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Abstract
In this paper, the combination of particle swarm optimization (PSO) and gravitational search algorithm (GSA) is enhanced

by the first-order gradient method and a new optimization algorithm is introduced as GPSG. In metaheuristic methods,

some search directions are randomly selected and the resulting information gradually progresses toward the optimal

solution. Since along the gradient direction usually yields the largest decrease in the desired function, it is added to the

GSA and PSO process to allow for faster and more accurate convergence. By integrating the metaheuristic methods with

the gradient directions, a powerful method for optimizing functions has been made possible. A novel approach is intro-

duced by merging two metaheuristic methods with the randomly generated steepest decent directions. Numerous examples

of unconstrained problems of mathematical functions of CEC2005 and CEC2017 together with some constrained examples

of stress and displacement structural design problems have been chosen to demonstrate the reliability and capability of the

presented method. Comparison of the numerical results with some methods indicates that the average rank of the proposed

technique is better.

Keywords Particle swarm optimization � Gravitational search algorithm � Gradient directions � CEC2005 and 2017 �
Structural design

1 Introduction

The optimization methods are divided into two main

groups. The traditional mathematical programming tech-

niques belong to this category (Vanderplaats 1999; Rao

2009; Haftka et al. 1990). Most of the techniques are based

on choosing some search directions employing the first and

higher-order derivatives of the functions under considera-

tion. The search directions and the step lengths are modi-

fied to reach the desired optimal solution. The final results

may not lead to global optimum for multimodal functions.

The methods are referred to as gradient-based approaches

(GBA).

The second type of method is modern optimization

methods that are based on statistical search directions and

derived from different behaviors in nature (Yang 2010;

Parmee 2001; Gandomi et al. 2013; Du and Swamy 2016;

Yang et al. 2016; Siddique and Adeli 2017; Zhou et al.

2013; Akhtar et al. 2020). In these methods, the relevant

variables are randomly selected in the design space and

with intelligent computational methods, the results gradu-

ally move toward the optimal design. As all the design

space is explored, it is possible to calculate the near-global

optimal design (Osińskia et al. 2013). There are several

intelligent methods based on the social life of creatures,

like particle swarm optimization (PSO) (Kennedy and

Eberhart 1995), artificial immune systems (AIS) (Dasgupta

2006; Farmer et al. 1986), ant colony search algorithm

(Dorigo and Stützle 2004) and harmony search algorithm

(Geem 2010; Geem et al. 2001). Another category of sci-

ence-based principles inspired by different disciplines like

physics and chemistry such as simulated
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annealing(Kirkpatrick et al. 1983; Aarts and Korst 1989),

quantum computing (Benioff 1980), central force opti-

mization (Formato 2007, 2008), gravitational search algo-

rithm (Rashedi et al. 2009, 2018) and chemical reaction

optimization (Guggenheim and Modern 1967; Lam and Li

2010).

Among the heuristic optimization methods, the PSO

method is attractive that has been studied by many

researchers (Kashani et al. 2020). Different variants of PSO

have been successfully presented in the literature (Kumar

et al. 2020, 2021; Das et al. 2021). Another interesting

approach is the gravitational search algorithm (GSA) that

has been recently presented by researchers at the Shahid

Bahonar University of Kerman with various modifications

(Ebrahimi Mood et al. 2015).

The weakness of the standard random metaheuristic

methods is the slow convergence and the approaches

require a high number of particles in the design space with

many iterations. If these methods are merged with deter-

ministic methods such as gradient-based approaches

(GBA), the optimal results will be achieved more effi-

ciently with rapid convergence.

In this paper, the PSO and GSA methods with the GBA

are combined and a new innovative method called GPSG

(GSA ? PSO ? GBA) is introduced. To evaluate the

performance of the approach, 25 mathematical optimiza-

tion functions of CEC2005 (Suganthan et al. 2005) and 29

complicated multimodal functions of CEC2017 (Awad

et al. 2017) are examined. Besides, three truss design

problems from the literature are chosen to verify the con-

vergence of the approach. The numerical results of PSO,

GSA and GPSG are compared and it is observed that the

performance of GPSG is much better than other approa-

ches. In the next sections, first, a brief description of the

methods of PSO and GSA are outlined and then the details

of GPSG are presented. The numerical results of the three

approaches are compared with some of the methods in the

literature.

