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Abstract
In laparoscopic surgery, image quality is often degraded by surgical smoke or by side effects of the illumination system,

such as reflections, specularities, and non-uniform illumination. The degraded images complicate the work of the surgeons

and may lead to errors in image-guided surgery. Existing enhancement algorithms mainly focus on enhancing global image

contrast, overlooking local contrast. Here, we propose a new Patch Adaptive Structure Decomposition utilizing the Multi-

Exposure Fusion technique to enhance the local contrast of laparoscopic images for better visualization. The set of under-

exposure level images is obtained from a single input blurred image by using gamma correction. Spatial linear saturation is

applied to enhance image contrast and to adjust the image saturation. The Multi-Exposure Fusion (MEF) is used on a series

of multi-exposure images to obtain a single clear and smoke-free fused image. MEF is applied by using adaptive structure

decomposition on all image patches. Image entropy based on the texture energy is used to calculate image energy strength.

The texture entropy energy determined the patch size that is useful in the decomposition of image structure. The proposed

method effectively eliminate smoke and enhance the degraded laparoscopic images. The qualitative results showed that the

visual quality of the resultant images is improved and smoke-free. Furthermore, the quantitative scores computed of the

metrics: FADE, Blur, JNBM, and Edge Intensity are significantly improved as compared to other existing methods.

Keywords Artificial multi-exposure fusion � Smoke removal � Laparoscopic Images � Image fusion and enhancement

1 Introduction

Laparoscopic imaging modalities play a significant role in

navigation during operation and treatment planning. Med-

ical surgeons always focus on the quality of images that

determine the best medical decision for the operating

environment (Stoyanov 2012). In laparoscopic surgery, a

small size camera is injected into the human body through

a small incision. All the internal body structural and

functional information can be seen and monitored with the

help of an LCD screen placed in the operation room (Sdiri

et al. 2016). The CO2 gas is inserted into the human

abdominal area to expand the internal space so that surgical

instruments can be easily operated on. The CO2 gas and

dissection deformation of tissues produce smoke that cau-

ses the invisibility of organs (Kotwal 2016). The degra-

dation and artifacts in laparoscopic images produce also

due to many other factors such as dynamic homogenous

internal structure, blood flow, dynamic illumination factor,

optical instruments reflection, etc. (Hahn et al. 2017). The

smoke effect during laparoscopic can severely degrade the
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image quality and also its effects on radiance information

of image patches. The degraded and blurred images could

reduce the visibility of the surgeon for diagnosis and also

increase the probability of error during surgery. The smoke

removal could reduce not only the surgery time but also be

important for surgery planning and treatment. Therefore,

an accurate smoke removal algorithm is required for better

visualization of laparoscopic images (Sdiri et al. 2016;

Hahn et al. 2017; Baid et al. 2017). There are many clinical

applications of laparoscopy images, and it can help to

diagnose multiple diseases at a very early stage (Azam,

et al. 2021).

The smoke removal method is considered as image de-

hazing that existed in literature (Salazar-Colores et al.

2020; Tan 2008a). The image de-hazing algorithms are

classified into three groups (Bansal et al. 2017): image

restoration, image enhancement, and fusion-based methods

(He et al. 2011; Galdran 2018; Nair and Sankaran 2022). In

the image restoration category, the haze-free image is

obtained by using atmospheric degradation methods uti-

lizing prior knowledge of image depth information. The

prior information of hazy image derived first then by

applying physical degradation model to obtain haze-free

images. He et al. (He et al. 2011) proposed Dark Channel

Prior (DCP) technique that is based on the restoration

domain. In the image enhancement domain, there is no

need of using an atmospheric physical model and prior

estimation of depth information in images. In this method,

the correlation algorithms are mostly used to enhance the

local contrast of the images for better visualization (Li

et al. 2018a). In this category, some of the techniques are

the Retinex algorithm (Jobson 2004), histogram equaliza-

tion (Thomas et al. 2011; Yu and Bajaj 2004), and wavelet-

based algorithms (Rong and Jun 2014). In fusion-based

methods (Ancuti and Ancuti 2013), the resultant enhanced

image is obtained by fusing input blurred images (Azam

et al. 2021). However, the required detailed information at

a high level of accuracy in smoke-free images is still a

challenging task. Gamma correction is utilized to split

single input blurry and smoky images into different multi-

exposure images then the MEF technique is implemented

to fuse these multi-exposure images. The image contrast

and saturation are used as image fusion weights during the

fusion process (Ma et al. 2017). MEF techniques are used

for enhancing the visual quality of degraded images. The

advantages and drawbacks of these three domain encap-

sulated in Table 1.

In this article, we proposed a laparoscopic smoke

removal method that removes the smoke effect and also

enhanced the quality of the degraded images. The proposed

method is based on the PASD-MEF technique. The MEF

technique enhanced the local detail information of input

Table 1 The overview of various smoke removal techniques with their strength and limitation

Domain Techniques Advantages Disadvantages

Restoration

methods

Bayesian dehazing (Baid et al. 2017), Fattal et al.

(Fattal 2008), DCP (He et al. 2011), Tan et al.

