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Abstract

In this paper, the combination of particle swarm optimization (PSO) and gravitational search algorithm (GSA) is enhanced
by the first-order gradient method and a new optimization algorithm is introduced as GPSG. In metaheuristic methods,
some search directions are randomly selected and the resulting information gradually progresses toward the optimal
solution. Since along the gradient direction usually yields the largest decrease in the desired function, it is added to the
GSA and PSO process to allow for faster and more accurate convergence. By integrating the metaheuristic methods with
the gradient directions, a powerful method for optimizing functions has been made possible. A novel approach is intro-
duced by merging two metaheuristic methods with the randomly generated steepest decent directions. Numerous examples
of unconstrained problems of mathematical functions of CEC2005 and CEC2017 together with some constrained examples
of stress and displacement structural design problems have been chosen to demonstrate the reliability and capability of the
presented method. Comparison of the numerical results with some methods indicates that the average rank of the proposed
technique is better.

Keywords Particle swarm optimization - Gravitational search algorithm - Gradient directions - CEC2005 and 2017 -
Structural design

1 Introduction

The optimization methods are divided into two main
groups. The traditional mathematical programming tech-
niques belong to this category (Vanderplaats 1999; Rao
2009; Haftka et al. 1990). Most of the techniques are based
on choosing some search directions employing the first and
higher-order derivatives of the functions under considera-
tion. The search directions and the step lengths are modi-
fied to reach the desired optimal solution. The final results
may not lead to global optimum for multimodal functions.
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The methods are referred to as gradient-based approaches
(GBA).

The second type of method is modern optimization
methods that are based on statistical search directions and
derived from different behaviors in nature (Yang 2010;
Parmee 2001; Gandomi et al. 2013; Du and Swamy 2016;
Yang et al. 2016; Siddique and Adeli 2017; Zhou et al.
2013; Akhtar et al. 2020). In these methods, the relevant
variables are randomly selected in the design space and
with intelligent computational methods, the results gradu-
ally move toward the optimal design. As all the design
space is explored, it is possible to calculate the near-global
optimal design (Osinskia et al. 2013). There are several
intelligent methods based on the social life of creatures,
like particle swarm optimization (PSO) (Kennedy and
Eberhart 1995), artificial immune systems (AIS) (Dasgupta
2006; Farmer et al. 1986), ant colony search algorithm
(Dorigo and Stiitzle 2004) and harmony search algorithm
(Geem 2010; Geem et al. 2001). Another category of sci-
ence-based principles inspired by different disciplines like
physics and  chemistry such  as simulated
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annealing(Kirkpatrick et al. 1983; Aarts and Korst 1989),
quantum computing (Benioff 1980), central force opti-
mization (Formato 2007, 2008), gravitational search algo-
rithm (Rashedi et al. 2009, 2018) and chemical reaction
optimization (Guggenheim and Modern 1967; Lam and Li
2010).

Among the heuristic optimization methods, the PSO
method is attractive that has been studied by many
researchers (Kashani et al. 2020). Different variants of PSO
have been successfully presented in the literature (Kumar
et al. 2020, 2021; Das et al. 2021). Another interesting
approach is the gravitational search algorithm (GSA) that
has been recently presented by researchers at the Shahid
Bahonar University of Kerman with various modifications
(Ebrahimi Mood et al. 2015).

The weakness of the standard random metaheuristic
methods is the slow convergence and the approaches
require a high number of particles in the design space with
many iterations. If these methods are merged with deter-
ministic methods such as gradient-based approaches
(GBA), the optimal results will be achieved more effi-
ciently with rapid convergence.

In this paper, the PSO and GSA methods with the GBA
are combined and a new innovative method called GPSG
(GSA + PSO + GBA) is introduced. To evaluate the
performance of the approach, 25 mathematical optimiza-
tion functions of CEC2005 (Suganthan et al. 2005) and 29
complicated multimodal functions of CEC2017 (Awad
et al. 2017) are examined. Besides, three truss design
problems from the literature are chosen to verify the con-
vergence of the approach. The numerical results of PSO,
GSA and GPSG are compared and it is observed that the
performance of GPSG is much better than other approa-
ches. In the next sections, first, a brief description of the
methods of PSO and GSA are outlined and then the details
of GPSG are presented. The numerical results of the three
approaches are compared with some of the methods in the
literature.

