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Abstract
The lattice structures use has increased in several sectors due to the potential for mass reduction without significant rigidity

loss. In this paper, an isogrid tube multi-objective optimization considering six objectives is presented. The finite element

method was applied to develop a numerical model for this complex structure, and a new optimization algorithm called the

Multi-objective Lichtenberg Algorithm was used to find all the best possible designs. The optimizations were made

considering two methodologies: (i) using a surrogate model derived from the design of experiments considering the

response surface model and (ii) finite element updating, a direct link between the meta-heuristic and the numerical model.

The latter is unprecedented in the literature for isogrid tubes and proved to be the best methodology, besides not even

needing explicit equations. It discovered isogrid tube designs using TOPSIS that reduced at least 45.69% of the mass,

18.4% of the instability coefficient, 61.76% of the TW, and increased the natural frequency by at least 52.57%. The results

show that optimizations via finite element updating associated with meta-heuristics not only allow the true interpretation of

complex problems nature through real Pareto fronts, but can also deliver innovative results.
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List of symbols
PSO Particle swarm optimization

LA Lichtenberg algorithm

RSM Response surface method

FEM Finite element method

PF Pareto front

IGD Inverted generational distance

SP Spacing

MS Maximum spread

u Angle between helical ribs

dc Width of circular ribs

dH Width of helicoidal ribs

R2 Indicator of model fit

LF Lichtenberg figure

Rc Creation radius

Np Number of particles

S Stickiness coefficient

Ref Refinement

Niter Number of iterations

M Figure switching factor

CCD Central composite design

CFRP Carbon fiber-reinforced polymer

DOE Design of experiments

FEM Finite element method

E1 Elasticity modulus direction longitudinal

E2 Elasticity modulus direction transverse

S Standard deviation

G12 Shear modulus in plane

k Number of design parameter

TWT Tsai-Wu under torsion efforts

TWC Tsai-Wu under compression efforts

kT Buckling coefficient under torsion efforts

kC Buckling coefficient under compression efforts
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y RSM response

a Distance from center point

ac Distance between circular crossbars

ah Distance between helical crossbars

b Constant coefficients

e Random error term or noise

xn Natural frequency

m Mass

h Thickness

TOPSIS Technique for order of preference by similarity

to ideal solution

1 Introduction

Isogrid structures were initially developed for the aero-

nautical industry, considerably reducing the mass without

significantly compromising the structure’s rigidity. The

advancement of additive manufacturing technology con-

tributed to the development of these complex structures,

facilitating their applications in other sectors, such as the

development of human prostheses. Since then, the subject

has gained more visibility in the literature (Francisco et al.

2021).

Most of the studies are dedicated to the fabrication

process and manufacture of isogrid structures, aiming at

experimental tests. Forcellese et al. (2020) used the 3D

printing process to develop lattice panels in polyamide

reinforced with carbon fiber. The authors studied how the

geometric parameters affected the compressive strength

and buckling performance. Li et al. (2019) used the addi-

tive technique to build a hierarchical isogrid tube and

evaluate its buckling resistance and plastic performance.

Ciccarelli et al. (2021) also used 3D print to manufacture

six isogrid panels varying the rib width and the rib thick-

ness to investigate the geometric parameters influence in

compressive loads. The authors conclude that the increase

in rib width leads to an increase in strength.

Li and Fan (2018) manufactured isogrid-stiffened

cylinders using carbon fiber to study failure modes. The

authors conclude that skin thickness, cell dimension, rib

height, rib thickness and end strengthening scheme jointly

decide the failure pattern. Bellini et al. (2021) also manu-

factured an isogrid-stiffened cylinder and compared it,

having the same geometry, with another made of titanium

alloy. The authors concluded that the composite made has

the same stiffness and strength, but is lighter.

Other authors proposed analyzing isogrid structures

numerically through the finite element method (FEM).

Liang et al. (2020) proposed a numerical thin-walled iso-

grid-stiffened cylinder and analyzed its structural buckling

under imperfections considering reduced-order modeling.

The authors concluded that the proposed method presented

good results. Junqueira et al. (2019) studied the isogrid

performance under compression and torsion efforts. Using

numerical and experimental approaches, the authors proved

that the proposed model had better performance than

conventional prosthetic tubes.

Although the authors listed above have carried out

important studies to understand the fabrication and influ-

ence of design variables on isogrid structures, none of them

have studied their optimization. Few studies have done so

in the literature. Akl et al. (2008) developed numerical

methods to describe the performance of plates with isogrid

stiffeners and optimized the static and dynamic character-

istics of the model. Similarly, Jadhav and Mantena (2007)

carried out an optimization study to find the geometric

parameters that maximize the specific energy absorption.

Lakshmi et al. (2013) studied the optimal design for the

maximum buckling load of a laminate composite isogrid

with dynamically reconfigurable quantum PSO.

Francisco et al. (2020a, b) carried out design optimiza-

tion studies for carbon fiber-reinforced polymer isogrids

with lower limb prosthesis applications. The authors used

the Response Surface Methodology to find the equation set

that represented the structural complex behavior of isogrid

and performed all the optimizations using particle swarm

optimization (PSO) and the Lichtenberg algorithm (LA).

These studies considered only one objective in the

optimization, which led to obtaining only a single response.

