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Abstract
The K-nearest neighbor-weighted multi-class twin support vector machine (KWMTSVM) is an effective multi-classification
algorithm which utilizes the local information of all training samples. However, it is easily affected by the noises and outliers
owing to the use of the hinge loss function. That is because the outlier will obtain a huge loss and become the support vector,
which will shift the separating hyperplane inappropriately. To reduce the negative influence of outliers, we use the ramp
loss function to replace the hinge loss function in KWMTSVM and propose a novel sparse and robust multi-classification
algorithm named ramp loss K-nearest neighbor-weighted multi-class twin support vector machine (RKWMTSVM) in this
paper. Firstly, the proposed RKWMTSVM restricts the loss of outlier to a fixed value, thus the negative influence on the
construction of hyperplane is suppressed and the classification performance is further improved. Secondly, since outliers
will not become support vectors, the RKWMTSVM is a sparser algorithm, especially compared with KWMTSVM. Thirdly,
because RKWMTSVM is a non-differentiable non-convex optimization problem, we use the concave–convex procedure
(CCCP) to solve it. In each iteration of CCCP, the proposed RKWMTSVM solves a series of KWMTSVM-like problems.
That also means RKWMTSVM inherits the merits of KWMTSVM, namely, it can exploit the local information of intra-class
to improve the generalization ability and use inter-class information to remove the redundant constraints and accelerate the
solution process. In the end, the clipping dual coordinate descent (clipDCD) algorithm is employed into our RKWMTSVM to
further speed up the computational speed.We do numerical experiments on twenty-four benchmark datasets. The experimental
results verify the validity and effectiveness of our algorithm.

Keywords Weighted-TSVM · Hinge loss · Ramp loss · Multi-class classification

1 Introduction

Over the past few decades, there have been plenty ofmachine
learningmethods, such as association rules, K-nearest neigh-
bor (KNN), artificial neural network and support vector
machine (SVM)(Vapnik 1995). As a binary classifier, the
SVM has excellent performance in solving small sample,
nonlinear and high dimensional pattern recognition and has
been widely applied in many fields. Extensive variants and
extensions of SVMshavebeen studied in recent years, such as
twin support vector machines (TSVM) (Jayadeva and Chan-
dra 2007; An and Xue 2022), rough margin-based TSVMs
(Xu et al 2012; Wang and Zhou 2017), weighted SVMs (Zhu
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et al 2016; Mir and Nasiri 2018), pinball SVMs (Huang
et al 2014b; Rastogi et al 2018; Prasad and Balasundaram
2021), TPMSVMs (Sharma et al 2021), universum SVMs
(Shi 2012; Qi et al 2014; Richhariya and Tanveer 2020), pro-
jection TSVRs (Peng andChen 2018), robust TSVMs (Borah
and Gupta 2021) and so on.

The standard SVM uses the hinge loss, which makes it
sensitive to the presence of outliers and noises. As we know,
the support vectors (SVs) play a crucial part in determining
the separating hyperplane. The solution of SVM is sparse. In
recent years, some techniques are used to improve the robust-
ness of SVMs, such as using fuzzy theory (Jha and Mehta
2020; Rezvani and Wang 2021) and different loss functions
(Bamakan et al 2017; Tang et al 2021). The fuzzy SVMs
(Rezvani and Wang 2021) are robustness and can do uncer-
tainty handling, and they can be applied to address the class
imbalance issue in the presence of noise and outliers and
large scale datasets.
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The common used loss functions are square loss, Huber
loss, pinball loss, and ramp loss, etc. The square loss is often
adopted in least squaresSVMs (LSSVMs) (Suykens andVan-
dewalle 1999; Kumar andGopal 2009; Gupta andRichhariya
2018), which solves a system of linear equations instead of
quadratic programming problems (QPPs) to obtain the opti-
mal solution. Therefore, LSSVMs have fast solving speed.
However, the solutions of LSSVMs totally lose sparsity. The
Huber loss function (Borah and Gupta 2020) behaves as
quadratic loss for a small fraction of closer points and grows
linearly after a certain point. Therefore, it is a convex robust
function. Finding the solutions of Huber loss-based SVMs
is computational expensive for larger datasets. The pinball
SVMs (Huang et al 2014b; Tanveer et al 2019c) are proposed
to handle noise insensitivity and instability to re-sampling.
It deals with the quantile distance rather than the closest dis-
tance of SVM, making it less sensitive to noise, especially
feature noise. Not only the incorrectly classified samples gain
penalties, but also the correctly classified samples gain penal-
ties. Its pure form loses sparsity totally. To keep the sparsity
as well as the noise insensitivity, some sparse SVMs with
pinball loss (Tanveer et al 2019c, 2021b; Borah and Gupta
2021; Tang et al 2021) have been studied.

The direct reason for SVM is not robust enough is that the
outliers gain the largest losses and are apt to become sup-
port vectors (SVs) (Bamakan et al 2017). The outliers will
shift the hyperplane toward themselves inappropriately, thus
leading to poor generalization ability. Considering the afore-
mentioned issue, the ramp-loss-based SVM (RSVM) (Huang
et al 2014a) was proposed to remedy this problem. The ramp
loss function restricts the maximal loss value of the outliers,
hence reduces their negative influences. What’s more, the
sparsity of traditional SVM is preserved. Although it makes
the problem become a non-convex optimization problem,
the Concave–Convex Programming (CCCP)(Yuille andRan-
garajan 2003; Lipp and Boyd 2016) procedure can be applied
to solve it bymeans of transforming it into a sequence of con-
vexproblems.With similar idea, somebinary classifiers, such
as the ramp nonparallel SVM (RNPSVM) (Liu et al 2015),
the ramp LSSVM (Liu et al 2016), the ramp one-class SVM
(Xiao et al 2017) and ramp maximum margin of TSVM (Lu
et al 2019), have been proposed and studied.

The TSVM (Jayadeva and Chandra 2007; Tanveer et al
2019b) has attracted much attention for its faster compu-
tational speed because it solves two smaller sized QPPs.
To mine the structural information of samples, some fuzzy
SVMs (Deepak et al 2018; Rezvani and Wang 2021) have
been researched which calculates the fuzzy membership for
each sample. In order to exploit the underlying correlation or
similarity information between the pair of samples with the
same labels, a weighted TSVM (WTSVM)was proposed (Ye
et al 2012). It has obtained comparable predictive accuracy
compared with the TSVM. Some density-weighted SVMs

(Hazarika and Gupta 2021) are also used to deal with noisy
data classification. By integrating the rough set theory and
WTSVM, Xu et al (2014) proposed a KNN-based weighted
roughν-TSVMinwhichnot onlydifferent penalties are given
according to the samples positions, but also different weights
are given. Mir and Nasiri (2018) studied the least squares
version of WTSVM which solves a pair of linear equations
as opposed to solves two QPPs, thus increasing the solving
speed. Gupta (2017) used the thought ofWTSVMfor solving
regression problem.

Most of the aforementioned SVMs are binary classi-
fiers, while the common classification scenes in the actual
application are usually related to the multi-class classifi-
cation problems. There are some effective decomposition
strategies that can transform the multi-class problem into a
series of binary problems (Hsu and Lin 2002; Balasundaram
et al 2014). The common used methods include one-verse-
one (OVO), one-verse-rest (OVR), all-versus-one (AVO) and
direct acyclic graph (DAG) (Nasiri et al 2015; Ortigosa et al
2017; Zhou et al 2017; Kumar and Thakur 2018; Lu et al
2019). For a K -classification problem, the OVR method
needs to construct K -binary classifiers. In each classifier,
the j-class is regarded as positive class and the remaining
is regarded as negative class, while AVO approach is just
the opposite. These two approaches could easily lead to the
imbalance problem and have bad performance. The OVO
and DAG methods generate K (K − 1)/2 binary classifiers,
and each classifier involves only two classes of samples and
ignores the remaining classes.

To mitigate the deficiencies of OVO and OVR meth-
ods, Angulo et al (2003) proposed a K -class support vec-
tor classification-regression (K-SVCR), which takes into
account all the training points by adopting the “one-verse-
one-verse-rest” (OVOVR) structure. It generates K (K−1)/2
binary classifiers in total and outputs the final predictive label
by “voting” strategy. To increase its computational speed, the
twin K -class support vector classification (TKSVC) (Xu et al
2013) was proposed, which has been proved to work approx-
imately 4 times faster than the K-SVCR under the condition
that the positive, the negative and rest samples are equal. The
Ramp-TKSVC (Wang et al 2020) was proposed to reduce
the negative influence of outliers and improve the robust-
ness. Actually, the TKSVC and Ramp-TKSVC still work
slowly, especially for large-scale multi-classification prob-
lem. AKNN-based weighted multi-class twin support vector
machine (KWMTSVM) (Xu 2016) was proposed to improve
the classification performance and computational efficiency
by considering the local information of samples and remov-
ing the redundant constrains. Tanveer et al (2021a) proposed
a least squares version of KWMTSVM (LS-KWMTSVM)
which solves a pair of linear equations, thus accelerating the
training process.
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TheKWMTSVMhas gained promising results in tackling
multi-classification problem. However, due to the convexity
nature of the hinge loss function is used, it is susceptible
to outliers in the training process. Because the outliers will
gain the largest losses and easily become SVs, thus stretch-
ing the hyperplane toward themselves in an inappropriate
way and leading to poor generalization ability. To circumvent
this problem and develop a more precise, sparse and robust
algorithm, we use the ramp loss to replace the hinge loss in
the KWMTSVM and propose a ramp loss KNN-weighted
multi-class twin support vector machine (RKWMTSVM) in
this paper, and the contributions of this paper are listed as
below:

• The proposed RKWMTSVM adopts OVOVR structure
which can take a consideration of all training samples
and overcome the data-imbalance problem.

• It restricts the loss of outlier to a fixed value and effec-
tively suppresses the negative influence of constructing
separating hyperplane, thus improving the robustness of
the model.

• The outliers are avoided to become support vectors, then
the proposed RKWMTSVM is sparser, especially com-
pared to KWMTSVM.

