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Abstract
Generalized hesitant fuzzy numbers (GHFNs) are able to directly manage situations in which we may encounter a finite set of
known values with a finite set of degrees of doubt as quantitative approximations of an uncertain situation/quantification of a
linguistic expression. They are new extensions of hesitant fuzzy sets, which have been considered in this paper. In fact, in this
paper, GHFNs will be utilized to model the uncertainty of the assessment values of options against criteria in multi-attribute
decision making (MADM) problems. It means that all of the elements of decision matrix are GHFNs. Then, the technique for
order of preference by similarity to ideal solution (TOPSIS) method, as a very successful method in solvingMADMproblems,
will be updated to be used with GHFNs. To this end, the distance between GHFNs must be defined to obtain the distances
between given alternatives from each of two subjective alternatives (positive/negative ideal solutions). Thus, three existing
famous distance measures, i.e., general distance (dg), Hamming distance (dh), and Euclidean distance (de) measures, have
been updated for GHFNs firstly. Then, the new TOPSIS method will be proposed based on GHFNs. Finally, the numerical
examples have been appointed to illustrate the proposed method, analyze comparatively and validate it.

Keywords Generalized hesitant fuzzy numbers · Distance measures · Hesitant fuzzy numbers · Hesitant fuzzy sets ·
Multi-attribute decision making problems

1 Introduction

Uncertainty and decision making (Denoeux 2014; Bellman
and Zadeh 1970), as two widely used concepts of human
daily life, get more complicated with the progression of
communication and technology. Quantification of qualitative
data is only one source of uncertainty that can be modeled
using fuzzy sets theory and its generalizations (Zadeh 1965;
Atanassov 1983; Karnik and Mendel 2001; Faizi et al. 2018;
Muhammad et al. 2020; Ibrahim et al. 2021; Al-shami et al.
2022). Hesitant fuzzy sets (HFSs) (Torra 2010), as the latest
extension of fuzzy sets, are suitable for situations in which
decision makers (DMs) are hesitated between a finite set of
some values from [0,1], that is called hesitant fuzzy elements
(HFEs). What is used in practical applications of HFSs are
HFEs. Therefore, the development of mathematical princi-
ples of HFEs, such as comparison methods (Liao et al. 2014;
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Liao and Xu 2017), arithmetic and aggregation operations
(Torra 2010; Liao and Xu 2014; Verma and Sharma 2013;
Verma 2015; Xia and Xu 2011; Xu et al. 2013; Wei 2012;
Zhang 2013; Liao and Xu 2014, 2015, 2017; Zhang 2016),
determining the distance between two HFEs (Xu and Xia
2011a, b; Tong and Yu 2016), correlation coefficient and
entropy measure (Xu and Xia 2011b; Tong and Yu 2016;
Liao et al. 2015; Xu and Xia 2012), etc., was considered by
researchers. Recently, various definitions of hesitant fuzzy
numbers (HFNs), as the newly extension of HFSs, have been
proposed. Deli (2020) andDeli andKaraaslan (2021) defined
each element of a HFE as a trapezoidal fuzzy number which
are common in the real parameters defining the trapezoid,
but each has different heights, and called it generalized trape-
zoidal hesitant fuzzy (GTHF) numbers. Ranjbar et al. (2020)
applied a finite set of fuzzy numbers from [0, 1] than crisp
values from this interval as the elements of a HFE and called
it hesitant fuzzy number. Keikha (2021a) combined a crisp
positive real value with a finite set of some values between
0 and 1 and called it hesitant fuzzy number. In this regard,
a HFN is displayed by 〈a; {γ1, γ2, . . . , γn}〉, where a is a
positive real value and γi ∈ [0, 1], i = 1, 2, . . . , n.
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These are some of the introduced tools to model uncer-
tainty. Meta-heuristic optimization algorithms (Abualigah
et al. 2021c) such as reptile search algorithm (RSA) (Abuali-
gah et al. 2022), the arithmetic optimization algorithm
(Abualigah et al. 2021a), applications, deployments, and inte-
gration of internet of drones (IoD) (Abualigah et al. 2021b)
are another research fields for solving uncertain practical
problems. Perhaps the most fundamental question be,“Why
is the need for so much diversity in uncertainty modeling
tools?’ The answer is presented in the mixed language with
delicacy of the eminent scholar (Pollack 2003). In referring to
the diversity of sources of uncertainty, he refers to the “gar-
den of uncertainty”. From this, it can be understood that as
we explore more the around environment, newer sources of
uncertaintymay be discovered, that in the pastwere either not
accepted as new sources, and were wrongly modeled using
existing tools, or were not discussed at all. Another similar
answer has been given by Klir (2006), when he classified
the real-world problems into organized simplicity problems,
organized complexity problems, and disorganized complex-
ity problems. In this scientific classification, he refers to
organized complexity problems as a group that, despite cov-
ering a huge volume of experimental issues, has received less
attention. This, of course, also confirms the previous claim
of the wrong modeling of some problems through existing
mathematical tools.

Another question is, do we really need generalized hesi-
tant fuzzy numbers? What are the disadvantages of using the
available tools in this field? The answers to these questions
and the advantages of the proposed method of the article are
described by examining an example below.