2 Optimization algorithms

This section presents the basic ideas of PSO, GSA, GBA

and the proposed GPSG. The pseudo-code of the approach

is outlined to clarify the main steps of the approach.

2.1 Particle swarm optimization (PSO)

Kennedy and Eberhart (1995) developed a metaheuristic

optimization method based on a random search. In this

algorithm, a random initial population with a certain

number of particles is generated in the design space as

indicated in (1).

Xi ¼ x1
i ; . . .; x

d
i ; . . .; x

n
i

� �
for i ¼ 1 : NP; ð1Þ

where Xi is the vector of the design variables of the particle

i, n is the number of design variables, d denotes the

dimension of the problem, and NP is the number of all

particles.

The particles share their information with other parti-

cles. So each particle can adjust its position according to its

previous experience and makes the best use of its own and

its neighbors.

As a result, in the progress of optimization, over time to

obtain the best possible response, the movement of each

particle is based on self-awareness and the intelligence of

the group particles.

In the PSO method, the particle velocity can be calcu-

lated according to (2).

Vtþ1
i ¼ xVt

i þ c1r1 Pt
i � Xt

i

� �
þ c2r2 Pt

g � Xt
i

� �
; ð2Þ

where Vt
i is the velocity and Xt

i is the positions of any

particle at time t. The vectors Pt
i (Pbest) are the best par-

ticle position i and Pt
g (Gbest) are the best particle position

in the whole society and the index g stands for global. The

parameter x is the weight of inertia to apply the impor-

tance of the velocity of the preceding iterations that grad-

ually decreases linearly from 0.9 to 0.4 overtime. The

scalars c1 and c2 are coefficients to determine the signifi-

cance of Pbest and Gbest, respectively. In this study, an

experimental value of 0.5 is considered for both coeffi-

cients. The coefficients of r1 and r2 are random scalars with

a uniform distribution in the interval of zero and one to

maintain the randomness of the algorithm. Note that ini-

tially, all particle velocities are set to zero. The first part of

(2) is a portion of the speed of the previous iteration. The

second and third parts are the effects of the particle in

question and the whole group particles, respectively, from

the beginning of the path to the moment t. PSO keeps the

memory of all the best results of the previous iterations.

The particles are updated according to (3).
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Xtþ1
i ¼ Xt

i þ Vtþ1
i : ð3Þ

By repeating the process, the optimal solution to the

problem can be obtained.

2.2 Gravitational search algorithm (GSA)

To minimize the objective function, a set of particles is

randomly assigned in the design space and updated over

time. The position of each particle is defined as (1). The

gravitational search algorithm is inspired by the law of

gravity in nature using Newton’s laws. In summary, the

acceleration vector of the ith particle in iteration t can be

specified as (Rashedi et al. 2009, 2018);

ati ¼ G tð Þ
Xn

j¼1

randj
Mj tð Þ

Rij tð Þ þ e
ðXt

j�Xt
iÞ

� �
; ð4Þ

where G is the gravitational constant. Mj represents the

mass of the jth particle and can be evaluated from the

objective functions of particles (Rashedi et al. 2009). Rij is

the distance between the particles of i and j. randj is a

random scalar with uniform distribution in the interval of

zero and one, and e is a small number to prevent numerical

errors.

The gravitational constant G0 is defined as (Rashedi

et al. 2009);

G tð Þ ¼ G0e
�a t

T ; ð5Þ

where the parameters G0 and a are two constant coeffi-

cients. t represents the current iteration and T is the max-

imum number of iterations.