(Tan 2008b), Tarel et al. (Tarel and Hautière

2009), Deep learning (Fan et al. 2021)

Due to the use of a physical

model, the de-hazing power is

excellent

The image is apparent in thin or

homogenous smoke

Color restoration is excellent,

and the output image is nearly

identical to the original

There is limited work on dense smoke

images

A halo effect and color distortion occur

as the image is over-recovered

Dark colors are exaggerated when

they’re over-saturated

Enhancement

Method

Histogram equalization (Thomas et al. 2011; Yu

and Bajaj 2004),, Retinex (Nair and Sankaran

2022), Wavelet transform (Rong and Jun 2014),

Homographic filtering

Enhance the saturation and

global contrast of images

Compute time is also reduced

compared to other

methodologies in the same

area of study

Suitable for real-time

implementation

Usually neglects the local contrast

information of images

Image visual quality is affected due to

the missing of many local pixels

during the calculation of global

contrast

Fusion-based

methods

Multi-exposure fusion (Ma et al. 2017; Li et al.

2018b, 2020) SR Fusion (Baid et al. 2017),

guided filtering fusion (He et al. 2010), Deep

learning fusion, Multi-scale decomposition (Qi

et al. 2020), patch structure decomposition (Li

et al. 2016)

The visual quality of degraded

images is enhanced

Superior performance in terms

of image quality due to

multiple image fusion

Enhanced the local detail of

image patches information

Due to the difficulty in acquiring

images, there are practical issues

Due to larger computation time, these

models cannot be implemented in

real-time
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laparoscopic images. A series of gamma corrections are

used to remove the blurry patches in the images and also

effectively increase the local contrast of the images.

Whereas, Spatial Linear Saturation (SLS) is used to

increase the color saturation of the laparoscopic images.

Then, a set of images with under-exposure levels are

formed. These under-exposure images now have high color

saturation and enhanced contrast but low exposure levels.

The proposed algorithm implemented a patch adaptive

structure (PAS) technique that works on MEF. The

advantage of using PAS and MEF is that they preserved the

structure of laparoscopic images. The significant contri-

bution of the proposed methodology is highlighted as

follows:

• Development of smoke removal self-fusion algorithm

on smoky and blurry input images in a spatial domain.

The smoke effect is removed with the help of contrast

and saturation correction. SLS is implemented to

increase the saturation contrast of images.

• PASD algorithm is proposed for the spatial domain,

MEF to enhance the visual quality of the degraded blur

laparoscopic images. The adaptive selection of different

patched size in images are obtained by using an

implementation of block size and texture energy.

Adaptive selection avoids the error of loss of informa-

tion in both local structure and texture detail informa-

tion of images during the smoke removal procedure.

• The proposed algorithm PASD-MEF is verified both in

a qualitative as well as quantitative manner. The article

demonstrated that the proposed algorithm not only

removes the smoke but also enhances the visual quality

of the laparoscopic image for better visualization and

diagnostic purposes.

• The proposed algorithm is compared with other state-

of-the-art smoke removal methods, and the proposed

method showed significantly improved performance in

terms of visual and statistical evaluation metrics.

The article arrangement is as follows: In Sect. 2, related

works associated with haze and de-smoke are presented

while Sect. 3 describes the proposed methodology. In Sect.

4, the quantitative and qualitative results are encapsulated,

and the conclusion is drawn in Sect. 5.

2 Related works

There are many techniques presented in the literature for

de-smoke of laparoscopic images (Sdiri et al. 2016; Hahn

et al. 2017; Baid et al. 2017). A novel Bayesian inference

that consists of a probabilistic graphical technique is

applied on laparoscopic images (Baid et al. 2017). The

model includes a prior model and is implemented on

transmission map images. The transmission map is useful

for color attenuation that is caused by smoke. Then, this

work is extended in Salazar-Colores et al. (2020), to

achieve smoke-free, noiseless, and remove the specular

effect in images. Many other methods in the literature are

related to laparoscopic smoke removal. These techniques

use the atmospheric scattering model and work relatively

the same as the dehazing techniques in the literature. The

atmospheric model depends on the depth of images or the

transmission map (He et al. 2011; Tarel and Hautière 2009;

Zhu et al. 2015). He at el. proposed a DCP technique that

relies on statistical observation and is implemented on

outdoor hazy images (He et al. 2011). In this method, it is

observed that most pixels have very low intensities values

in at minimum single-color channel. In the DCP method, a

prior estimation knowledge of image depth detail and

transmission map is implemented. The density of the

hazing scene acquired and high-quality non-hazy images

are formed. This algorithm not effectively works on out-

door images that have a very high white radiance effect.

However, some other methods do not require the estima-

tion of transmission maps or image depth information. Tan

et al. (2008b) directly enhance the local detail of images

without any use of a transmission map. In (Ancuti and

Ancuti 2013), a fusion-based method is proposed that relies

on white balance phenomena to enhance the input images.

A Laplacian pyramid representation technique is used for

fusion purposes, and this method works on per pixel. The

multi-scale fusion is implemented on hazy images and

derived from a single resultant image. Most of the image

smoke removal methods work as image restoration and

smoke removal. Koschmieder (He et al. 2011; Tarel and

Hautière 2009) proposed an atmospheric scattering

scheme to solve the problem of degradation in images

caused by smoke. This model is described in Eq.1.