Consider solving the simple problem of determining the
number of homeless people in a state. In fact, the reference
set X would be defined as X = ⋃

i {xi }, in which xi is the
number of homeless people in i th city. Looking at the reports
in this field does not indicate a definite number, and we will
encounter a finite set of numbers as xi = {ai1, ai2, . . . , aim}.
The DMs are not able to sift through these values to remove
all but one value, and therefore, accept all valueswith degrees
of doubt that expressed as a HFE {γi1, γi2, . . . , γin}, inter-
preted as different degrees of acceptance xi . It is showed
that the given problem is an organized complexity problem,
because it has finite factors.Variety ofmath tools from simple
to complex are offered for modeling such values. Averaging
is one of the simplest and of course the oldestmethods in such
situations. In this case, if we consider only the mean of the
values, the problem is transferred from the inaccurate space
to the exact one. If we simultaneously consider the mean of
the values and the mean of the degrees of doubt, the result is
a discrete fuzzy number, and the given organized complexity
problem is transferred to the category of organized simplic-
ity problems, too. Also, we can consider xi as an interval
xi = [ai(1), ai(m)], in which ai(1) = min{ai1, ai2, . . . , aim},

and ai(m) = max{ai1, ai2, . . . , aim}. Then, we will have an
infinite set of values, but with the samemembership grades as
1. Furthermore, modeling can be done using type-1/interval
type-2/intuitionistic fuzzy numbers. In all of these modeling
methods, the two finite sets of values and degrees ofmember-
ship are transformed into two infinitely corresponding sets.
In the case of using interval values, and various types of fuzzy
numbers, the problem space is changed from discrete to con-
tinuous, and a new problem is created and solved instead
of the original. This transition, although it provides many
tools for mathematical analysis, but in addition to increasing
uncertainty, practically leaves the main problem unresolved.
In other words, by changing the nature of the real-world’
problems from organized complexity problems to disorga-
nized complexity problems, a large volume of them have
been remained intact (Klir 2006).

To model such situations, where the DMs are hesitated
between a finite set of positive real values with a finite
set of hesitation degrees, the HFNs have been extended to
generalized HFNs (GHFNs) (Keikha 2021b). Let h(A) =
{a1, a2, . . . , am} be the finite set of possible values which
are hesitated by mh(A) = {γ1, γ2, . . . , γn}. By merg-

ing these two parts, a GHFN ˜̃A = 〈h(A);mh(A)〉 =
〈{a1, a2, . . . , am}; {γ1, γ2, . . . , γn} is obtained, in which

h(A) called the real part of GHFN ˜̃A, and mh(A) is its
membership part. For example, in homeless problem, the
number of homeless people in i th city can be expressed
by GHFN ˜̃xi = 〈{ai1, ai2, . . . , aim}; {γi1, γi2, . . . , γin}〉. It
can be seen that in this modeling method, i.e., applying
GHFNs, the problem space did not change and practically
the data in the same original format are used without the
slightest change. On the other hand, another important fea-
ture of GHFNs is the conversion of the opinions of a group
of DMs on a single issue in the form of a GHFN, which
may themselves have some degrees of uncertainty, too. It
is hoped that with the development of the mathematical
methodology of generalized hesitant fuzzy numbers and
their practical application, a large number of problems that
in Klir’ belief have been remained untouched (Klir 2006)
will be solved. GHFNs can be used in various fields, such
as mechanism design, performance evaluation of employ-
ees/organizations/companies, future studies, stock markets,
future markets, supply chain, society networks, cosmology,
medical diagnostic and telemedicine (Glaz et al. 2021), deci-
sion making, and planning.

MADMproblems are constructed of a finite set of alterna-
tives/options, and a finite set of attributes/criteria. In many of
the proposedmethods for solvingMADMproblems, alterna-
tives evaluation against to all criteria is the first step (Tzeng
and Huang 2011; Zhang et al. 2020). Due to the fact that sub-
jective judgments and evaluations always have some degrees
of uncertainty, the development of these methods in inac-
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curate environments was considered by researchers, which
led to the introduction of fuzzy-based methods (for different
types of fuzzy sets) (Palczewski andSałabun 2019;Garg et al.
2020; Nan and Zhang 2014; Xu and Zhang 2012; Sun and
Ouyang 2015; Aggrawal 2021; Atef et al. 2021; Al-shami
2021). Therefore, the analytical hierarchy process (AHP)
method, the analytical network process (ANP)method, TOP-
SIS method, Choquet integral (CI) method, viekriterijumsko
kompromisno rangiranje (VIKOR) method, simple additive
weighting (SAW) method, elimination and choice express-
ing reality (ELECTERE) method, etc. (Tzeng and Huang
2011) have been updated to be appliedwith the various uncer-
tainty theories. As the hesitant extension of such methods we
can refer to, hesitant fuzzy TOPSIS (HFTOPSIS) method
(Xu and Zhang 2012), hesitant fuzzy VIKOR (HFVIKOR)
method (Liao and Xu 2013), hesitant fuzzy power average-
based method (Liao et al. 2018), hesitant fuzzy COMET
(Faizi et al. 2018), hesitant fuzzy preference relation (Liao
et al. 2014), hesitant fuzzy aggregation operators (Wei 2012;
Zhang 2013; Liao and Xu 2014, 2015), some approaches
to hesitant fuzzy MADM problems with incomplete weight
information (Wei et al. 2014).

Also, utilizing HFNs, a hybrid technique TOPSIS-CI
basedon combiningChoquet integral (CI) andTOPSISmeth-
ods (Garg et al. 2020), and mean-based averaging methods
(Keikha 2021a), is proposed to solve multi-attribute group
decision making (MAGDM) problems. As we know, the
TOPSIS method is completely dependent to distance mea-
sures. So, in each expansion of it to inaccurate environment,
it is necessary to develop the distance measures, firstly (Xu
and Xia 2011a, b; Tong and Yu 2016; Li et al. 2015).

