alternative x5 is obtained as the best alternative by

the proposed method.

The order of the alternatives obtained from the proposed

method is different from the order obtained by Yu (2014).

Yu obtained the following order of the alternatives: x1-
x2�x4�x5�x2. Yu used the score function to rank alter-

natives and thus obtained the different ranking of

alternatives. But we have seen that the score function is not

locally orthodox (Ali et al. 2019); therefore, we used the

graphical method of ranking for IFVs. Also, the familiarity

level of the experts by evaluating the alternative was

assigned arbitrarily by Yu (2014), while the generalized

knowledge measures are used to calculate the familiarity

level of the experts in the proposed method.

7 Conclusion

Uncertainty index and entropy are two different types of

uncertainties linked with A-IFSs. These two kinds of

uncertainties are very useful to convey information about

the quantity of knowledge associated with A-IFS. Different

types of knowledge measures have been defined in A-IFSs,

but those which depend on both uncertainty index and

entropy are more useful. In the present paper, knowledge

measures are defined with the help of a multi-variable

function depending on both uncertainty index and entropy.

These knowledge measures have the ability to differentiate

crisp sets, fuzzy sets and A-IFSs. Proposed knowledge

measures are very useful in MCGDM problems.
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