2 Optimization algorithms
This section presents the basic ideas of PSO, GSA, GBA

and the proposed GPSG. The pseudo-code of the approach
is outlined to clarify the main steps of the approach.
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2.1 Particle swarm optimization (PSO)

Kennedy and Eberhart (1995) developed a metaheuristic
optimization method based on a random search. In this
algorithm, a random initial population with a certain
number of particles is generated in the design space as
indicated in (1).

X;=(x},...x%,. . x) fori=1:NP, (1)

where X; is the vector of the design variables of the particle
i, n is the number of design variables, d denotes the
dimension of the problem, and NP is the number of all
particles.

The particles share their information with other parti-
cles. So each particle can adjust its position according to its
previous experience and makes the best use of its own and
its neighbors.

As a result, in the progress of optimization, over time to
obtain the best possible response, the movement of each
particle is based on self-awareness and the intelligence of
the group particles.

In the PSO method, the particle velocity can be calcu-
lated according to (2).

Vi = oVl e (P - X)) + cana (P, - X1), 2)

where Vi is the velocity and X! is the positions of any
particle at time ¢. The vectors P} (Pbest) are the best par-
ticle position i and P’g (Gbest) are the best particle position
in the whole society and the index g stands for global. The
parameter o is the weight of inertia to apply the impor-
tance of the velocity of the preceding iterations that grad-
ually decreases linearly from 0.9 to 0.4 overtime. The
scalars ¢ and ¢, are coefficients to determine the signifi-
cance of Pbest and Gbest, respectively. In this study, an
experimental value of 0.5 is considered for both coeffi-
cients. The coefficients of r; and r, are random scalars with
a uniform distribution in the interval of zero and one to
maintain the randomness of the algorithm. Note that ini-
tially, all particle velocities are set to zero. The first part of
(2) is a portion of the speed of the previous iteration. The
second and third parts are the effects of the particle in
question and the whole group particles, respectively, from
the beginning of the path to the moment 7. PSO keeps the
memory of all the best results of the previous iterations.
The particles are updated according to (3).
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X =xt vt (3)  best(t) = minF,(t) fori = 1 : NP, (8)
By repeating the process, the optimal solution to the  Wworst(t) = max Fi(r) for i =1 : NP, 9)

problem can be obtained.
2.2 Gravitational search algorithm (GSA)

To minimize the objective function, a set of particles is
randomly assigned in the design space and updated over
time. The position of each particle is defined as (1). The
gravitational search algorithm is inspired by the law of
gravity in nature using Newton’s laws. In summary, the
acceleration vector of the ith particle in iteration ¢ can be
specified as (Rashedi et al. 2009, 2018);

al = Gr) zﬂ: { rand; M;(1)

t 1
= jR,‘j(t)—l-S(Xj Xi) ’ (4)
where G is the gravitational constant. M; represents the
mass of the jth particle and can be evaluated from the
objective functions of particles (Rashedi et al. 2009). R;; is
the distance between the particles of i and j. rand; is a
random scalar with uniform distribution in the interval of
zero and one, and ¢ is a small number to prevent numerical
errors.

The gravitational constant Gy is defined as (Rashedi
et al. 2009);

G(1) = Goe ™™, (5)

where the parameters Gy and o are two constant coeffi-
cients. t represents the current iteration and 7 is the max-
imum number of iterations.

The updated mass of the particles is evaluated by (6) and
normalized according to the relation (7).

Fi(t) — worst(?)

mi(t) = best(t) — worst(z)’ (6)
m,-(t)
M,’ = —NP 7
" > =1 mi(1) 7
in which

where the fitness value (objective function) of each of the
ith particles is evaluated as F;(¢) at time ¢.

The updated gravitational velocity vector is calculated
from (10), assuming a one-second interval between the
iterations.

Vil = rand;.V! + a'. (10)

Then, the position of the particles is updated according
to (3).

2.3 The first order gradient-based algorithm
(GBA)

Using the Taylor series, retaining the first-order terms, the
position of the updated particles is obtained as (11). The
direction of the search is referred to as the gradient based-
method (GBM) (Vanderplaats 1999; Rao 2009; Haftka
et al. 1990).