• The proposed RKWMTSVM is a non-differentiable non-
convex optimization problem, we adopt the popular and
handy CCCP method to effectively solve it. In each iter-
ation of CCCP, it solves a sequence of KWMTSVM-like
problems. The merits of KWMTSVM are inherited. That
is to say, it can exploit the local information in terms of the
data affinity simultaneously. By removing the redundant
constraints, the RKWMTSVM has faster solving speed.

• To further accelerate the solving process of RKWMTS
VM, the clipping dual coordinate descent (clipDCD)
algorithm is utilized to solve the sub-quadratic program-
ming problems in each iteration of CCCP.

• We do numerical experiments on twenty-four datasets
and compare it with six state-of-the-art algorithms,
i.e., OVO PGTSVM, OVR WTSVM, OVR RνTSVM,
KWMTSVM,Ramp-TKSVC and LS-KWMTSVM. Exp
erimental results verify the effectiveness of the proposed
method.

The remainder of the paper is organized as follows. InSect.
2, we outline theKWMTSVMandRSVM. In Sect. 3, we pro-
pose and analyze the novel algorithm named RKWMTSVM.
In Sect. 4, we give the theoretical analysis on the proposed
RKWMTSVM and discuss the proposed RKWMTSVM
with six state-of-the-art algorithms. Section 5 performs the
experiments to investigate the feasibility and validity of our
proposed algorithm. In sect. 6, we introduce the clipDCD
algorithm inourRKWMTSVMto increase the solving speed.
Finally, we make conclusions in Sect. 7.

2 Related works

The SVM was initially proposed for binary classification
problem.However,most of the problems in real life aremulti-
classification. To deal with K-class classification problem,
two conventional approaches, i.e., OVO and OVR strategies
are used. As mentioned above, the two approaches suffer
fromsomedrawbacks. Therefore,OVOVRstructurewas pro-
posed to avoid the shortcomings of OVO and OVR.

By considering the training datasets as S = {(x1, y1), ..., }
{(xl , yl)}, where xi ∈ R

n is the input vector, yi ∈
{1, 2, ..., K } is the corresponding label of xi , l and K are the
number of samples and the number of classes, respectively.
TheKWMTSVM is an improved algorithmof TKSVC. They
both need to construct K (K−1)/2 classifiers in total. In each
classifier, it takes the OVOVR structure with ternary out-
puts {+1,−1, 0}, which considered all the training points.
The i-class is considered as positive with label +1, the j-
class is considered as negative with label −1, and the rest
is considered as the zero class with label 0. Let matrix
A ∈ R

l1×n,B ∈ R
l2×n,C ∈ R

l3×n stand for the positive,
negative and zero class, respectively, and l1 + l2 + l3 = l.

2.1 KNN-based weightedmulti-class twin support
vector machine (KWMTSVM)

TheKWMTSVMconstructs the followingpair of nonparallel
hyperplanes:

〈w+, x〉 + b+ = 0 and 〈w−, x〉 + b− = 0, (1)

wherew+,w− ∈ R
n , b+, b− ∈ R, such that each hyperplane

is closer to one class and is as far as possible from the other.
The remaining samples (zero class) are mapped into a region
and satisfy two constraints 〈w+, x〉 + b+ ≤ −1 + ε and
〈w−, x〉 + b− ≥ 1 − ε, where ε is a priori smaller scaler.
It can be illustrated in Fig. 1, where the blue “+”, red “−”
and green “◦” stands for the positive, negative and zero class,
respectively.

At the same time, when constructing the positive hyper-
plane, the KWMTSVM considered the local information of
positive samples and exploited the information of inter-class
by employing K-nearest neighbor. This thought originates
the weighted TSVM (Ye et al 2012), which aims to discover
the underlying similarity information within samples from
the same class and can be modeled by the intra-class graph
Ws . Simultaneously, it constructs a inter-class Wd to model
the inter-class separability.

If the label of a sample xi is +1, it needs to define two
nearest sets: intra-class nearest sets Neas(xi )which contains
its neighbors in class+1and inter-class nearest sets Nead(xi )
which contains its neighbors in the other class. Then, the two
similarity matrices of graph W of class +1 corresponding
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Fig. 1 The illustration of KWMTSVM

Ws and Wd can be defined as follows, respectively,

Ws,i j =
{
1, if x j ∈ Neas(xi ) or xi ∈ Neas(x j ),

0, otherwise
(2)

and

Wd,i j =
{
1, if x j ∈ Nead(xi ),

0, otherwise
(3)

where Neas(xi ) = {x j
i |if x j

i and xi belong to the same class,

0 ≤ j ≤ k1}, and Nead(xi ) = {x j
i |if x j

i and xi belong to diff
erent classes, 0 ≤ j ≤ k2}.

Usually, d j is used to measure the importance of sample,
where

di =
∑
j∈I+

Ws,i j . (4)

The bigger the value of di , the more “important” correspond-
ing xi is. In order to find the training samples which possibly
become SVs in class −1, the weight matrices Wd can be
redefined as follows,

f j =
{
1, if ∃ j,Wd,i j 	= 0,

0, otherwise
(5)

Similarly, the corresponding weight matrices of negative
samples can be defined. In order to find the two hyperplanes,
the KWMTSVM solves the following pair of quadratic pro-
gramming problems (QPPs),

min
w+,b+,ξ ,η

1

2

∑
i∈I1

di (wT+xi + b+)2 + c1
∑
j∈I2

ξ j + c2
∑
k∈I3

ηk

s.t . − f j (wT+x j + b+) + ξ j ≥ f j , ξ j ≥ 0, j ∈ I2,

− hk(wT+xk + b+) + η j ≥ (1 − ε)hk, ηk ≥ 0, k ∈ I3,
(6)

and

min
w−,b−,ξ∗,η∗

1

2

∑
j∈I2

d j (wT−x j + b−)2 + c3
∑
i∈I1

ξ∗
i + c4

∑
k∈I3

η∗
k

s.t . f ∗
i (wT−xi + b−) + ξ∗

i ≥ f ∗
i , ξ∗

i ≥ 0, i ∈ I1,

h∗
k(w

T−xk + b−) + η∗
k ≥ (1 − ε)h∗

k , η∗
k ≥ 0, k ∈ I3,

(7)

where di and d j are defined as (4), f j , hk , f ∗
i , h

∗
k are defined

as (5), η, η∗ ∈ R
l3 , ξ ∈ R

l2 , ξ∗ ∈ R
l1 , I1, I2 and I3 are the

indexes of samples belonging to the positive, negative and
zero classes, respectively.

For a new testing sample x, it can be predicted by the
following decision function

f (x) =

⎧⎪⎨
⎪⎩

+1, if wT+x + b+ > −1 + ε

−1, if wT−x + b− < 1 − ε

0, otherwise

(8)

2.2 Ramp-loss-based SVM

In the standard SVM, the hinge loss function is used by
default, and it can be defined as Hs(z) = max(0, s − z),
where s is the position of the hinge point, is used to penal-
ize those samples classified with an insufficient margin. The
objective function of standard SVMwith hinge loss function
can be expressed as follows,

min
w,b

1

2
‖w‖2 + C

l∑
i=1

H1(yi f (xi )) (9)

where w ∈ R
n , b ∈ R, and f (x) = wT x + b is the decision

function.
The Hs(z) is a convex loss function, and most SVMs with

hinge loss function are sensitive to the presence of noises
and outliers which will shift the decision hyperplane toward
themselves inappropriately (Bamakan et al 2017). Because
the outliers have the largest margin losses, the generalization
ability of these algorithms decreases. Besides, these outliers
will inevitably become the support vectors and make the
algorithms have more computational cost. Recently, some
non-convex losses are introduced the SVMs to make them
more sparse and robust, and the ramp loss function attracts
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Fig. 2 The illustration of the ramp loss function, where s = 0

more attention for its better performance, where

Rs(z) =
⎧⎨
⎩
0, z > 1
1 − z, s ≤ z ≤ 1
1 − s, z < s

(10)

where s < 1 is a prior given scalar. Fig. 2 clearly shows
that the ramp loss is flat for scores z smaller than s, and the
hinge loss function is a convex function. The Rs(z) can be
decomposed into the sum of a hinge loss and a concave loss,
that is Rs(z) = H1(z) − Hs(z).

In order to increase the robustness of SVM and reduce the
negative influence of outliers, the RSVM (Huang et al 2014a)
has been proposed where the ramp loss function is used to
replace the hinge loss function in SVM.Therefore, the primal
problem of the RSVM can be formulated as follows,

min
w,b

1

2
‖w‖22 + C

l∑
i=1

Rs(yi f (xi ))

= 1

2
‖w‖22 + C

l∑
i=1

H1(yi f (xi )) − C
l∑

i=1

Hs(yi f (xi ))

(11)

This is a Concave–Convex optimization problem.

3 Ramp loss KNN-weightedmulti-class twin
support vector machine

Let f+(x) = wT+x + b+, f−(x) = wT−x + b−, the objective
function of primal problems (6) and (7) is equivalent to

Fig. 3 The flowchart of CCCP for the problem (16)

min
w+,b+

1

2

∑
i∈I1

di ( f+(xi ))2 + c1
∑
j∈I2

H1(− f j f+(x j ))

+ c2
∑
k∈I3

H1−ε(−hk f+(xk)), (12)

and

min
w−,b−

1

2

∑
j∈I2

d j ( f−(x j ))
2 + c3

∑
i∈I1

H1( fi f−(xi ))

+ c4
∑
k∈I3

H1−ε(h̃k f−(xk)). (13)

From the two equations above andFig. 2, theKWMTSVM
adoptsHinge loss functionwhich givesmore punishments on
those misclassified samples far from the hyperplane, making
the hyperplane shifted toward themisclassified samples in an
inappropriate way. Therefore, the KWMTSVM is sensitive
to the presence of noises and outliers. It can be demonstrated
by a toy example and is shown in Fig. 5. In Fig. 5a, the red
and black thick solid line represent the decision boundary
f+ = −1−ε and f− = 1+ε, respectively. The “◦” and “�”
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denote support vectors in QPP (6) and (7), respectively. The
red sample located in the upper right corner is the noise of
negative class. Obviously, it is circled by “◦” which means it

becomes the support vector and shifts the positive hyperplane
inappropriately. That means KWMTSVM overemphasizes
the existence of noises, making it not robust enough. In order
to further improve the robustness of the KWMTSVM, a new
algorithm, termed as Ramp loss KNN-weighted multi-class
twin support vector machine (RKWMTSVM), is proposed
in the following.