I yð Þ ¼ t yð Þ:J yð Þ þ A:ð1� tðyÞÞ ð1Þ

where I(y) represent the degraded images while J(y) is the

haze-free image. The t(y) denotes the transmission medium

and represents the quantity of light that spreads toward the

target. In the above equation, the A denotes global atmo-

spheric light. The product of t (y). J (y) represents the scene

radiance. The term A: 1� t yð Þð Þ in Eq. 1 denotes the air-

light. Air light produced by smoke dispersion increases the

intensity of the object, which is assumed to be the primary

cause of the color shift of the scene. This term for air light,

especially for thick smoke, would dominate the strength of

the scene. By rearranging the above equation, the haze-free

image J(y) will be achieved. The haze-free image only is

obtained when the value of A and t(y) is already achieved

using apriori information and from the estimation solution.

Equation 2 represents the rearranged form of Eq. (1). The

common limitation J (x) can also be limited by
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implementing the maximum local contrast and saturation

or distributing the specific color pixels in RGB space.

J yð Þ ¼ I yð Þ � A

t yð Þ þ A ð2Þ

The Multi-exposure fusion techniques are also used in

many image processing tasks where different sensors

sequence of images fused to obtain a resultant single image

(Ma et al. 2017). The gamma correction method is widely

used in literature for image enhancement (Li et al. 2016).

The existence of image fusion methods discussed in the

literature are based on sparse representation (Li et al.

2018b, 2020), guided filtering techniques (He et al. 2010),

multi-scale decomposition fusion techniques (Qi et al.

2020), patch structure decomposition (Yin et al. 2019), and

multi-exposure image fusion. Galdran introduced multi-

exposure fusion based on Laplacian pyramid fusion (LPF)

for haze removal (Nan et al. 2016), then, in the space

domain, the haze removal is converted to increase image

contrast and saturation effect.

In this paper, we proposed a multi-exposure image

fusion method for smoke removal. The adjustment of

image saturation and contrast is done using gamma cor-

rection to split input images into multiple exposure images.

MEF methods are used for image smoke removal, and it

improved image enhancement. The fusion strategy helps to

manipulate image contrast and saturation that enhance the

visual quality of images. The gamma correction and image

enhancement in our research work in the spatial domain,

histogram equalization is added to gamma correction to

increase the image contrast. Whereas traditional image

enhancement methods are used for global contrast and

saturation transformation of images. In the proposed

methodology, the Adaptive Gamma Correction (AGC)

technique is used to increase the transmission map t(x) that

is used in Eq. (1) by the Koschmieder model. For further

improvement of AGC, we used Laplacian-based solutions.

Contrast adjustment solution integrated with AGC to

remove the blurred effect in images. The detailed

description of the proposed method is discussed in Sect. 3.

3 Proposed methodology

To avoid the estimation effect of atmospheric light and

transmittance described in Eq. (1), the contrast enhance-

ment and saturation adjustment technique in the spatial

domain is suggested to achieve smoke-free laparoscopic

images. According to Koschmieder model, the intensity

range of input blurred images I(y) lies between values 0 to

1. The following condition J(y) B I (y) V y needs to satisfy

to obtain a smoke-free image J(y). In this paper, we first

make a set of under-exposed images U= {I1(y), I2(y),

I3(y)…...Ik(y)} from the original smoke input image I(y).

The under-exposed images always reduce the intensity

variation in images. The under-exposure image I(y) inset of

multiple under-exposure images contains high contrast and

saturation but skip small detail structure information. These

under-exposure images now have low exposure levels. We

implemented a MEF technique to fuse all the under-ex-

posed sets of images U= {I1(y), I2(y), I3(y)…...Ik(y)} into a

single image to extract local detail information. The MEF

technique fused different regions of images with good

contrast and saturation level to obtain smoke-free single

image J(y). The flowchart of the proposed methodology is

shown in Fig.1. First, the set of multi-exposure images is

obtained with the help of gamma correction. The linear

adjustment associated with spatial saturation is also

implemented on the image to increase the visual quality.

Gamma correction is implemented for contrast level

adjustment of images. The increase of the contrast of

blurred areas in the images decreased the sharpness level of

that area. To overcome this problem, we utilized a MEF

technique that extracts those corresponding areas from

multiple images and fused them into a single image with

better contrast and saturation. For better fusion, it is

important to maintain texture and color detail as same as

the original image which is achieved by applying MEF

with adaptive structure decomposition (ASD) of the image

patch. In the proposed methodology, the texture informa-

tion components of the image are obtained by using car-

toon texture decomposition (Li et al. 2018c). The image

texture entropy is calculated from the gray difference

technique (Li et al. 2018c). The texture entropy value and

image block size are treated in an image decomposition

block. The overall image block is sub-divided into three

independent components. Each component is processed

individually to give the resultant fused smoke-free image.

The proposed methodology is explained in the following

sections.

3.1 Gamma Correction and Contrast Adjustment

The overall image intensity of degraded image I(y) is

adjusted by using gamma correction and modifying the

intensity of the image by a power function as shown in

Eq. (3).

I yð Þ ! b:IðyÞl ð3Þ

where the terms b and l represent the positive constant.

The visual differences are more prominent in the dark areas

as compared to bright areas. The value of l has chosen less

than one l\ 1 for compressed bright intensities while it

increases dark intensities in images for better visual detail.

With the value of l[1, more bright intensities are allotted

in a more extensive range after transformation, and dark

8006 M. A. Azam et al.

123



intensities are compressed for that value range. The con-

trast of the image region can be expressed in Eq. (4).

C xð Þ ¼ Ixmax � Ixmin ð4Þ

where Ixmax= max {I(y) | y e x} and Ixmin= min {I(y) | y e x}.
In Figs. 2e and 3e, the image shows overexposure, and

there is contrast detail information missing in both images.