X" =X - YVF(X)), (11)

in which Y is the step length and the operator V is the
gradients. By employing (11), the direction of search is in
the negative gradients of the function under consideration
that is referred to as steepest descent resulting in the most
reduction in the function. Special care should be taken in
choosing the step length Y. The gradient directions are
randomized for compatibility with the metaheuristic
methods as explained in the next section.

2.4 Hybrid method (GPSG)

The metaheuristic methods such as PSO and GSA have a
good capability of exploring the whole design space. The
combination of PSO and GSA improves the quality of
exploration (Tsai et al. 2013). However, all the heuristic
approaches or their combination have low power of
exploitation (local search). On the other hand, the GBA is
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powerful for exploitation and weak in exploration (global
search) that may be trapped in local optima. Thus the
merging of the three approaches is a good idea for
obtaining a fast and powerful method. The heuristic
methods are random but the gradient methods are deter-
ministic. In the combination approaches, the idea of ran-
domization must be employed. Besides, a fraction of the
speed in each method should be combined.

The velocity of the particles for PSO, GSA and GBA is
given in (12), (13) and (14), respectively, with some
modifications.

VSO =i (P - X)) +en(P-X]),  (12)
V_GSA!*! = rand,.V_GPSG! + !, (13)
~VF(X!)
GBAM! = —— 12 gy, 14
VOB = R (14

The parameter sv is given by
sv = |V_PSO/*" + V_GSA!M|. (15)

The velocity of GBA is normalized to achieve a unit
vector along the negative gradient direction. Then, it is
multiplied by sv to adjust the length of the search direction
of the GBA corresponding to the resultant of the PSO and
GSA algorithms. On the other hand, sv is a step length for
the unit vector of the negative gradients.

Comparing (12) and the original PSO velocity indicates
that the first term of (2) is omitted because its effects are
considered in the velocity of the GSA (13).

Finally, the velocity of the combined approach (GPSG)
is obtained by (16).

@ Springer

V_GPSG/*! = C,(V_PSO/*! + V_GSA!"! + C,.r3.V_GBA!M).
(16)

In this formulation, r3 is a random number between zero
and one. C, = 2 is a statistically appropriate coefficient as
the average of C, x r3 tends to one. Therefore, the mag-
nitude of the GBA (sv) does not change much.

The value of C; is considered as 0.5 to prevent statisti-
cally increasing the resultant of the magnitude of the three
vectors corresponding to the algorithms.

Finally, the position of each particle is updated by the
GPSG velocity presented in (17).

X' = X!+ V_GPSG!"'. (17)

The main idea of the proposed method is that for min-
imization problems, in the direction of negative gradient of
the objective function (GBA), the reduction of the function
is more than any other direction. However, the drawback of
the gradient direction is that the optimal result falls in a
local solution. Thus, the direction of the gradient vector is
randomized and its length is normalized for compatibility
with the resultant directions generated by PSO and GSA. In
each iteration, the resultant of the PSO, GSA and GBA
(GPSG) are employed for the optimization process. The
fast convergence of numerical results with a small number
of the initial population indicates the high ability of the
exploration and exploitation of the proposed GPSG
method.

The steps of the GPSG hybrid method are presented in
the following pseudo-code (comments for more informa-
tion represented with %);
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Pseudo-code of GPSG algorithm

Set the initial parameters, such as NP (the number of particles), n (the number of design
variables) and the design space
Generate initial random population: X/=1
fort = 1: T % (maximum number of iterations)
Evaluate the objective function of all particles: F;_1.yp(t)
% Find Pbest (P!) and Gbest (Pg) among saved information of all particles up to the present
iteration ¢
fori =1:NP
it F(XE) <= F(P)
Pi=xt
end if
if F(X!) <= F(PY)
PL=X}
end if
end for
% Find the best and worst in the present iteration 7 (8, 9):