3.1 Linear case

In Eq.(12), the second term and third term are the losses of
samples in the negative class and zero class, respectively.
These samples adopt the hinge loss function. We use the
ramp loss function to replace them, and we can derive the
first optimization problem of the proposed RKWMTSVM as
follows,

min
w+,b+

1

2

∑
i∈I1

di ( f+(xi ))2 + c1
∑
j∈I2

Rs1(− f j f+(x j ))

+ c2
∑
k∈I3

Rs2(−hk f+(xk)). (14)

and similarly, the second optimization problem of the pro-
posed RKWMTSVM is

min
w−,b−

1

2

∑
j∈I2

d j ( f−(x j ))
2 + c3

∑
i∈I1

Rs3( fi f−(xi ))

+ c4
∑
k∈I3

Rs4(h̃k f−(xk)). (15)

The ramp loss can be decomposed into the sum of con-
vex hinge loss and concave function. Therefore, Eq.(14) and
Eq.(15) can be reformulated as follows,

min
w+,b+

1

2

∑
i∈I1

di ( f+(xi ))2 + c1
∑
j∈I2

H1(− f j f+(x j )) + c2
∑
k∈I3

H1−ε(−hk f+(xk))

︸ ︷︷ ︸
Jvex(w+,b+)

−c1
∑
j∈I2

Hs1(− f j f+(x j )) − c2
∑
k∈I3

Hs2(−hk f+(xk))

︸ ︷︷ ︸
Jcav(w+,b+)

, (16)

and

min
w−,b−

1

2

∑
j∈I2

d j ( f−(xi ))2 + c3
∑
i∈I1

H1( fi f−(xi )) + c4
∑
k∈I3

H1−ε(hk f−(x j ))

︸ ︷︷ ︸
Jvex(w−,b−)

−c3
∑
i∈I1

Hs3( fi f−(xi )) − c4
∑
k∈I3

Hs4(h̃k f−(xk))

︸ ︷︷ ︸
Jcav(w−,b−)

. (17)

Obviously, the above two problems consist of two parts:
the convex part Jvex and the concave part Jcav, and they
need to minimize a non-convex cost function. The CCCP
is a powerful heuristic method which is used to find local
solutions to difference of convex (DC) programming prob-
lems (Yuille and Rangarajan 2003; Lipp and Boyd 2016).
Because it is simple in tuning and can iteratively solve a
sequence of convex programs, it has become a successful and
power algorithm for solving non-differentiable non-convex
optimization problems (Bamakan et al 2017). For simplicity
and convenience, we only use problem (16) of the proposed
RKWMTSVM to interpret the detailed solving progress, and
the problem (17) can be obtainedwith an exactly similar way.

The CCCP framework for problem (16) is constructed in
the following flowchart, seen (Fig. 3).

From the flowchart, the CCCP procedure for problem (16)
needs to solve the following problem in the t-th step,

min
w+,b+

Jvex(w+, b+) + 〈
J ′
cav(w

t+, bt+), (w+, b+))
〉

(18)

Next, we will show how to find the solution for Eq.(18).
Remarkably, J ′

cav(w
t+, bt+) is non-differentiable at some

points. When using any upper-derivative of a concave func-
tion, the CCCP can remain valid. For convenience, we
suppose δ+ = (δ1, δ2, ..., δl2)

T , θ+ = (θ1, θ2, ..., θl3)
T ,

where

δ j = −c1 · ∂Hs1(− f j f+(x j ))

∂(− f j f+(x j ))
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=
{
c1, if − f j f+(x j ) < s1, f j = 1,

0, otherwise
(19)

where j ∈ I2, and

θk = −c2 · ∂Hs2(−hk f+(xk))
∂(−hk f+(x j ))

=
{
c2, if − hk f+(xk) < s2, hk = 1,

0, otherwise
(20)

where k ∈ I3. Therefore, using Eq.(19) and Eq.(20), Eq. (18)
can be rewritten as:

min
w+,b+

1

2

∑
i∈I1

di (wT+xi + b+)2 + c1
∑
j∈I2

H1(− f j f+(x j ))

+ c2
∑
k∈I3

H1−ε(−hk f+(xk))

−
∑
j∈I2

δ j f j (wT+x j + b+) −
∑
k∈I3

θkhk(wT+xk + b+), (21)

where the first three items are the convex part Jvex(w+, b+)

in Eq. (18), the fourth item is the result of −c1 multi-

plies the inner product of
∂Hs1 (− f j f+(x j ))

∂(− f j f+(x j ))
and − f j f+(x j )

( f+(x j ) = wT+x j + b+), and the last term is the result

of −c2 multiplies the inner product of
∂Hs2 (−hk f+(xk ))

∂(−hk f+(xk ))
and

− fk f+(xk) ( f+(xk) = wT+xk + b+).
By introducing slack vectors ξ+ = (ξ1, ξ2, ..., ξl2)

T and
η+ = (η1, η2, ..., ηl3)

T , the above equation is equivalent to

min
w+,b+

1

2

∑
i∈I1

di (wT+xi + b+)2 + c1
∑
j∈I2

ξ j + c2
∑
k∈I3

ηk

−
∑
j∈I2

δ j f j (wT+x j + b+) −
∑
k∈I3

θkhk(wT+xk + b+)

s.t . − f j (wT+x j + b+) + ξ j ≥ f j , ξ j ≥ 0, j ∈ I2,

− hk(wT+xk + b+) + ηk ≥ (1 − ε)hk, ηk ≥ 0, k ∈ I3.
(22)

We can construct the Lagrangian function of (22) as fol-
lows,

L(w+, b+, ξ+, η+,α+,β+,λ+, σ+)

= 1

2

∑
i∈I1

di (wT+xi + b+)2 + c1
∑
j∈I2

ξ j + c2
∑
k∈I3

ηk

−
∑
j∈I2

δ j f j (wT+x j + b+) −
∑
k∈I3

θkhk(wT+xk + b+)

−
∑
j∈I2

α+
j (− f j (wT+x j + b+) + ξ j − f j )

−
∑
k∈I3

β+
k (−hk(wT+xk + b+) + ηk − (1 − ε)hk)

−
∑
j∈I2

λ+
j ξ j −

∑
k∈I3

σ+
k ηk, (23)

where α+ = (α+
j )i∈I2 , β+ = (β+

k )k∈I3 , λ = (λ+
j ) j∈I2 ,

and σ+ = (σ+
k )k∈I3 are Lagrange multipliers. Differenti-

ating the Lagrangian function L with respect to variables
w+, b+, ξ+, η+ can yield the following Karush–Kuhn–
Tucker (KKT) conditions:

∂L

∂w+
=

∑
i∈I1

di (xixTi w+ + xi b+) +
∑
j∈I2

α+
j f jx j

+
∑
k∈I3

β+
k hkxk −

∑
j∈I2

δ j f jx j −
∑
k∈I3

θkhkxk = 0, (24)

∂L

∂b+
=

∑
i∈I1

di (xTi w+ + b+) +
∑
j∈I2

α+
j f j +

∑
k∈I3

β+
k hk

−
∑
j∈I2

δ j f j −
∑
k∈I3

θkhk = 0, (25)

∂L

∂ξ+
= c1e2 − α+ − λ+ = 0, (26)

∂L

∂η+
= c2e3 − β+ − σ+ = 0, (27)

∑
j∈I2

α+
j (− f j (wT+x j + b+) + ξ j − f j ) = 0, (28)

∑
k∈I3

β+
k (−hk(wT+xk + b+) + ηk − (1 − ε)hk) = 0, (29)

∑
j∈I2

λ+
j ξ j = 0,

∑
k∈I3

σ+
k ηk = 0. (30)

Arranging Eqs.(24) and (25) and representing them in the
matrix form, we can get

ATD1(Aw+ + e1b+) + BTF2(α+ − δ+)

+ CTH(β+ − θ+) = 0, (31)

eT1 D1(Aw+ + e1b+) + eT2 F2(α+ − δ+)

+ eT3 H(β+ − θ+) = 0, (32)

whereD1 = diag(d1, d2, ..., dl1),F2 = diag( f1, f2, ..., fl2),
H = diag(h1, h2, ..., hl3), e1, e2 and e3 are vectors of ones
of appropriate dimensions.

By combining Eqs.(31) and (32) and setting u+ =
[w+; b+] , we get

u+ = −(XT
1 D1X1)

−1(XT
2 F2(α+ − δ+) + XT

3 H(β+ − θ+)),

(33)

where X1 = [A e1], X2 = [B e2], and X3 = [C e3].
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From (26) and (27), we have

0 ≤ α+ ≤ c1e2, (34)

0 ≤ β+ ≤ c2e3, (35)

where 0 is vector of zeros of appropriate dimension. For
simplicity, we set γ + = [α+; β+], τ+ = [δ+; θ+],
N+ = [XT

2 F2; XT
3 H], e4 = [F2e2; He3(1 − ε)], and

S+ = [c1e2; c2e3].
By substituting the equations above into (23), we can

derive the dual formulation as follows,

max
γ +

− 1

2
(γ + − τ+)TN+(XT

1 D1X1)
−1N+(γ + − τ+) + eT4 γ +

s.t . 0 ≤ γ + ≤ S+. (36)

Similarly, the dual of the QPP (17) is derived as

max
γ −

− 1

2
(γ − − τ−)TN−(XT

2 D2X2)
−1N−(γ − − τ−) + eT5 γ −

s.t . 0 ≤ γ − ≤ S−, (37)

whereD2 = diag(d1, d2, ..., dl2),F1 = diag( f1, f2, ..., fl1),
H∗ = diag(h1, h2, ..., hl3), N− = [XT

1 F1; XT
3 H

∗], e5 =
[F1e1; H∗e3(1 − ε)], and S− = [c3e1; c4e3]. Similarly, we
set γ − = [α−; β−], where α−,β− are Lagrange multipli-
ers, and set τ− = [δ−; θ−], where δ− = (δ̄1, δ̄2, ..., δ̄l1)

T ,
θ− = (θ̄1, θ̄2, ..., θ̄l3)

T , and

δ̄ j = −c3 · ∂Hs3( f−(xi ))
∂( f−(xi ))

=
{
c3, if fi f−(xi ) < s3, fi = 1,
0, otherwise

(38)

where i ∈ I1, and

θ̄k = −c4 · ∂Hs4( f−(h̃kxk))

∂(h̃k f−(xk))
=

{
c4, if h̃k f−(xk) < s4, h̃k = 1,
0, otherwise

(39)

where k ∈ I3.
Once the optimal solution γ − is obtained, we can derive

u− = (XT
2 D2X2)

−1(XT
1 F1(α− − δ−) + XT

3 H
∗(β− − θ−)),

(40)

where u− = [w−; b−].
Based on the aforementioned equations, the algorithm of

linear RKWTSVM based on the CCCP procedure is summa-
rized as follows.