GHFNs may be used in some practical MADM problems
to construct decision matrix or model the human’ assess-
ments. We can replace them by one of the popular types of
fuzzy numbers/intuitionistic fuzzy numbers/ interval num-
bers, etc., and then use an appropriate method for solving
the given problem. As discussed earlier, converting the given
data to one of the previous typeswill cause us to solve another
problem instead of the main problem and practically leave
the real problem unresolved. Therefore, the best way is to
use the data directly in the solution process, which of course
requires the development of existing methods and updating
someof the required concepts. In this paper, TOPSISmethod,
as a widely used and popular method in other fields, will be
extended to be used with GHFNs. To do this, we need to
find a way to determine the distance between the GHFNs.
Generalized distance measure, Hamming distance measure,
and Euclidean distancemeasure are three successful distance
measure which are used before along with other types of
fuzzy numbers. These important distance measures will be
generalized to determine the distances of GHNs, firstly. We
will then update this method for use with generalized hesi-

Table 1 List of some used abbreviation symbols in this article

Abbreviation symbols Description

HFNs Hesitant fuzzy numbers

HFSs Hesitant fuzzy sets

HFEs Hesitant fuzzy elements

GHFNs Generalized hesitant fuzzy
numbers

TOPSIS Technique for order of preference
by similarity to ideal solution

MADM Multi attribute decision making

AGHFNs Adjusted generalized hesitant
fuzzy numbers

de Euclidean distance

dh Hamming distance

dg Generalized distance

tant fuzzy numbers by redefining each step of the common
TOPSIS method.

The main advantage of this method is that it does not
change the nature of the data and solves exactly the cur-
rent problem. But other previous methods, by being in such
situations, first change the nature of the data through some
common simplifications such as averaging or generalization
such as interval/fuzzy numbers. Therefore, their obtained
answer is not suitable for the current problem because it was
obtained in a space other than the real space.
Also, converting and solving a MAGDM problem into a
MADM problem will be done easily, by considering the
group evaluations of experts from an option against a cri-
terion as a GHFN.

Due to the many used abbreviation symbol in this article,
Table 1 is providedwith the necessary explanations for easier
use.

So, the remainder of this article is organized as follows.
HFSs, HFNs and GHFNs and some related concepts , such
as distance measures of HFEs and HFNs, arithmetic opera-
tions of GHFNs, that are required later in this article, will
be discussed in Sect. 2. Section 3 presents methods to deter-
mine the Euclidean distance (de), Hamming distance (dh),
generalized distance (dg) between two given GHFNs. Sec-
tion 4 consists the general structure of MADM problems, the
traditional TOPSIS method, and proposed a novel TOPSIS
method to be used with GHFNs. The proposed method will
be illustrated by numerical examples, validated and analyzed
comparatively in Sect. 5. The concluding remarks consist-
ing of describing academic implications, major findings, and
directions for future research as the conclusion section of this
article are given in Sect. 6.
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2 Hesitant fuzzy sets and hesitant fuzzy
numbers

HFSs, HFNs and GHFNs are reviewed in this section.
HFSs theory has been proposed to model uncertainty,

where decisionmaker is hesitated between afinite set of some
values from [0, 1]. Let h(x) = {γi |i = 1, 2, . . . , n; γi ∈
[0, 1]}, and X be a reference set. Then, E = {< x, h(x) >

|x ∈ X} is called a HFS, in which h(x) is called a hesi-
tant fuzzy element (HFE) (Xia and Xu 2011). HFEs are not
necessarily the same in length, and there exist some meth-
ods to adjusted them. Consider two HFEs h1 and h2, where
|h1| = m and |h2| = n with m < n. To adjust them, it is real
to add n−m elements to the HFE h1. In the optimistic mode,
the maximum element of h1, in the pessimistic approach its
minimum element, in the indifference approach the value of
0.5 (Liao and Xu 2017), and otherwise the power average of
the available elements in h1 (Liao et al. 2018), proposed to
be iterated n − m times in the set h1.

As one of themost important and fundamental concepts in
HFSs theory,we can refer to distancemeasure. Li et al. (2015)
and Li et al. (2015) addressed some axiomatic definition and
distance measures.

Definition 1 Let h1, h2 and h3 be three arbitrary HFEs. A
distance measure d for HFSs must be satisfied the following
properties:

(i) 0 ≤ d(h1, h2) ≤ 1;
(ii) d(h1, h2) = 0 ⇐⇒ h1 = h2;
(iii) d(h1, h2) = d(h2, h1);
(iv) d(h1, h2) ≤ d(h1, h3) + d(h3, h2);
(v) h1 � h2 � h3 ⇒ d(h1, h2) ≤ d(h1, h3) & d(h2, h3)

≤ d(h1, h3).

Computing the distance between given HFSs has also dis-
cussed by many researchers, and there are many methods in
this regard (Xu and Xia 2011a, b; Tong and Yu 2016; Li et al.
2015).

Definition 2 (Xu and Xia 2011a) Consider two adjusted
HFEs h1 and h2. Let h j(i) be the i th smallest value of h j

and l be the maximum length of the given HFEs, then

(i) dhnh(h1, h2) = 1
l

∑l
i=1 |h1(i) − h2(i)|;

(ii) dhne(h1, h2) =
√

1
l

∑l
i=1 |h1(i) − h2(i)|2;

(iii) dhng(h1, h2) = [ 1
l

∑l
i=1 |h1(i) − h2(i)|λ

] 1
λ , λ > 0;

(iv) dghnh(h1, h2) = [
maxi |h1(i) − h2(i)|λ

] 1
λ , λ > 0;

are called hesitant normalized Hamming, Euclidean, gener-
alized, and Hausdorff distances, respectively.

In someother uncertain problems, such as self-assessments,
the DMs may be encounter with some crisp predeter-
mined/recorded values which are not accepted completely
and must be considered during evaluations. Hesitant fuzzy
numbers, as the generalization of HFSs, are suitable tomodel
such problems (Keikha 2021a; Garg et al. 2020). A HFN
consists of two parts: real part, and HFE part, i.e., Ẽ =
〈a; {γ1, γ2, . . . , γn}〉 is called a HFN, in which a is a pos-
itive real number, and γi ∈ [0, 1] are hesitation/satisfaction
degrees.