best(t) = min( Fi=1.np(t))
worst(t) = max( Fi=1.yp(t))
% Update the normalized mass (7):
fori = 1: NP
m;(t)= (F;(t) — worst(t)) / (best(t) — worst(t))
end for
M;(6) = m;(£)/sum(m;(¢))
% Update gravitational constant (5):
G(t) = Gy.exp(—a. t/T)
% Calculate the acceleration vector of particles (4):
fori = 1: NP
sum=zeros(n,1)
forj =1:NP
Ri;(t) = norrn(Xf - X5
sum = sum + rand. M;(t)/(R;;(t)+eps) . (Xf -XH
end for
al=G(t) . sum
end for
% Find the speed of PSO (V_PSOf*') and GSA (V_GSA*Y) of particles (12 and 13):
fori = 1: NP
V_PSO{** = ci.rand. (P} — X}) + c;.rand. (P5 — X}) % (c1=¢,=0.5)
V_GSAY*! = rand. V_GPSG!+ a
end for
Calculate the negative gradient of particles: —VF (X!_;.vp)
% Find the speed of GBA (V_GBA!*Y) of particles (14):
fori = 1:NP
|PF (X{)|=norm(VF (X}))
if [VF(X5)|==0
VF(XD)|=1
end if
s1;=n0rm(V_PSOit+1 + V_GSAfH)
V_GBA™! = —VF(XY)/|VF(X)|.sv
end for
% Update the speed of GPSG of particles with move limits (16):
V_GPSG!tlvp = C. (V_PSOLLL + V_GSALLL + Cy.rand. V_GBAYL) % (C=0.5, Cg=2)
% Update position of particles, considering side limits (17):
X;:l:NP = Xf:l:NP + V_GPSGitLl:NP
Xitinp = max(X{Ziyp, x_min)
XiZinp = min(XiZiyp, x_max)
% t=t+1 and go to the next iteration
end for
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Fig. 1 Convergence history for F1
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Table 1 Scaling parameters Parameters  Go(Rasgedi 2009)  o(Rashedi 2009) T n NP Runs
CEC2005 100 20 5000 10 5, 10, 20, 30 30
CEC2017 100 20 7500 30 40 30

2.5 Optimization problem formulation

The general form of a constrained optimization problem
can be specified as follows:

Minimize : f(X), (18)
Subject to : g (X) <0k =1:K, (19)

where f(X) and g, (X) represent the objective function and
constraints, respectively. The value of K represents the
number of constraints.

@ Springer

To convert the constrained structural problems into the
unconstrained functions, the penalty function should be
used as (Salajegheh and Salajegheh 2019);

F(X) = cf(X), (20)
c=1 —&—izp(i)q(i)w)i: 1:K, (21)
l//(l) = IueH-q(i)? (22)
q(i) = max(g,-,O), (23)
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Fig. 2 Convergence history for F1 F1
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Fig. 4 Convergence history for
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i) = N T (24)
2 ifq(i)>1

where c is a scalar coefficient for penalties that increase the
objective function if the constraints are violated. F(X) is
called the penalized objective function. The parameters u
and / are the coefficients needed to calculate the value of c.
In this study, p is considered as 0.5.

3 Numerical investigation

In this research, the mathematical functions of CEC2005
(Suganthan et al. 2005) with 10 variables (n = 10) and
CEC2017 (Awad et al. 2017) with 30 variables are used to
explore the capabilities of the proposed approach. In
addition, three standard benchmark structural problems are
considered for the validation of the GPSG algorithm. These
are discussed as follows:

@ Springer

The results of the methods of PSO, GSA and GPSG for a
population of 5 (NVP) are presented graphically for some of
the functions in Fig. 1. The required data in the process of
optimization are presented in Table 1.

The vertical axis represents the difference between the
obtained results and the exact solution (X*) at each itera-
tion. Each graph is the outcome of the average of 30
independent runs.

The two methods of PSO and GSA have very poor
convergence and the methods trap in a local optimum for
some of the cases. But in the combined GPSG method, the
convergence of the optimization process is smooth with
much better results.

