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Abstract
Multiobjective optimization techniques have much importance while solving real-life problems. There may get chances of
neutral thoughts and hesitations in real-life problems. This paper has studied the multiobjective programming problems
(MOPPs) under neutrosophic hesitant fuzzy uncertainty. The degrees of neutrality and hesitations inMOPPs were introduced,
and simultaneously, we have developed the neutrosophic hesitant fuzzy multiobjective programming problems (NHFMOPPs)
under a neutrosophic hesitant fuzzy environment. Besides, a new robust solution scheme, namely neutrosophic hesitant fuzzy
Pareto optimal solution to theNHFMOPPs, is investigated, and two different optimization techniques are suggested to evaluate
it. The validity and applicability of the proposed methods are unanimously implemented on different multiobjective real-life
problems. Finally, conclusions, comparative study, and future research direction are addressed based on the presented work.

Keywords Neutrosophic hesitant fuzzy set · Indeterminacy hesitant fuzzy membership function · Optimality tests ·
Multiobjective neutrosophic hesitant programming problems

1 Introduction

Real-life optimization problems inherently involve more
than one objective function to be optimized (minimized or
maximized) under the given circumstances. A mathematical
programming problem having more than two objectives is
termed as multiobjective programming problems (MOPPs).
The modeling and optimization texture of MOPPs depends
on the nature of optimizing the environment, such as deter-
ministic framework, and vague and random uncertainties.
In MOPPs, it may seldom occur that a single solution set
satisfies all objectives efficiently at a time, but it is quite pos-
sible to get a compromise solution that satisfies all objective
functions marginally simultaneously. Thus, a considerable
number of solution methods have been suggested in the lit-
erature to solve the MOPPs.
Initially, Zadeh (1965) proposed the fuzzy set (FS) and
afterward, it was explored in multiple criteria, multiple
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attributes, and multiobjective decision-making problems.
Afterward, Zimmermann (1978) investigated the fuzzy pro-
gramming technique for the multiobjective optimization
problem, which was based on the membership function
(degree of belongingness) for themarginal evaluation of each
objective function. The fuzzy programming approach (FPA)
is concerned with the maximization of satisfaction degree
for the DM(s) while simultaneously dealing with multiple
objectives. Ahmad (2021a, b) discussed the modeling and
optimization of MOPPs under uncertainty.
The limitation of the fuzzy set has been examined because
it is not capable of defining the non-membership function
of the element into the fuzzy set. Firstly, (Atanassov 1986)
introduced the intuitionistic fuzzy set (IFS). Based on IFS,
Angelov (1997) first addressed the intuitionistic fuzzy pro-
gramming approach (IFPA) for real-life decision-making
problems. The IFPA is a more flexible and realistic optimiza-
tion technique compared to the fuzzy technique because it
tackles the membership as well as non-membership func-
tions simultaneously. Mahmoodirad et al. (2018), Ahmad
et al. (2021b), Ahmadini and Ahmad (2021b) studied the
multiobjective transportation problem under an intuitionistic
fuzzy environment. Ahmad and John (2021), Ahmad et al.
(2021c, e, a) suggested an intuitionistic fuzzy programming
method for multiobjective linear programming problems.
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In reality, the characteristic of hesitation is the most trivial
concerns in the decision-making process. It seldom happens
that DM(s) is/are not sure about a single specific value about
membership degree (degree of belongingness) of the element
into the feasible decision set. In this situation, a set of some
conflicting values is possible to assign it. Inspired with such
cases, Torra and Narukawa (2009) proposed a set named hes-
itant fuzzy set (HFS), which is the extension of FS. The HFS
deals with a set of different possible degrees of the element’s
membership function into a feasible decision set.Researchers
have widely used the hesitant fuzzy technique. Ahmad et al.
(2018),Ahmadini andAhmad (2021a) presented the research
study on MOPPs under hesitant situation. Rouhbakhsh et al.
(2020) studied the MOPPs under a hesitant fuzzy environ-
ment. Bharati (2018) discussed hesitant fuzzy optimization
techniques for multiobjective linear programming problems.
Zhou and Xu (2018) proposed a solution algorithm for port-
folio optimization under a hesitant fuzzy environment.
The extension and generalization of FS and IFS are pre-
sented by Smarandache (1999) and named as neutrosophic
set (NS). TheNS dealswith three differentmembership func-
tions, namely truth (degree of belongingness), indeterminacy
(belongingness up to some extent), and a falsity (degree of
non-belongingness) of the element into the feasible deci-
sion set. Later on, many researchers such as (Ahmad and
Adhami 2019a, b) have used the neutrosophic decision set
to develop the solution methods for MOPPs. Ahmad et al.
(2020), Ahmad et al. (2021c) presented modified neutro-
sophic optimization techniques for multiobjective supply
chain planning problems. Abdel-Basset et al. (2018) pre-
sented a study on a fully neutrosophic linear programming
problem. Ahmad et al. (2019), Adhami and Ahmad (2020),
Ahmad (2021a) have also addressed neutrosophic goal pro-
gramming technique for shale gas water management under
uncertainty. Ahmad and Adhami (2019a), Ahmad (2021b)
and Ahmad et al. (2021a) suggested neutrosophic optimiza-
tion models for multiobjective transportation problems.
All the above-discussed decision sets and similar optimiza-
tion techniques cannot unify and capture the two different
scopes of human perceptions, such as indeterminacy and
hesitations degrees, that arise simultaneously while mak-
ing fruitful decisions. To highlight this situation, we have
taken advantage of a single-valued neutrosophic hesitant
fuzzy decision set and, consequently, a neutrosophic hesitant
fuzzy multiobjective programming problem (NHFMOPP) is
developed. Since the proposed NHFMOPP is the continuous
case of optimization, we define the different membership
functions based on the different experts/managers’ opin-
ions regarding the decisions (Bharati 2018; Ahmad et al.
2018). While dealing with the multicriteria decision-making
problem, the neutrosophic hesitant fuzzy set becomes more
complex, and simultaneously the mathematical calculations
are more advanced than the classical ones (Ye 2015). Dur-

ing handling the multicriteria decision-making problems,
neutrosophic hesitant fuzzy parameters are taken into con-
siderations. For more details about the neutrosophic hesitant
fuzzy parameters and their numerical operations, one may
visit (Ye 2015; Bharati 2018; Ahmad et al. 2022). The
advanced modeling and optimization framework of NHF-
MOPPs is very close to real-life scenarios. It ensures
the most promising optimization environment by reducing
the violation of risk reliability for the decision-maker(s)
(DM(s)) under a neutrosophic hesitant fuzzy environment. A
novel solution scheme is investigated to solve the proposed
NHFMOPPs and named neutrosophic hesitant fuzzy Pareto
optimal solutions (NHFPOSs). Furthermore, two different
optimization techniques are also suggested to determine the
NHFPOSs of NHFMOPPs. The robustness of NHFPOS is
revealed by performing the optimality tests. The optimiza-
tion techniques unavoidably consider the neutral thoughts
(indeterminacy degrees) and the different opinions (hesita-
tion degrees) of various experts or DMs while making the
decisions. A wholesome opportunity to interact with dif-
ferent distinguished experts or DMs is also advantageous
in quantitative decision-planning scenarios. Hence, the pro-
posed optimization techniques capture all sorts of vagueness,
impreciseness, and the incompleteness that inevitably arise
in real-life optimization problems and manage flexibility in
the decision-making scenario. Thus, this paper can be consid-
ered as an extension of the work carried out by Ahmad et al.
(2018), Ahmadini and Ahmad (2021a, b), Bharati (2018),
Ahmad and Adhami (2019a), Adhami et al. (2021) and
Rouhbakhsh et al. (2020) under neutrosophic hesitant fuzzy
environment. The propounded modeling and optimization
structure of NHFMOPPs can be unanimously accepted as
super-technique (that contains all techniques under special
cases) for solving NHFMOPPs. From the author’s knowl-
edge, no such solution concept is propounded in the literature
for modeling and solving the NHFMOPPs so far.
The remaining part of the manuscript is presented as follows:
In Sect. 2, the basic concept related to neutrosophic, hesi-
tant fuzzy, and single-valued neutrosophic hesitant fuzzy sets
is presented, while Sect. 3 depicts the modeling of MOPPs
under neutrosophic hesitant fuzzy environment. A computa-
tional study containing three different real-life applications is
presented in Sect. 4. The comparison of the proposed NHF-
POSs of NHFMOPPs is made with other approaches. The
conclusions and future research direction are addressed in
Sect. 5.

2 Preliminaries

Definition 1 Smarandache (1999) An NS is said to be a
single-valued neutrosophic set (SVNS) A, if the member-
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ship functions are represented as follows:

A = {< x, μA(x), λA(x), νA(x) > |x ∈ X}

where μA(x), λA(x) and νA(x) ∈ [0, 1] and 0 ≤ μA(x) +
λA(x) + νA(x) ≤ 3 for all x ∈ X .