The updated mass of the particles is evaluated by (6) and

normalized according to the relation (7).

mi tð Þ ¼
FiðtÞ � worstðtÞ

bestðtÞ � worstðtÞ ; ð6Þ

Mi tð Þ ¼
mi tð Þ

PNP
j¼1 mj tð Þ

; ð7Þ

in which

best tð Þ ¼ minFi tð Þ for i ¼ 1 : NP; ð8Þ
worst tð Þ ¼ maxFi tð Þ for i ¼ 1 : NP; ð9Þ

where the fitness value (objective function) of each of the

ith particles is evaluated as FiðtÞ at time t.

The updated gravitational velocity vector is calculated

from (10), assuming a one-second interval between the

iterations.

Vtþ1
i ¼ randi:V

t
i þ ati: ð10Þ

Then, the position of the particles is updated according

to (3).

2.3 The first order gradient-based algorithm
(GBA)

Using the Taylor series, retaining the first-order terms, the

position of the updated particles is obtained as (11). The

direction of the search is referred to as the gradient based-

method (GBM) (Vanderplaats 1999; Rao 2009; Haftka

et al. 1990).

Xtþ1
i ¼ Xt

i � !rF Xt
i

� �
; ð11Þ

in which ! is the step length and the operator r is the

gradients. By employing (11), the direction of search is in

the negative gradients of the function under consideration

that is referred to as steepest descent resulting in the most

reduction in the function. Special care should be taken in

choosing the step length !. The gradient directions are

randomized for compatibility with the metaheuristic

methods as explained in the next section.

2.4 Hybrid method (GPSG)

The metaheuristic methods such as PSO and GSA have a

good capability of exploring the whole design space. The

combination of PSO and GSA improves the quality of

exploration (Tsai et al. 2013). However, all the heuristic

approaches or their combination have low power of

exploitation (local search). On the other hand, the GBA is
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powerful for exploitation and weak in exploration (global

search) that may be trapped in local optima. Thus the

merging of the three approaches is a good idea for

obtaining a fast and powerful method. The heuristic

methods are random but the gradient methods are deter-

ministic. In the combination approaches, the idea of ran-

domization must be employed. Besides, a fraction of the

speed in each method should be combined.

The velocity of the particles for PSO, GSA and GBA is

given in (12), (13) and (14), respectively, with some

modifications.

V PSOtþ1
i ¼ c1r1 Pt

i � Xt
i

� �
þ c2r2 Pt

g � Xt
i

� �
; ð12Þ

V GSAtþ1
i ¼ randi:V GPSGt

i þ ati; ð13Þ

V GBAtþ1
i ¼ �rFðXt

iÞ
jrFðXt

iÞj
:sv: ð14Þ

The parameter sv is given by

sv ¼ V PSOtþ1
i þ V GSAtþ1

i

�� ��: ð15Þ

The velocity of GBA is normalized to achieve a unit

vector along the negative gradient direction. Then, it is

multiplied by sv to adjust the length of the search direction

of the GBA corresponding to the resultant of the PSO and

GSA algorithms. On the other hand, sv is a step length for

the unit vector of the negative gradients.

Comparing (12) and the original PSO velocity indicates

that the first term of (2) is omitted because its effects are

considered in the velocity of the GSA (13).

Finally, the velocity of the combined approach (GPSG)

is obtained by (16).

V GPSGtþ1
i ¼ Ct V PSOtþ1

i þ V GSAtþ1
i þ Cg:r3:V GBAtþ1

i

� �
:

ð16Þ

In this formulation, r3 is a random number between zero

and one. Cg ¼ 2 is a statistically appropriate coefficient as

the average of Cg � r3 tends to one. Therefore, the mag-

nitude of the GBA (sv) does not change much.

The value of Ct is considered as 0.5 to prevent statisti-

cally increasing the resultant of the magnitude of the three

vectors corresponding to the algorithms.

Finally, the position of each particle is updated by the

GPSG velocity presented in (17).