3.2 Nonlinear case

In an exactly similar way, we extend the linear RKWTSVM
to the nonlinear case by introducing the kernel function
K (xi , x j ) = (ϕ(xi ) ·ϕ(x j )). The nonlinear case differs from
the linear case only in that

Algorithm 1 CCCP for the proposed RKWMTSVM.
Input: The training dataset S = {(x1, y1), ..., (xl , yl )}, where label

yi ∈ 1, 2, ..., K , and the testing sample x.
Output: The label of testing sample.

1. Choose the appropriate si < 1, i = 1, ..., 4 for the ramp loss
Rs(z), parameters ε ∈ (0, 1) and ci > 0, i = 1, ..., 4.
2. For each pair (i, j) ∈ {(i, j)|i < j, i, j = 1, ..., K }, divide the
training dataset into three parts: positive (class i), negative (class j)
and zero class (the rest).

1) Initialize (δ0+, θ0+) and (δ0−, θ0−), and set t = 0.
2) Construct and solve the dual problems (36) and (37) in the t-

th iteration step to obtain the optimal solutions (αt+,β t+) and
(αt−,β t−), then calculate (wt+, bt+) and (wt−, bt−) according to
(33) and (40), respectively.Compute the decision functions f t+(x)
and f t−(x).

3) Update (δt+, θ t+) and (δt−, θ t−) referring to (19), (20), (38) and
(39), respectively.

4) If (δt+, θ t+) = (δt−1+ , θ t−1+ ) and (δt−, θ t−) = (δt−1− , θ t−1− ), stop the
iteration and obtain the optimal solutions (w∗+, b∗+) = (wt+, bt+),
and (w∗−, b∗−) = (wt−, bt−). Otherwise, set t = t + 1, and go to
the step 2).

3. For a new testing point x, predict its label according to the decision
functions f(i, j)(x), (i, j) ∈ {(i, j)|i < j, i, j = 1, ..., K }, and
output its label by “voting” strategy.

(1) The matrices X1,X2 and X3 in (36) and (37) are instead
of the appropriate kernel forms X1 = [K (A,D) e1],
X2 = [K (B,D) e2], and X3 = [K (C,D) e3], where
D = [A;B;C].

(2) The decision function becomes the following equation,

f (x) =

⎧⎪⎨
⎪⎩

+1, if wT+K (xT ,D) + b+ > −1 + ε

−1, if wT−K (xT ,D) + b− < 1 − ε

0, otherwise

(41)

4 Theoretical analysis and comparison

We do theoretical analysis on RKWMTSVM in terms of
sparsity and algorithm analysis and compare it with state-
of-the-art algorithms.

4.1 Sparsity

Compared with KWMTSVM, the proposed RKWMTSVM
is sparser. Because of the introduction of ramp loss, all
misclassified samples are avoided converting to SVs in the
RKWMTSVM. We assume that the Ramp losses Rsi , i =
1, ..., 4 are made differentiable with smooth approximation
on a small interval of corresponding inflection samples. Dif-
ferentiating (14) and (15), we can obtain

∑
i∈I1

di (wT+xi + b+)xi = c1
∑
j∈I2

f j R
′
s1(− f j f+(x j ))x j
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+ c2
∑
k∈I3

hk R
′
s2(−hk f+(xk))xk,

(42)∑
j∈I2

d j (wT−x j + b−)x j = −c3
∑
i∈I1

fi R
′
s3( fi f−(xi ))xi

− c4
∑
k∈I3

h̃k R
′
s4(h̃k f−(xk))xk,

(43)

respectively.
From Eq.(42), we can conclude that the negative samples

x j located in the flat area, i.e., z = − f j f+(x j ) /∈ [s1, 1], will
not become SVs for the reason that R′

s1 = 0; the zero samples
xk in the flat area, i.e., z = −hk f+(xk) /∈ [s2, 1 − ε], will
not become SVs because R′

s2 = 0. We can do similar analy-
sis for Eq.(43). Compared with KWMTSVM, the proposed
RKWMTSVMcan explicitly incorporate outlier suppression
better. Therefore, RKWMTSVM is more robust and sparser.

The analysis above can be proved by the following prop-
erty.
Sparsity. From Eq. (33), the support vectors are the corre-
sponding negative samples with α+

j − δ j 	= 0, for j ∈ I2
and the corresponding “rest” samples with β+

j − θ j 	= 0, for
j ∈ I3. Then, the following statements can be derived.

(1) If α+
j = c1, we get δ j = c1 from (19), therefore, α+

j −
δ j = 0, for j ∈ I2.

(2) Ifα+
j = 0,we get δ j = 0 from (19), therefore,α+

j −δ j =
0, for j ∈ I2.

(3) If β+
k = c2, we get θk = c2 from (20), therefore, β+

k −
θk = 0, for k ∈ I3.

(4) Ifβ+
k = 0,we get θk = 0 from (20), therefore,β+

k −θk =
0, for k ∈ I3.

From the statements above, the bounded SVs (with α+
j =

c1, j ∈ I2 or β+
k = c2, k ∈ I3) in the KWMTSVM are

not SVs any more in the proposed RKWMTSVM. Similarly,
we can derive the corresponding statements from Eq. (40)
and obtain the similar conclusions. Consequently, we con-
clude that the proposed RKWMTSVM is more sparse than
KWMTSVM.

In the following, we analyze the similarities and differ-
ences of the proposed RKWMTSVM with five sparse twin
SVMs. They all need to construct two non-parallel hyper-
planes.

(1) STSVM (Peng 2011a). Their similarity is that their opti-
mal solutions are obtained by iteration. The STSVM is
proposed for binary classification problem, and it is built
in primal space, while RKWMTSVM is proposed for
multi-class classification problem and it is solved in the
dual space. Based on a simple back-fitting strategy, the

STSVM iteratively builds each nonparallel hyperplanes
by adding a new SV from the corresponding class at one
time, and its learning style is solving linear equation com-
puting systems. The RKWMTSVM iteratively solves a
sequence of KWMTSVM-like optimization problems,
and KWMTSVM is a convex optimization problem.

(2) SNPTSVM (Tian et al 2014). The SNPTSVM is pro-
posed for binary classification problem. Its sparsity is
achieved by adopting the ε-insensitive quadratic loss
function and soft margin quadratic loss function. For the
positive hyperplane, the SNPTSVM can achieve sparsity
for positive samples while RKWMTSVM can not, and
the sparsity of RKWMTSVM is mainly reflected in the
negative and zero samples. However, the SNPTSVMsac-
rifices the complexity because its dual problem contains
three kinds of Lagrangian multipliers.

(3) SPinTSVM (Tanveer et al 2019a). The SPinTSVM is
raised for binary classification problem. It achieves the
sparsity by using the ε-insensitive zone pinball loss func-
tion. Not only the incorrectly classified samples gain
punishments, but also the correctly classified samples
gain penalties. It is less sensitive to noise, especially
feature noise. The proposed RKWMSTVM achieves
sparsity by using the ramp loss function. It only punishes
the incorrectly classified data and when the outlier is big-
ger than a threshold s, the corresponding penalty will be
given a fixed value. Therefore, the RKWMSTVM is less
sensitive to label noise.

(4) RSLPTSVM (Tanveer 2014). The RSLPTSVM is a
binary classifier while RKWMTSVM is a multi-class
classification algorithm. The RSLPTSVM achieves spar-
sity by using exact 1-norm, and it is a strongly con-
vex problem by incorporated regularization term while
RKWMSTVM is a non-convex optimization algorithm.
The optimal solution of RSLPTSVM is obtained by
solved by a pair of unconstrained minimization problems
using Newton–Armijo algorithm while RKWMTSVM
solves a series of QPPs.

(5) RNPSVM (Liu et al 2015). What RNPSVM and RKWM
TSVM have in common is that they both use ramp
loss function which can explicitly incorporate noise
and outlier suppression in the training phase. They
both are non-convex and non-differentiable optimization
problems and have sparsity and robustness. The differ-
ence between them is that RKWMTSVM is proposed
for multi-classification by adopting OVOVR structure,
while RNPSVM is proposed for binary classification.
Besides, RNPSVM preserves the ε-insensitive func-
tion of NPSVM. RKWMTSVM excavates the structural
information of data to improve the generalization ability
and accelerate the solving speed.

(6) R-TWSVM (Qi et al 2013). The R-TWSVM is a stronger
insensitive binary classifier for dealing with missing
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or uncertain data with label noise. Because it uses a
quadratic loss function making the proximal hyperplane
close to the class itself, and a soft-margin loss func-
tion making the hyperplane as far as possible from the
other class. The RKWMTSVM can effectively depress
the negative influence of outliers in the negative (resp.
positive) and zero classes for the positive (resp. negative)
classifier by using ramp loss functions. The R-TWSVM
is a second-order cone programming problem, while
RKWMTSVM is a non-convex optimization problem.

4.2 Algorithm analysis

The proposed RKWMTSVM aims at constructing two non-
parallel hyperplanes by solving a pair of smaller-size QPPs
in each sub-classifier.

• When constructing the separating positive (negative)
hyperplane, the greater weights are given to the positive
(negative) samples if they have more KNNs.