Definition 2 Torra andNarukawa (2009) A hesitant fuzzy set
(HFS) A over universe of discourse X can be represented in
terms of a function hA(x) returning a set of values in [0,1]
and is expressed as follows:

H = {< x, hH (x) > |x ∈ X}

where hH (x) gives a set of values in [0,1], depicting the
membership grades of the value x ∈ X into H . Moreover,
hH (x) is also called as a hesitant fuzzy element.

Definition 3 Torra and Narukawa (2009) The upper and
lower bounds are represented as h−(x) = min h(x) and
h+(x) = max h(x) for each hesitant fuzzy element h, respec-
tively.

Definition 4 Ye (2015)Suppose X is afixed set; then a single-
valued neutrosophic hesitant fuzzy set (SVNHFS) Nh on X
is expressed as follows:

Nh = {< x, μh(x), λh(x), νh(x) > |x ∈ X}

where μh(x), λh(x) and νh(x) are three sets of values in
[0,1], representing the truth hesitant, indeterminacy hesitant
and the falsity hesitant membership degrees of the element
x ∈ X into the set Nh , respectively. The conditions hold
0 ≤ α, β, γ ≤ 1 and 0 ≤ α+, β+, γ + ≤ 3, where
α ∈ μh(x), β ∈ λh(x), γ ∈ νh(x) with α+ ∈ μ+

h (x) =
∪α∈μh(x)max{α},β+ ∈ λ+

h (x) = ∪β∈λh(x)max{β} and γ + ∈
ν+
h (x) = ∪γ∈νh(x)max{γ } for all x ∈ X .

Definition 5 Ye (2015) Suppose that Nh1 and Nh2 be two
SVNHFSs; then the union of these sets can be represented
by

Nh1 ∪ Nh2 ={μh ∈(μh1∪μh2)|μh ≥max (min {μh1∪μh2}),
λh ∈ (λh1 ∪ λh2)|λh ≤ min (max {λh1 ∪ λh2}),
νh ∈ (νh1 ∪ νh2)|νh ≤ min (max {νh1 ∪ νh2})}

Definition 6 Ye (2015) Suppose that Nh1 and Nh2 be two
SVNHFSs; then the intersection of these sets can be repre-
sented by

Nh1 ∩ Nh2 ={μh ∈(μh1∩μh2)|μh ≤min (max {μh1∩μh2}),
λh ∈ (λh1 ∩ λh2)|λh ≥ max (min {λh1 ∩ λh2}),
νh ∈ (νh1 ∩ νh2)|νh ≥ max (min {νh1 ∩ νh2})}

Definition 7 The general form ofMOPPs is given as follows:

Minimize (O1(x), O2(x), . . . , Op(x))
s.t. B(x)(≤ or = or ≥)0, x ≥ 0

(2.1)

where Op(x) is the pth objective functions and B(x) and x
are the real-valued functions and a set of decision variable
vectors.

3 Formulation of MOPPs under neutrosophic
hesitant fuzzy environment

In this section, we have presented the modeling approach
for MOPP with neutrosophic hesitant fuzzy goals of each
objective function under a neutrosophic hesitant fuzzy envi-
ronment. In addition to that, we have also proposed two
optimization techniques to solve the neutrosophic hesitant
fuzzy multiobjective programming problems (NHFMOPP).

In the MOPP (2.1), we assume that the DM has neutro-
sophic fuzzy goals for each objective functions that are to
be achieved. In such circumstance, the MOPP (2.1) may be
transformed into the neutrosophic fuzzy multiobjective pro-
gramming problem (NFMOPP) and is stated as below:

(NFMOPP) ˜Minimize (˜O1(x), ˜O2(x), ..., ˜Op(x))
s.t. B(x)(≤ or = or ≥)0, x ≥ 0

(3.1)

where the notations ˜(·) represent a flexible or neutrosophic
fuzzy version of (·), meaning that “the functions should be
minimized as much as possible under neutrosophic fuzzy
environment” subject to the given constraints (Ahmad et al.
2021d;AhmadandSmarandache2021).Aneutrosophic opti-
mization problem is determined by X possible solution sets
and a set of neutrosophic goals Gi , i = 1, 2, . . . , p, along
with a set of neutrosophic constraints C j , j = 1, 2, . . . ,m
which is depicted by neutrosophic set on X .

The idea of fuzzy decision set was developed by Bellman
and Zadeh (1970), and later on, it was widely used by many
researchers in the real-life optimization problems. Therefore,
the fuzzy decision set is stated as D = G ∩ C .

Equivalently, the following expressions mathematically
represent the neutrosophic decision set DN :

DN = (∩p
i=1Gi )(∩m

j=1C j ) = (x, μD(x), λD(x), νD(x) )

where

μD(x) = min

{

μG1(x), μG2(x), . . . , μGi (x)
μC1(x), μC2(x), . . . , μC j (x)

}

∀ x ∈ X

(3.2)

λD(x) = max

{

λG1(x), λG2(x), . . . , λGi (x)
λC1(x), λC2(x), . . . , λC j (x)

}

∀ x ∈ X

(3.3)
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νD(x) = max

{

νG1(x), νG2(x), . . . , νGi (x)
νC1(x), νC2(x), . . . , νC j (x)

}

∀ x ∈ X

(3.4)

The truth, indeterminacy, and a falsity membership degrees
are represented by μD(x), λD(x) and νD(x), respectively.
Theminimum andmaximum values Li andUi of each objec-
tives are given as follows:

Ui = max [Oi (x)] and Li = min [Oi (x)] ∀ i = 1, 2, 3, . . . , p.

(3.5)

The bounds for pth objective function in the neutrosophic
environment are determined by the following expressions:

Uμ
i = Ui , Lμ

i = Li for truth membership

Uλ
i =Lμ

i +yi , Lλ
i =Lμ

i for indeterminacy membership

U ν
i = Uμ

i , Lν
i = Lν

i + zi for falsity membership

where yi and zi ∈ (0, 1) are the known real numbers.
With the help of lower and upper bounds, the linear mem-
bership functions can be defined as follows:

μGi (x) =

⎧

⎪

⎨

⎪

⎩

1 if Oi (x) < Lμ
i

1 − Oi (x)−LT
i

Uμ
i −Lμ

i
if Lμ

i ≤ Oi (x) ≤ Uμ
i

0 if Oi (x) > Uμ
i

(3.6)

λGi (x) =

⎧

⎪

⎨

⎪

⎩

1 if Oi (x) < Lλ
i

1 − Oi (x)−Lλ
i

Uλ
i −Lλ

i
if Lλ

i ≤ Oi (x) ≤ Uλ
i

0 if Oi (x) > Uλ
i

(3.7)

νGi (x) =

⎧

⎪

⎨

⎪

⎩

1 if Oi (x) > U ν
i

1 − U ν
i −Oi (x)
U ν
i −Lν

i
if Lν

i ≤ Oi (x) ≤ U ν
i

0 if Oi (x) < Lν
i

(3.8)

where L(.)
i �= U (.)

i for all p objective function. Once the
neutrosophic decision DN is derived, the optimal decision
x∗ ∈ X can be determined if and only iff

μD(x∗) = maxx∈XμD(x),

λD(x∗) = minx∈XλD(x) and νD(x∗) = minx∈XνD(x)

Definition 8 x∗ ∈ X can be considered as a neutrosophic
fuzzyPareto optimal solution (NFPOS) to theNFMOPP (3.1)
if and only iff, there does not exist any other x ∈ X such
that μGi (x) ≥ μGi (x

∗), λGi (x) ≤ λGi (x
∗) and νGi (x) ≤

νGi (x
∗) ∀i = 1, 2, . . . , p; andμG j (x) > μG j (x

∗), λG j (x)
< λG j (x

∗) and νG j (x) < νG j (x
∗) for at least one j ,

respectively.

After depicting the different membership functions μGi (x),
λGi (x) and νGi (x) fro each objective functions Oi (x) by the
DM, and applying the neutrosophic decision set (Ahmadet al.
2019), the NFMOPP (3.1) is converted into the equivalent
problem:

Maximize min (μG1(x), μG2(x), . . . , μGp (x))
Minimize max (λG1(x), λG2(x), . . . , λGp (x))
Minimize max (νG1(x), νG2(x), . . . , νGp (x))
s.t. x ∈ X .

(3.9)

Now, problem (3.9) is equivalent to problem (3.10) and can
be shown as follows:

Maximize φ (φ = α − β − γ )

s.t. μGi (x) ≥ α, λGi (x) ≤ β

νGi (x) ≤ γ, μGi (x) ≥ λGi (x)
μGi (x) ≥ νGi (x), 0 ≤ α, β, γ ≤ 1
x ∈ X , ∀ i = 1, 2, . . . , p.