A multi-objective problem, in addition to being able to

provide a set of solutions through the Pareto Front, allows

the decision maker to understand how the objectives

behave among themselves, revealing the nature of the

optimization problem. Despite this importance and the fact

that it has been increasingly used in the literature, only two

studies address the problem of optimizing isogrid structures

using multi-objective optimization.

Ehsani and Dalir (2020) used the genetic algorithm

(GA) to find the optimum architecture to maximize the

axial buckling load and minimize the weight of an isogrid

plate. The authors used the e-constrained method, which

considers only a main objective and converts the others

into constraints. The authors used explicit equations and

obtained good results. Francisco et al. (2021) were the first

to consider the optimization of CFRP isogrid tubes and the

first to consider more than two objectives. The authors

made a numerical model in FEM and used metamodeling

resulting from the response surface methodology (RSM) to

represent the complex behaviors of isogrid tubes. The

author used the Multi-objective Sunflower Optimization as

algorithm optimization.
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Only Francisco et al. (2021) found Pareto fronts that

represented how the objectives related to each other.

However, metamodels are polynomial representations of

objectives and, as found by Francisco et al. (2021), deliver

responses that have an error when comparing the response

of the metamodel with that of the same variables simulated

in the FEM. That is, can lead to simplified Pareto fronts and

can hide the true behavior of these structures when opti-

mized. This study aims to eliminate this error and find the

true Pareto fronts of the most important objectives in the

multi-objective optimization of an isogrid tube made of

carbon fiber polymer reinforcement (CFRP) for the first

time in the literature.

The multi-objective optimization in this paper will

consider six different structural responses, i.e., mass, Tsai-

Wu failure index, instability coefficient (under compres-

sion and torsion efforts), and natural frequency. The

objectives will be distributed and compared with other

results in the literature through three cases: torsion, com-

pression, and modal performance. The answers to these

objectives will be acquired in two different ways, which

will be compared in each case: (i) using metamodels from a

RSM design, which generates second-order polynomial

equations that represent the models with a certain level of

confidence; and (ii) considering the direct FEM software

responses, interacting with a meta-heuristic during the

optimization process, resulting in null error and building a

real Pareto front (deep optimization). This is unprecedented

in the literature for isogrid structures.

Therefore, each case will have two Pareto fronts that

will be compared using inverted general distance (IGD)

(Sierra and Coello 2005), spacing (SP) (Schott 1995), and

maximum spread (MS) (Zitzler 1999) to check which one

has more convergence and coverage. The best PF accord-

ing to these metrics will be chosen to discuss the non-

dominated solutions and obtain the decision variables for

the optimized carbon fiber-reinforced polymer (CFRP)

isogrid tube.

The multi-objective optimization will be performed by

the multi-objective Lichtenberg algorithm (LA) (Pereira

et al. 2022), a hybrid physics-based meta-Heuristic inspired

in lightening that recently showed superior results not only

to multi-objective particle swarm optimization (MOPSO)

or non-sorting genetic algorithm-II (NSGA-II), but also

against modern algorithms like multi-objective grey wolf

optimizer (MOGWO) (Mirjalili et al. 2016) and multi-ob-

jective grasshopper optimizer (MOGOA) (Mirjalili et al.

2017).

Therefore, the papeŕs contributions are as follows:

(i) the multi-objective optimization problem obtaining

results through deep optimization for the first time in the

literature; (ii) the CFRP isogrid tube true nature presenta-

tion and understanding through real Pareto fronts; (iii) the

metamodeling use evaluation in this case; and (iv) testing

MOLA in this application for the first time in the literature,

since recently the algorithm showed superior results to

multi-objective particle swarm optimization (MOPSO),

non-sorting genetic algorithm-II (NSGA-II), multi-objec-

tive grey wolf optimizer (MOGWO), and multi-objective

grasshopper optimizer (MOGOA) in a comparison on

complex multi-objective test functions (Pereira et al. 2022).

Therefore, the manuscript is organized as follows:

Sect. 2 brings the Theoretical Framework, which presents a

knowledge-needed summary for the work. Section 3 shows

the methodology. Section 4 brings the results and discus-

sions, and Sect. 5 draws the conclusion.

2 Theoretical framework

2.1 Isogrid structures

There are two theories in the literature about the word

‘‘isogrid’’. Some authors believe that the just structures

whose formed equilateral triangles can be called isogrid

and ‘‘iso’’ refers to isotropy of the structure within the

plane (Kanou et al. 2013). On the other hand, some authors

agree that all lattice structure (even those that are not

isotropic) must be called isogrids (Huybrechts et al. 1999;

Akl et al. 2008). According to Fan et al. (2009), the helical

and circular ribs meet point is called nodes. It is created

triangular (or another geometric figure) between these

points to provide structural stability (Sorrentino et al. 2017;

Zheng et al. 2015).

Isogrid structures can be just the rigid ribs or can be the

rigid ribs covered with a coating, the first model is used in

this paper and is called open. The second is called close.

Eight variables can be used to describe the structure, they

are as follows: angle between helical ribs (u), width of

circular (dc) and helical (dh) ribs, thickness (h), length (L),

diameter (D), distance of circular (ac) and helical (ah)
sleepers from the structure axis. The first three are the main

ones in the design of the isogrid tube and that is why they

are the decision variables in this study. They are repre-

sented in Fig. 1.