• The ineffective constraints can be removed if their cor-
responding KNN weights f j = 0, j ∈ I2 (resp. fi =
0, i ∈ I1) and hk = 0, k ∈ I3 (resp. h̃k = 0, k ∈ I3), thus
accelerating the computational speed of RKWMTSVM.

• The structural information is exploited by KNN, and
the class imbalance problem is resolved by adopting the
OVOVR structure.

• The KWMTSVM can be seen as a special case of the
proposedRKWMTSVM. If si → −∞, i = 1, ..., 4, then
Rs → H1, i.e., s takes large negative value, the ramp loss
in the RKWMTSVM will not help to remove outliers,
then RKWMTSVM will degenerate to KWMTSVM.

• Computational complexity of RKWMTSVM. In a 3-
class classification problem, we suppose that there are
l/3 samples in each class, where l is the number of total
number of training samples. As discussed in the works
proposed by Xu (2016) and Tanveer et al (2021a), the
computational complexity of TKSVC O(2 × (2l/3)3).
Because of f j = 1 or 0, j ∈ I2 (resp. fi = 1 or 0, i ∈ I1)
and hk = 1 or 0, k ∈ I3 (resp. h̃k = 1 or 0, k ∈ I3), the
computational complexity of KWMTSVM is less than
O(16l3/27). The proposedRKWMTSVMneeds to solve
a sequence of KWMTSVM-like problems; therefore, the
computational complexity of RKWMTSVM is less than
O(16l3/27) times the iteration number in CCCP.

The proposed RKWMTSVM still needs to calculate
the weight matrices by KNN steps whose complexity
is O(l2log(l)). Therefore, the total time complexity of
RKWMTSVM is about O(l2log(l)) plus O(16l3/27) times
the iteration number.

4.3 Discussion on RKWMTSVM

4.3.1 OVO PGTSVM vs. RKWMTSVM

The PGTSVM (Tanveer et al 2019c) is noise insensitive
and more stable for re-sampling because it uses the pinball
loss function, which not only gives punishments on correctly
classified samples but also on incorrectly classified samples.
Besides, the pinball loss function does not increase the com-
putational complexity as compared with TSVM. Compared
with RKWMTSVM, it totally loses sparsity.

Because PGTSVM is proposed for binary classification,
we extend it to multi-classification case by adopting OVO
strategy, termed as OVO PGTSVM. For a 3-class classifica-
tion problem, we still set there are l/3 samples in each class
(The same for the following analysis). OVO PGTSVM has
to construct K (K − 1)/2 binary PGTSVM, and each binary
PGTSVM only picks two classes. Therefore, its computa-
tional complexity is about O(2 × (l/3)3).

4.3.2 OVRWTSVM vs. RKWMTSVM

The WTSVM (Ye et al 2012) is a binary classifier which
can mine the underlying similarity information within sam-
ples by using inner-class nearest neighbor, which greatly
improve the performance. Besides, it removes the redundant
constraints by using inter-class nearest neighbor to improve
the solving speed. WTSVM is the basic algorithm compared
with RKWMTSVM, because RKWMTSVM also considers
inner-class and inter-class nearest neighbor to excavate the
structural information.

The OVR is a common used “decomposition-reconstruc
tion” strategy. We extend WTSVM to multi-classification
case by employing OVR, termed as OVR WTSVM. For a
3-class classification problem, OVR WTSVM needs to con-
struct K binaryWTSVMs, and the computational complexity
of each binaryWTSVM is less than O(2×(2l/3)3). Besides,
it needs to calculate k-nearest neighbor graph, whose com-
putational complexity is about O(l2log(l)).

4.3.3 OVR R�TSVM vs. RKWMTSVM

Rough ν-TSVM (Rν-TSVM) (Xu et al 2012) is proposed
as a binary classifier, which gives different penalties to dif-
ferent misclassified samples according to their positions by
constructing rough lower margin, rough upper margin and
rough boundary. It can avoid the over-fitting problem to a cer-
tain extent. Both Rν-TSVM and RKWMTSVM concentrate
on the study of misclassified samples. The RKWMTSVM
uses ramp loss function to depress the negative influence of
outliers which are also the misclassified samples.

We extend Rν-TSVM to multi-classification scenes by
OVR. For a 3-class classification problem, OVR Rν-TSVM
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also has to construct K binary Rν-TSVMs, and the com-
putational complexity of each binary Rν-TSVM is about
O(2 × (2l/3)3).

4.3.4 KWMTSVM vs. RKWMTSVM

Both KWMTSVM (Xu 2016) and RKWMTSVM adopt
OVOVR structure to handle multi-classification data and
consider the local information of samples by KNN. The
difference of them is the usage of loss function, where
KWMTSVM uses the hinge loss function while the pro-
posed RKWMTSVM uses the ramp loss function. The
KWMTSVM solves a pair of convex optimization prob-
lems, while RKWMTSVM is a concave–convex optimiza-
tion problem. The RKWMTSVM solves a sequence of
KWMTSVM-like problems by CCCP. Besides, RKWMTS
VMismore robust for outliers.ComparedwithKWMTSVM,
our RKWMTSVM is sparser.

For a 3-class classification problem, KWMTSVM needs
to solve two QPPs and use KNN steps to compute weight
matrices. Its overall time complexity is approximately
O(l2log(l) + 16l3/27).

4.3.5 Ramp-TKSVC vs. RKWMTSVM

Ramp-TKSVC(Wanget al 2020) is also amulti-classification
model adopting OVOVR structure. Both Ramp-TKSVC and
RKWMTSVMuse ramp loss function to restrict themaximal
loss value of outliers to a fixed value. Therefore, they both are
sparse and robust algorithms. They both are concave–convex
optimization problems. In each CCCP, Ramp-TKSVC solves
a sequence of TKSVC problemswhile RKWMTSVM solves
a series of KWMTSVM problems. Compared to Ramp-
TKSVC, RKWMTSVMconsiders the structural information
byKNNwhich can greatly improve the generalization ability
and reduce the redundant constraints.

For a 3-class classification problem, the time compu-
tational complexity of TKSVC is O(2 × (2l/3)3) and
then, computational complexity of Ramp-TKSVC is about
O(l2log(l)) times the iteration number.

4.3.6 LS-KWMTSVM vs. RKWMTSVM

Both LS-KWMTSVM (Tanveer et al 2021a) and the pro-
posed RKWMTSVM are multi-classification algorithms.
They both exploit the local information of training samples
by KNN. The LS-KWMTSVM is a least squares version
of KWMTSVM, because it uses 2-norm instead of 1-norm
in KWMTSVM. Therefore, LS-KWMTSVM only needs to
solve two systems of linear equations rather than two QPPs
in KWMTSVM, making LS-KWMTSVM work faster.

For a 3-class classification problem, LS-KWMTSVM
contains two systems of linear equations and KNN steps to

compute weight matrices. Its total computational complexity
is less than O(l2log(l) + 16l3/27).

5 Numerical experiments

To evaluate the performance of our algorithm, in this sec-
tion, we conduct the experiments on one artificial dataset and
twenty-four benchmark datasets which are collected from
UCImachine learning repository 1 and Libsvm library 2. The
characteristics of datasets are shown in Table 1. We remove
the missing values in dataset Dermatology and replace the
missing values with zero in dataset Autompg before doing
the partitions. Furthermore, in order to eliminate the influ-
ence of dimension andmake the numerical calculation easier,
we scale all the features into the range of [0, 1] in the data
preprocessing.

In order tomake the resultsmore convincing, the respected
dataset splits into training sets and independent test sets
according to k-fold cross-validationmethod (Salzberg 1997).
This method requires that the dataset be divided into k parts,
which each of the k parts acted as an independent holdout test
set. Because all k parts will be used in the testing part equally
and independently, the reliability of the results could be con-
vincing. The accuracy of the algorithm is the averaged one
of k experiments. According to the work of Gutierrez et al
(2016); Bamakan et al (2017); Tang et al (2021), we also use
fivefold cross-validation in our experiment. All experiments
are carried out in Matlab R2014a on Windows 7 running
on a PC with system configuration Inter Core i3-4160 Duo
CPU (3.60GHz) with 12.00 GB of RAM. We report testing
accuracy to evaluate the performance of classifiers. “Accu-
racy” (Acc) denotes the mean value of five times testing
results and plus or minus the standard deviation(std). “Time”
denotes the average time of five experiments, and each exper-
iment’s time consists of training time and testing time. For
the nonlinear case, we only adopt the Gaussian kernel func-
tion K (xi , x j ) = exp(−r ||xi − x j ||2) as it has been proved
it always yields higher testing accuracy.

5.1 Experiment on one artificial dataset

In this subsection, we conduct the experiment on one artifi-
cial dataset in R2 dimensional space, which comes from the
work of Bamakan et al (2017). Firstly, we generate a train-
ing set T = {(x1, y1), (x2, y2), · · · (xl , yl)}, where xi ∈ R

2

and l = 150. The data have three different classes, i.e., the
positive, negative and zero class. Each class has 50 sam-
ples and follows a Guassian distribution, where μA = [4 3],

1 http://archive.ics.uci.edu/ml/datasets.html
2 https://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 1 The characteristics of twenty-four benchmark datasets

Datasets # Samples # Features # Classes # The distribution of classes # Sources

Iris 150 4 3 50/50/50 UCI

Soybean 47 35 4 10/10/10/17 UCI

Teaching 151 5 3 49/50/52 UCI

Wine 179 13 3 59/71/49 UCI

Thyroid 215 5 3 150/35/30 UCI

Vertebral 310 7 3 60/150/100 UCI

Glass 214 10 6 70/76/17/13/9/29 UCI

Dermatology 358 34 6 111/60/71/48/48/20 UCI

Svmguide2 391 20 3 221/117/53 Libsvm

Svmguide4 300 10 6 44/56/44/56/47/53 Libsvm

Autompg 398 7 3 249/70/79 UCI

Ecoli 327 7 5 143/77/35/20/52 UCI

Seeds 210 7 3 70/70/70 UCI

Hayes 132 5 3 51/51/30 UCI

Balance 625 4 3 49/288/288 UCI

Waveform 900 21 3 300/300/300 UCI

Vehicle 846 18 4 199/217/218/212 UCI

Zoo 101 17 7 41/20/5/13/4/8/10 UCI

Cmc 1473 10 3 629/333/511 UCI

Car 1728 6 4 1210/384/69/65 UCI

Optidigits 2268 64 4 571/557/552/568 UCI

Yeast 1484 8 10 463/429/244/163/51/44/37/30/20/5 UCI

Satimage 4220 36 4 1533/703/1358/626 UCI

PageBlock 5473 10 5 4913/329/28/88/115 UCI

μB = [1 1], μC = [3 − 3], and

ΣA =
[
2 –1
–1 2

]
,ΣB =

[
2 1
1 1

]
,ΣC =

[
1 0
0 4

]
.