Definition 3 (Garg et al. 2020; Keikha 2021c) Let ãH =
〈a, h(a)〉 and b̃H = 〈b, h(b)〉 be two arbitrary HFNs where,
a, b ∈ R, h(a) with cardinality |h(a)| = k and h(b) with
cardinality |h(b)| = l are two sets of some values in [0, 1].
Their Euclidean distance (de) and Hamming distance (dh)
were be defined as follows:

de(ãH , b̃H ) =
√
√
√
√
√

1

1 + k × l

(

|a − b|2 +
∑

γi∈h(a),
γ j∈h(b)

|γi − γ j |2
)

,

dh(ãH , b̃H ) = 1

1 + k × l

(

|a − b| +
∑

γi∈h(a),
γ j∈h(b)

|γi − γ j |
)

.

In some other problems, it may be that the real part of a HFN
is not a crisp value and expressed by a finite set of real values.
In such cases,HFNsmust be extended towhat calledGHFNs.

In fact, ˜̃AH = 〈{a1, a2, . . . , an}; {γ1, γ2, . . . , γm}〉 = 〈h(A),

mh(A)〉, in which ai , i = 1, 2, . . . , n are positive real
values, and γ j ∈ [0, 1], j = 1, 2, . . . ,m are member-
ship/satisfaction degrees, is nominated as a GHFN. It is easy
to see that a GHFN is called a HFN if |h(A)| = 1, or a
discrete fuzzy number if |h(A)| = |mh(A)| = 1.

GHFNs ˜̃AH = 〈{a1, a2, . . . , am}; {γ1, γ2, . . . γn}
〉
and

˜̃BH = 〈{b1, b2, . . . , bk}; {λ1, λ2, . . . , λl}
〉
are called adjusted

GHFNs (AGHFNs), if m = k and n = l. If not so, with-
out lose of generality let m < k or n < l, amax =
max{a1, a2, . . . , an}, amin = min{a1, a2, . . . , an}, γmax =
max{γ1, γ2, . . . , γm}, and γmin = min{γ1, γ2, . . . , γm}.
Then, ˜̃AH must be extended: for optimistic DM, amax or
γmax will be repeated k−m or l−n times in {a1, a2, . . . , an}
or {γ1, γ2, . . . γm}, respectively. It is done by amin or γmin for
pessimistic DM, and a = a1+a2+···+am

m or 0.5 for indifference
DM, similarly.

Definition 4 (Keikha 2021b) Consider two AGHFNs ˜̃AH =
〈{a1, a2, . . . , am}; {γ1, γ2, . . . , γn}

〉
and ˜̃BH = 〈{b1, b2, . . . ,

bm}; {λ1, λ2, . . . , λn}
〉
. Then, for any positive real value w

we have:

123



Generalized hesitant fuzzy numbers and their application... 4677

(i) w
˜̃AH = 〈{wa1, wa2, . . . , wam}; {γ1, γ2, . . . , γn}

〉
,

w > 0;

(ii)
( ˜̃AH

)w = 〈{(a1)w, (a2)w, . . . , (am)w}; {γ1, γ2, . . . ,
γn}

〉
, w > 0;

(iii) ˜̃AH ⊕ ˜̃BH = 〈 ∪i {a(i) + b(i)};mh(A) ∪ mh(B)
〉
;

(iv) ˜̃AH ⊗ ˜̃BH = 〈 ∪i {a(i)b(i)}; ∪i min{γi , λi }
〉
;

where a(1), a(2), . . . , a(m) is a permutation of a1, a2, . . . , am
such that a(1) ≤ a(2) ≤ · · · ≤ a(m), and b(1), b(2), . . . , b(m)

is a permutation of b1, b2, . . . , bm such that b(1) ≤ b(2) ≤
· · · ≤ b(m).

GHFNs are at the starting point of a long and dark way,
and like any new scientific subject, they need much attempts
in both theoretical and application aspects. In order to pro-
pose a TOPSIS-based method for solving uncertain MADM
problems that are classified in organized complexity prob-
lems, we need to define the distance measure of GHFNs.
These process will be done in the next sections.

3 Distance functions of GHFNs

In some practical applications of GHFNs, such as decision-
making problems, it is needed to determine the distances
between them. Generalized, Hamming and Euclidean dis-
tances are the most famous which have been updated for
different types of fuzzy numbers and are used (Guha and
Chakraborty 2010b, a; Sang et al. 2014). These distance func-
tions will be updated to be used with GHFNs, in this Section.

Definition 5 Let ˜̃AH = 〈{a1, a2, . . . , an}; {γ1, γ2, . . . , γm}〉,
and ˜̃BH = 〈{b1, b2, . . . , bn}; {λ1, λ2, . . . , λm}〉 be two
arbitrary given AGHFNs. Then, their Generalized dis-

tance dg

(
˜̃AH ,

˜̃BH
)

, Hamming distance dh

(
˜̃AH ,

˜̃BH
)

, and

Euclidean distance de

(
˜̃AH ,

˜̃BH
)

can be defined as follows:

dg

(
˜̃AH ,

˜̃BH
)

= [ 1
n

n∑

i=1
|a(i) − b(i)|λ + 1

m

m∑

j=1
|γ( j) − λ( j)|λ

] 1
λ ,

dh

(
˜̃AH ,

˜̃BH
)

= 1
n

n∑

i=1
|a(i) − b(i)| + 1

m

m∑

j=1
|γ( j) − λ( j)|,

de

(
˜̃AH ,

˜̃BH
)

=
√

1
n

n∑

i=1
|a(i) − b(i)|2 + 1

m

m∑

j=1
|γ( j) − λ( j)|2,

where .(t) is the t th largest value in its corresponding set.