Two main researchers studied the isogrid structures

optimization without using metamodels or FEM. Totaro

et al. (2004) used the isogrid geometric parameters as

variables in an optimization problem focused in minimize

safety factors. The author evaluates a structure subjected to

axial load and finds the optimal parameters. Another pro-

cedure is used by Vaziliev and Razin (2006) and it will be

described here. An optimization based on load normaliza-

tion factor (p) given by Eq. 1 was proposed. The author

compares p with the parameters ps (Eq. 2) and po (Eq. 3)
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and it can be resulted into three cases that are shown in

Table 1.

p ¼ 4P

pD2
ð1Þ

ps ¼
48�r2

pEh

ffiffiffiffiffiffiffi

�rp
kEc

r

ð2Þ

po ¼ ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ehp

Ec
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ehp

Ec
� 1

r

s

v

u

u

t ð3Þ

The variables shown in Table 1 for calculate the

parameters are the ultimate stress of helical ribs under

compression efforts (�rÞ, the young modulus (E), the mass

density (q) and the local buckling coefficient (k). It implies

in axisymmetric global buckling when p� ps or ps � p� po
and in no axisymmetric global buckling when po � p. The

authors found that the optimized mass is given by Eq. 4.

M ¼ pDLhqh 2dh þ qdc
� �

ð4Þ

The isogrid structure use is justified due its high

mechanical performance and low weight. In this work,

CFRP material will be used as it is a material that helps in

minimizing mass and has high mechanical resistance.

2.2 Response surface method

The explicit equations for the behavior of CFRP isogrid

tubes formulation are complex and vary greatly depending

on the loading and boundary conditions. However, with the

physical structure for experimental evaluation or a FEM

software where the structure can be modeled, mathematical

and statistical methods can be applied to obtain equations

that represent the model. That is, that allows obtaining

metamodels. One of these methods is the response surface

method (RSM).

Through the elaboration of an experimental matrix using

design of experiments (DoE), the responses can be used to

create equations based on the second-order fit, as shown in

Eq. 5 (Montgomery and Runger 2003):

Y ¼ b0 þ
X

k

i¼1

bixiþ
X

k

i¼1

biix
2
i þ

X

i\j

X

bijxixj þ e ð5Þ

where k is the decision variables number of the problem.

The central composite design (CCD) is used in RSM to

generate a complete quadratic model using all decision

variables, being 2 k factorial points, 2 k axial points and a

central point. According to Montgomery and Runger

(2003), the Y metamodel can have a real problem good

representation within the experimental region if the prob-

lem operator has good knowledge in the region estimation.

The models adjustment is given through the determi-

nation coefficient (R2), which represents the variation

percentage in the response that is explained by the con-

ceptual model. However, a high R2 value does not neces-

sarily imply a good model, as adding variables to the model

will always increase the determination coefficient, regard-

less the variable added be (or not) statistically significant.

Due to this fact, it is chosen to use the R2 adjusted (R2
adj),

which does not increase whenever a variable is added to the

model. If an unnecessary term is added, the value of R2
adj

decreases. With an adjusted RSM, the process optimization

can proceed (Montgomery 2017).

2.3 Lichtenberg algorithm

Meta-heuristics are algorithms capable of combining

decision variables and, from the answers, acquire knowl-

edge of the problem and move towards an optimal region.

To do so, they do not even need a function definition, as in

Fig. 1 Geometric parameters of the isogrid tube

Table 1 Optimum results for three different cases in isogrid (adapted

from Vasiliev and Razin 2006)

Case 1 (p� ps) Case 2 (ps � p� po) Case 3 (po � p)

h ¼ 1
4
ð48p4k

2p3

EhE
3
c

p4Þ1=10 h ¼ 1
4
ðp2kpEc �r

p2Þ1=4 h ¼ pp
16 �r

ffiffiffiffiffiffiffiffiffi

kEhps
3 �rpo

q

tgu ¼ 1
2

tg2u ¼ ps
4p tg2u ¼ ps

4po

dh ¼ 5
4p ð

108p2Ecp
2

E3
hk

4p
Þ1=10 dh ¼ 2

psin2u

ffiffiffiffiffiffi

3 �r
kEh

q

dh ¼ 2
psin2u

ffiffiffiffiffiffi

3 �r
kEh

q

dc ¼ dh
2p dc ¼ psdh

2pp dc ¼ pspodh
pp2

ðp
2
o

p2
� 1

2
Þ
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this work, where the output response evaluation is done by

FEM software. Due to the algorithm’s ability to learn from

decision variables and escape non-optimal regions and

local minima, meta-heuristics are considered as an Artifi-

cial Intelligence algorithm (Mirjalili, 2016; Pereira et al.

2021c).

These algorithms can deal with multimodal, non-convex

problems and with many decision variables. Currently,

there are many meta-heuristics dealing with mono-objec-

tive problems and, in smaller number, with multi-objective

problems. Being based on phenomena found in nature to

find precise solutions with lower computational cost, each

algorithm has parameters that control its capabilities to

improve the solutions already found (exploitation) and to

search new regions to find other solutions (exploration)

according to its inspiration source.