Besides, the effects of the number of the initial popu-
lation are considered for the methods. Populations of 5, 10,
20 and 30 are examined. The results are presented in
Figs. 2, 3 and 4. It can be observed that the methods of PSO
and GSA are very sensitive to the number of population.
However, in the GPSG, the population does not affect the
results much. With a small population, the enhanced
method behaves well.
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Table 3 Average rank of methods with different populations

Algorithms PSO GSA GPSG
5 particle 3 2 1
10 particle 3 2 1
20 particle 3 2 1
30 particle 3 2 1

The summary of the results is given in Table 2. For all
the problems, mean, rank, standard deviation, median and

Table 4 Comparison of GPSG with variants of GSA for CEC2005

best response for the final iteration are given. The rank is
evaluated based on the results of the average of the final
iteration of the 30 runs, for the same population.

From the statistical point of view, the standard deviation
(SD.) indicates that the diversity of the final results of the
independent runs are lower for the proposed approach,
which shows the superiority of the method.

The mean values of the average of the 25 functions are
found and then their ranks are evaluated for each popula-
tion. The final results are given in Table 3. It is seen that
the GPSG possesses the first rank in all the cases.

Function Ebrahimi Mood et al. (2015) Present work Rank GPSG
GSA CGSA SSGSA BSGSA PSO GSA GPSG
F1 0 1.59E — 12 8.0193E — 15 2.6328E — 15 54.05 0 0 1
F2 0 313E — 12 12764E — 14 59829E — 15 0 0 0 1
F3 193E 4+ 05 2.02E+ 05 9.5887E + 04 14268E+ 05 296E+05 188E+05 856E+04 1
F4 375E +03 3.08E+ 03 18194E — 14 7.6216E — 15 304 0.71 0 1
F5 253E + 03 334E + 03  319.4057 436.0698 6.32 0.81 0 1
F6 87.97 13.38 24.8792 54.3535 390E + 05 17.75 0.05 1
F7 223E + 03 1.60E + 03  0.0019 0.0039 15.06 0.11 0.02 3
F8 20.11 20.08 20.0571 20.0563 20.24 20.19 20.16 5
F9 3.78 4.62 4.4574 4.2584 20.97 8.85 791 5
F10 3.7 3.46 3.9798 4.2186 25.92 7.38 3.28 1
F11 1.39E — 04 494E — 04  0.0021 0.0015 5.22 0.68 2.96 6
F12 230.16 158.9900 9.1565 8.9871 348E+ 02 446E+01 148E+02 4
F13 1.30 1.25 1.3188 1.3798 0.89 0.67 0.96 3
F14 4.82 4.79 3.6653 4.0158 3.37 4.08 34 2
F15 199.11 197.32 276.0382 173.9696 251E4+02 190E+4+02 397E+02 7
Fl16 92.40 84.62 96.1282 88.6387 1.76E + 02 95.51 96.59 6
F17 99.79 103.29 98.4660 100.4505 1.56E 4+ 02 1.06E+ 02 1.06E+02 5
F18 941.70 880 913.9566 934.5902 1.00E + 03 3.01E+02 3.00E+02 1
F19 946.52 896 917.1538 924.1029 9.79E + 02 3.17E+02 300E+02 1
F20 950.68 880 906.2861 914.8380 9.78E 4+ 02 340E+ 02 300E+02 1
F21 800 800 800.0000 800.0000 1.01E+ 03 8.02E+02 500E+02 1
F22 763.36 756.32 747.4972 748.5580 852E 4+ 02 7T64E+02 T743E+02 1
F23 1.08E + 03  1.07E + 03  975.2348 970.5031 1.09E + 03 950E 402 559E+02 1
F24 602.87 628.47 276.0000 358.9453 9.08E 4+ 02 254E4+02 200E+02 1
F25 1.33E +03 1.33E+ 03 296.0000 388.0000 943E 4+ 02 231E4+02 200E+02 1
Average rank  4.44 4.24 348 344 5.84 344 2.44
Rank 6 5 4 2 7 2 1
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P P
Fig. 5 10-bar plane truss
Table 6 Information for the 10-bar plane truss
Properties Values
External loading, P 100 kips
Elasticity modulus 10,000 ksi
density 0.1 Ib/in®
Area lower bound 0.1 in?
Area upper bound 35 in?
Allowable displacement in all directions +20in
Allowable stress =+ 25 ksi

3.2 Comparison of the proposed method
with several metaheuristic algorithms

The outlined approach with 20 particles is compared with
different variations of GSA for the CEC2005 (Ebrahimi
et al. 2015). The required initial parameters are chosen
similarly. The numerical results are presented in Table 4. It
can be observed that 15 functions have the first rank and
the average rank of all the 25 functions is better than
variants of GSA.