Xtþ1
i ¼ Xt

i þ V GPSGtþ1
i : ð17Þ

The main idea of the proposed method is that for min-

imization problems, in the direction of negative gradient of

the objective function (GBA), the reduction of the function

is more than any other direction. However, the drawback of

the gradient direction is that the optimal result falls in a

local solution. Thus, the direction of the gradient vector is

randomized and its length is normalized for compatibility

with the resultant directions generated by PSO and GSA. In

each iteration, the resultant of the PSO, GSA and GBA

(GPSG) are employed for the optimization process. The

fast convergence of numerical results with a small number

of the initial population indicates the high ability of the

exploration and exploitation of the proposed GPSG

method.

The steps of the GPSG hybrid method are presented in

the following pseudo-code (comments for more informa-

tion represented with %);
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2.5 Optimization problem formulation

The general form of a constrained optimization problem

can be specified as follows:

Minimize : f Xð Þ; ð18Þ
Subject to : gk Xð Þ� 0 k ¼ 1 : K; ð19Þ

where f Xð Þ and gk Xð Þ represent the objective function and

constraints, respectively. The value of K represents the

number of constraints.

To convert the constrained structural problems into the

unconstrained functions, the penalty function should be

used as (Salajegheh and Salajegheh 2019);

F Xð Þ ¼ cf Xð Þ; ð20Þ

c ¼ 1 þ
XK

i¼1

w ið ÞqðiÞkðiÞ i ¼ 1 : K; ð21Þ

w ið Þ ¼ le1þqðiÞ; ð22Þ
q ið Þ ¼ max gi; 0ð Þ; ð23Þ
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Fig. 1 Convergence history for

CEC2005 with NP = 5

Table 1 Scaling parameters
Parameters G0(Rasgedi 2009) a(Rashedi 2009) T n NP Runs

CEC2005 100 20 5000 10 5, 10, 20, 30 30

CEC2017 100 20 7500 30 40 30
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k ið Þ ¼ 1 if q ið Þ� 1

2 if q ið Þ[ 1

	
; ð24Þ

where c is a scalar coefficient for penalties that increase the

objective function if the constraints are violated. F Xð Þ is

called the penalized objective function. The parameters l
and k are the coefficients needed to calculate the value of c.

In this study, l is considered as 0.5.

3 Numerical investigation

In this research, the mathematical functions of CEC2005

(Suganthan et al. 2005) with 10 variables (n = 10) and

CEC2017 (Awad et al. 2017) with 30 variables are used to

explore the capabilities of the proposed approach. In

addition, three standard benchmark structural problems are

considered for the validation of the GPSG algorithm. These

are discussed as follows:

3.1 Results of CEC2005 mathematical functions

The results of the methods of PSO, GSA and GPSG for a

population of 5 (NP) are presented graphically for some of

the functions in Fig. 1. The required data in the process of

optimization are presented in Table 1.

The vertical axis represents the difference between the

obtained results and the exact solution (X*) at each itera-

tion. Each graph is the outcome of the average of 30

independent runs.

The two methods of PSO and GSA have very poor

convergence and the methods trap in a local optimum for

some of the cases. But in the combined GPSG method, the

convergence of the optimization process is smooth with

much better results.

Besides, the effects of the number of the initial popu-

lation are considered for the methods. Populations of 5, 10,

20 and 30 are examined. The results are presented in

Figs. 2, 3 and 4. It can be observed that the methods of PSO

and GSA are very sensitive to the number of population.

However, in the GPSG, the population does not affect the

results much. With a small population, the enhanced

method behaves well.
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The summary of the results is given in Table 2. For all

the problems, mean, rank, standard deviation, median and

best response for the final iteration are given. The rank is

evaluated based on the results of the average of the final

iteration of the 30 runs, for the same population.

From the statistical point of view, the standard deviation

(SD.) indicates that the diversity of the final results of the

independent runs are lower for the proposed approach,

which shows the superiority of the method.

The mean values of the average of the 25 functions are

found and then their ranks are evaluated for each popula-

tion. The final results are given in Table 3. It is seen that

the GPSG possesses the first rank in all the cases.