There is no single algorithm that can be perfect in all

applications, according to the no-free-lunch (NFL) theo-

rem. However, the search for new and powerful algorithms

is constant since it is a modern tendency for a problem

operator to find as many solutions as possible before

deciding which one to adopt (Yang 2014; Pereira et al.,

2021c).

The Lichtenberg Algorithm is inspired by lightning

propagation in resistant media and is the first algorithm in

the literature to be based on trajectory and population at the

same time. It is inspired by lightning propagation in

resistant media, which generates figures with fractal

aspects called Lichtenberg figures (Pereira et al. 2021a).

The single-objective version has been successfully applied

in the identification of cracks (Pereira et al. 2020), damage

in composites (Pereira et al. 2021b), and isogrid tubes

design optimization using metamodels (Francisco et al.

2020b a). The Multi-objective lichtenberg algorithm

(MOLA) was recently published and will be used here

(Pereira et al. 2022).

The algorithm uses a Lichtenberg figure to be thrown

into the search space with different rotations and sizes in

each of the Niter iterations. Three optimizer parameters are

used in the Lichtenberg Figure creation: the creation radius

(Rc), the number of particles (Np), and the stickiness

coefficient (S). The latter controls the density of the

Lichtenberg figure created, while the first two are associ-

ated with its size.

Then, a number of Pop points are randomly selected in

the Lichtenberg figure to be evaluated in the objective

functions. Each assessment generates a solution in Search

Space and these solutions are compared using the Pareto

dominance relationship. In this way, a partial Pareto front

is formed and updated at each iteration. The Lichtenberg

figure launched in the search space at each iteration has as

its central trigger point a randomly selected point from the

current Pareto front.

The basic principle of how the algorithm works in the

multi-objective version is this. However, the algorithm still

has two other parameters. The parameter M controls the

Lichtenberg Figures creation during the entire optimiza-

tion. If M = 0, no Lichtenberg figure is created and an

optimized one is loaded. This makes the algorithm deliver

final responses in less than 1 s in the mono-objective ver-

sion. If M = 1, a Lichtenberg Figure is created and used in

all iterations. If M = 2, a Lichtenberg figure is created at

each iteration. The Lichtenberg Figure process creation

takes about 2 min.

The ref parameter, if nonzero, creates a Lichtenberg

Figure at a rate ref of the Lichtenberg Figure used in that

iteration. Half of Pop is required to be in this smaller

Figure, which can improve the algorithm’s accuracy/con-

vergence. Figure 2 shows the LA acting in the search space

through some iterations and the respective convergence in

the objective space. Figure 3 shows a summary of how the

algorithm works.

3 Methodology

The isogrid tube optimization depends on the output

responses acquisition from the decision variable inputs. In

this study, Mechanical ANSYS APDL� is used. A reduced

number of experiments can be done to build the metamodel

through RSM, which is performed in MINITAB� Soft-

ware, or the optimizer can be linked directly into FEM for a

deep optimization. Both will be used in this paper.

3.1 Numerical modeling using finite element
method

Francisco et al. (2020b a) studied an isogrid numerical

model and made comparisons with experimental tests to

find the best fits. The results found by the authors showed

that the numerical approach is in accordance with the

experiments. Therefore, in this paper will be used the same

shell element with 8 nodes and six degrees of freedom.

The isogrid model proposed is made with CFRP T300/

epoxy. This material was analyzed by Madhavi (2009). The

author carried out experimental tests for its characterization

and the parameters are shown in Table 2. These data were

used by Francisco et al. (2020b a, 2021) for a prosthetic

tube numerical analysis.

The isogrid tube is formed by 7 sheets of 0.2 mm each,

i.e., the total thickness of the model is equal to 1.4 mm.

This value was adopted by Junqueira et al. (2019) and

shows excellent results in experimental tests. In addition, it

is important to highlight that the carbon fibers orientation

are shown in Fig. 4. For the numerical analysis, the force

and the moment were applied at the end of the structure
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while the other side is locked as shown in Fig. 5. The loads

used in this numerical model are according to the standard

that have norms to lower limbs prosthesis structural testing

(NBR ISO 10328: 2002). The adopted loads are 4480 N for

compression and 7.1 N m for torsion tests.

Having the structure modeled, the main objectives to be

analyzed will be the Mass, natural frequency, Tsai–Wu and

critical buckling load in the isogrid tube torsional and

compression scenarios.

The Tsai-Wu failure criterion (TW) was used in this

work to determine the safety factor of the composite

Fig. 2 Basic search strategy of MOLA in the design and objective space

Fig. 3 MOLA flowchart

Table 2 Properties of T300 Carbon fiber/epoxy resin ( Adapted from

Madhavi 2009)

Propriety Unit Value Standard

E1 GPa 144 ASTM D3039

E2 GPa 6.5 ASTM D3039

G12 GPa 5.6 ASTM D3518

S12 MPa 40 ASTM D3518

r1
T MPa 1200 ASTM D3039

r2
T MPa 17 ASTM D3039

r1
C MPa 600 ASTM D3410

r2
C MPa 80 ASTM D3410

ILSS MPa 42 ASTM D2344

Q g/cm3 1.35 ASTM D3039

t12 – 0.21 ASTM D3039

Fig. 4 Fiber orientation used to build the isogrid (Francisco et al.

2021)
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orthotropic shells. This criterion takes into consideration

the total effort energy to predict failure, i.e., the failure will

occur when the index is greater or equal to the unit.