(3.10)

The problem (3.10) is a neutrosophic optimization model
and used by many researchers in different fields of real-life
applications, see (Ahmad et al. 2020; Ahmad and Adhami
2019a; Ahmad et al. 2018). Based on the extended concept of
Sakawa (2013) that when the differentmembership functions
(3.6), (3.7) and (3.8) are used and problem (3.10) yields in a
unique solution, then an NFPOS will be the required optimal
solution. Otherwise, we can examine the Pareto optimality
test by eliciting the equivalent problem (3.11):

Max
∑p

i=1 ηi
s.t. μGi (x) − ηi = μGi (x

∗)
λGi (x) + ηi = λGi (x

∗)
νGi (x) + ηi = νGi (x

∗)
x ∈ X , ∀ i = 1, 2, . . . , p.

(3.11)

where η = (η1, η2, . . . , ηp)
T and x∗ is an optimal solution

of problem (3.9). Then for (η̄, x̄) as an optimal solution for
problem (3.11), we have any one of the following two cases:

(1) if η̄i �= 0, for at least one i , then x̄ is an NFPOS for (3.1).

(2) if η̄i = 0, i = 1, 2, . . . , p, then x∗ is an NFPOS for
(3.1).

In NFMOPP (3.1), the DM incorporates his/her neutral
thoughts or indeterminacy degree while making decisions. It
would be better to assign the evaluations of various experts
or decision-makers under the neutrosophic environment.

Hence, a novel solution method based on a single-valued
neutrosophic hesitant fuzzy set is investigated for solving
the MOPP. The propounded method is the mixture of the
two sets, namely neutrosophic set (Smarandache 1999) and
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hesitant fuzzy set (Torra and Narukawa 2009), respectively.
An exciting characteristic feature of the proposed method
is that it manages the opposite and adverse opinions of var-
ious experts about the parameters, ensuring the DM(s) to
determine the most suitable outcomes in the neutrosophic
environment.

Thus, one may incorporate a neutrosophic hesitant fuzzy
multiobjective programming problem (NHFMOPP) as an
extension of NFMOPP under neutrosophic hesitant fuzzy
modeling situation.

(NHFMOPP)
˜

˜Minimize (˜˜O1(x),
˜
˜O2(x), ...,

˜
˜Op(x))

s.t . B(x)(≤ or = or ≥)0, x ≥ 0

(3.12)

where the notations ˜
˜(·) represent a relaxed or neutrosophic

hesitant fuzzy form of (·), meaning that “the functions should
be minimized as much as possible under neutrosophic hesi-
tant fuzzy environment” subject to the given constraints.

In the NHFMOPP (3.12), the different membership func-
tions such as truth, indeterminacy, and falsity hesitant mem-
bership degrees for each objective are defined by themarginal
evaluations of several experts or decision-makers. The pro-
posed NHFMOPP (3.12) requires some parameters well in
advance before solving them. In order to define these param-
eters, one should seek the opinion of different experts about
their aspiration values between 0 and 1. The values closer
to “0” signify the lower satisfactory degree for the corre-
sponding objective, and a value nearer to “1” depicts a higher
satisfactory degree and vice versa.

A neutrosophic hesitant fuzzy optimization problem is
determined by X possible solution sets and neutrosophic hes-
itant fuzzy goals ˜Gi , i = 1, 2, . . . , p, for each objective
functions ˜

˜Oi , i = 1, 2, . . . , p which is depicted by neutro-
sophic fuzzy set on X .
Accordingly, the neutrosophic hesitant fuzzydecision set DN

h
can be expressed as follows:

˜Gi = {x, μ
˜Gi

(x), λ
˜Gi

(x), ν
˜Gi

(x) | x ∈ X}

More clearly, a set of different membership functions under
neutrosophic hesitant fuzzy environment can be represented
as follows:

h
˜Gi

(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μ
˜Gi

(x) = {μG1
i
(x), μG2

i
(x), . . . , μ

G
li
i
(x)}

λ
˜Gi

(x) = {λG1
i
(x), λG2

i
(x), . . . , λ

G
li
i
(x)}

ν
˜Gi

(x) = {νG1
i
(x), νG2

i
(x), . . . , ν

G
li
i
(x)}

(3.13)

Remark 1 One should note that the different membership
functionsμ

G
ki
i
(x), λ

G
ki
i
(x) andν

G
ki
i
(x) for all i =1, 2, . . . , p

and ki = 1, 2, . . . , li would be decreasing one (or increas-
ing) functions similar to Eqs. (3.6), (3.7) and (3.8), where li
is the number of experts who assigns the attainment levels for
the objective functions ˜

˜Oi (x) for all i = 1, 2, . . . , p, in neu-
trosophic environment. Furthermore, assume that Hp(x) =
{μ

G
ki
i
(x), λ

G
ki
i
(x), ν

G
ki
i
(x) | i = 1, 2, . . . , p, ki =

1, 2, . . . , li }. In the propounded optimization method, neu-
trosophic hesitant fuzzy Pareto optimal solution (NHFPOS)
to the NHFMOPP (3.12) is discussed in an effective and effi-
cient manner.

Definition 9 < x∗, Hp(x∗) | x∗ ∈ X > is consid-
ered as a NHFPOS to the NHFMOPP (3.12) if and only
iff, there does not exist any other x ∈ X such that
μ
G
ki
i
(x) ≥ μ

G
ki
i
(x∗), λ

G
ki
i
(x) ≤ λ

G
ki
i
(x∗) and ν

G
ki
i
(x) ≤

ν
G
ki
i
(x∗) ∀i = 1, 2, . . . , p, ki = 1, 2, . . . , li ; and

μ
G
k j
j

(x) > μ
G
k j
j

(x∗), λ
G
k j
j

(x) < λ
G
k j
j

(x∗) and ν
G
k j
j

(x) <

ν
G
k j
j

(x∗) for at least one j ∈ {1, 2, . . . , p} and k j =
1, 2, . . . , l j .

Remark 2 One should note that a NHFPOS can be treated as
a NFPOS if li = 1 for all i in (3.13). Hence, the NFPOS is a
special case of the NHFPOS.

In the following sections, we have discussed the two dif-
ferent optimization techniques forMOPPunder neutrosophic
hesitant fuzzy environment.

3.1 Proposed Optimization Technique-I

Suppose the NHFS ˜Gi for each objective function in the
NHFMOPP (3.12). On implementing the intersection con-
cept of NHFSs, one can depict the neutrosophic hesitant
fuzzy decision set. Hence, the neutrosophic hesitant fuzzy
decision set DN

h can be stated by the following expressions:

DN
h = ˜G1 ∩ ˜G2 ∩ · · · ∩ ˜Gp = {x, hDN

h
(x)}

with the neutrosophic hesitant fuzzy membership element of
hDN

h
(x)
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hDN
h
(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μDN
h
(x) = ∪μ

˜G1
θ1 (x)∈h

˜G1
(x),...,μ

˜Gp
θp (x)∈h

˜Gp
(x) | min {μ

˜G1
θ1 (x), . . . , μ

˜Gp
θp (x)}

=
[

min {μ
˜Gi

θir (x)}pi=1

]τ

r=1
λDN

h
(x) = ∪λ

˜G1
θ1 (x)∈h

˜G1
(x),...,λ

˜Gp
θp (x)∈h

˜Gp
(x) | max {λ

˜G1
θ1 (x), . . . , λ

˜Gp
θp (x)}

=
[

max {λ
˜Gi

θir (x)}pi=1

]τ

r=1
νDN

h
(x) = ∪ν

˜G1
θ1 (x)∈h

˜G1
(x),...,ν

˜Gp
θp (x)∈h

˜Gp
(x) | max {ν

˜G1
θ1 (x), . . . , ν

˜Gp
θp (x)}

=
[

max {ν
˜Gi

θir (x)}pi=1

]τ

r=1

(3.14)

for each x ∈ X where τ = l1, l1, . . . , l p and θir ∈
{1, 2, . . . , li }. The members of μDN

h
(x) are the minimum

of the set of truth hesitant membership functions, whereas
the members of λDN

h
(x) and νDN

h
(x) are the maximum of

the set of indeterminacy and a falsity hesitant membership
functions, respectively. Furthermore, μDN

h
(x), λDN

h
(x) and

νDN
h
(x) contains a set of truth, indeterminacy, and a fal-

sity hesitant degrees of acceptance for neutrosophic hesitant
fuzzy solutions.

We introduce the maximum satisfaction degrees of r th
(r = 1, 2, . . . , τ ) member of each membership functions
under neutrosophic hesitant fuzzy environment as follows:

Maximize min {μ
˜Gi

θir (x)}pi=1

Minimize max {λ
˜Gi

θir (x)}pi=1

Minimize max {ν
˜Gi

θir (x)}pi=1

s.t. x ∈ X .

(3.15)

Using auxiliary variables α, β and γ , problem (3.15) can be
rewritten as follows:

r th − problem

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Maximize φ (φ = α − β − γ )

s.t. μ
˜Gr

θir (x) ≥ α, λ
˜Gr

θir (x) ≤ β

ν
˜Gr

θir (x) ≤ γ, μ
˜Gr

θir (x) ≥ λ
˜Gr

θir (x)

μ
˜Gr

θir (x) ≥ ν
˜Gr

θir (x), 0 ≤ α, β, γ ≤ 1

x ∈ X , ∀ i = 1, 2, . . . , p.