After applying the l[ 1 operation, the contrast detail of

the image in Figs. 2g and 3g increases. In our proposed

algorithm, the adjustment of gamma correction is used to

modify the local contrast detail of input images. Gamma

correction also removes the blurred effect in images as

shown in Fig. 4h and 2h. In Figs. 2, 3, different exposure

levels of laparoscopic images are shown. The left side

images are over-exposure images while the move toward

the right side the exposure level of images decreases. The

resultant fused MEF images are shown on the rightmost

side of Figs. 4–2.

3.2 Artificial multi-exposure fusion

After the contrast enhancement, the Spatial Linear Satu-

ration (SLS) is implemented on multi-exposure laparo-

scopic images. The visual quality of images is improved by

using the adjustment of local contrast and brightness of the

images. The sequence of multi-exposure images

U = {I1(y), I2(y), I3(y)…… Ik(y)} from input image I(y) is

obtained with the help of gamma correction. For every

image UR
k yð Þ;UG

k yð Þ;UB
k yð Þ} in the set of multi-exposure,

the minimum and maximum components value of three-

channel R, G, and B can be manipulated by using Eqs. (5)

and (6). When D = (RGBmax - RGBmin)/255[ 0, then

the saturation of every pixel can be manipulated by using

Eq. (7).

RGBmax ¼ maxðmax R;Gð Þ;BÞ ð5Þ
RGBmin ¼ minðmin R;Gð Þ;BÞ ð6Þ

S ¼
D

value
L\0:5

D
2� value

L� 0:5

8
><

>:
ð7Þ

The term value and L can be defined in Eq. (8). When

the saturation of every pixel value is computed then this

operation is applied on each channel of image RGB

described as in Eq. (9). We have taken the adjustment

range of saturation for an image as [0,100].

Fig. 1 Proposed methodology PASD-MEF framework

Smoke removal and image enhancement of laparoscopic images by an artificial multi-exposure image… 8007
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Value ¼ RGBmaxþ RGBmin

255
;where L ¼ value=2 ð8Þ

U
0

K yð Þ ¼ Uk yð Þ þ Uk yð Þ � L� 255ð Þ � b ð9Þ

b ¼

1

ðS� 1Þ percent þ S� 1

1

ð�percentÞ else

8
>><

>>:

ð10Þ

The final image obtained after the saturation operation

applied on each channel of the image is described in

Eq. (11).

U
0

K yð Þ ¼ ðUR
0

k yð Þ;UG
0

k yð Þ;UB
0

k yð ÞÞ ð11Þ

When the image saturation process is completed then

MEF is applied to obtain the local detail information of the

laparoscopic images. The proposed MEF scheme works on

adaptive decomposition based on patch structure. The

adaptive patch of an image determines using image texture

entropy and patch size. The resultant fuse image is

obtained by combining decompose patch images. The

image cartoon decomposition is used for the analysis of

structural information in an image (Li et al. 2018c) while

texture components of the image give detailed information

(Zhu et al. 2016). In the proposed work, the Vese Osher

(VO) model is implemented based on variational image

decomposition (Vese and Osher 2003) to the source ima-

ges. The cartoon-texture decomposition determines by

using Vese Osher (VO) model.

3.3 Adaptive Patch Structure and Image
Intensity

When the texture component is determined, the gray dif-

ference technique is implemented to compute the image

entropy value using texture features. Then adaptive path

size selection of the image is selected. If pixel point is

located at point (x, y) then a point p ¼ ðDx;DyÞ far away

from pixel point is represented as ðxþ Dx; yþ DyÞ. The
grayscale based on different values can be calculated as in

Eq. (12).

mD x; yð Þ ¼ m x; yð Þ � mðxþ Dx; yþ DyÞ ð12Þ

where m (x, y) denoted grayscale value, and mD x; yð Þ rep-
resent the difference in grayscale value. The entropy value

of laparoscopic images can be determined by using

Eq. (13).

E ¼
Xn

i¼0

p ið Þlog2½p ið Þ� ð13Þ

For complete image texture, the values of entropies can

be calculated in the form of set E= {E1, E2, E3……., Ek,},

where E1, E2…... Ek is the entropy value of each image.

Then final entropy value can be calculated by using the

mean of all entropy values represented in Equation (14).

E ¼ 1

K

Xk

i¼0

Ei ð14Þ

The adaptive patch size scheme preserved more detailed

information during the fusion process. The optimal block

size of each image can be calculated by using Eq. (15).

Fig. 2 Multi-exposure laparoscopic images of video 10 with smoke

Level 4. a Over-exposed. b Normal exposed image, c under-exposed

image. d Resultant fused image obtained from images (a–c). e Zoom-

in over-exposed image. f Zoom-in of normally exposed image.

g Zoom-in under-exposed. h Zoom-in of the fused image
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Ws ¼ Ps 0:1ð Þx
E
10

� �E � � E
10

� ��E

E
10

� �E þ � E
10

� ��E

 !

þ Psðe�Ex 0:1ð Þ ð15Þ

And, Ws is image patch size. The optimal block size can

be achieved using the image entropy value. E in the above

equation represents the Entropy value of a given image,

these parameters are set for calculated image patch size.

When the optimal value of Ws achieved then a set of multi-

exposure images decompose into sub-image of Ws x Ws

size blocks. Structure decomposition algorithm (Ma et al.