Therefore, it is necessary to minimize it and this criterion

can be modeled as shown in Eq. 5.

F ¼ F1r1 þ F11r
2
1 þ F2r2 þ F22r

2
2 þ 2F12r1r2 þ F66s

2
12

ð5Þ

where:

F1 ¼
1

X1T
� 1

Y1C
; F2 ¼

1

X2T
� 1

Y2C
; F11 ¼

1

X1TY1C

F22 ¼
1

X2TY2C
;F66 ¼

1

S212

ð6Þ

F12 ¼
1

2P2
1�P

1

X1T
� 1

Y1C
þ 1

X2T
� 1

Y2C

� �

� P2 1

X1TY1C
þ 1

X2TY2C

� �� �

ð7Þ

where r1, r2, s212 are the principal stress; X1T, X2T are the

tensile strength in fiber direction and transversal fiber

direction, respectively; Y1C, Y2C are the compressive

strength in fiber direction and transversal fiber direction,

respectively; S12 is the shear strength of material.

The critical buckling load (Ccr) is another answer ana-

lyzed in this work with the maximization intention. It can

be associated with an eigenvalue (k) and the structure

stiffness matrix as shown by Eqs. 8 and 9 as follows.

K½ ��k KG½ �ð Þfhg ¼ 0 ð8Þ
Ccr ¼ k � Fi ð9Þ

where [K] is the global stiffness matrix and [KG] is the

isogrid tube global geometric stiffness matrix. In this way,

the k is a multiplier that shows how many times the

structure can support the initial load without buckling.

3.2 Response surface design

More than eight input variables can be used in the isogrid

tube code in FEM; however, the main ones that control the

others are as follows: (i) the angle between helical ribs (u),
ranging from 20 to 50�, (ii) width of the helical crossbeams

(dh), ranging from 2 to 6 mm and (iii) width of the circular

crossbars (dc), ranging from 2 to 6 mm. These intervals are

recommendations found in Francisco et al. (2021) and

Junqueira et al. (2019).

Using the CCD with 3 decision variables, 8 factorial, 6

axial and 1 central experiments are generated. Adding 5

central points to assess the problem variability, there are 20

experiments in Table 3. The objectives are as follows:

Mass (M), natural frequency (xn), eigenvalues associated

with the critical buckling load for compression (kC) and

torsion (kT) and Tsai–Wu for compression (TWC) and

torsion (TWT).

Fig. 5 Boundary conditions

applied to the model for

a compression test and b torsion

cases

Table 3 Experimental matrix of the CFRP isogrid tube metamodeling

Simulation Input parameters

u (�) dc (mm) dh (mm)

Factorial points #1 20 2 2

#2 50 2 2

#3 20 6 2

#4 50 6 2

#5 20 2 6

#6 50 2 6

#7 20 6 6

#8 50 6 6

Axial points #9 20 4 4

#10 50 4 4

#11 35 2 4

#12 35 6 4

#13 35 4 2

#14 35 4 6

Center points #15 35 4 4

#16 35 4 4

#17 35 4 4

#18 35 4 4

#19 35 4 4

#20 35 4 4
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3.3 Multi-objective optimization of isogrid tubes

For the construction of a visible Pareto front, 3 case studies

will be proposed. Each of these cases will be performed

with the two methodologies (LA-FEM and LA-RSM) and

the generated Pareto fronts will be compared. The one that

presents the best result for the three metrics used (IGD, SP,

and MS) will be chosen for the isogrid tube optimization

discussion.

Case I is a torsion case and aims to minimize the mass

and Tsai-Wu and maximize the critical buckling load. The

optimization problem can be seen in Eq. 10. Note that the

minus sign is used for maximization.

minF Xð Þ ¼ M Xð Þ; �kT Xð Þ;TWT Xð Þf g
subject to:

20�u� 50 �½ �
2� dh � 6 mm½ �
2� dc � 6 mm½ �

ð10Þ

Case II is a Compression case. The optimization prob-

lem modeling is similar to the previous one and is

expressed in Eq. 11:

minF Xð Þ ¼ M Xð Þ; �kC Xð Þ;TWC Xð Þf g
subject to:

20�u� 50 �½ �
2� dh � 6 mm½ �
2� dc � 6 mm½ �

ð11Þ

Case III is about modal performance and is composed of

two objectives. It aims to minimize mass and maximize

natural frequency. The optimization problem is expressed

in Eq. 12.

minF Xð Þ ¼ fM Xð Þ; �xn Xð Þg
subject to:

20�u� 50 �½ �
2� dh � 6 mm½ �
2� dc � 6 mm½ �

ð12Þ

Case IV unites all the six studied objectives for the first

time in the literature. The optimization problem is

expressed in Eq. 13.

minF Xð Þ ¼ fM Xð Þ; �kC Xð Þ;TWC Xð Þ; �kT Xð Þ;TWT Xð Þ; �xn Xð Þ Þg
subject to :

20�u� 50 �½ �
2� dh � 6 mm½ �
2� dc � 6 mm½ �

ð13Þ

The MOLA parameters for the multi-objective opti-

mization problems in Eqs. 10, 11, 12, and 13 for both

methodologies are as follows: Pop = 100; Niter = 100;

Rc = 200; Np = 106; S = 1; ref = 0.4; and M = 0. The

solutions of these cases do not lead to one solution, but to a

solutions set called Pareto front. That is, no other solution

can reduce some objective without causing a simultaneous

increase in at least one other objective (Chiandussi et al.