For CEC2017 the average, best and standard deviation
(SD.) results for each function are indicated in Table 5. The
average results of the proposed approach compared with 8
other methods, according to the available information. The

Table 7 Results of 10-member truss algorithms with different populations

GPSG

GSA

PSO

NP

30

20

10

30

20

10

30

20

10

7.25E + 03 6.56E + 03 5.51E+ 03 546E+ 03 591E+ 03 5.12E+ 03 5.07E+ 03 5.07E + 03 5.07E 4+ 03 S5.06E 4+ 03 5.06E + 03 5.06E + 03

Avg.

Truss 10

(Ib)
Rank
SD.

member

3

4.93E — 01 5.89E — 01

847E — 01

1.71E + 00 247E + 00 8.84E — 01

4.59E + 02 3.99E + 02 2.68E + 02 293E + 02 533E+ 02 5.00E + 01

(b)

Med.

732E 4+ 03 643E 4+ 03 542E+ 03 542E 403 6.04E + 03 5.10E + 03 5.07E+ 03 5.07E+ 03 5.07E 4+ 03 5.06E 4+ 03 5.06E + 03 5.06E + 03

(Ib)
Best.

6.13E + 03 5.85E+ 03 S5.12E+ 03 S5.12E+ 03 S5.18E+ 03 5.07E + 03 5.06E + 03 5.06E + 03 5.06E 4+ 03 S5.06E 4+ 03 5.06E + 03 5.06E + 03

(b)
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Fig. 6 Convergence history for NP
the 10-bar truss with different
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PSO == = GSA e GPSG PSO == = GSA e GPSG

Table 8 Average ranking with different populations for 10-bar plane
truss

Algorithms PSO GSA GPSG
Average Mean (lb) 6193.62 5289.54 5063.95
Average Rank 3 2 1

superiority of the GPSG among the others is observed
according to the average rank. Also, the same number of
function evaluations is chosen for all methods. The stan-
dard deviations (SD.) are obtained for GPSG and the other
methods, the results of SD. are not available for
comparison.

3.3 Structural problems

The optimal design of structures is the main topic among
structural engineers (Mashayekhi et al. 2012, 2016; Gho-
lizadeh 2013; Khatibinia and Yazdani 2018; Bhullar et al.
2020). In this section, three design problems are chosen for
truss structures. The weight of the structures is taken as the

@ Springer

objective function and the constraints are bounds on
member stresses and joint displacements. The cross-sec-
tional areas are continuous design variables. In all the
problems, the value of « in (5) and the maximum iterations
(T) are chosen as 4 and 200, respectively.

3.3.1 10-bar plane truss

The 10-bar truss is optimized as shown in Fig. 5. The
required information for the truss is given in Table 6.

The results are given in Table 7. The numerical results
indicate that the best results are obtained with the com-
bined GPSG method, in which for all the number of par-
ticles, similar results are approximately achieved.

The convergence trend for different populations is
illustrated in Fig. 6. It is concluded that the GPSG method
yields better results which demonstrates the efficiency of
this method.

The ranking of the three algorithms is given in Table 8.
The ranking of the GPSG is first.
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Fig. 7 72-bar truss Y
N
- 120 in: -
120 in.
XL '>X
Z
A
7174 (18)
60 in
+ (13) (14)
60 in
Typical Story
L0 (10) yP y
Element and node numbering
60 in
T+ &) (6)
60 in
L (He~->X 2)
Table 9 Information of the 72-bar truss 3.3.2 72-bar truss
Properties Values

The 72-member truss shown in Fig. 7 consists of 16

External loading, P on node 17 Px =5 kips member types due to geometrical shape. The aim is to
Py =5 kips minimize the weight of the structure. All of the specifica-
Pz=-5kips  tions of the structure are given in Table 9.