Example 1 Let ˜̃AH = 〈{2, 3, 4, 5}; {.4, .6, .7, .9}〉 and ˜̃BH =〈{1, 3, 6, 7}; {.5, .6, .8, 1}〉. Then,

dh(
˜̃AH ,

˜̃BH ) = 1

4
(1 + 0 + 2 + 2) + 1

4
(.1 + 0 + .1 + .1)

= 1.325,

de(
˜̃AH ,

˜̃BH )

=
√
1

4
(1 + 0 + 4 + 4) + 1

4
(.01 + 0 + .01 + .01) = 1.503,

Get λ = 3, dg(
˜̃AH ,

˜̃BH ) = [1
4
(13 + 03 + 23 + 23)

+ 1

4
(.001 + 0 + .001 + .001)] 13 = 1.62.

Remark The generalized distance measure dg
( ˜̃AH ,

˜̃BH
)
is

reduced to Hamming distance measure dh
( ˜̃AH ,

˜̃BH
)
if λ =

1, and for λ = 2 it is called Euclidean distance measure

de
( ˜̃AH ,

˜̃BH
)
, in which ˜̃AH and ˜̃BH are arbitrary GHFNs.

Theorem Let ˜̃AH = 〈{a1, a2, . . . , an}; {γ1, γ2, . . . , γm}〉,
˜̃BH = 〈{b1, b2, . . . , bn}; {λ1, λ2, . . . , λm}〉, and ˜̃CH =〈{c1, c2, . . . , cn}; {ν1, ν2, . . . , νm}〉, be arbitrary given
AGHFNs. Then,

(i) d(
˜̃AH ,

˜̃AH ) = 0;
(i i) d(

˜̃AH ,
˜̃BH ) = d(

˜̃BH ,
˜̃AH );

(i i i) d(
˜̃AH ,

˜̃CH ) ≤ d(
˜̃AH ,

˜̃BH ) + d(
˜̃BH ,

˜̃CH );

where the distance function d can be interpreted as dg, dh,
and de.

Proof For any x, y, z ∈ R, it is easy to see that |x − y| =
|y−x |, and |x−y| ≤ |x−z|+|z−y|. Using these properties,
and regarding to the definitions of distance functions dg, dh ,
and de, the proof is obvious. ��

4 MADMproblems and GHFNs

In this section, as a practical application of GHFNs, they
will be used to model the uncertainty contained in a MADM
problem.Then, theTOPSISmethod, as awidely usedmethod
in solving MADM problem, will be generalized to the new
type of hesitant fuzzy numbers, i.e., GHFNs.

Let there exist r candidates C1,C2, . . . ,Cr to be ranked
based on s attributes a1, a2, . . . , as , in ascending order. Usu-
ally each candidate is evaluated against to all attribute, and
arranged in a matrix, called decision matrix, i.e., D =
[di j ]r×s , inwhich di j means the evaluation value of i th candi-
date against to j th attribute. Because of existing uncertainty
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in any subjective judgment or other qualitative evaluations,
they must be modeled to quantitative values for doing extra
mathematical processes. In this paper, GHFNs have been
used in the modeling process. Then, in the solving process,
the TOPSIS method will be extended to do it.

4.1 The traditional TOPSIS method

The TOPSIS method (Tzeng and Huang 2011) is based on
the following steps:

Step 1 Constructing the decision matrix D = [di j ]r×s via
the assessment of all candidates against to all attributes, are
expressed by crisp values.

Step 2 Normalizing decision matrix to N = [ni j ]r×s ,
called normalized decision matrix:

ni j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

di j−dmin
j

dmax
j −dmin

j
, j ∈ B;

dmax
j −di j

dmax
j −dmin

j
, j ∈ C .

where, B is the set of attributes with positive aspect or benefit
attributes (the larger is better), and C is the set of attributes
with negative aspect or cost attributes (the smaller is better).

Step 3 Calculating weighted normalized decision matrix
NW = [ni j × wi ]r×s = [vi j ], if the attributes are weighted
by weight vector W = (w1, w2, . . . , wn).

Step 4Determining positive ideal solution (PIS), and neg-
ative ideal solution (NIS) as two subjective alternatives:

A+ = {p+
1 , p+

2 , . . . , p+
s }

= {(maxivi j | j ∈ B)&(minivi j | j ∈ C)},
A− = {p−

1 , p−
2 , . . . , p−

s }
= {(minivi j | j ∈ B)&(maxivi j | j ∈ C)}.

Step 5 Calculating the distance of each alternative from
subjective alternatives:

S+
i =

√
√
√
√

s∑

j=1

(vi j − p+
j )2, S−

i =
√
√
√
√

s∑

j=1

(vi j − p−
j )2,

i = 1, 2, . . . , r .

Step6Computing the relative distances Ri = S−
i

S+
i +S−

i
, i =

1, 2, . . . , r , and rank them.
Step 7Reorder the candidatesCi according to order of Ri ,

(i = 1, 2, . . . , r ).

4.2 Updating TOPSIS method with GHFNs

In this subsection, the traditional TOPSIS method will be
extended to be applicable with GHFNs.

Step 1 Evaluation phase All options will be evaluated
against to all criteria, and the assessment values of each
option, which are allowed to be expressed by qualita-
tive/linguistic terms, or uncertain values, are arranged in a
decision matrix D = [di j ]r×s .