Table 3 Average rank of methods with different populations

Algorithms PSO GSA GPSG

5 particle 3 2 1

10 particle 3 2 1

20 particle 3 2 1

30 particle 3 2 1

Table 4 Comparison of GPSG with variants of GSA for CEC2005

Function Ebrahimi Mood et al. (2015) Present work Rank GPSG

GSA CGSA SSGSA BSGSA PSO GSA GPSG

F1 0 1.59E - 12 8.0193E - 15 2.6328E - 15 54.05 0 0 1

F2 0 3.13E - 12 1.2764E - 14 5.9829E - 15 0 0 0 1

F3 1.93E ? 05 2.02E ? 05 9.5887E ? 04 1.4268E ? 05 2.96E ? 05 1.88E ? 05 8.56E ? 04 1

F4 3.75E ? 03 3.08E ? 03 1.8194E - 14 7.6216E - 15 304 0.71 0 1

F5 2.53E ? 03 3.34E ? 03 319.4057 436.0698 6.32 0.81 0 1

F6 87.97 13.38 24.8792 54.3535 3.90E ? 05 17.75 0.05 1

F7 2.23E ? 03 1.60E ? 03 0.0019 0.0039 15.06 0.11 0.02 3

F8 20.11 20.08 20.0571 20.0563 20.24 20.19 20.16 5

F9 3.78 4.62 4.4574 4.2584 20.97 8.85 7.91 5

F10 3.7 3.46 3.9798 4.2186 25.92 7.38 3.28 1

F11 1.39E - 04 4.94E - 04 0.0021 0.0015 5.22 0.68 2.96 6

F12 230.16 158.9900 9.1565 8.9871 3.48E ? 02 4.46E ? 01 1.48E ? 02 4

F13 1.30 1.25 1.3188 1.3798 0.89 0.67 0.96 3

F14 4.82 4.79 3.6653 4.0158 3.37 4.08 3.4 2

F15 199.11 197.32 276.0382 173.9696 2.51E ? 02 1.90E ? 02 3.97E ? 02 7

F16 92.40 84.62 96.1282 88.6387 1.76E ? 02 95.51 96.59 6

F17 99.79 103.29 98.4660 100.4505 1.56E ? 02 1.06E ? 02 1.06E ? 02 5

F18 941.70 880 913.9566 934.5902 1.00E ? 03 3.01E ? 02 3.00E ? 02 1

F19 946.52 896 917.1538 924.1029 9.79E ? 02 3.17E ? 02 3.00E ? 02 1

F20 950.68 880 906.2861 914.8380 9.78E ? 02 3.40E ? 02 3.00E ? 02 1

F21 800 800 800.0000 800.0000 1.01E ? 03 8.02E ? 02 5.00E ? 02 1

F22 763.36 756.32 747.4972 748.5580 8.52E ? 02 7.64E ? 02 7.43E ? 02 1

F23 1.08E ? 03 1.07E ? 03 975.2348 970.5031 1.09E ? 03 9.50E ? 02 5.59E ? 02 1

F24 602.87 628.47 276.0000 358.9453 9.08E ? 02 2.54E ? 02 2.00E ? 02 1

F25 1.33E ? 03 1.33E ? 03 296.0000 388.0000 9.43E ? 02 2.31E ? 02 2.00E ? 02 1

Average rank 4.44 4.24 3.48 3.44 5.84 3.44 2.44

Rank 6 5 4 2 7 2 1
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3.2 Comparison of the proposed method
with several metaheuristic algorithms

The outlined approach with 20 particles is compared with

different variations of GSA for the CEC2005 (Ebrahimi

et al. 2015). The required initial parameters are chosen

similarly. The numerical results are presented in Table 4. It

can be observed that 15 functions have the first rank and

the average rank of all the 25 functions is better than

variants of GSA.