Elasticity modulus 10,000 ksi The results are presented in Table 10. It can be con-
density 0.1 Ib/in® cluded that the GPSG hybrid method has the most favor-
Area lower bound 0.01 in? able results. The number of the initial population does not
Area upper bound 4 in? affect the results. The average of the hybrid method with
Allowable displacement in all directions + 0.25in only five particles is better than the PSO and GSA methods
Allowable stress + 25 ksi with 30 particles.
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Table 10 Results of 72-member algorithms with different populations

@ Springer

GPSG

GSA

PSO

NP

30

20

10

30

20

10

30

20

10

1.O4E + 03 9.14E+ 02 732E+ 02 642E+ 02 8.14E+ 02 580E + 02 4.73E + 02 4.778E + 02 4.20E + 02 3.89E 4+ 02 3.79E + 02 3.72E + 02

Avg.

Truss 72

(Ib)
Rank
SD.

member

3

7.88E 4+ 01 8.67E 4+ 01 5.51E+ 01 4.27E+ 01 3.86E + 01 3.25E+ 01 205E 4 01 145E4 01 1.00E 4+ 01

8.62F + 01

1.31E + 02 8.53E + 01

(b)

Med.

1.05SE+ 03 9.17E+ 02 7.34E+ 02 6.25E+ 02 843E + 02 588E + 02 474E + 02 477E+ 02 4.19E 4+ 02 3.86E + 02 3.77E + 02 3.72E + 02

(b)

Best.

6.78E + 02 7.29E + 02 544E + 02 5.10E+ 02 6.00E + 02 4.64E + 02 3.89E + 02 4.15E + 02 3.61E 4+ 02 3.66E + 02 3.59E + 02 3.58E + 02

(b)

The convergence history of the methods is shown in
Fig. 8. The GPSG method yields better results that
demonstrate its effectiveness.

The ranking of the three algorithms is shown in Table 11
and the GPSG method is ranked first.

3.3.3 120-member dome under asymmetric vertical load

The 120-member dome shown in Fig. 9 is composed of 7
member types due to the existing geometric symmetry.
Therefore, the number of design variables is reduced from
120 to 7. Stress constraints have been used following
AISC-ASD regulations. The permissible tensile and com-
pressive stresses are given in (25 and 26), respectively.

or = 0.6F,, (25)

o, - if A; <C.(for inelastic buckling),
5 + 3k 4
378 8C
(26a)
12n°E
e = 5”}2 if J; > C.(for elastic buckling),  (26b)

where E is the modulus of elasticity, F is the yield stress
of steel, and C. is the boundary value between the elastic
and inelastic buckling states. The effective length coeffi-
cient k=1, and r; is the radius of gyration of each member,
evaluated as (26). The asymmetric vertical load is applied
to the free nodes in the z-direction according to Table 12.

(27)
(28)
r; = aA?, (29)
For hollow pipe section : a = 0.4993,b = 0.6777.  (30)

The required specifications for the 120-member dome
are given in Table 13.

The results are presented in Table 14. The best results
correspond to the combined GPSG method, in which the
deviation between different performances is low.
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Fig. 8 Convergence history for NP = NP =10
the 72-member truss with __ 1500 __ 1500
different number of particles 2 g 2
= 1100 W e-oo . + 1100
< <
Y —_——_— @ T
L 700 L 700 —_——
= = —_—
300 300
0 50 100 150 200 0 50 100 150 200
Iteration Iteration
------- PSO —— — GSA e GPSG -------PSO  — — GSA GPSG
NP =20 NP =30
__ 1500 1500
2 0
£ 1100 = 1100
2 W
D 700 | T - aggr oo e mm e T 700 |\ TS o
2 700 ~oTTT 2 700 e
300 300
0 50 100 150 200 0 50 100 150 200
Iteration Iteration

Table 11 Average ranking with different populations for 72-member
truss

Algorithms PSO GSA GPSG
Average mean (Ib) 8.32E + 02 5.86E + 02 3.90E + 02
Average rank 3 2 1

The convergence trend of the results is presented in
Fig. 10. The results show that for different populations, the
GPSG is the most appropriate method.

The rankings of the three GSA, PSO and GPSG algo-
rithms are presented in Table 15. Similar to the previous
examples, the first rank belongs to the suggested new
method of GSPG.