Similarly, to eliminate the influence of dimension and
make the numerical calculation easier, we scale all the fea-
tures into the range of [0, 1]. The corresponding results are
shown inFigs. 4, 5 and 6. The blue “�”, red “�” andgreen “�”
stand for the positive, negative and zero class, respectively.
The “◦” and “�” in Fig. 4 stand for the samples selected by
KNN in the QPP (16) and QPP (17), respectively. Figure 4a
and b shows the results of setting cluster parameter k = 3 and
k = 4, respectively. The results show that the more samples
will be removed by setting smaller k. Besides, the appropri-
ate k will help to remove some noises, such as the green point
in the lower-left corner which is a outlier of the rest class.

In Figs. 5 and 6, the red and black thick solid line rep-
resent the decision boundary f+ = −1 − ε and f− =
1+ ε, respectively. The “◦” and “�” denote support vectors
(SVs) in the first and second QPP in both KWMTSVM and
RKWMTSVM, respectively. Figure. 5 and 6 show the results
of KWMTSVMand RKWMTSVMwith different parameter

ε and kernel parameter r under cluster parameter k = 3 and
k = 4, respectively. It is obvious that the number of SVs of
RKWMTSVM is less than that of KWMTSVM under the
same parameter. The most obvious point is the red triangle
which locates in the upper right corner which is regarded as
a outlier of negative class. Obviously, it is marked by the
circle which means it is a SV in the KWMTSVM while
it is not a SV any more in our RKWMTSVM. The results
show that our RKWMTSVM is more sparse compared with
the KWMTSVM. The results also indicate that the number
of SVs is different under different parameters. Besides, the
positive decision boundary (the red one) obtained by the
KWMTSVM is more shifted toward the outlier compared
with our RKWMTSVM. The results demonstrate that the
proposed RKWMTSVM is more robust compared with the
KWMTSVM.

5.2 Influence of parameters

We conduct the experiments on thirteen datasets to investi-
gate the influenceof cluster parameter k in ourRKWMTSVM.
The results are shown in Table 2, where we record the test-
ing accuracy of RKWMTSVM with the cluster parameter
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Fig. 4 The samples selected by KNN, where “◦” stands for the samples with f j = 1, j ∈ I2 and hk = 1, k ∈ I3, “�” stands for the samples with
fi = 1, i ∈ I1 and hk = 1, k ∈ I3

k ranges from 3 to 8. As the increase of k, the compu-
tational time of the proposed RKWMTSVM tends to rise.
A smaller k will help RKWMTSVM to remove the redun-
dant data and reduce the computational time. When k =
max{l1+ l3, l2+ l3}, no training samples will be removed by
KNN and the computational time will become longer. With
the increase of k, the change of classification accuracy is not
obvious.

In order to analyze the influence of parameter c2 andkernel
parameter r on the predictive accuracy in the KWMTSVM
and our RKWMTSVM, we do the experiments on four
benchmark datasets, i.e., Autompg, Glass, Teaching and
Wine, and the results are shown in Figs. 8, 9, 10, 11,
where we search the parameter c2 and r from the range
{2i |i = −4, ..., 6} and fix c1 = 4, ε = 0.2, k = 3. From
Fig. 8, it is hard to judge which parameter affects more on
the testing accuracy. In Figs. 8 and 9, it appears that the
impact of kernel parameter r is more than penalty parameter
c2, and both KWMTSVM and RKWMTSVM achieve better
testing accuracy for smaller value of parameter r . However,
it seems that the classifiers achieve better predictive accuracy
for large value of r in Fig. 10.

Because the proposed RKWMTSVM contains too many
parameters, we carry out the analysis of variance (ANOVA)
(Hamdia et al 2018) decomposition to do the key parameter
sensitivity analysis. ANOVA is used to quantify the inde-
pendent and joint effects of the parameters on 5-fold cross
validation accuracy and calculate the sensitivity index of each
parameter (STi ). The works of Hamdia et al (2018) and Long
et al (2020) show the specific calculation, and they conclude
that the larger STi , the higher sensitivity of accuracy with
respect to the i-th parameter. The results using ANOVA on

our RKWMTSVM are shown in Fig. 7, where the x-axis
denotes six benchmark datasets and y-axis is the indices ST .
The parameter r has a dramatic effect on accuracy, followed
by c1 and c2. Relatively, the sensitivity brought by ε and
k is much weaker. Summarily, the parameter k can help to
remove the redundant constraints and improve the classifi-
cation accuracy of RKWMTSVM, but their variation cannot
lead to strong accuracy fluctuation.

Based on the results discussed above, we set k = 3 in the
following experiments to reduce the long searching time.

5.3 Parameter selection

An important preliminary issue for SVMs is the optimal
parameter selection. There are three types of parameter opti-
mization methods of SVMs. The first is the typical of grid
search method (Friedrichs and Igel 2005). The second is
numerical optimization method, such as gradient descent
method (Schölkopf et al 2007). Many meta-heuristics meth-
ods are also introduced to obtain an acceptable optimum,
including genetic algorithms, particle swarm optimization,
bat algorithms, etc. (Wang et al 2013; Tharwat et al 2017; Li
et al 2018). In this paper, we adopt the traditional grid search
method to get the optimal parameters.

Thekernel parameter r is searched from {2i |i = −4, ..., 6}.
In order to reduce the computational complexity of param-
eter selection, we set c1 = c2 in OVO PGTSVM, OVR
WTSVM and OVR RνTSVM; τ1 = τ2 in OVO PGTSVM;
ν1 = ν2 and σ1 = σ2 in OVR Rν-TSVM; c1 = c3, c2 =
c4 in Ramp-TKSVC, KWMTSVM, LS-KWMTSVM and
RKWMTSVM. In general, we need to choose (c1, τ1, r) in
OVOPGTSVM; (c1, r) inOVRWTSVM; (ν1, σ1, r) inOVR
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(b) RKWMTSVM, ε = 0.1, r = 0.1
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(c) KWMTSVM, ε = 0.1, r = 0.2
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(d) RKWMTSVM, ε = 0.1, r = 0.2
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(e) KWMTSVM, ε = 0.2, r = 0.1
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(f) RKWMTSVM, ε = 0.2, r = 0.1

Fig. 5 The plots of KWMTSVM and RKWMTSVM with different parameters with cluster parameter k = 3, where ci = 5 , “◦” and “�” stand for
the SVs

123



Ramp loss KNN-weighted multi-class twin support vector machine 6605

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−0.9

−0.9

−0.9

0.9

0.9
0.9

Ratio of SVs is 0.093

(a) KWMTSVM, ε = 0.1, r = 0.1
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(b) RKWMTSVM, ε = 0.1, r = 0.1
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(c) KWMTSVM, ε = 0.1, r = 0.2
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(d) RKWMTSVM, ε = 0.1, r = 0.2
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(e) KWMTSVM, ε = 0.2, r = 0.1
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(f) RKWMTSVM, ε = 0.2, r = 0.1

Fig. 6 The plots of KWMTSVM and RKWMTSVM with different parameters with cluster parameter k = 4, where ci = 5
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Fig. 7 ST indices of the
parameters
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Table 2 Performance comparisons of RWMTSVM with different cluster parameter k on thirteen datasets

Datasets k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Acc(%)±std Acc(%)±std Acc(%)±std Acc(%)±std Acc(%)±std Acc(%)±std
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Iris 98.67±2.98 98.00±4.47 98.00±4.47 98.67±2.98 98.67±2.98 98.00±4.47

0.1480 0.1244 0.1046 0.1745 0.2103 0.1970

Balance 93.17±4.07 93.33±3.71 93.97±3.75 93.81±4.02 93.81±3.48 93.97±3.58

3.0316 1.5345 2.4639 3.2054 3.0748 3.2618

Teaching 67.74±12.28 66.45±4.89 68.39±22.16 67.74±10.45 67.74±10.20 67.74±11.40

0.1491 0.2486 0.2232 0.2572 0.3183 0.3319

Thyroid 97.21±5.04 97.21±5.04 97.21±5.04 97.21±5.04 97.21±5.04 97.21±5.04

0.2090 0.2154 0.2185 0.2187 0.2633 0.2252

Glass 94.17±6.32 92.92±10.37 93.75±6.07 93.75±4.42 93.33±7.13 92.50±4.56

1.1727 0.7883 0.7932 1.2285 2.5534 2.2137

Dermatology 96.22±2.93 95.68±3.75 96.22±2.60 96.49±2.63 97.57±1.48 97.57±1.48

1.5705 1.1609 1.4599 2.0033 1.5689 1.3668

Autompg 75.50±5.20 76.25±5.99 76.75±4.97 76.75±5.27 75.50±5.63 74.75±6.02

0.8053 0.7167 0.8678 0.9585 0.9130 0.7680

Seeds 94.76±9.13 94.29±8.00 94.76±6.61 93.81±8.68 93.81±7.26 93.81±8.68

0.1672 0.1656 0.1810 0.1734 0.1818 0.1967

Cmc 98.18±0.91 98.18±0.78 98.18±0.91 98.24±0.65 98.38±0.65 98.24±0.65

13.4340 15.6712 15.4758 18.2348 19.0456 20.8493

Optidigits 99.65±0.50 98.55±1.19 98.90±0.88 98.99±0.55 99.04±0.55 99.04±0.55

34.9574 29.6381 29.4859 29.5612 29.4007 30.4249

Hayes 85.00±5.30 84.29±4.07 84.29±5.42 83.57±5.42 85.00±5.87 85.71±5.65

0.1865 0.2243 0.2177 0.2277 0.2548 0.2711

Zoo 98.18±4.07 98.18±4.07 98.18±4.07 98.18±4.07 98.18±4.07 98.18±4.07

1.1785 0.9893 1.0626 1.2154 1.0800 1.0196

Svmguide4 76.83±1.81 74.92±5.19 74.92±6.29 74.60±3.17 75.87±1.33 76.51±2.35

2.3470 3.4243 4.0595 2.2887 2.6648 5.5291
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Fig. 8 The relationship of kernel parameter r , parameter c2, and classification accuracy in the KWMTSVM and RKWMTSVM on Autompg
dataset, respectively
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Fig. 9 The relationship of kernel parameter r , parameter c2, and classification accuracy in the KWMTSVM and RKWMTSVM on Glass dataset,
respectively

Rν-TSVM; (c1, c2, ε, r) in Ramp-TKSVC, KWMTSVM,
LS-KWMTSVM and our RKWMTSVM. The parameter c1
is selected from the set {2i |i = −4, ..., 6}. The parame-
ter ν1 is searched from the set {0.2, ..., 0.7}. The parameter
τ1 is searched from the set {0.1, 0.5, 0.9}. The value σ1 is
searched from the set {1.5, 2, 2.5, 3, 5, 8}. The parameter ε

ranges from set {0.1, 0.2, 0.3}. For large-scaled datasets, we
reduce the number of parameters uniformly by enlarging the
search step due to the long running time.