Step 2Modeling phaseGHFNshavebeen applied tomodel
uncertain elements of decision matrix or quantify the quali-
tative assessments. Then, the decision matrix D = [di j ]r×s

converted to the hesitant decision matrix ˜̃HD = [ ˜̃di j ]r×s .
Step 3 Adjusting phase The GHFNs containing in the

hesitant decision matrix ˜̃HD should be adjusted, as in
˜̃di j =

〈

{a(1)
i j , a(2)

i j , . . . , a(m)
i j }; {γ (1)

i j , γ
(2)
i j , . . . , γ

(n)
i j }

〉

, where

a(l)
i j , andγ (l)

i j are lth largest value in their corresponding set.
Step 4 Normalizing phase The elements of hesitant deci-

sion matrix ˜̃HD must be scale-less. It is done via the nor-
malizing process, and normalized hesitant decision matrix

˜̃NHD = [ ˜̃ni j ]r×s , in which ˜̃ni j =
〈

{α(1)
i j , α

(2)
i j , . . . , α

(m)
i j };

{γ (1)
i j , γ

(2)
i j , . . . , γ

(n)
i j }

〉

, will be resulted as:

α
(l)
i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a(l)
i j −a(l)min

j

a(l)max
j −a(l)min

j

j ∈ B;

a(l)max
j −a(l)

i j

a(l)max
j −a(l)min

j

j ∈ C .

l = 1, 2, . . . ,m

where, a(l)min
j = mini {a(l)

i j }, a(l)max
j = maxi {a(l)

i j }.
Step 5 Weighted phase If the attributes are weighted by

weight vectorW = (w1, w2, . . . , wn), the weighted normal-

ized decision matrix NW = [wi × ˜̃ni j ]r×s = [ ˜̃vi j ],
( ˜̃vi j =

〈

{v(1)
i j , v

(2)
i j , . . . , v

(m)
i j }; {γ (1)

i j , γ
(2)
i j , . . . , γ

(n)
i j }

〉)
will be con-

structed.
Step 6 Subjective options Two subjective alternatives PIS

and NIS must be determined using the proposed ranking
function in this paper:

A+ = { ˜̃p+
1 , ˜̃p+

2 , . . . , ˜̃p+
s }

= {(maxi ˜̃vi j | j ∈ B)&(mini ˜̃vi j | j ∈ C)},

A− = { ˜̃p−
1 , ˜̃p−

2 , . . . , ˜̃p−
s }

= {(mini ˜̃vi j | j ∈ B)&(maxi ˜̃vi j | j ∈ C)},
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in which,

maxi ˜̃vi j =
〈

{maxiv
(1)
i j ,maxiv

(2)
i j , . . . ,maxiv

(m)
i j };

{maxiγ
(1)
i j ,maxiγ

(2)
i j , . . . ,maxiγ

(n)
i j }

〉

,

and

mini ˜̃vi j =
〈

{miniv
(1)
i j ,miniv

(2)
i j , . . . ,miniv

(m)
i j };

{miniγ
(1)
i j ,miniγ

(2)
i j , . . . ,miniγ

(n)
i j }

〉

. (1)

Step 7 Distancing phase Utilizing one of the proposed dis-
tance functions in this paper, the distance between each
alternative and two subjective alternativesmust be computed:

S+
i =

s∑

j=1

d( ˜̃vi j − ˜̃p+
j ), S−

i =
s∑

j=1

d( ˜̃vi j − ˜̃p−
j ),

i = 1, 2, . . . , r .

Step 8 Relative distance Computing the relative distances

Ri = S−
i

S+
i +S−

i
, i = 1, 2, . . . , r , and rank them.

Step 9 Ranking phase Reorder the candidates Ci according
to order of Ri , (i = 1, 2, . . . , r ).

5 Numerical example

Example 2 (Energy project selection) (Xu and Zhang 2012)
Let there exist five energy projects (candidates) Ci (i =
1, 2, 3, 4, 5) to be ranked based on attributes: a1 (tech-
nological), a2 (environmental), a3 (socio-political), and a4
(economic). It is clear that in the real world, different fac-
tors influence a decision. In this example, considering the
different effects of such projects on the environment, people,
research units and industries, in addition to the opinions of
experts, the opinions of various social groups, universities
and NGOs are also used. Given that historical data, different
reports from different social/scientific/economical/NGOs
(non-governmental organization) sources, and even exist-
ing documents state different values for each option against
each criterion, the director not only wants to use all of
them without eliminating some of them in decision mak-
ing, but also asks the evaluators (experts) to express their
opinions and even increase the number of these values, as
h(A) = {a1, a2, . . . , am}. Then, decision makers express
their hesitation (satisfaction) degrees of these values with
a finite set of values between zero and one, as in mh(A) =
{γ1, γ2, . . . , γn}, γi ∈ [0, 1]. It means that each evaluation

value is a GHFNs ˜̃A = 〈{a1, a2, . . . , am}; {γ1, γ2, . . . , γn}
〉
.

Thus, each element of the decision matrix, as shown in
Table 2, has its own interpretation, and consists of two
parts: the first part contains the values of direct evalua-
tion, and the second part includes the degrees of skepticism
of experts from the first part. For instance, the real part

of ˜̃A11 = 〈{8, 7, 9, 10}; {0.3, 0.4, 0.5}〉 shows the tech-
nological advantages of the first energy project based on
the available documents and reports provided by various
units. Which, of course, after studying and evaluating by
the experts, the allocation of low levels of satisfaction indi-
cates that they do not welcome the reports. The other given
information in Table 2 has also similar interpretations.

Mathematical processing of these givenGHFNs in Table 2
requires to adjust their both parts. This is done in pessimistic
way in this article. Then, hesitant fuzzy subjective options
PIS and NIS can be determined as

PIS =
(
〈{8, 8, 8, 8, 9, 10}; {0.6, 0.6, 0.6, 0.7, 0.9}〉,

〈{9, 9, 9, 9, 9, 10}; {0.6, 0.6, 0.7, 0.8, 0.9}〉
〈{4, 4, 5, 6, 8, 9}; {0.7, 0.7, 0.7, 0.8, 0.9}〉,
〈{5, 5, 5, 6, 7, 10}; {0.6, 0.6, 0.6, 0.8, 0.9}〉

)
,

NIS =
(
〈{1, 1, 2, 2, 3, 7}; {0.1, 0.3, 0.3, 0.3, 0.5}〉,

〈{2, 2, 4, 5, 7, 7}; {0.1, 0.1, 0.2, 0.4, 0.7}〉
〈{1, 1, 1, 1, 3, 8}; {0.1, 0.1, 0.1, 0.1, 0.5}〉,
〈{1, 1, 2, 3, 4, 5}; {0.3, 0.3, 0.3, 0.4, 0.6}〉

)
.