For CEC2017 the average, best and standard deviation

(SD.) results for each function are indicated in Table 5. The

average results of the proposed approach compared with 8

other methods, according to the available information. The

Fig. 5 10-bar plane truss

Table 6 Information for the 10-bar plane truss

Properties Values

External loading, P 100 kips

Elasticity modulus 10,000 ksi

density 0.1 lb/in3

Area lower bound 0.1 in2

Area upper bound 35 in2

Allowable displacement in all directions ± 2.0 in

Allowable stress ± 25 ksi
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superiority of the GPSG among the others is observed

according to the average rank. Also, the same number of

function evaluations is chosen for all methods. The stan-

dard deviations (SD.) are obtained for GPSG and the other

methods, the results of SD. are not available for

comparison.

3.3 Structural problems

The optimal design of structures is the main topic among

structural engineers (Mashayekhi et al. 2012, 2016; Gho-

lizadeh 2013; Khatibinia and Yazdani 2018; Bhullar et al.

2020). In this section, three design problems are chosen for

truss structures. The weight of the structures is taken as the

objective function and the constraints are bounds on

member stresses and joint displacements. The cross-sec-

tional areas are continuous design variables. In all the

problems, the value of a in (5) and the maximum iterations

(T) are chosen as 4 and 200, respectively.

3.3.1 10-bar plane truss

The 10-bar truss is optimized as shown in Fig. 5. The

required information for the truss is given in Table 6.

The results are given in Table 7. The numerical results

indicate that the best results are obtained with the com-

bined GPSG method, in which for all the number of par-

ticles, similar results are approximately achieved.

The convergence trend for different populations is

illustrated in Fig. 6. It is concluded that the GPSG method

yields better results which demonstrates the efficiency of

this method.

The ranking of the three algorithms is given in Table 8.

The ranking of the GPSG is first.
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Fig. 6 Convergence history for

the 10-bar truss with different

number of particles

Table 8 Average ranking with different populations for 10-bar plane

truss

Algorithms PSO GSA GPSG

Average Mean (lb) 6193.62 5289.54 5063.95

Average Rank 3 2 1
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3.3.2 72-bar truss

The 72-member truss shown in Fig. 7 consists of 16

member types due to geometrical shape. The aim is to

minimize the weight of the structure. All of the specifica-

tions of the structure are given in Table 9.

The results are presented in Table 10. It can be con-

cluded that the GPSG hybrid method has the most favor-

able results. The number of the initial population does not

affect the results. The average of the hybrid method with

only five particles is better than the PSO and GSA methods

with 30 particles.

Fig. 7 72-bar truss

Table 9 Information of the 72-bar truss

Properties Values

External loading, P on node 17 Px = 5 kips

Py = 5 kips

Pz = -5 kips

Elasticity modulus 10,000 ksi

density 0.1 lb/in3

Area lower bound 0.01 in2

Area upper bound 4 in2

Allowable displacement in all directions ± 0.25 in

Allowable stress ± 25 ksi

An enhanced approach for optimizing mathematical and structural problems by combining PSO, GSA… 11907

123



The convergence history of the methods is shown in

Fig. 8. The GPSG method yields better results that

demonstrate its effectiveness.

The ranking of the three algorithms is shown in Table 11

and the GPSG method is ranked first.

3.3.3 120-member dome under asymmetric vertical load

The 120-member dome shown in Fig. 9 is composed of 7

member types due to the existing geometric symmetry.

Therefore, the number of design variables is reduced from

120 to 7. Stress constraints have been used following

AISC-ASD regulations. The permissible tensile and com-

pressive stresses are given in (25 and 26), respectively.

rT ¼ 0:6Fy; ð25Þ

rc ¼
Fy 1 � k2

i

2C2
c

� �h i

5
3
þ 3ki

8Cc
� k3

i

8C3
c

if ki\Cc for inelastic bucklingð Þ;

ð26aÞ

rC ¼ 12

23

p2E

k2
i

if ki �Cc for elastic bucklingð Þ; ð26bÞ

where E is the modulus of elasticity, Fy is the yield stress

of steel, and Cc is the boundary value between the elastic

and inelastic buckling states. The effective length coeffi-

cient k=1, and ri is the radius of gyration of each member,

evaluated as (26). The asymmetric vertical load is applied

to the free nodes in the z-direction according to Table 12.