2017) is implemented on each patch size of the image that

is further divided into the following components: I) Ck,

signal contrast strength II) signal structure strength Sk and

III) mean intensity Ik. These three parameters have pro-

ceeded further to achieve the desired fused image patches

bX . To obtain an appropriate fused patch image, we need

three desired parameters that are dCk;cSk; bI; these parameters

are explain below;

cCk= The desired contrast strength in the fused image

was obtained by merging the highest contrast of all source

sets of image patches with the same spatial position.

bSk= The desired signal structure fused block can be

calculated by assigning weighted average value to image

block contrast using input structure vector.

bIk = To obtain mean intensity components, the global

and local mean intensity of the current source image is used

as an input.

When dCk;Sk; bIk components are calculated then fused

image patch bX obtained, and a new vector can be repre-

sented as shown in Eq. 16. The proposed MEF gives

smoke-free, well-exposed, and high contrast images by

artificially under-exposed/over-exposed images. The

smoke in the image represented in Eq. (1) always reduces

the intensity level of the images. The proposed algorithm

works only on under-exposed images. Furthermore, if the

exposure value increased then gamma correction can adjust

Fig. 3 Sample dataset videos frames (a1–a4) frames of video 1 where

a1 represent level1 smoke and smoke increase from left to right a4

represent dense smoke of level 4 (b1–b4) frames of video 5 (c1–c4)

frames of video 10 (d1–d4) frames extracted from video 15 while

(e1–e4) frames of video 20

Smoke removal and image enhancement of laparoscopic images by an artificial multi-exposure image… 8009
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Fig. 4 Multi-exposure laparoscopic images of video 1 with smoke

Level 3. a Over-exposed, b Normal exposed image, c under-exposed

image, d Resultant fused image obtained from images (a–c). e Zoom-

in over-exposed image. f Zoom-in of normally exposed image.

g Zoom-in under-exposed. h Zoom-in of the fused image

Fig. 5 Qualitative visual results of smoke level 3 laparoscopic images a Input smoke and blur laparoscopic images where b–e images are

resultant smoke-free and enhanced images. b DCP (Tan 2008a), c CAP (Azam et al. 2021), d MPM (Zhu et al. 2016), e Proposed method

8010 M. A. Azam et al.
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the contrast of images and increase the visual quality of

blurred laparoscopic images.

bX ¼ cCk :Sk þ bIk ð16Þ

Multiple image patches of a fused image can be

obtained by sliding the window, the pixels in covering

patches are found the average valuse to give output. At that

point, the fused image is formed by using Eq.17.

JðxÞ ¼
Xn

i¼1

bxi ð17Þ

Gray difference technique implemented on gray-level

images to obtain grayscale differential output (Li et al.

2018c). This can be represented in Eq. 18.

Idelta x; yð Þ ¼ I x; yð Þ � Iðxþ Delta xð Þ; yþ Delta yð ÞÞ
ð18Þ

Where I show image, x and y represent image points

location. The point pixel close to (x, y) point repre-

sented by (x ? Delta (x), y ? Delta (y)). Where I delta

shows the gray image differential value in the image

I.

4 Experimental results

In this section, the dataset details and the proposed

methodology subjective/qualitative and objective/quanti-

tative results compared with other state-of-the-art tech-

niques such as Dark Channel Prior (DCP) (He et al. 2011),

Multilayer Perceptron Method (MPM) (Sebastián Salazar-

Colores and Cruz-Aceves 2018), Color Attenuation Prior

(CAP) (Zhu et al. 2015) is presented. The proposed method

is implemented on MATLAB 2018a software where the

hardware specification is Intel� Core i3-4010U CPU of

clock speed 1.7GHz and RAM are 4GB.

4.1 Dataset

The dataset taken is a part of the ICIP LVQ Challenge

dataset. That is a collection of a total of 800 distorted

videos created using a set of 20 reference videos, each 10

seconds long (Khan, et al. 2020; Twinanda et al. 2017).

Obtain these videos from the Cholec80 dataset (http://

camma.u-strasbg.fr/datasets). The whole dataset consists of

ten category videos group such that smoke videos, blurry,

white Gaussian noise videos, etc. All videos with a 16:9

aspect ratio have a resolution of 512 by 288 and a 25 fps

frame rate. Screen blending video editing software was

Fig. 6 Qualitative visual results of smoke level 4 laparoscopic images a Input smoke and blur Laparoscopic images where b–e images are

resultant smoke-free and enhanced images. DCP (Tan 2008a), c CAP (Azam et al. 2021), d MPM (Zhu et al. 2016), e Proposed method
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used to generate smoke videos. By using the technique, a

smoke video of a black background is mixed with the

reference video so that the original video’s black areas

remain untouched while the smoke region overlays. Four

various degrees of smoke intensity videos are created by

adjusting the strength of the smoke video. The smoke

group videos are a total of 80 in numbers. We collected 25

videos from the ICIP LVQ Challenge dataset among smoke

group videos for this experimentation purpose. Then

frames were extracted with a resolution of images 512 by

288 to test the proposed algorithm.