(3.16)

After solving the r th problem (3.16), the maximal degrees
of the attainment level φ∗r with the optimal solution x∗r
can be obtained. Thus, on solving τ problems given in prob-
lem (3.16), we can determine the maximal aspiration level
degrees φ∗1, φ∗2, . . . , φ∗τ and the various set of optimal
solutions as x∗1, x∗2, . . . , x∗τ equivalently.

Remark 3 If the DM is not satisfied by an NHFPOS among
the r th NHFPOSs, then there is option for pessimistic
NHFPOS or optimistic NHFPOSs. To serve this facil-
ity, assume that φ∗m = min {φ∗1, φ∗2, . . . , φ∗τ } and
φ∗M = max {φ∗1, φ∗2, . . . , φ∗τ }, then we depict <

x∗m, Hp(x∗m) | x∗m ∈ X > as the pessimistic NHFPOS

and < x∗M , Hp(x∗M ) | x∗M ∈ X > as the optimistic NHF-
POS, respectively.

In Theorem 1, we will prove that all the obtained solutions
for problem (3.16) are NHFPOSs.

Theorem 1 If there exists a uniqueoptimal solution (x∗r , φ∗r )
for the problem (3.16), then< x∗r , Hp(x∗r ) | x∗r ∈ X >will
be a NHFPOS for the NHFMOPP (3.12), where Hp(x∗r ) =
{μ

˜G
ki
i
(x∗r ), λ

˜G
ki
i
(x∗r ), ν

˜G
ki
i
(x∗r ) | i = 1, 2, . . . , p, ki =

1, 2, . . . , li }.
Proof Assume that < x∗r , Hp(x∗r ) | x∗r ∈ X > is
not NHFPOS for the NHFMOPP. Then, there exists an
x ∈ X with < x, Hp(x) > such that μ

˜G
ki
i
(x) ≥

μ
˜G
ki
i
(x∗r ), λ

˜G
ki
i
(x) ≤ λ

˜G
ki
i
(x∗r ) and ν

˜G
ki
i
(x) ≤ ν

˜G
ki
i
(x∗r )

for all i = 1, 2, . . . , p, ki = 1, 2, . . . , li , and μ
˜G
k j
j

(x) >

μ
˜G
k j
j

(x∗r ), λ
˜G
k j
j

(x) < λ
˜G
k j
j

(x∗r ) and ν
˜G
k j
j

(x) < ν
˜G
k j
j

(x∗r )

for at least one j ∈ {1, 2, . . . , p} and k j = 1, 2, . . . , l j .
More precisely for all r = 1, 2, . . . , τ , μ

˜Gi
θir (x) ≥

μ
˜Gi

θir (x
∗r ), λ

˜Gi
θir (x) ≤ λ

˜Gi
θir (x

∗r ) and ν
˜Gi

θir (x) ≤
ν
˜Gi

θir (x
∗r ) for all i = 1, 2, . . . , p; and μ

˜G j
θ jr (x) >

μ
˜G j

θ jr (x
∗r ), λ

˜G j
θ jr (x) < λ

˜G j
θ jr (x

∗r ) and ν
˜G j

θ jr (x) <

ν
˜G j

θ jr (x
∗r ) for at least one j ∈ {1, 2, . . . , p}.

Hence, we have
min {μ

˜Gi
θir (x)}pi=1 ≥ min {μ

˜Gi
θir (x

∗r )}pi=1,

max {λ
˜Gi

θir (x)}pi=1 ≤ max {λ
˜Gi

θir (x
∗r )}pi=1,

max {ν
˜Gi

θir (x)}pi=1 ≤ max {ν
˜Gi

θir (x
∗r )}pi=1.

The inequality results in a contradiction of the optimality or
uniqueness of the optimal solution x∗r to the problem (3.16).
Thus, Theorem 1 is proven.

3.2 Neutrosophic hesitant fuzzy Pareto optimality
test

If there is no guarantee that the optimal solution x∗r is a
unique optimal solution to the problem (3.16), then one can
perform the Pareto optimality test in the neutrosophic hes-
itant situation to determine an NHFPOS. The neutrosophic
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hesitant fuzzy Pareto optimality test (NHFPOT) for x∗r can
be carried out by obtaining the solution of following mathe-
matical programming problem (3.17):

(NHFPOT) Max
∑p

i=1 ηi
s.t. μ

˜Gi
θir (x) − ηi = μ

˜Gi
θir (x

∗r )
λ

˜Gi
θir (x) + ηi = λ

˜Gi
θir (x

∗r )
ν

˜Gi
θir (x) + ηi = ν

˜Gi
θir (x

∗r )
x ∈ X , ∀ i = 1, 2, . . . , p, η = (η1, η2, . . . , ηp) ≥ 0.

(3.17)

Theorem 2 Let us consider that (x∗r , φ∗r ) be an efficient
solution for the problem (3.16). Then, for (x̄r , η̄r ) as an opti-
mal solution of problem (3.17), one can have the below two
conditions:

(a) If η̄ri = 0, i = 1, 2, . . . , p, then< x∗r , Hp(x∗r ) | x∗r ∈
X > is a NHFPOS for the problem (3.16).

(b) If η̄ri �= 0, for at least one i , then < x̄r , Hp(x̄r ) | x̄r ∈
X > is a NHFPOS for the problem (3.16).

Proof (a): Assume that < x∗r , Hp(x∗r ) | x∗r ∈ X >

is not NHFPOS for the NHFMOPP (3.12). Thus, in a
same manner to Theorem 1, there is < x, Hp(x) | x ∈
X >, for all r = 1, 2, . . . , (l1, l2, . . . l p), μ

˜Gi
θir (x) ≥

μ
˜Gi

θir (x
∗r ), λ

˜Gi
θir (x) ≤ λ

˜Gi
θir (x

∗r ) and ν
˜Gi

θir (x) ≤
ν
˜Gi

θir (x
∗r ) for all i = 1, 2, . . . , p; and μ

˜G j
θ jr (x) >

μ
˜G j

θ jr (x
∗r ), λ

˜G j
θ jr (x) < λ

˜G j
θ jr (x

∗r ) and ν
˜G j

θ jr (x) <

ν
˜G j

θ jr (x
∗r ) for at least one j ∈ {1, 2, . . . , p}. Hence by

the definition of ηi as ηi = {(μ
˜Gi

θir (x) − μ
˜Gi

θir (x
∗r )),

(λ
˜Gi

θir (x
∗r ) − λ

˜Gi
θir (x)), (ν

˜Gi
θir (x

∗r ) − ν
˜Gi

θir (x))}, i =
1, 2, . . . , p we have ηi ≥ 0, i = 1, 2, . . . , p and η j > 0
for one j . Thus, the problem (3.17) have a feasible solu-
tion (x, η) with the objective function value

∑p
i=1 ηi > 0

which has contradiction with the postulates that (x̄r , η̄r ) is
an efficient solution of (3.17)with the optimal objective value
∑p

i=1 η̄ri = 0.
(b): Assume that < x̄r , Hp(x̄r ) | x̄r ∈ X > is not NHF-

POS for the NHFMOPP (3.12). Thus, in a same fashion
to Theorem 1, there exists an < x, Hp(x) | x ∈ X >

such that for all r = 1, 2, . . . , (l1, l2, . . . l p), μ
˜Gi

θir (x) ≥
μ

˜Gi
θir (x

∗r ), λ
˜Gi

θir (x) ≤ λ
˜Gi

θir (x
∗r ) and ν

˜Gi
θir (x) ≤

ν
˜Gi

θir (x
∗r ) for all i = 1, 2, . . . , p; and μ

˜G j
θ jr (x) >

μ
˜G j

θ jr (x
∗r ), λ

˜G j
θ jr (x) < λ

˜G j
θ jr (x

∗r ) and ν
˜G j

θ jr (x) <

ν
˜G j

θ jr (x
∗r ) for at least one j ∈ {1, 2, . . . , p}. Hence by

the definition of ηi as ηi = {(μ
˜Gi

θir (x) − μ
˜Gi

θir (x
∗r )),

(λ
˜Gi

θir (x
∗r ) − λ

˜Gi
θir (x)), (ν

˜Gi
θir (x

∗r ) − ν
˜Gi

θir (x))}, i =
1, 2, . . . , p. Then, (x, η) is a feasible solution for the problem
(3.17). We know that

ηi = {(μ
˜Gi

θir (x) − μ
˜Gi

θir (x
∗r )), (λ

˜Gi
θir (x

∗r )
−λ

˜Gi
θir (x)), (ν

˜Gi
θir (x

∗r ) − ν
˜Gi

θir (x))} ≥ η̄i

= {(μ
˜Gi

θir (x) − μ
˜Gi

θir (x
∗r )), (λ

˜Gi
θir (x

∗r )
−λ

˜Gi
θir (x)), (ν

˜Gi
θir (x

∗r ) − ν
˜Gi

θir (x))} ≥ 0,

for one j , thus,
∑p

i=1 ηi >
∑p

i=1 η̄ri which arises in a contra-
dictionwith the postulates that (x̄r , η̄r ) is an efficient solution
of (3.17).