Cc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2p2E

Fy

s

; ð27Þ

ki ¼
kLi
ri

; ð28Þ

ri ¼ aAb
i ; ð29Þ

For hollow pipe section : a ¼ 0:4993; b ¼ 0:6777: ð30Þ

The required specifications for the 120-member dome

are given in Table 13.

The results are presented in Table 14. The best results

correspond to the combined GPSG method, in which the

deviation between different performances is low.
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The convergence trend of the results is presented in

Fig. 10. The results show that for different populations, the

GPSG is the most appropriate method.

The rankings of the three GSA, PSO and GPSG algo-

rithms are presented in Table 15. Similar to the previous

examples, the first rank belongs to the suggested new

method of GSPG.

4 Conclusions

In advanced methods of optimization, the main goal is to

find the optimal solution of multimodal functions effi-

ciently. There are two main categories in this field. The

traditional gradient-based methods (GBM) start from a pre-

assigned solution and move along a search direction using

the gradients of the function under consideration. The

GBM methods are reliable, efficient and fast for unimodal

functions but may trap into a local optimum for multimodal

functions and the initial point is important for the conver-

gence. The second category is referred to as multipoint

metaheuristic approaches. These methods are based on a

number of the initial population and the search directions

are made on some statistical ideas. The methods lead to

finding the global point if enough initial population is

chosen and the search directions are organized logically.

However, the exploitation of the approaches is weak and

unsatisfactory.

Based on these difficulties, in the present research, the

two categories are combined to achieve a new successful

approach. A compromise is made between the two cate-

gories in terms of their capabilities and shortcomings.

Among the vast number of metaheuristic techniques, the

two rather successful methods of PSO and GSA are
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Fig. 8 Convergence history for

the 72-member truss with

different number of particles

Table 11 Average ranking with different populations for 72-member

truss

Algorithms PSO GSA GPSG

Average mean (lb) 8.32E ? 02 5.86E ? 02 3.90E ? 02

Average rank 3 2 1
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Fig. 9 120-member dome

Table 12 External asymmetric forces applied to the 120-member

dome

Node External forces in the direction of the z-axis (kips)

1 - 13.49

2–14 - 6.744

15–37 - 2.248

Table 13 Properties of the 120-member dome

Properties Values

Elasticity modulus 30,450 ksi

density 0.288 lb/in3

Yield stress of steel 58.0 ksi

Area lower bound 0.775 in2

Area upper bound 20 in2

Allowable displacement in all directions ± 0.1969 in
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selected and their combination is merged with GBM. The

integration of the three methods is called GPSG.

The resultant of the search directions of the three

methods are made in such a way to control the overall

speed of the GPSG with proper move limits, employing the

multipoint initial population and the philosophy of the

stochastic ideas.

To verify the proposed method, 25 complicated multi-

modal functions of CEC2005 and 29 functions of CEC2017

from the literature as benchmark examples are tested.

Besides, three structural design problems of two and three-

dimensional truss structures with stress and displacement

constraints are optimized for optimal weight.

The numerical results indicate the superiority of the

proposed approach compared to both methods of PSO and

GSA. In addition, the results of CEC2005 are compared

with four variants of GSA and the results of CEC2017 are

compared with eight other available methods. The first

mean rank belongs to the proposed approach. The power of

GPSG is investigated in terms of the exploration and

exploitation demands. The new approach can reach the

appropriate optimal solution with a less initial population

with lower independent runs. The convergence history of

the approach is smooth and the results are more efficient,

reliable and stable.

It was found that the combination of GBA with either of

the PSO and GSA works well; however, the efficiency of

the integration of the three approaches is greatly enriched.

As the metaheuristic approaches are not suitable for all

the optimization problems, the search is continuously under

progress to reach more suitable approaches. It is intended

to incorporate higher-order gradient directions with other

variants in the future.
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different number of particles
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