2012).

The Pareto fronts generated for each case using the two

methodologies will be compared using the inverted gen-

erational distance (IGD), Spacing (SP) and maximum

spread (MS). These metrics need a reference Pareto front,

often called true Pareto front (TPF) to evaluate the

methodology or algorithm. As this problem is complex and

there is no real Pareto front in the literature to use as ref-

erence, a Pareto front resulting from all solutions of all

methodologies for each case will be used.

The IGD is a metric that measures the convergence

capacity and is expressed by Eq. 13 (Sierra and Coello

2005):

IGD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

nt

I¼1

ðd0iÞ
2

s

n
ð14Þ

where nt is the Pareto optimal solutions number and d’i
indicates the Euclidean distance between the i-th true

Pareto optimal solution and the closest Pareto optimal

solution obtained in the reference set (TPF). If the IGD is

null, the solutions obtained are equal to the true Pareto

front.

To measure the coverage and quantitatively compare the

algorithms, the SP (Schott 2005) and MS (Zitzler 1999)

metrics are employed. SP and MS are given in Eqs. 14 and

15, respectively.

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

I¼1

ðd � diÞ2
s

ð15Þ

where d is the average of all di, n is the number of Pareto

optimal solutions obtained, and

di ¼ ð f i1 x!
� �

� f j1 x!
� �

	

	

	

	þ f i2 x!
� �

� f j2 x!
� �

	

	

	

	Þ

for all i, j = 1, 2, 3, …, n.

MS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

o

i¼1

maxðdðai; biÞÞ
s

ð16Þ

where d is a function to calculate the Euclidean distance, ai
is the maximum value in the i-th objective, bi is the min-

imum in the i-th objective, and o is the objectives number.

Note that for IGD and SP, lower values show better

results. On the contrary, a higher MS shows a better

algorithm and best coverage. With these three metrics, the

best methodology for each Case will be chosen.
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4 Numerical results and discussion

4.1 Metamodeling

Applying the simulations in Table 3, output variables are

shown in Table 4.

All metamodels found had an adjusted fit greater than

80%, being considered reasonable. These results are shown

in Table 5. The generated metamodels that will be used in

the LA-RSM methodology are in Table 6.

4.2 Multi-objective optimization

The Pareto fronts generated for the optimization problems

in Eqs. 10 to 12 are shown in Fig. 6. It is possible to see the

non-dominated solutions and the best solution found using

the Technique for Order of preference by similarity to ideal

Solution (TOPSIS) (Yoon and Kim 2017) for the LA-FEM

and LA-RSM methodologies, i.e., in the Torsion, Com-

pression and Modal performance cases.

TOPSIS was the decision-making technique chosen for

being one of the most used in the last 5 years, having more

than 4500 citations. The method uses the utopia point as

positive ideal solution (A ?) and the nadir point as nega-

tive ideal solution (A-) to calculate a score for each

solution in Pareto front. The utopia point is an imaginary

point composed of the imaginary minima of each objective,

while the Nadir point is exactly the opposite. Using

Euclidean distance, it determines which solution is the

closest to (A ?) and the furthest from (A-). Still, the

method can be accompanied by tools for normalization of

the search space, so that objectives that have larger ranges

are not favored. Also, weights can be used to increase the

importance of some objectives (Yoon and Kim 2017;

Pereira et al. 2021c; Francisco et al. 2021).

The main motivation for using the two methodologies is

to compare the accuracy of the results. In terms of com-

putational cost, each simulation using FEM takes about

40 s. In the LA-RSM methodology, there are 20 experi-

ments, which generates a 13 min simulation time. In the

LA-FEM, there are 40 9 Pop 9 Niter experiments, which

results in approximately 55 h.

For the LA-RSM in all cases, the Pareto fronts have

more consistency and continuity, given the optimization

generated by second-order polynomial equations.

Table 4 Results of the

experimental matrix of the

isogrid tube

Decision variables Objectives

U (�) dc (mm) dh (mm) TWC kC TWT kT Mass (g) xn (Hz)

20 2 2 1.180 1.29 0.177 4.71 10.09 2270.37

50 2 2 1.799 3.12 0.169 28.69 14.94 3266.82

20 6 2 0.552 2.35 0.419 8.81 15.79 1867.83

50 6 2 1.660 4.73 0.136 55.85 27.05 2463.69

20 2 6 0.445 15.79 0.211 58.82 24.56 2513.03

50 2 6 2.239 17.36 0.055 272.25 32.68 3810.46

20 6 6 0.304 23.33 0.191 88.57 30.26 2346.92

50 6 6 0.848 19.26 0.084 391.47 44.79 3309.55

20 4 4 0.428 8.54 0.164 32.09 20.18 2312.34

50 4 4 0.997 12.03 0.100 157.54 29.87 3286.47

35 2 4 0.792 10.33 0.097 62.85 19.98 3268.24

35 6 4 0.550 15.69 0.212 103.89 28.53 2787.73

35 4 2 1.162 3.42 0.224 21.35 16.41 2583.91

35 4 6 1.494 23.05 0.139 178.52 32.10 3183.51

35 4 4 0.562 13.45 0.100 82.15 24.26 2993.60

35 4 4 0.682 14.49 0.110 102.84 26.19 3071.66

35 4 4 0.636 13.96 0.103 88.79 25.13 2993.76

35 4 4 0.531 13.07 0.140 76.25 24.10 2906.92

35 4 4 0.509 12.71 0.153 71.09 23.48 2891.44

35 4 4 0.543 14.46 0.090 95.91 25.30 3077.11

Table 5 Table for fit regression

model
Objective R2 (adj)