5.4 Result comparisons and discussions

Table 3 reports the averages and standard deviations of the
testing accuracies (in %) and running times (s) for the seven

compared algorithms on twenty-four datasets. The bold value
indicates the best predictive accuracy.

From the perspective of testing accuracy, we can learn
that our proposed RKWMTSVM outperforms the other six
algorithms for most datasets. The reasons are twofold. On
one hand, our RKWMTSVM retains the property of the
KWMTSVM which utilizes the local information of inter-
class and intra-class by using KNN method. On the other
hand, the introduction of ramp lossmakes ourRKWMTSVM
insensitive to outliers. Besides, we find that OVO PGTSVM
performs better than OVR WTSVM and OVR RνTSVM
for most cases. A possible reason is that OVR strategy
easily leads to imbalance problem which may lead to
bad performance. Another possible reason is that OVO
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Fig. 10 The relationship of kernel parameter r , parameter c2, and classification accuracy in the KWMTSVM and RKWMTSVM on Teaching
dataset, respectively
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Fig. 11 The relationship of kernel parameter r , parameter c2, and classification accuracy in the KWMTSVM and RKWMTSVM on Wine dataset,
respectively

PGTSVM adopts the pinball loss function which maxi-
mize the quantile distance rather than the shortest distance
between classes, making the algorithm be less sensitive to
noises. OVR RνTSVM performs better than OVR WTSVM
on most datasets. The reason for that is RνTSVM pun-
ishes the misclassified samples according to their positions
which can improve the performance. The algorithms which
take one-verse-one-verse-rest structure, i.e., KWMTSVM,
Ramp-TKSVC, LS-KWMTSVM and our RKWMTSVM,
perform better than binary classifiers adopted OVR strate-
gies, i.e., OVR WTSVM and OVR RνTSVM. The reason
is that KWMTSVM, Ramp-TKSVC, LS-KWMTSVM and
our RKWMTSVM can not only utilize all the informa-
tion of training data points in every classifier but also

avoid the imbalance problem to some extent. Ramp-TKSVC
performs best on six datasets, while KWMTSVM and LS-
KWMTSVM perform best on four datasets, which implies
that Ramp-TKSVC yields better. That is because Ramp-
TKSVC also adopts ramp loss function to avoid the distur-
bance of outliers. The seven algorithms all yield 100% testing
accuracy on Soybean dataset, which implies that seven algo-
rithms yield the comparable performance.

From the view of running time, when the size of dataset is
relatively small, it is hard to judge which algorithm has the
least running time. The three strategies, i.e., OVO, OVR, and
OVOVR, have their pros and cons.When the size of dataset is
large scale, the advantage of KWMTSVM, LS-KWMTSVM
and our RKWMTSVM is obvious. That is because they all
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Fig. 12 The accuracy variation with different training sizes

can remove the redundant constraints by KNN, especially
when they are compared with Ramp-TKSVC. It is worth to
note that LS-KWMTSVM takes the least time among the
seven algorithms. Because LS-KWMTSVM solves linear
equations and uses KNN to remove the consonant con-
straint. Although both Ramp-TKSVC and RKWMTSVM
adopt ramp loss function to depress the negative influence
of outliers, the proposed RKWMTSVM works faster than
Ramp-TKSVC.

5.5 Training efficiency

To see the performance of the proposed RKWMTSVM on
different training sizes of noisy datasets, we do experiments
on Cmc and Optidigits datasets which have larger sample
sizes. The results are shown in Fig. 12, where x-axis denotes
the training sizes and y-axis denotes the testing accuracy. The
red, blue and black lines are the case with no noise, 1% and
5% label noise added, respectively. The results show that the
accuracy of RKWMTSVM will increase with the increase
in training sizes. Fig. 13 is the time change with different
training sizes, where y-axis is the logarithmic of time. Obvi-
ously, the training time will increase with the training size
increases.

In addition,wediscuss the training timeofRKWMTSVM,
which needs to solve optimization problems (36) and (37)
repeatedly by CCCP. Suppose that each outer loop requires
a comparable amount of running time, leading to a sharp
increase in the total training time with the number of iter-
ations. To verify the hypothesis, we draw Fig. 14 to reveal
how the training time distributes during the outer loop pro-
cess on five datasets, where ti denotes the running time of
i th subproblem. Figure 14 denotes the curve of ti/t1 ratio. It
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Training sizes

10-1

100

101
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m
e
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Optidigits

Fig. 13 The time variation with different training sizes

displays that the five datasets will be terminated less than 8
iterations. Datasets Wine and Thyroid take only 3 iterations.
In addition, after the first iteration, the running time of the
following iterations decreases drastically. It is obvious that
Iris dataset takes 8 iterations to converge while the first iter-
ation takes the most training time. These results prove the
effectiveness of the proposed Algorithm 1.

5.6 Statistical tests

From Table 3, we can see that our RKWMTSVM not always
performs the best among the seven algorithms on the twenty-
four datasets from the perspective of testing accuracy. To
further analyze the performance of seven algorithms on mul-
tiple datasets statistically, we use Friedman test (Demsar
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Fig. 14 The variations of ti/t1
as the outer loop iterations on
five datasets
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2006) and Holm–Bonferroni test (Holm 1979) which are two
commonly used statistical methods.

5.6.1 Friedman test

The Friedman test is suggested by Demsar (2006) and
Salvador et al (2010), and it is proved to be simple, nonpara-
metric and safe for comparing three or more related samples.
For this, the average ranks of seven algorithms on accuracy
for twenty-four datasets are listed in the last line of Table 3.

Referring to the works of Wang et al (2020); Tanveer et al
(2021a), we still suppose the null-hypothesis be that all the
algorithms are equivalent. We can obtain the Friedman statis-
tic according to the following equation,

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (44)

where R j = 1
N

∑
i r

j
i , and r

j
i denotes the j th of k algorithms

on the i th of N datasets. Friedman’s χ2
F is undesirably con-

servative and derives a better statistic

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

, (45)

which is distributed according to the F-distributionwith k−1
and (k − 1)(N − 1) degrees of freedom.

On the basis of (44) and (45), we derive χ2
F = 37.3551

and FF = 8.0563, where FF is distributed according to F-
distribution with (6, 138) degrees of freedom. The critical
value of F(6, 138) is 1.817 for the level of significance α =
0.1; similarly, it is 2.165 for α = 0.05. Because the value of
FF is 8.0563 which is much larger than the critical value, it
indicates that there is significant difference between the seven

algorithms. It is worth to mention that the average rank of
the proposed RKWMTSVM is far lower than the remaining
algorithms, whichmeans that it has a better performance than
the other six compared algorithms.

5.6.2 Holm–Bonferroni test

Holm–Bonferroni method (Simes 1986) is a frequently used
method to compare the performance of multiple algorithms.
The p value (Demsar 2006) is calculated by performing
pairwise t-test, and the proposed RKWMTSVM is statisti-
cally compared with the other six algorithms. According
to the statement of Demsar (2006), the null hypothesis
assumes that the data of two-sample t-test come from inde-
pendent random samples with equal means and equal but
unknown variances. For a given significance level α = 0.05,
Holm–Bonferroni test orders the p-values from minimum
to maximum as p(1), p(2), ..., p(6) with corresponding null
hypothesis H(1), H(2), ..., H(6). The results of p-values are
presented in Table 4 (α = 0.05). It rejects the null hypothe-
ses H(1), ..., H(i−1) and does not reject H(i), ..., H(6), if

p(i) >
α

6 + 1 − i
, 1 < i ≤ 6, (46)

where i is the minimal index.
For dataset Iris, (p(2) = 0.7238 = p(3) = p(5)) <

(p(1) = p(4) = p(6) = 1) and p(2) > α/5. Hence, we
conclude that H(1), ..., H(6) are not rejected. That means
the RKWMTSVM is statistically similar to OVO PGTSVM,
OVR WTSVM, OVR RνTSVM, KWMTSVM, Ramp-TK
SVC and LS-KWMTSVM on Iris dataset. In this way, we
find 16 out of the 144 null hypotheses are judged which indi-
cates our method has significant advantage over others. In
total, the statistical results on p value suggest that the pro-
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posed algorithm is not obvious statistically difference with
other six algorithms in performance.

In our experiment, the Friedman test reports a significant
difference, but the Holm–Bonferroni test which is a post
hoc test fails to detect it. This is due to the lower power
of the latter (Demsar 2006). In this case, we can only con-
clude that these algorithms do differ. For example, all seven
algorithms yield 100% accuracy on Soybean dataset, and
the p values show that they are statistically similar which
is rational. The p value of OVR WTSVM is 0.7328 on Iris
dataset which indicates that our RKWMTSVM is statisti-
cally similar to OVR WTSVM. Actually, the performance
of our RKWMTSVM is indeed higher than OVR WTSVM.
Another possible reason is that the datasets do not havemuch
outliers, and the advantages of RKWMTSVM are not obvi-
ous, especially compared with the robust algorithms OVO
PGTSSVM and Ramp-TKSVC.