4.1.1 Qualitative visual results

The visual results of smoke images with level 3 smoke

distortion are shown in Fig. 5 while the smoke images with

Table 2 Quantitative/objective

evaluation results of the smoke-

free images

Video ID Smoke frame Method FADE Blur JNBM Edge Intensity

1 Level-3 DCP 0.334 0.257 3.3802 69.124

CAP 0.443 0.261 3.3795 58.767

MPM 0.271 0.253 3.4095 78.458

Proposed 0.176 0.248 3.5073 79.536

Level-4 DCP 0.354 0.263 3.3161 66.767

CAP 0.457 0.265 3.3736 57.458

MPM 0.296 0.257 3.3960 75.598

Proposed 0.189 0.253 3.4551 77.325

5 Level-3 DCP 0.337 0.252 3.0253 68.498

CAP 0.468 0.255 3.1207 51.945

MPM 0.369 0.252 3.1151 66.230

Proposed 0.196 0.246 3.4417 62.743

Level-4 DCP 0.391 0.256 2.8429 65.644

CAP 0.556 0.261 3.1690 49.168

MPM 0.440 0.258 3.0726 62.196

Proposed 0.228 0.251 3.3052 59.926

10 Level-3 DCP 0.263 0.271 2.7363 86.330

CAP 0.385 0.278 2.7743 63.755

MPM 0.278 0.267 2.8444 83.162

Proposed 0.145 0.265 2.8172 85.386

Level-4 DCP 0.276 0.274 2.8540 84.565

CAP 0.402 0.281 2.8672 62.315

MPM 0.308 0.272 2.9426 79.911

Proposed 0.163 0.269 2.8681 81.597

15 Level-3 DCP 0.329 0.270 3.3597 55.406

CAP 0.508 0.278 3.1900 46.009

MPM 0.305 0.260 3.2100 66.943

Proposed 0.197 0.251 3.3964 58.358

Level-4 DCP 0.347 0.282 3.1051 55.445

CAP 0.558 0.291 2.9624 45.261

MPM 0.356 0.276 2.9541 62.988

Proposed 0.220 0.266 3.1330 57.523

20 Level-3 DCP 0.417 0.319 2.5731 38.031

CAP 0.561 0.317 2.5305 37.504

MPM 0.419 0.299 2.6118 47.585

Proposed 0.188 0.288 2.7140 55.808

Level-4 DCP 0.450 0.309 2.5195 37.749

CAP 0.624 0.304 2.4998 37.508

MPM 0.474 0.288 2.4910 46.795

Proposed 0.212 0.276 2.7138 55.012
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level 4 distortion are shown in Fig. 6. It is observed that the

DCP method can remove the smoke effect but the contrast

and saturation balance of images reduces. In the CAP

method, it is noticed that smoke is not well removed, and

an unbalance natural color of images is also seen. While

the MPM method, removes the smoke but local detail

information of laparoscopic images is not visible. The

proposed method not only removes the smoke from images

but also enhanced the local contrast information of the

images and the good saturation color are seen.
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Fig. 7 Graphical objective evaluation results of FADE and blur metric

0
10
20
30
40
50
60
70
80
90
100

0
0.5

1
1.5

2
2.5

3
3.5

4

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

DC
P

CA
P

M
PM

Pr
op

os
ed

Level-
3

Level-4 Level-3 Level-4 Level-3 Level-4 Level-3 Level-4 Level-3 Level-4

1 5 10 15 20

JNBM and Edge Metrics
(Highest score reprsents better)

JNBM Edge Intensity

Fig. 8 Graphical objective evaluation result of JNBM and Edge intensity metric
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4.1.2 Quantitative evaluation

In objective evaluation, we choose non-reference image

qualitymetrics because reference or any ground truth images

are absent. The evaluation of the proposed method is per-

formed by computing four metrics: FADE, JNBM, Blur, and

Edge intensity. Fog Aware Density Evaluator (FADE)

metric is used for analyzing smoke in the images (Choi et al.

2015). The perceptual fog density in the laparoscopic images

can be computed by computing the FADEmetric. If the value

of FADE is lower, then it means that fog density is lower, for

better smoke removal its value should be lower. The JNBM

non-reference metric is based on sharpness and works best

for blurry images (Ferzli andKaram2009, 2006). Thismetric

evaluates the quantity level of visual sharpness in the images.

The higher value indicated that images are highly sharp and

best for perceptual view. Furthermore, an Edge intensity

metric is implemented, this metric gives information about

the edge intensities that are not visible in source images. The

higher value represented good edge intensity (Hautière et al.

2008). The non-reference blur perceptual metric is used to

analyze blurriness in the image (Crete et al. 2007). Table 2

shows all the statistical results computed by these four non-

reference metrics. The proposed method shows a signifi-

cantly improved result as compared to other state of art

techniques. The bold values indicated better performance

results. The graphical objective evaluation results of smoke

level 3 and level 4 images are shown in Figs. 5, 6. The bar-

plot result of FADE, JNBM,Blur, and Edge intensitymetrics

is shown in Figs.7, 8.

5 Conclusions

The proposed method of PASD-MEF is based on multi-

exposure image fusion. The MEF works on the adaptive

structure decomposition technique. A sequence of under-

exposed images is extracted from the input single smoke

and burry image. The Gamma correction is implemented to

achieve a set of under-exposed images while the SLA

scheme is applied for saturation adjustment. Adaptive

structure decomposition (ASD) is used during the MEF

procedure. The adaptive patch decomposition integrates all

common regions from a series of images that have better

contrast and saturation. Whereas MEF fused these sets of

images into a single de-smoke image. The qualitative, as

well as quantitative results, showed that the proposed

method significantly improves the visual quality of images

and also reduces the smoke from images. The main goal of

this paper is to remove smoke and enhance laparoscopic

images. The improved quality of images is useful in image-

guided surgery and also helpful for surgeons for better

visibility during surgery.