Remark 4 Below, we can be revealed that the pessimistic
NHFPOS can be determined with the help of extended con-
cept of Bellman and Zadeh (1970) for all the membership
functions under neutrosophic fuzzy environment.

To highlight this, assume that the problem (3.16) yields
in the pessimistic NHFPOS. Introduce the maximum satis-
faction degrees of mth (m = 1, 2, . . . , τ ) member of each
membership functions under neutrosophic hesitant fuzzy
environment as follows:

Maximize min {μ
˜Gi

θim (x)}pi=1

Minimize max {λ
˜Gi

θim (x)}pi=1

Minimize max {ν
˜Gi

θim (x)}pi=1

s.t. x ∈ X .

(3.18)

Using auxiliary variables α, β and γ , problem (3.18) can be
rewritten as follows:

Maximize φ (φ = α − β − γ )

s.t. μ
˜Gm

θim (x) ≥ α, λ
˜Gm

θim (x) ≤ β

ν
˜Gm

θim (x) ≤ γ, μ
˜Gm

θim (x) ≥ λ
˜Gm

θim (x)

μ
˜Gm

θim (x) ≥ ν
˜Gm

θim (x), 0 ≤ α, β, γ ≤ 1

x ∈ X , ∀ i = 1, 2, . . . , p.

(3.19)

Suppose that (x∗m, φ∗m) is an efficient solution of (3.19)
with φ∗m = min (φ∗1, φ∗2, . . . , φ∗τ ). Also, assume that the
extended concept (Bellman and Zadeh 1970) is used in the
neutrosophic hesitant fuzzy environment.

Optimize Hp(x)
s.t . x ∈ X .

(3.20)

Equivalently, the problem (3.20) can be rewritten as follows:

Maximize φ (φ = α − β − γ )

s.t. μ
˜Gi

ki (x) ≥ α, λ
˜Gi

ki (x) ≤ β

ν
˜Gi

ki (x) ≤ γ, μ
˜Gi

ki (x) ≥ λ
˜Gi

ki (x)

μ
˜Gi

ki (x) ≥ ν
˜Gi

ki (x), 0 ≤ α, β, γ ≤ 1

x ∈ X , ∀ i = 1, 2, . . . , p, ki = 1, 2, . . . , li .

(3.21)

Theorem 3 The problems (3.19) and (3.21) have the equal
optimal objective values.
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Proof Assume that (x∗, φ∗) and (x∗m, φ∗m) are the optimal
solution of (3.21) and (3.19), respectively. Our aim is to prove
φ∗ = φ∗m or consequently

Optimum Hp(x
∗) =

⎧

⎪

⎨

⎪

⎩

max min {μ
˜Gi

θim (x∗m)}pi=1

min max {λ
˜Gi

θim (x∗m)}pi=1

min max {ν
˜Gi

θim (x∗m)}pi=1

(3.22)

Firstly, we have to show that φ∗ ≤ φ∗m . A feasible solu-
tion for (3.21) is a subset of (3.16). In particular, a feasible
solution for (3.16) is a subset of (3.19). Thus, φ∗ ≤ φ∗m or
correspondingly

Optimum Hp(x
∗) ≤

⎧

⎪

⎨

⎪

⎩

max min {μ
˜Gi

θim (x∗m)}pi=1

min max {λ
˜Gi

θim (x∗m)}pi=1

min max {ν
˜Gi

θim (x∗m)}pi=1

(3.23)

Now, it should be shown that φ∗m ≤ φ∗. The problem (3.18)
obtains the pessimistic NHFPOS, for all r ∈ {1, 2, . . . , τ },
we get φ∗m ≤ φ∗r or equivalently

max min {μ
˜Gi

θim (x∗m)}pi=1 ≤ max min {μ
˜Gi

θir (x
∗r )}pi=1

∀ r ∈ {1, 2, . . . , τ },
min max {λ

˜Gi
θim (x∗m)}pi=1 ≥ min max {λ

˜Gi
θir (x

∗r )}pi=1
∀ r ∈ {1, 2, . . . , τ },

min max {ν
˜Gi

θim (x∗m)}pi=1 ≥ min max {ν
˜Gi

θir (x
∗r )}pi=1

∀ r ∈ {1, 2, . . . , τ }.
Therefore, it is obvious that

Optimum Hp(x
∗) ≥

⎧

⎪

⎨

⎪

⎩

max min {μ
˜Gi

θim (x∗m)}pi=1

min max {λ
˜Gi

θim (x∗m)}pi=1

min max {ν
˜Gi

θim (x∗m)}pi=1

(3.24)

Therefore φ∗m ≤ φ∗r . Thus, the two inequalities in Eqs.
(3.23) and (3.24) confirm that φ∗ = φ∗m . Hence, Theorem 3
is proved.

In optimization technique-II, the weighted arithmetic-
mean score functionofNHFEsμDN

h
(x), λDN

h
(x) and νDN

h
(x)

is used to achieve the optimal solution and formulated a prob-
lem that gives a NHFPOS to the NHFMOPP.

3.3 Proposed optimization technique-II

Let us consider that DM(s) intends to solve NHFMOPP
(3.12). Then, the arithmetic-mean score function of each
μDN

h
(x), λDN

h
(x) and νDN

h
(x) is obtained and develop prob-

lem (3.25):

max (χ(μ
˜G1

(x)), χ(μ
˜G2

(x)), . . . , χ(μ
˜Gp

(x)))

−min (χ(λ
˜G1

(x)), χ(λ
˜G2

(x)),
. . . , χ(λ

˜Gp
(x))) − min (χ(ν

˜G1
(x)), χ(ν

˜G2
(x)),

. . . , χ(ν
˜Gp

(x)))

(3.25)

where χ(μ
˜Gi

(x)) =
∑li

j=1 μ
˜

G
j
i

(x)

li
, χ(λ

˜Gi
(x)) =

∑li
j=1 λ

˜

G
j
i

(x)

li

and χ(ν
˜Gi

(x)) =
∑li

j=1 ν
˜

G
j
i

(x)

li
are the arithmetic-mean score

function of μ
˜Gi

(x), λ
˜Gi

(x) and ν
˜Gi

(x), respectively.
To solve the problem (3.25), we have used the weighted

sum method. The problem (3.25) can be re-formulated as
follows (3.26):

max
p

∑

i=1

wi

[

χ(μ
˜Gi

(x)) − χ(λ
˜Gi

(x)) − χ(ν
˜Gi

(x)
]

(3.26)

where w = (w1, w2, . . . , wp) is a vector of positive weights
in such a way that

∑p
i=1 wi = 1. Theorem 4 permits to solve

only a single-objective mathematical programming rather
NHFMOPP (3.12).

Theorem 4 Suppose that w = (w1, w2, . . . , wp) is a vector
of nonnegative weights prescribed to the objectives, in such
a way that

∑p
i=1 wi = 1. If x∗ is an optimal solution for

(3.26), then < x∗, Hp(x∗) | x∗ ∈ X > is a NHFPOS for the
NHFMOPP.

Proof Assume that < x∗, Hp(x∗) | x∗ ∈ X > is not
NHFPOS for the NHFMOPP. Thus, there exists an <

x, Hp(x) | x ∈ X > such that μ
˜G
ki
i
(x) ≥ μ

˜G
ki
i
(x∗r ),

λ
˜G
ki
i
(x) ≤ λ

˜G
ki
i
(x∗r ) and ν

˜G
ki
i
(x) ≤ ν

˜G
ki
i
(x∗r ) for all

i = 1, 2, . . . , p, ki = 1, 2, . . . , li , and μ
˜G
k j
j

(x) >

μ
˜G
k j
j

(x∗r ), λ
˜G
k j
j

(x) < λ
˜G
k j
j

(x∗r ) and ν
˜G
k j
j

(x) < ν
˜G
k j
j

(x∗r )

for at least one j ∈ {1, 2, . . . , p} and k j = 1, 2, . . . , l j . All
weights are nonnegative, and we get

∑p
i=1 wiχ(μ

˜Gi
(x)) >

∑p
i=1 wiχ(μ

˜Gi
(x∗))

∑p
i=1 wiχ(λ

˜Gi
(x)) <

∑p
i=1 wiχ(λ

˜Gi
(x∗))

∑p
i=1 wiχ(ν

˜Gi
(x)) <

∑p
i=1 wiχ(ν

˜Gi
(x∗))

(3.27)

All the inequalities in Eq. (3.27) contradict the optimality of
x∗ for (3.26). Thus, Theorem 4 is proven.

4 Computational study

The proposed optimization techniques are applied to three
real-life optimization problems, such as manufacturing, sys-
tem design, and production planning. All the multiobjective
mathematical programming problems, as discussed in exam-
ples, are coded in SAS/OR software; see (Rodriguez 2011;
Ruppert 2004).