6 The clipDCD for RKWMTSVM

In this section, we employ the clipDCD algorithm (Peng et al
2014) to accelerate the solving speed of our RKWMTSVM
in the training process.

6.1 The clipDCD algorithm

The clipDCD algorithm is a kind of the coordinate descent
method, and it is proposed for solving the dual problem of
SVM (Peng et al 2014). Till now, it has been successfully
embedded into SVM, TSVM, L1-loss-based TSVM (Peng
et al 2016), TPMSVM (Peng 2011b), structural TSVM(Pan
et al 2015) and soon. In each iteration, the clipDCDalgorithm
only solves one single-variable sub-problem according to
themaximal possibility-decrease strategy on objective value.
The dual form of classical SVM is as follows,

min
α

f (α) = 1

2
αT Qα − eTα

s.t . 0 ≤ α ≤ C. (47)

It is assumed that only one component of α is updated at
each iteration, denoted αL = αL + λ, L ∈ {1, .., n} is the
index. It has been proved that

f (λ) = f (0) + (eL − αT Q.,L)2

2QLL
, (48)

where Q.,L is the Lth column of Q. The objective decrease
will be approximately largest bymaximizing (eL − αT Q.,L)2

/QLL , and the L index is chosen as

L = argmax
i∈A

{
(ei − αT Q.,i )

2

Qii

}
, (49)

where the index set A is

A =
{
i : αi > 0, if

ei − αT Q.,i

Qii
< 0 orαi < C, if

ei − αT Q.,i

Qii
> 0

}
.

(50)

6.2 The clipDCD algorithm for RKWMTSVM

We embed the clipDCD algorithm into the dual QPPs in our
RKWMTSVM during each iteration of CCCP procedure.
The two convex QPPs are shown in (36) and (37). For sim-
plicity, we only explain the QPP (36), where we use matrix
N+(XT

1 D1X1)
−1N+ in place of matrix Q in (47) and use

vector γ + − τ+ in place of α in (47). Therefore, we need to
solve the following optimization problem:

min
α

f (α) = 1

2
αT Qα − eTα

s.t . − τ+ ≤ α ≤ S+ − τ+. (51)

It is noteworthy the matrix N+ = [XT
2 F2; XT

3 H]
is sparse, where F2 = diag( f1, f2, ..., fl2) and H =
diag(h1, h2, ..., hl3), because the value of f j , j ∈ I2 or
hk, k ∈ I3 is either 1 or 0. That means the component of
α corresponding f j = 0 and hk = 0 will not contribute to
the optimization of objective function. Therefore, they can be
ignored during the progress of solving the optimal α, which
will further advance the computational efficiency.

Remarkably, there is the simple update αnew
L = αL +λ in

clipDCD. Then,

f (λ) = f (0) + 1

2
λ2QLL − λ(eL − αT Q.,L) (52)

Setting the derivation of λ:

d f (λ)

dλ
= 0 ⇒ λ = eL − αT Q.,L

QLL
. (53)

Similarly, the L index is chosen as Eq.(49). Moreover, the λ

value inQPP (36)must be adequately clipped so that−τ
(i)
+ ≤

αnew
L ≤ S(i)

+ − τ
(i)
+ . That means the step λ should satisfy the

inequality constraints. Accordingly, we adjust the index set
A as follows.

A = {i :αi > −τ
(i)
+ , if

ei − αT Q.,i

Qii
< 0

or αi < S(i)
+ − τ

(i)
+ , if

ei − αT Q.,i

Qii
> 0}. (54)
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Table 5 Performance
comparison of four algorithms
on seven datasets

Dataset Metrics KNN KWMTSVM RKWMTSVMqp RKWMTSVMcl

Soybean Acc(%)±std 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

Time (s) 0.0034 0.810 0.0836 0.0435

Wine Acc(%)±std 96.22±3.63 96.76±4.44 97.84±3.52 97.84±2.96

Time (s) 0.0028 0.0908 0.1083 0.0717

Ecoli Acc(%)±std 86.87±7.11 88.36±4.99 88.36±3.06 87.69±3.93

Time (s) 0.0074 0.9149 1.2654 0.9247

Glass Acc(%)±std 92.50±8.54 93.33±6.97 94.17±6.32 95.14±2.41

Time (s) 0.0070 1.0065 1.1727 0.6725

Balance Acc(%)±std 74.13±6.93 93.02±4.40 93.17±4.07 91.43±7.09

Time (s) 0.0086 2.0982 3.0316 2.1261

Waveform Acc(%)±std 80.44±2.13 85.11±1.77 86.22±1.69 85.56±1.76

Time (s) 0.0123 5.1298 5.8813 4.6658

Pageblock Acc(%)±std 94.58±1.15 94.00 ±1.05 95.07±1.73 93.59±1.63

Time (s) 0.0810 745.1607 1070.8629 904.384

The bold values indicate the best predictive accuracies

Table 6 Performance
comparison of four algorithms
on seven datasets with 5%
noises

Dataset Metrics KNN KWMTSVM RKWMTSVMqp RKWMTSVMcl

Soybean Acc(%)±std 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

Time (s) 0.0041 0.1099 0.1197 0.0437

Wine Acc(%)±std 95.14±4.83 94.59±4.27 95.68±5.60 96.22±4.52

Time (s) 0.004 0.1207 0.1288 0.1125

Ecoli Acc(%)±std 85.67±4.90 85.37±5.52 88.06±4.09 86.27±5.52

Time (s) 0.0062 1.5984 2.0571 1.8183

Glass Acc(%)±std 78.75±9.48 78.33±10.98 85.42±6.07 79.58±6.49

Time (s) 0.0072 1.3218 1.3499 0.2344

Balance Acc(%)±std 79.21±4.97 76.67±6.11 76.98±7.82 75.40±1.37

Time (s) 0.0074 2.3787 5.8000 2.8943

Waveform Acc(%)±std 80.56±2.64 82.44±2.50 84.56±2.90 83.33±2.08

Time (s) 0.0120 4.9974 4.4942 1.3547

Pageblock Acc(%)±std 93.43±1.57 93.19±0.54 93.65±1.29 93.34±0.96

Time (s) 0.0611 1867.6467 2228.8306 1813.1565

The bold values indicate the best predictive accuracies

The convergence of clipDCD algorithm and corresponding
theoretical proofs can be found in Peng et al (2014).

In a word, the framework of clipDCD algorithm for solv-
ing QPP(36) is summarized as follows.

Algorithm 2 ClipDCD for solving QPP(36).
1. Initialize α = 0.
2. While α is not optimal;

1) Choose the L index by (49) and (54), and compute λ by Eq().
2) Update αL as αnew

L = [αL + λ]�, where [u]� =
max(−τ

(i)
+ ,min(u,S(i)

+ − τ
(i)
+ )).

In order to verify the performance of our proposed
RKWMTSVM by applying the clipDCD (RKWMTSVMcl ),
we conduct experiment on sevenbenchmarkdatasets.Besides,
we add noises into these datasets. The corresponding results
are recorded in Tables 5 and 6, respectively. The results indi-
cate that the clipDCD algorithm can improve the solving
speed of our RKWMTSVM to a certain extent, while the
testing accuracy lose a little. The results also show that the
proposed RKWMTSVM by quadratic programming method
(RKWMTSVMqp) obtain the best testing accuracy on most
datasets. Although the RKWMTSVMcl performs almost the
same as KWMTSVM in Table 5, it performs better than
KWMTSVM after the noises are added in Table 6. In addi-
tion, we also compare our method with the native multi-class
classifier K -Nearest Neighbor (KNN). The results show that
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our RKWMTSVM outperforms KNN from the perspective
of testing accuracy, while it takes a relatively long time.

7 Conclusion and future work

In this paper, a new multi-classification algorithm termed as
ramp lossK-nearest neighbor-weightedmulti-class twin sup-
port vector machine (RKWMTSVM) is proposed by replac-
ing the hinge loss with ramp loss function in KWMTSVM.
This modification leads to a precise, sparse and robust
algorithm with better performance. On one hand, similar
to KWMTSVM, the proposed RKWMTSVM adopts the
OVOVRstructure to dealwithmulti-class classificationprob-
lem, which is helpful to deal with class-imbalance problem
by considering all training points. Besides, the local informa-
tion of intra-class can be exploited by constructing theweight
matrix in the objective functionwhich can help to improve the
generalization ability.Meanwhile, the weight matrix of inter-
class can help to remove the redundant constraints which can
reduce the computational speed. On the other hand, it adopts
the ramp loss function which can avoid the disturbance of
outliers, making it be a sparser and robust algorithm, espe-
cially comparedwithKWMTSVM. In addition, the proposed
RKWMTSVM is a non-differentiable non-convex optimiza-
tion problem, we adopt the CCCP to cope with this model
and embed the clipDCD method to speed up the solution
process, thus making our model more adaptable for large-
scale problem. In the experiments, we compare it with six
state-of-the-art algorithms to demonstrate the validity. The
experimental results show that the proposed RKWMTSVM
is a more sparse algorithm and is robust to outliers.

As the proposed RKWMTSVM is less sensitive to outliers
and it is an efficientmulti-classification algorithm, it isworth-
while to apply it on the domains such as intrusion detection
problem, spam detection, stellar spectra classification, fault
class detection, novelty detection, prediction of diagnostic
phenotypes, customer churning analysis, anomaly detection
problem and so on. Due to the proposed RKWMTSVM con-
tains many parameters, it takes us a long searching time
to find the optimal parameters combination by grid search.
During our experiments, we find that the performance of
RKWMTSVMisworse on someparameter intervalswhich is
time-consuming and wasteful to search the optimal solution
on these parameter intervals. Besides, the optimal solution is
not always fall in the grid points of grid search. Therefore,
how to design an effective algorithm for searching the opti-
mal parameter combination for our RKWMTSVM is worthy
of further research.
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