Now, utilizing the proposed distance measure in this paper,
the distance of each candidate Ci , i = 1, 2, . . . , 5, from
both PIS and NIS options, which is displayed by d+

i and
d−
i , respectively, must be calculated:

S+
1 = 3.1135, S+

2 = 2.3991, S+
3 = 3.5197,

S+
4 = 2.7723, S+

5 = 1.8767,

S−
1 = 2.5738, S−

2 = 3.5154,

S−
3 = 2.0993, S−

4 = 3.2047,

S−
5 = 3.5605.

By these values, the relative distance of all candidates is com-
puted as

R1 = 0.4525, R2 = 0.5944, R3 = 0.3736, R4 = 0.5362,

R5 = 0.6548.

According to Ri ’ values, candidates will be ranked as

C3 ≺ C1 ≺ C4 ≺ C2 ≺ C5.
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Table 2 Decision matrix of
energy project selection
problem

Candidates a1 a2

C1 〈{8, 7, 9, 10}; {0.3, 0.4, 0.5}〉 〈{7, 2, 9, 4, 5}; {0.9, 0.8, 0.1, 0.7}〉
C2 〈{10, 9, 8}; {0.3, 0.5}〉 〈{7, 5}; {0.9, 0.7, 0.5, 0.6, 0.2}〉
C3 〈{9, 2, 3, 7, 5}; {0.6, 0.7}〉 〈{3, 8, 6, 5, 7, 2}; {0.9, 0.6}〉
C4 〈{2, 7, 9, 5, 1}; {0.3, 0.4, 0.8, 0.7}〉 〈{9, 10}; {0.2, 0.4, 0.7}〉
C5 〈{7, 2, 3}; {0.3, 0.9, 0.6, 0.7, 0.1}〉 〈{4, 5}; {0.8, 0.4, 0.6, 0.7}〉
Weight 0.2341 0.2474

Candidates a3 a4

C1 〈{1, 8, 3}; {0.2, 0.4, 0.5}〉 〈{7, 9, 5}; {0.3, 0.9, 0.5, 0.7}〉
C2 〈{8, 4, 5, 1, 9}; {0.8, 0.6, 0.5, 0.1}〉 〈{10, 3, 7, 6}; {0.3, 0.4, 0.7}〉
C3 〈{6, 8, 3, 5}; {0.3, 0.5, 0.7}〉 〈{9, 8, 3, 5}; {0.6, 0.4}〉
C4 〈{3, 9, 5}; {0.8, 0.1}〉 〈{1, 2, 3, 4, 5}; {0.9, 0.8, 0.6}〉
C5 〈{8, 9, 6, 4, 5}; {0.9, 0.8, 0.7}〉 〈{7, 2, 9, 4, 6}; {0.9, 0.6, 0.3, 0.7}〉
Weight 0.3181 0.2004

5.1 Validity discussion

Wang and Triantaphyllou (2008) proposed three criteria test
to check and demonstrating the feasibility of the introduced
MCDM methods: 1-Replacing the non-optimal option with
a worse option has no effect on the superior option. 2- Tran-
sitivity property is satisfied in an effective MCDM method.
3- Integrating the resulted rankings by solving the obtained
subproblems from decomposition of the initial problem is
the same as the initial ranking of the main problem.

It is easy to discuss these criteria test: A worse option
than a non-optimal one is more near to NIS solution than
it, and simultaneously is more far from PIS solution. So,
the best option will be unchanged. The final ranking orders
of options are determined by ranking of their scores, which
are positive real values and obtained at the end of TOPSIS
method. Therefore, the criteria 2 and 3 are true due to the
properties of the real numbers.

5.2 Comparison analysis

In this subsection, by considering different scenarios for
given data in decision matrix and applying some other meth-
ods, the results will be compared with the method proposed
by the article.

I. Consider only the real part of the given GHFNs in Table
2.
It means, each element of the resulting decision matrix is
a finite set of real values. First, we calculate the average
of eachmatrix element and replace it. In this way, wewill
have a new decision matrix based on definite numbers.
Then, by applying the TOPSIS method on this matrix,
we rank the options: C1 ≺ C5 ≺ C3 ≺ C4 ≺ C2.

II. Consider only the membership part of the given GHFNs
in Table 2.
Hesitant fuzzy TOPSIS has been proposed by Xu and
Zhang (2012) to solve MADM problems in which the
uncertainty is modeled via the hesitant fuzzy sets. Xu and
Zhang (2012), consider HFSs, i.e., only the second part
of each element given in Table 2 and solved Example 2.
They ranked candidates like:C4 ≺ C1 ≺ C2 ≺ C3 ≺ C5.

A direct comparison of these two types of rankings with that
obtained based on applying GHFNs may not be the right
thing to do, because the data they use are inherently different
despite the similarities.

III. Change the givenGHFNs inTable 2 toGHFNswith equal
values in their real part.
Let us pave the way for a better comparison. Suppose
the real part of all the given GHFNs in Table 2 changed
to be equal and solve the problem again using TOPSIS
method. The new obtained ranking order in this case is
quite consistent with what was previously obtained in Xu
and Zhang (2012). It is showed that the proposed method
in this article is an extension of the existing methods in
a new environment.

Example 3 (Adapted from Keikha (2021a)) In this Example,
we investigate a MADM problem, in which the evaluation
value of options against criteria has been modeled through
hesitant fuzzy numbers as in Table 3.