4.1 Manufacturing system problem

Example 1 (seeAhmad et al. 2018; Singh andYadav 2015): A
manufacturing factory intends to produce three types of prod-
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ucts P1, P2, and P3 in a specified period (say one year). The
production processes of P1, P2 and P3 need three different
kinds of resources R1, R2 and R3. The total requirements of
each resource for product P1 are 2, 3, and4units, respectively.
To produce each product P2, each kind of resource require-
ment is around 4, 2, and 2 units, whereas each unit of P3
requires 3, 2, and 3 units approximately. The total availability
of resource R1 and R2 is around 325 and 360 units, respec-
tively. However, around 30 and 20 units of the additional
stock are stored in resources monitored by the factory man-
ager’s manager. To provide a better quality to the products, at
least 365 units of resource, R3, should be utilized. Moreover,
an additional 20 units of resource R3 are administrable by the
managerial board at the time of emergency. The estimated
completion time for each unit of products P1, P2, and P3 are
prescribed as 4, 5, and 6 hours, respectively. Suppose that
the production quantities of P1, P2 and P3 are x1, x2 and x3
units, respectively. Furthermore, consider that unit cost and
sale’s price of product P1, P2 and P3 are c1 = 8, c2 = 10.125
and c3 = 8, and; s1 = 99.875

x−1/2
1

, s2 = 119.875
x−1/2
2

and s3 = 95.125
x−1/3
3

,

respectively. The manager wants to maximize the profit and
minimize the total time requirement. Thus, the mathematical

programming formulations result in the nonlinear program-
ming problem (4.1) and can be presented as follows:

Min O1(x) −99.875x
1
2
1 + 8x1 − 119.875x

1
2
2 + 10.125x2

−95.125x
1
3
3 + 8x3

Min O2(x) 3.875x1 + 5.125x2 + 5.9375x3

s.t.

2.0625x1 + 3.875x2 + 2.9375x3 ≤ 333.125

3.875x1 + 2.0625x2 + 2.0625x3 ≤ 365.625

2.9375x1 + 2.0625x2 + 2.9375x3 ≥ 360

x1, x2, x3 ≥ 0. (4.1)

On solving the problem (4.1), we get the individual mini-
mum and maximum values U1 = −180.72, L1 = −516.70,
L2 = 599.23 and U2 = 620.84 for each objective function,
respectively. Initially, assume that one expert has provided
his aspiration levels for the first objective and can be given
by the following three membership functions:

μG1
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if O1(x) ≤ −516.70

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−516.70)t

(−516.70)t−(−180.72)t if − 516.70 ≤ O1(x) ≤ −180.72
0 if O1(x) ≥ −180.72

(4.2)

λG1
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if O1(x) ≤ −516.70 − y1

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−516.70)t

(y1)t
if − 516.70 − y1 ≤ O1(x) ≤ −516.70

0 if O1(x) ≥ −516.70

(4.3)

νG1
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if O1(x) ≤ −516.70 + z1

(−180.72)t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t

(−180.72)t−(−516.70)t−(z1)t
if − 516.70 + z1 ≤ O1(x) ≤ −180.72

1 if O1(x) ≥ −180.72

(4.4)

One DM or expert also provides the aspiration levels for the
second objective, which expressed his neutrosophic fuzzy
goals by the following three membership functions:

μG1
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 599.23
(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(620.84)t−(599.23)t if 599.23 ≤ O2(x) ≤ 620.84
0 if O2(x) ≥ 620.84

(4.5)

λG1
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 599.23 − y2
(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(y2)t
if 599.23 − y2 ≤ O2(x) ≤ 599.23

0 if O2(x) ≥ 599.23

(4.6)
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νG1
2
(x) =

⎧

⎪

⎨

⎪

⎩

0 if O2(x) ≤ 599.23 + z2
(3.875x1+5.125x2+5.9375x3)t−(599.23)t−(t2)t

(620.84)t−(599.23)t−(z2)t
if 599.23 + z2 ≤ O2(x) ≤ 620.84

1 if O2(x) ≥ 620.84

(4.7)

Using the problem (3.10), the equivalent neutrosophic
decision-making problem can be stated as follows (4.8):

Maximize φ (φ = α − β − γ )

s.t.
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−180.72)t

(−516.70)t−(−180.72)t ≥ α

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−180.72)t

(y1)t
≤ β

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−180.72)t

(−516.70)t−(−180.72)t−(z1)t
≤ γ

(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(620.84)t−(599.23)t ≥ α

(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(y2)t
≤ β

(3.875x1+5.125x2+5.9375x3)t−(599.23)t−(t2)t

(620.84)t−(599.23)t−(z2)t
≤ γ

constraints (4.46)

(4.8)

At t = 2, the optimal solution of (4.8) is x = (60.48, 5.26,
58.37), O1 = 409.70, O2 = 607.28 with the degree of
satisfaction φ∗ = 0.62, respectively. It should be noted that
φ∗ = 0.62 represents the overall satisfaction of neutrosophic
fuzzy goals of the DM which is 62%. Furthermore, assume
that three other DMs or experts contributed to decision-
making processes. One DM provides his thought about the
first objective function, and two DMs provide their comment
about the secondobjective function under a neutrosophic hes-
itant fuzzy environment. The DM or expert’s neutrosophic,
hesitant fuzzy goals for first objective function are expressed
by the different membership functions as follows:

μG2
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if O1(x) ≤ −523.48

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−523.48)t

(−162.24)t−(−523.48)t if − 523.48 ≤ O1(x) ≤ −162.24
0 if O1(x) ≥ −162.24

(4.9)

λG2
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if O1(x) ≤ −162.24 − y1

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t−(−162.24)t

(y1)t
if − 162.24 − y1 ≤ O1(x) ≤ −162.24

0 if O1(x) ≥ −162.24

(4.10)

νG2
1
(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if O1(x) ≤ −523.48 + z1

(−162.24)t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)t

(−162.24)t−(−523.48)t−(z1)t
if − 523.48 + z1 ≤ O1(x) ≤ −162.24

1 if O1(x) ≥ −162.24

(4.11)

The neutrosophic hesitant fuzzy goals of the DMs or experts
for second objective functions are expressed by the different
membership functions as follows:
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μG2
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 482.35
(631.54)t−(3.875x1+5.125x2+5.9375x3)t

(631.54)t−(482.35)t if 482.35 ≤ O2(x) ≤ 631.54
0 if O2(x) ≥ 631.54

(4.12)

λG2
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 631.54 − y2
(631.54)t−(3.875x1+5.125x2+5.9375x3)t

(y2)t
if 631.54 − y2 ≤ O2(x) ≤ 631.54

0 if O2(x) ≥ 631.54

(4.13)

νG2
2
(x) =

⎧

⎪

⎨

⎪

⎩

0 if O2(x) ≤ 482.35 + z2
(3.875x1+5.125x2+5.9375x3)t−(482.35)t−(z2)t

(631.54)t−(482.35)t−(z2)t
if 482.35 + z2 ≤ O2(x) ≤ 631.54

1 if O2(x) ≥ 631.54

(4.14)

μG3
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 572.06
(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(620.84)t−(572.06)t if 572.06 ≤ O2(x) ≤ 620.84
0 if O2(x) ≥ 620.84

(4.15)

λG3
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 620.84 − y2
(620.84)t−(3.875x1+5.125x2+5.9375x3)t

(y2)t
if 620.84 − y2 ≤ O2(x) ≤ 620.84

0 if O2(x) ≥ 620.84

(4.16)

νG3
2
(x) =

⎧

⎪

⎨

⎪

⎩

0 if O2(x) ≤ 572.06 + z2
(3.875x1+5.125x2+5.9375x3)t−(572.06)t−(z2)t

(620.84)t−(572.06)t−(z2)t
if 572.06 + z2 ≤ O2(x) ≤ 620.84

1 if O2(x) ≥ 620.84

(4.17)

Thus, we have neutrosophic hesitant fuzzy decision set as
follows:

˜G1 = {x, h
˜G1

(x) | x ∈ X}, ˜G2 = {x, h
˜G2

(x) | x ∈ X}

where X is a feasible solution region and

h
˜G1

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G1

(x) = {μG1
1
(x), μG2

1
(x)}

λ
˜G1

(x) = {λG1
1
(x), λG2

1
(x)}

ν
˜G1

(x) = {νG1
1
(x), νG2

1
(x)}

and h
˜G2

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G2

(x) = {μG1
2
(x), μG2

2
(x), μG3

2
(x)}

λ
˜G2

(x) = {λG1
2
(x), λG2

2
(x), λG3

2
(x)}

ν
˜G2

(x) = {νG1
2
(x), νG2

2
(x), νG3

2
(x)}

(4.18)

In the optimization technique-I, the neutrosophic hesitant
fuzzy decision (Example 1) is stated as below:

DN
h = ˜G1 ∩ ˜G2 = {x, hDN

h
(x) | x ∈ X}

with

hDN
h
(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μ
˜Gi

(x) =
{

min {μG1
1
(x), μG1

2
(x)}, min {μG1

1
(x), μG2

2
(x)}, min {μG1

1
(x), μG3

2
(x)}

min {μG2
1
(x), μG1

2
(x)}, min {μG2

1
(x), μG2

2
(x)}, min {μG2

1
(x), μG3

2
(x)}

λ
˜Gi

(x) =
{

max {λG1
1
(x), λG1

2
(x)}, max {λG1

1
(x), λG2

2
(x)}, max {λG1

1
(x), λG3

2
(x)}

max {λG2
1
(x), λG1

2
(x)}, max {λG2

1
(x), λG2

2
(x)}, max {λG2

1
(x), λG3

2
(x)}

ν
˜Gi

(x) =
{

max {νG1
1
(x), νG1

2
(x)}, max {νG1

1
(x), νG2

2
(x)}, max {νG1

1
(x), νG3

2
(x)}

max {νG2
1
(x), νG1

2
(x)}, max {νG2

1
(x), νG2

2
(x)}, max {νG2

1
(x), νG3

2
(x)}

(4.19)
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for each x ∈ X . Now, our aim is to maximize the truth
μ

˜Gi
(x) hesitant membership function and minimization of

indeterminacy λ
˜Gi

(x) and falsity ν
˜Gi

(x) hesitant mem-
bership functions of hDN

h
(x), respectively. The obtained

NHFPOSs are summarized in Table 1. Also, the optimistic
and pessimistic NHFPOSs with other approaches discussed
in Ahmad et al. (2018); Singh and Yadav (2015) are shown
in Table 2.

Using Remark 4, the pessimistic NHFPOSs are given in
(4.20):

Optimize H2(x)

=

⎧

⎪

⎨

⎪

⎩

max min {μG1
1
(x), μG2

1
(x), μG1

2
(x), μG2

2
(x), μG3

2
(x)}

min max {λG1
1
(x), λG2

1
(x), λG1

2
(x), λG2

2
(x), λG3

2
(x)}

min max {νG1
1
(x), νG2

1
(x), νG1

2
(x), νG2

2
(x), νG3

2
(x)}

s.t . x ∈ X . (4.20)

The optimal solution of problem (4.20) is obtained as x∗ =
(60.48, 5.26, 58.37), and φ∗ = 0.96 with objective func-
tions values O1 = 288.86, O2 = 599.64 which is the
pessimistic NHFPOSs as depicted in Table 2.

Furthermore, suppose that O1 first objective is more
important than O2 second, such that w1 = 0.65 and w2 =
0.35, then by implementing the optimization technique-II we
have obtained the following problem (4.21):

max 0.65

(

μ
G1
1
(x)+μ

G2
1
(x)−λ

G1
1
(x)−λ

G2
1
(x)−ν

G1
1
(x)−ν

G2
1
(x)

2

)

+0.35

(

μ
G1
2
(x)+μ

G2
2
(x)+μ

G3
2
(x)−λ

G1
2
(x)−λ

G2
2
(x)−λ

G3
2
(x)−ν

G1
2
(x)−ν

G2
2
(x)−ν

G3
2
(x)

3

)

s.t . x ∈ X .

(4.21)

On solving the problem (4.21), we have obtained the optimal
solution x∗ = (60.48, 5.26, 58.37), and φ∗ = 0.99 with
objective functions values O1 = 409.70, O2 = 607.28.
According to Theorem 4, < x∗, Hp(x∗) | x∗ ∈ X > is a
NHFPOS.

4.2 System design problem

Example 2 (see Sakawa 2013, Rouhbakhsh et al. 2020):
Suppose that a park consists of six machine types with dif-
ferent capacities available to the production of three unique
products, say P1, P2, and P3, respectively. All the relevant
information is summarized in Table 3. The decision-maker(s)
intended to develop and optimize the three different objec-
tives, (i) total profits, (ii) quality of the products, and (iii)
worker satisfaction.

Assume that x1, x2, and x3 be the optimal number of each
product types that are to be produced. Thus, themathematical
formulations of multiobjective programming problem (4.22)
can be given as follows:

Max O1(x) = 50x1 + 100x2 + 17.5x3 (Total prof i ts)
Max O2(x) =92x1+75x2+50x3 (Quali t y o f the products)
Max O2(x) = 25x1 + 100x2 + 75x3 (Worker satis f action)

s.t .
12x1 + 17x2 ≤ 1400
3x1 + 9x2 + 8x3 ≤ 1000
10x1 + 13x2 + 15x3 ≤ 1750
9.5x1 + 9.5x2 + 4x3 ≤ 1075
6x1 + 16x3 ≤ 1325
12x2 + 7x3 ≤ 900
x1, x2, x3 ≥ 0.

(4.22)

We would like to examine this problem under the neutro-
sophic hesitant fuzzy environment. On solving the problem
(4.22), we get the individual minimum and maximum values
for each objective functions L1 = 5452.63, L2 = 10020.33,
L3 = 5903, U1 = 8041.14, U2 = 10950.59 and U3 =
9355.90, respectively. Assume that one expert provides the
aspiration levels for the first objective:

μG1
1
(x)

=
⎧

⎨

⎩

0 if O1(x) ≤ 5452.63
O1(x)−5452.63

2588.51 if 5452.63 ≤ O1(x) ≤ 8041.14
1 if O1(x) ≥ 8041.14

(4.23)

λG1
1
(x)

=
⎧

⎨

⎩

0 if O1(x) ≤ 5452.63
O1(x)−5452.63

y1
if 5452.63 ≤ O1(x) ≤ 5452.63 + y1

1 if O1(x) ≥ 5452.63 + y1

(4.24)
νG1

1
(x)

=
⎧

⎨

⎩

1 if O1(x) ≤ 5452.63 + z1
8041.14−O1(x)−z1

2588.51−z1
if 5452.63 + z1 ≤ O1(x) ≤ 8041.14

0 if O1(x) ≥ 8041.14

(4.25)

Furthermore, consider that three experts provide the aspira-
tion levels for the second objective which expressed their
neutrosophic hesitant fuzzy goals by the following member-
ship functions:
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Table 1 Example 1: Optimal solution results of NHFPOSs to NHFMOPP using optimization techniques

Solution method Objective values Deviations from ideal solutions Satisfactory degree

Max. O1 Min. O2 (U1 − Z1) (Z2 − L2)

Zimmerman’s technique
Singh and Yadav
(2015)

409.70 607.28 107 8.05 λ= 0.62

γ - operator Singh and
Yadav (2015)

288.86 599.64 227.84 0.41(min.) δ(x)= 0.96

Min. bounded sum
operator Singh and
Yadav (2015)

416.58 607.88 100.12 8.65 ψ(x)= 0.99

NHFPA Ahmad et al.
(2018)

416.58 607.88 100.12 8.65 χ= 0.99

Proposed optimistic
NHFPOSs

416.58 607.88 100.12(min.) 8.65 φ∗M= 1.20 (max.)

Proposed pessimistic
NHFPOSs

288.86 599.64 100.12 8.65 φ∗m= 0.96

Table 2 Example 1: The optimal solutions of six problems, to obtain NHFPOS of NHFMOPP using optimization technique-I

r th-problem Objective function values

(

μ
˜

G j
i

(x∗r ); λ
˜

G j
i

(x∗r ); ν
˜

G j
i

(x∗r )
)

φ∗r

Max. O1 Min. O2

1st-problem 409.70 607.28 (0.65, 0.50, 0.71, 0.23, 0.38;
0.59, 0.69, 0.68, 0.71, 0.67;
0.81, 0.62, 0.77, 0.81, 0.67)

0.62

2nd-problem 288.86 599.64 (0.38, 0.42, 0.64, 0.51, 0.36;
0.64, 0.82, 0.73, 0.67, 0.57;
0.61, 0.47, 0.57, 0.69, 0.71)

0.96

3rd-problem 416.58 607.88 (0.64, 0.84, 0.62, 0.54, 0.64;
0.63, 0.76, 0.58, 0.57, 0.69;
0.48, 0.71, 0.67, 0.75, 0.58)

1.20

4th-problem 438.24 616.87 (0.87, 0.57, 0.65, 0.71, 0.84;
0.67, 0.81, 0.49, 0.52, 0.65;
0.32, 0.53, 0.66, 0.59, 0.74)

0.71

5th-problem 419.52 609.47 (0.41, 0.29, 0.68, 0.34, 0.41;
0.29, 0.56, 0.71, 0.48, 0.58;
0.69, 0.71, 0.68, 0.78, 0.82)

0.77

6th-problem 301.24 601.24 (0.83, 0.59, 0.67, 0.46, 0.75;
0.67, 0.37, 0.44, 0.59, 0.69;
0.77, 0.81, 0.62, 0.74, 0.87)

0.69

Table 3 Example 2: Total
available capacities and
technological coefficients

Types of machine Availability (in hours) Unit price Products

P1 P2 P3

Milling machine 1400 0.75 12 17 00

Lathe 1000 0.60 03 09 08

Grinder 1750 0.35 10 13 15

Jig saw 1325 0.50 06 00 16

Drill press 900 1.15 00 12 07

Band saw 1075 0.65 9.5 9.5 04

Capacity cost 4658.75
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μG1
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 10020.33
O2(x)−10020.33