M 99.33

TWT 81.02

kT 99.09

TWC 80.69

kC 94.24

xn 97.36
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However, it is possible to observe that the isogrid structure

optimization true nature has discontinuous Pareto fronts.

Also, even with the same search spaces in both method-

ologies, the LA-FEM methodology shows solutions with

larger critical lambda (Case I) and natural frequencies

(Case III) ranges. For this reason, the solution via TOPSIS

for LA-FEM ends up being more displaced in relation to

LA-RSM.

Three metrics are used to compare these generated

Pareto fronts: IGD, SP and MS. The lower the IGD, the

closer the analyzed Pareto front approached the true Pareto

front. The smaller the SP, the less spaced the solutions are

from each other. The larger the MS, the greater the interval

between the solutions found. In this way, the smaller the

IGD and SP and the larger the MS, the better the Pareto

front. As in this problem there is no true Pareto front to be

used as a reference, a Pareto front was generated that is

composed of the solutions of the two methodologies for

each case. These results are shown in Table 7.

As expected, given the ease of the optimization problem

with second-order polynomial functions, the LA-RSM

methodology SP is smaller in all cases. This result can also

indicate the presence of discontinuity between the solu-

tions, confirming the non-continuous Pareto front nature in

this multi-objective optimization problem. MS indicates

how the further away are the extreme solutions found and

for all cases, the LA-FEM Methodology was higher (as can

also be seen in Fig. 6).

One of the most important metrics is the IGD, as it is the

metric that guarantees better solutions when using TOPSIS

or a solution closest to the ideal point (Pereira et al.,

2021c). In all situations, the LA-FEM presented better

values, with the exception of Case II. However, a high

discontinuity can be observed in this region, that was not

identified by the RSM. The difference in IGD is even

greater on the hyper-dimensional Pareto fronts generated in

Case IV—a case with six objectives (or dimensions). For

this reason, the optimal solutions for this work are those

found by LA-FEM.

All the solutions using TOPSIS highlighted in Fig. 6 are

in Table 8. As The LA-RSM methodology finds the

optimal decision variables from metamodels, when enter-

ing them into the FEM for a conference simulation, there

may be an error. Then, for this methodology, the Error is

calculated and also is presented in Table 8. The difference

(Diff) is also calculated for the objectives found between

the LA-FEM and LA-RSM methodologies. It is important

to emphasize that using only the Diff to assess which

solution is better in multi-objective optimization is

insufficient.

For Case I, LA-FEM found a solution with 3 times the

mass, less than half the TW, and 32.5 times the capacity to

support a buckling load. However, a small error is observed

using the LA-RSM, since the solution determined by

TOPSIS is close to the true Pareto front (LA-FEM), as can

be seen in Fig. 6a.

Approximately, half of the TW and 18 times the load

capacity for only 16% increase in mass were found by the

LA-FEM in the Compression case (Case II). In it, signifi-

cant errors were identified for the TW and the critical

Lambda. It can be seen in Fig. 6b that the solution found by

LA-RSM is close to the discontinuous region found by LA-

FEM. Still, this was the only case in which the method-

ology using the metamodel had a higher IGD than the one

using the direct link with the FEM. Therefore, this point

feasibility may be questionable.

As for modal performance case (Case III), the LA-RSM

methodology found an 18.7% smaller mass, but with a

natural frequency 32.9% smaller. It can be seen in Fig. 6c

that the point found by the LA-RSM is not far from the

Pareto front found by the LA-FEM. Thus, it presents a

minor error. However, even the two methodologies having

the same search space, can be seen a larger solutions

number in LA-FEM in higher natural frequencies.

The multi-objective optimization problem becomes

more complex with more objectives. As seen, the isogrid

tube optimization problem even in small dimensions gen-

erated discontinuities and despite being visually difficult, it

can be projected that more discontinuities will have for

Case IV. This difference is evidenced by the difference in

IGD in Table 7. The LA-RSM found a solution with a mass

43.8% smaller; however it obtained a TW greater than 1,

Table 6 Metamodels coefficients generated by the response surface method

Objective b1 b2 b3 b1
2 b2

2 b3
2 b12 b13 b23 b0

M 0.323 2.209 4.005 - 11.38

TWT - 0.006 0.061 - 0.146 0.014 - 0.001 0.001 - 0.006 0.492

kT - 9.070 32.300 - 19.600 0.132 - 0.606 1.804 21.2

TWC 0.031 - 0.127 - 0.726 0.083 1.725

kC 0.035 1.260 4.194 - 10.91

xn 55.700 - 68.800 175.000 - 0.459 - 20.160 - 1.397 3.480 1172
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(a) Case I - Torsion

(b) Case II – Compression

(c) Case III - Modal
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which indicates a structure failure. The LA-FEM method-

ology found safe TW values, and critical lambda values 3

times higher for compression and 8 times higher for

torsion.