There are a few limitations, Fused image some-time

produces very high edges and due to high edges the global

brightness become a little dark as compared to the original,

This algorithm use PASD as the fusion optimizationmethod.

A real-time implementation of this method is not possible.

The fusion algorithm’s efficiency will be improved in the

future by implementing an effective fusion optimization

algorithm. In the future, geometric data will be evaluated and

scrutinized in better detail to increase fusion performance.

Denoising and other image processing techniques will be

used in the present solution. In further work, we will attempt

to build fusion processes on a high-performance computing

infrastructure capable of handling massive datasets.
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enhancement assessment by gradient ratioing at visible edges.

Image Anal Stereol 27(2):87–95. https://doi.org/10.5566/ias.v27.

p87-95

He K, Sun J, Tang X (2010) ECCV2010—guided image filtering.

Eccv 2010:1–14

He K, Sun J, Tang X (2011) Single image haze removal using dark

channel prior. IEEE Trans Pattern Anal Mach Intell

33(12):2341–2353. https://doi.org/10.1109/TPAMI.2010.168

Jobson DJ (2004) Retinex processing for automatic image enhance-

ment. J Electron Imaging 13(1):100. https://doi.org/10.1117/1.

1636183

Khan ZA et al (2020) Towards a video quality assessment based

framework for enhancement of laparoscopic videos. Electr Eng

Syst Sci. https://doi.org/10.1117/12.2549266

Kotwal A (2016) Joint desmoking and denoising of laparoscopy

images Department of Electrical Engineering Indian Institute of

Technology (IIT) Bombay Department of Computer Science and

Engineering Indian Institute of Technology (IIT) Bombay,

pp. 1050–1054

Li H, Qiu H, Yu Z, Zhang Y (2016) Infrared and visible image fusion

scheme based on NSCT and low-level visual features. Infrared

Phys Technol 76:174–184. https://doi.org/10.1016/j.infrared.

2016.02.005

Li Y, Miao Q, Liu R, Song J, Quan Y, Huang Y (2018a) A multi-scale

fusion scheme based on haze-relevant features for single image

dehazing. Neurocomputing 283:73–86. https://doi.org/10.1016/j.

neucom.2017.12.046

Li H, He X, Tao D, Tang Y, Wang R (2018b) Joint medical image

fusion, denoising and enhancement via discriminative low-rank

sparse dictionaries learning. Pattern Recognit 79:130–146.

https://doi.org/10.1016/j.patcog.2018.02.005

Li Y et al (2018c) A novel multi-exposure image fusion method based

on adaptive patch structure. Entropy 20(12):1–17. https://doi.

org/10.3390/e20120935

Li H, Wang Y, Yang Z, Wang R, Li X, Tao D (2020) Discriminative

dictionary learning-based multiple component decomposition for

detail-preserving noisy image fusion. IEEE Trans Instrum Meas

69(4):1082–1102. https://doi.org/10.1109/TIM.2019.2912239

Ma K, Li H, Yong H, Wang Z, Meng D, Zhang L (2017) Robust

multi-exposure image fusion: a structural patch decomposition

approach. IEEE Trans Image Process 26(5):2519–2532. https://

doi.org/10.1109/TIP.2017.2671921

Nair D, Sankaran P (2022) Benchmarking single image dehazing

methods. SN Comput Sci. https://doi.org/10.1007/s42979-021-

00925-w

Nan D, Bi DY, He LY, Ma SP, Fan ZL (2016) A variational

framework for single image dehazing based on restoration. KSII

Trans Internet Inf Syst 10(3):1182–1194. https://doi.org/10.

3837/tiis.2016.03.013

Qi G, Chang L, Luo Y, Chen Y, Zhu Z, Wang S (2020) A precise

multi-exposure image fusion method based on low-level fea-

tures. Sensors (switzerland) 20(6):1–18. https://doi.org/10.3390/

s20061597

Rong Z, Jun WL (2014) Improved wavelet transform algorithm for

single image dehazing. Optik (stuttg) 125(13):3064–3066.

https://doi.org/10.1016/j.ijleo.2013.12.077

Salazar-Colores S, Cruz-Aceves I (2018) Single image dehazing

using a multilayer perceptron. J Electron Imaging 27(4):043022

Salazar-Colores S, Alberto-Moreno H, Ortiz-Echeverri CJ, Flores G

(2020) Desmoking laparoscopy surgery images using an image-

to-image translation guided by an embedded dark channel.

pp. 1–9. http://arxiv.org/abs/2004.08947.

Sdiri B, Beghdadi A, Cheikh FA, Pedersen M, Elle OJ (2016) ‘‘An

adaptive contrast enhancement method for stereo endoscopic

images combining binocular just noticeable difference model

and depth information. IST Int Sympos Electron Imaging Sci

Technol. https://doi.org/10.2352/ISSN.2470-1173.2016.13.