Utilizingweightedhesitant arithmetic averaging (WHAA)
operator, each row of Table 3 has been aggregated to a single
HFN. Then, the derived HFNs have been ranked in ascend-
ing order due to their scores (see Table 4), and candidates
ranked as C3 ≺ C1 ≺ C5 ≺ C2 ≺ C4. Since HFNs are tools
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Table 3 The hesitant fuzzy numbers decision matrix of Example 3

Candidates a1 a2 a3 a4

C1 〈4; {0.3, 0.4, 0.5, 0.7}〉 〈7; {0.1, 0.7, 0.8, 0.9}〉 〈3; {0.2, 0.4, 0.5, 0.7}〉 〈8; {0.3, 0.5, 0.6, 0.9}〉
C2 〈6; {0.3, 0.8, 0.8, 0.9}〉 〈3; {0.5, 0.6, 0.9, 0.9}〉 〈7; {0.4, 0.5, 0.6, 0.8}〉 〈2; {0.3, 0.6, 0.7, 0.9}〉
C3 〈4; {0.1, 0.2, 0.3, 0.2}〉 〈6; {0.3, 0.4, 0.2, 0.3}〉 〈7; {0.3, 0.5, 0.1, 0.1}〉 〈6; {0.2, 0.4, 0.1, 0.1}〉
C4 〈2; {0.3, 0.4, 0.7, 0.8}〉 〈3; {0.2, 0.4, 0.7, 0.4}〉 〈8; {0.1, 0.8, 0.5, 0.5}〉 〈7; {0.6, 0.8, 0.9, 0.8}〉
C5 〈9; {0.1, 0.3, 0.6, 0.7}〉 〈1; {0.4, 0.6, 0.7, 0.8}〉 〈3; {0.7, 0.8, 0.9, 0.8}〉 〈2; {0.3, 0.6, 0.7, 0.9}〉
Weight 0.3 0.1 0.4 0.2

Table 4 The aggregated
hesitant fuzzy decision matrix of
Example 3

Alternatives WHAA values Score values (SV)

C1 〈4.7; {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}〉 2.82

C2 〈5.3; {0.5, 0.6, 0.7, 0.8, 0.9}〉 3.71

C3 〈5.8; {0.2, 0.3, 0.4, 0.5}〉 2.03

C4 〈5.5; {0.6, 0.7, 0.8, 0.9}〉 4.125

C5 〈4.4; {0.7, 0.8, 0.9}〉 3.52

for uncertainty modeling, they are not error free. From the
point of view of error analysis, with increasing the number
of mathematical operations, the accumulation and propaga-
tion of error also increases during the calculations. Therefore,
methods that use fewer operations are more appropriate. The
WHAAmethod, in addition to having a relatively large num-
ber of mathematical operations to align the row data, also
depends on the score value of the resulted HFN, which is
actually an approximation of it.

Let us consider each given HFN in Table 2 as a GHFN,
in which its real part containing a single value. Utilizing
TOPSIS method resulted the following ranking:

C1 ≺ C5 ≺ C3 ≺ C4 ≺ C2.

As it is observed, these two ranking orders are completely
different, but have similarities, like the options available in
the top and bottom half of the rankings. It is natural to have
differences in results because the methods used and the type
of data processing are fundamentally different. However, the
method proposed in this paper produces more reliable results
due to the use of less arithmetic operations (only distance
functionwithout any extra approximation such as score value
is used) in the TOPSIS method. What can be said about the
difference between the proposed method and other similar
methods is that in this method, decisions are made according
to the existing reality. Because the use of generalized hesi-
tant fuzzy numbers causes the data to enter the processing
phase without any change, while the use of fuzzy numbers
or similar ones leads to the use of infinite values and infinite
membership degrees. Another important advantage of this
approach is that it transforms a group decision problem into
an individual decision problem without the need to change

the nature of the problem. And even the greater participation
of people in the group not only does not cause any challenge,
but also leads to better decisions. But it should be noted that
we are at the beginning of the road and as we will see in the
conclusion section, many mathematical concepts still need
to be developed.

6 Conclusion

This article desires to present an exquisite MADM method
for solving the decision-making problems under the hesitant
and uncertain environments. The uncertainty of the data in
this paper is handled with the help of the generalized hesi-
tant fuzzy information which consists of two disjoint finite
sets: real and membership parts. In addition to keeping the
nature of the information intact, this type of numbers enables
us to represent the opinions of a group of experts on a sin-
gle subject from the perspective of a particular criterion by
means of a GHFN. In other words, a MAGDM problem can
easily be expressed in the form of a typical MADM prob-
lem. Given that this concept is at the beginning of a long
journey, the development of some mathematical tools is a
prerequisite for the practical development of the GHFNs.
Maintenance the advantages of it, this paper focuses around
to proposed a way to compute the distances between GHFNs
by utilizing three useful distance measures, i.e., Hamming
distance, Euclidean distance, and generalized distance mea-
sures, individually. Next, using these definitions, we updated
the common TOPSIS method for solving MADM problems
with generalized hesitant fuzzy numbers. The advantage of
the presented method is that it eschews the wrong decisions
based on the small changes in entrance information. Finally,
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by solving numerical examples, we explained and compared
the proposed method.

What is certain is that much work still needs to be done
theoretically in this area, such as entropy measure, similarity
measure, norm-based operators of GHFNs, and so on. In the
future and in the field of application, many decision-making
methods such as analytic hierarchy process AHP/ANP
method, Choquet integral method, VIKOR method, ELEC-
TREmethod (Tzeng andHuang2011)will have to beupdated
to use GHFNs. Mathematical development of linear pro-
grammingmethods, data envelopment analysis, graph theory,
game theory and mechanism design (Marek and Peter 2021),
brain hemorrhage patients(Garg and Kaur 2020), natural
language processing (Nagarhalli et al. 2021), etc., can be con-
sidered by researchers, and the necessary conditions should
be provided for applying GHFNs in these fields.
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