The results found in this work can be compared Jun-

queira et al. (2019) and Francisco et al. (2021), as seen in

Table 9. Difference 1 is the percentage difference between

the results of this study and Junqueira et al. (2019). Dif-

ference 2 is for Francisco et al. (2021). There is no com-

parison for Case IV because this study is the first to do.

This work significantly improves all the optimization

objectives for Case I compared to other works in the lit-

erature, finding a smaller mass, a larger critical lambda and

Table 7 Statistical comparison of Pareto fronts

Case Methodology IGD SP MS

I LA–FEM 5.55 1.70 0.87

LA-RSM 56.65 1.18 0.77

II LA–FEM 4.06 0.51 0.57

LA–RSM 0.02 0.26 0.45

III LA–FEM 13.38 53.73 1.92

LA-RSM 683.59 3.10 0.89

IV LA–FEM 35 30 0.99

LA-RSM 830.51 15.32 0.84

Table 8 Optimized decision

variables for the four multi-

objective design optimization

cases

Case Decision variables Objectives

I u (�) dh (mm) dc (mm) TWT Error kT Error M (g) Error

LA-FEM 40.00 6.00 3.64 0.03 – 395.81 – 37.55 –

LA-RSM 25.12 2.54 2.00 0.08 0.66% 12.18 0.05% 12.96 0.04%

Diff (%) ? 166.7 - 96.9 - 65.5

II u (�) dh (mm) dc (mm) TWC Error kC Error M (g) Error

LA-FEM 25.07 6.00 4.13 0.26 – 18.71 – 20.84 0%

LA-RSM 23.31 3.66 2.18 0.57 10.4% 1.10 8.17% 17.83 1.35%

Diff (%) ? 119.2 - 94.1 - 14.4

IIII u (�) dh (mm) dc (mm) xn (Hz) Error M (g) Error

LA-FEM 40.00 2.00 2.00 4433.7 – 14.95 –

LA-RSM 30.17 2.00 2.00 2972.1 0.1% 12.15 0.03%

Diff (%) - 32.9 - 18.7

IV u (�) dh (mm) dc (mm) TWC TWT kC kT xn M (g)

LA-FEM 40 5.81 6.00 0.31 0.07 18.76 522.02 6682 43.93

LA-RSM 40 2.70 4.20 1.14 0.10 6.10 62.10 5884 24.70

Error (%) 23.7 40 0.16 0.03 0 0.04

Diff (%) ? 276.7 ? 42.9 - 67.5 - 88.1 - 11.9 - 43.8

Table 9 Comparison of studies on the optimization of isogrid tubes

Case Objective Junqueira et al. (2019) Francisco et al. (2021) Present Study Difference 1 (%) Difference 2 (%)

I TWT 0.13 0.33 0.03 - 77 -90.90

kT 777 387.45 395.81 - 49.05 ? 2.16

M (g) 82.2 72.34 37.55 - 54.3 - 48.09

II TWC 0.68 0.83 0.26 - 61.76 - 68.67

kC 33 22.93 18.71 - 43.3 - 18.40

M (g) 82.20 38.31 20.84 - 74.64 - 45.69

III xn (Hz) 2683 2905.91 4433.70 ? 65.25 ? 52.57

M (g) 82.20 13.25 14.95 - 81.81 ? 12.8
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a smaller TW for the torsion case. In the case of com-

pression, it also finds a mass and a TW smaller than all the

other related studies; however, it has a lower critical k,
even though it has an expressive value of 18.71.

For case 3, this study finds higher natural frequency

values, having increased by at least 52.57% the best found

in the literature with only 12.8% more mass. Figure 7

shows the isogrid tubes optimized for each Case using the

LA-FEM.

5 Conclusion

This work proposes a CFRP isogrid tube deep multi-ob-

jective optimization considering six objectives: structural

mass, Tsai–Wu failure index, instability coefficient (for

compression and torsion efforts), and natural frequency.

The objectives are divided into three cases for comparison

with the literature: torsion, compression, and modal. The

optimizations are considered using the direct link between

the multi-objective Lichtenberg algorithm and the finite

element method software and using metamodeling through

the response surface methodology.

The LA-FEM methodology revealed the Pareto fronts’

real nature for this problem for the first time in the litera-

ture and allowed the evaluation of regions where the

response surface methodology application is successful or

not. Also, even with the same search spaces, the LA-FEM

methodology allowed to find a non-dominated solutions

range with higher critical lambdas and natural frequencies.

Design variables were found with significant improvement

compared to the most recent study in the literature. In the

torsion case, there was a mass reduction of 48.09%, an

increase in the critical lambda of buckling by 2.16%, and a

reduction in Tsai-Wu by 90.90%. For compression, mass

reduction by 45.69%, critical lambda reduction by 18.40%,

and Tsai-Wu reduction by 68.67%. For the modal case, it

allowed an increase of up to 52.57% in natural frequency

for just a 12.8% increase in mass.

This study not only allowed to find the design variables

of a safe and lightweight isogrid tube, as it showed that the

Multi-objective Lichtenberg Algorithm was able to find

excellent solutions even in problems without explicit

equations.
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