4 Conclusions

In advanced methods of optimization, the main goal is to
find the optimal solution of multimodal functions effi-
ciently. There are two main categories in this field. The

= = GSA em— GPSG

—— = GSA emm— GPSG

traditional gradient-based methods (GBM) start from a pre-
assigned solution and move along a search direction using
the gradients of the function under consideration. The
GBM methods are reliable, efficient and fast for unimodal
functions but may trap into a local optimum for multimodal
functions and the initial point is important for the conver-
gence. The second category is referred to as multipoint
metaheuristic approaches. These methods are based on a
number of the initial population and the search directions
are made on some statistical ideas. The methods lead to
finding the global point if enough initial population is
chosen and the search directions are organized logically.
However, the exploitation of the approaches is weak and
unsatisfactory.

Based on these difficulties, in the present research, the
two categories are combined to achieve a new successful
approach. A compromise is made between the two cate-
gories in terms of their capabilities and shortcomings.

Among the vast number of metaheuristic techniques, the
two rather successful methods of PSO and GSA are
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Fig. 9 120-member dome
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\ / /
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+0.00

e
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Table 12 External asymmetric forces applied to the 120-member
dome Table 13 Properties of the 120-member dome
Node External forces in the direction of the z-axis (kips) Properties Values
1 —13.49 Elasticity modulus 30,450 ksi
214 — 6744 density 0.288 Ib/in’
15-37 —2.048 Yield stress of steel 58.0 ksi
Area lower bound 0.775 in?
Area upper bound 20 in®
Allowable displacement in all directions + 0.1969 in
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Table 14 Results of 120-member algorithms with different populations

GPSG

GSA

PSO

NP

30

20

10

30

20

10

30

20

10

Avg. (Ib) 51,022.67 41,847.61 37,230.87 36,078.23  46,004.19  34,800.11  33,556.52  33,810.75 34,159.15 33,760.72  33,790.71  33,725.07
Rank

Truss 120 bar

135.0523
33,717.31
33,480.05

156.5461

33,812.28

188.7468
33,837.54
33,452.62

532.2426
34,023.41
33,593

280.2098
33,791.94
33,399.91

5485.122 3462493  2199.561 1329.784  3441.853  769.8276 137.3718
41,578.95 33,561.27
33,334.58

SD. (Ib)
Med. (Ib)

36,927.25  35,974.15  46,739.93  34,857.27
38,813.21

33,998.85

51,573.86
43,521.18

33,428.94

33,895.98 33,544.44

35,769.45

Best. (Ib)

selected and their combination is merged with GBM. The
integration of the three methods is called GPSG.

The resultant of the search directions of the three
methods are made in such a way to control the overall
speed of the GPSG with proper move limits, employing the
multipoint initial population and the philosophy of the
stochastic ideas.

To verify the proposed method, 25 complicated multi-
modal functions of CEC2005 and 29 functions of CEC2017
from the literature as benchmark examples are tested.
Besides, three structural design problems of two and three-
dimensional truss structures with stress and displacement
constraints are optimized for optimal weight.

The numerical results indicate the superiority of the
proposed approach compared to both methods of PSO and
GSA. In addition, the results of CEC2005 are compared
with four variants of GSA and the results of CEC2017 are
compared with eight other available methods. The first
mean rank belongs to the proposed approach. The power of
GPSG is investigated in terms of the exploration and
exploitation demands. The new approach can reach the
appropriate optimal solution with a less initial population
with lower independent runs. The convergence history of
the approach is smooth and the results are more efficient,
reliable and stable.

It was found that the combination of GBA with either of
the PSO and GSA works well; however, the efficiency of
the integration of the three approaches is greatly enriched.

As the metaheuristic approaches are not suitable for all
the optimization problems, the search is continuously under
progress to reach more suitable approaches. It is intended
to incorporate higher-order gradient directions with other
variants in the future.
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Fig. 10 Convergence history for NP =5 NP =10
tbe 120-member truss W}th 70000 70000
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Table 15 Average ranking with different populations for 120-member
Truss

Algorithms PSO GSA GPSG
Average mean (Ib) 41,544.84 37,042.89 33,858.91
Average rank 3 2 1
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