IQSP-212

Stoyanov D (2012) Surgical vision. Ann Biomed Eng 40(2):332–345.

https://doi.org/10.1007/s10439-011-0441-z

Tan RT (2008a) Visibility in bad weather. Comput vis Pattern Recogn

CVPR 2008:1–8
Tan RT (2008b) Visibility in bad weather from a single image. 26th

IEEE Conf Comput vis Pattern Recognit CVPR. https://doi.org/

10.1109/CVPR.2008.4587643

Tarel JP, Hautière N (2009) Fast visibility restoration from a single

color or gray level image. Proc IEEE Int Conf Comput vis

2009:2201–2208. https://doi.org/10.1109/ICCV.2009.5459251

Thomas G, Flores-Tapia D, Pistorius S (2011) Histogram specifica-

tion: a fast and flexible method to process digital images. IEEE

Trans Instrum Meas 60(5):1565–1578. https://doi.org/10.1109/

TIM.2010.2089110

Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M,

Padoy N (2017) EndoNet: a deep architecture for recognition

tasks on laparoscopic videos. IEEE Trans Med Imaging

36(1):86–97. https://doi.org/10.1109/TMI.2016.2593957

Vese LA, Osher SJ (2003) Modeling textures with total variation

minimization and oscillating patterns in image processing. J Sci

Comput 19(1–3):553–572. https://doi.org/10.1023/A:

1025384832106

Yin L, Zheng M, Qi G, Zhu Z, Jin F, Sim J (2019) A novel image

fusion framework based on sparse representation and pulse

coupled neural network. IEEE Access 7:98290–98305. https://

doi.org/10.1109/ACCESS.2019.2929303

Yu Z, Bajaj C (2004) A fast and adaptive method for image contrast

enhancement. Proc Int Conf Image Process ICIP 5:1001–1004.

https://doi.org/10.1109/icip.2004.1419470

Zhu Q, Mai J, Shao L (2015) A fast single image haze removal

algorithm using color attenuation prior. IEEE Trans Image

Process 24(11):3522–3533. https://doi.org/10.1109/TIP.2015.

2446191

Zhu Z, Chai Y, Yin H, Li Y, Liu Z (2016) A novel dictionary learning

approach for multi-modality medical image fusion. Neurocom-

puting 214:471–482. https://doi.org/10.1016/j.neucom.2016.06.

036

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Smoke removal and image enhancement of laparoscopic images by an artificial multi-exposure image… 8015

123

https://doi.org/10.1145/1360612.1360671
https://doi.org/10.1145/1360612.1360671
https://doi.org/10.1109/ICIP.2007.4379342
https://doi.org/10.1109/ICIP.2007.4379342
https://doi.org/10.1109/TIP.2008.2011760
https://doi.org/10.1109/TIP.2008.2011760
https://doi.org/10.1016/j.sigpro.2018.03.008
https://doi.org/10.1016/j.sigpro.2018.03.008
https://doi.org/10.1097/SLE.0000000000000459
https://doi.org/10.1097/SLE.0000000000000459
https://doi.org/10.5566/ias.v27.p87-95
https://doi.org/10.5566/ias.v27.p87-95
https://doi.org/10.1109/TPAMI.2010.168
https://doi.org/10.1117/1.1636183
https://doi.org/10.1117/1.1636183
https://doi.org/10.1117/12.2549266
https://doi.org/10.1016/j.infrared.2016.02.005
https://doi.org/10.1016/j.infrared.2016.02.005
https://doi.org/10.1016/j.neucom.2017.12.046
https://doi.org/10.1016/j.neucom.2017.12.046
https://doi.org/10.1016/j.patcog.2018.02.005
https://doi.org/10.3390/e20120935
https://doi.org/10.3390/e20120935
https://doi.org/10.1109/TIM.2019.2912239
https://doi.org/10.1109/TIP.2017.2671921
https://doi.org/10.1109/TIP.2017.2671921
https://doi.org/10.1007/s42979-021-00925-w
https://doi.org/10.1007/s42979-021-00925-w
https://doi.org/10.3837/tiis.2016.03.013
https://doi.org/10.3837/tiis.2016.03.013
https://doi.org/10.3390/s20061597
https://doi.org/10.3390/s20061597
https://doi.org/10.1016/j.ijleo.2013.12.077
http://arxiv.org/abs/2004.08947
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-212
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-212
https://doi.org/10.1007/s10439-011-0441-z
https://doi.org/10.1109/CVPR.2008.4587643
https://doi.org/10.1109/CVPR.2008.4587643
https://doi.org/10.1109/ICCV.2009.5459251
https://doi.org/10.1109/TIM.2010.2089110
https://doi.org/10.1109/TIM.2010.2089110
https://doi.org/10.1109/TMI.2016.2593957
https://doi.org/10.1023/A:1025384832106
https://doi.org/10.1023/A:1025384832106
https://doi.org/10.1109/ACCESS.2019.2929303
https://doi.org/10.1109/ACCESS.2019.2929303
https://doi.org/10.1109/icip.2004.1419470
https://doi.org/10.1109/TIP.2015.2446191
https://doi.org/10.1109/TIP.2015.2446191
https://doi.org/10.1016/j.neucom.2016.06.036
https://doi.org/10.1016/j.neucom.2016.06.036

	Smoke removal and image enhancement of laparoscopic images by an artificial multi-exposure image fusion method
	Abstract
	Introduction
	Related works
	Proposed methodology
	Gamma Correction and Contrast Adjustment
	Artificial multi-exposure fusion
	Adaptive Patch Structure and Image Intensity

	Experimental results
	Dataset
	Qualitative visual results
	Quantitative evaluation


	Conclusions
	Author contributions
	Data availability
	References