930.26 if 10020.33 ≤ O2(x) ≤ 10950.59
1 if O2(x) ≥ 10950.59

(4.26)

λG1
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 10020.33
O2(x)−10020.33

y2
if 10020.33 ≤ O2(x) ≤ 10020.33 + y2

1 if O2(x) ≥ 10020.33 + y2

(4.27)

νG1
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 10020.33 + z2
10950.59−O2(x)−z2

930.26−z2
if 10020.33 + z2 ≤ O3(x) ≤ 10950.59

0 if O2(x) ≥ 10950.59

(4.28)

μG2
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 7300
O2(x)−7900

3600 if 7300 ≤ O2(x) ≤ 10900
1 if O2(x) ≥ 10900

(4.29)

λG2
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 7300
O2(x)−7300

y2
if 7300 ≤ O2(x) ≤ 10900 + y2

1 if O2(x) ≥ 10900 + y2

(4.30)

νG2
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 7300 + z2
10900−O2(x)−z2

3600−z2
if 7300 + z2 ≤ O2(x) ≤ 10900

0 if O2(x) ≥ 10900
(4.31)

μG3
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 8300
O2(x)−8300

1000 if 8300 ≤ O2(x) ≤ 9300
1 if O2(x) ≥ 9300

(4.32)

λG3
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 8300
O2(x)−8300

y2
if 8300 ≤ O2(x) ≤ 8300 + y2

1 if O2(x) ≥ 8300 + y2

(4.33)

νG3
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 8300 + z2
9300−O2(x)−z2

1000−z2
if 8300 + z2 ≤ O2(x) ≤ 9300

0 if O2(x) ≥ 9300
(4.34)

Also, consider that two experts provide the aspiration levels
for the second objective which expressed their neutrosophic
hesitant fuzzy goals by the following membership functions:

μG1
3
(x) =

⎧

⎨

⎩

0 if O3(x) ≤ 5903
O3(x)−5903
3452.90 if 5903 ≤ O3(x) ≤ 9355.90

1 if O3(x) ≥ 9355.90
(4.35)

λG1
3
(x) =

⎧

⎨

⎩

0 if O3(x) ≤ 5903
O3(x)−5903

y3
if 5903 ≤ O3(x) ≤ 5903 + y3

1 if O3(x) ≥ 5903 + y3

(4.36)

νG1
3
(x) =

⎧

⎨

⎩

1 if O3(x) ≤ 5903 + z3
9355.90−O3(x)−z3

3452.90−z3
if 5903 + z3 ≤ O3(x) ≤ 9355.90

0 if O3(x) ≥ 9355.90

(4.37)

μG2
3
(x) =

⎧

⎨

⎩

0 if O3(x) ≤ 7400
O3(x)−7400

2300 if 7400 ≤ O3(x) ≤ 9700
1 if O3(x) ≥ 9700

(4.38)

λG3
2
(x) =

⎧

⎨

⎩

0 if O3(x) ≤ 7400
O3(x)−7400

y3
if 7400 ≤ O3(x) ≤ 7400 + y3

1 if O3(x) ≥ 7400 + y3

(4.39)

νG2
3
(x) =

⎧

⎨

⎩

1 if O3(x) ≤ 7400 + z3
9700−O3(x)−z3

2300−z3
if 7400 + z3 ≤ O3(x) ≤ 9700

0 if O3(x) ≥ 9700

(4.40)

Hence, we have neutrosophic hesitant fuzzy decision set as
follows:

˜G1 = {x, h
˜G1

(x) | x ∈ X}, ˜G2 = {x, h
˜G2

(x) | x ∈ X},
˜G3 = {x, h

˜G3
(x) | x ∈ X}

where X is a feasible solution region and

h
˜G1

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G1

(x) = {μG1
1
(x)}

λ
˜G1

(x) = {λG1
1
(x)}

ν
˜G1

(x) = {νG1
1
(x)}

(4.41)

h
˜G2

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G2

(x) = {μG1
2
(x), μG2

2
(x), μG3

2
(x)}

λ
˜G2

(x) = {λG1
2
(x), λG2

2
(x), λG3

2
(x)}

ν
˜G2

(x) = {νG1
2
(x), νG2

2
(x), νG3

2
(x)}

(4.42)

h
˜G3

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G3

(x) = {μG1
3
(x), μG2

3
(x)}

λ
˜G3

(x) = {λG1
3
(x), λG2

3
(x)}

ν
˜G3

(x) = {νG1
3
(x), νG2

3
(x)}

(4.43)

In the optimization technique-I, the neutrosophic hesitant
fuzzy decision (Example 2) can be stated:

DN
h = ˜G1 ∩ ˜G2 ∩ ˜G3 = {x, hDN

h
(x) | x ∈ X}

Intuitionally, our intention is to maximize the truth μ
˜Gi

(x)
hesitant membership function and minimization of inde-
terminacy λ

˜Gi
(x) and falsity ν

˜Gi
(x) hesitant membership

functions of hDN
h
(x), respectively. The obtained NHFPOSs

of NHFMOPP using optimization technique-I are sum-
marized in Table 4. Also, the optimistic and pessimistic
NHFPOSs are shown in Table 5.

With the aid of Remark 4, the pessimistic NHFPOSs are
obtained by solving (4.44):

Optimize H2(x)

=

⎧

⎪

⎨

⎪

⎩

max min {μG1
1
(x), μG1

2
(x), μG2

2
(x), μG3

2
(x), μG1

3
(x), μG2

3
(x)}

min max {λG1
1
(x), λG1

2
(x), λG2

2
(x), λG3

2
(x), λG1

3
(x), λG2

3
(x)}

min max {νG1
1
(x), νG1

2
(x), νG2

2
(x), νG3

2
(x), νG1

3
(x), νG2

3
(x)}

s.t . x ∈ X . (4.44)

The optimal solution of problem (4.44) is obtained as x∗ =
(54.97, 38.56, 46.59), and φ∗ = 0.58 with objective func-
tions values O1 = 7419.82, O2 = 10278.74 and O3 =
8724.50 which is the pessimistic NHFPOSs as depicted in
Table 5.

Moreover, assume that the three different weighting
schemes, such as (w1 = 0.6, w2 = 0.2, w3 = 0.2),
(w1 = 0.2, w2 = 0.6, w3 = 0.2) and (w1 = 0.2, w2 = 0.2,
w3 = 0.6), then by applying the optimization technique-II
we have obtained the following problem (4.45):
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Table 4 Example 2: The
optimal solutions of NHFMOPP
using optimization technique-I

r th-problem x∗r = (x∗r
1 , x∗r

2 , x∗r
3 ) O∗

1 O∗
2 O∗

3 φ∗r

1st-problem (45.22, 49.61, 43.52) 7983.60 10056.99 9355.50 0.64

2nd-problem (45.05, 50.29, 42.31) 8021.69 10032.06 9331.43 0.85

3rd-problem (70.76, 20.68, 51.57) 6508.55 10639.84 7704.49 0.62

4th-problem (54.97, 38.56, 46.59) 7419.82 10278.74 8724.50 0.58

5th-problem (46.23, 48.46, 43.84) 7924.70 10079.66 9289.75 0.60

6th-problem (52.51, 41.35, 45.81) 7562.17 10222.67 8883.50 0.64

Table 5 Example 2: Optimistic and pessimistic NHFPOSs of NHFMOPP

Methods Satisfaction level O∗
1 O∗

2 O∗
3

Optimistic HFPOSs Rouhbakhsh et al. (2020) λ∗M=0.84 8021.62 10032.01 9331.00

Pessimistic HFPOSs Rouhbakhsh et al. (2020) λ∗m=0.56 7845.72 10110.95 9201.25

Proposed optimistic NHFPOSs φ∗M=0.85 8021.69 10032.06 9331.43

Proposed pessimistic NHFPOSs φ∗m=0.58 7419.82 10278.74 8724.50

max w1

(

μG1
1
(x) − λG1

1
(x) − νG1

1
(x)

)

+w2

(

μ
G1
2
(x)+μ

G2
2
(x)+μ

G3
2
(x)−λ

G1
2
(x)−λ

G2
2
(x)−λ

G3
2
(x)−ν

G1
2
(x)−ν

G2
2
(x)−ν

G3
2
(x)

3

)

+w3

(

μ
G1
3
(x)+μ

G2
3
(x)−λ

G1
3
(x)−λ

G2
3
(x)−ν

G1
3
(x)−ν

G2
3
(x)

2

)

s.t . x ∈ X .

(4.45)

On solving the problem (4.45), we get the optimal solution
at different weights summarized in Table 6. According to
Theorem 4, < x∗, Hp(x∗) | x∗ ∈ X > is a NHFPOS.
Furthermore, the comparative study of problem (Example
2) is performed with other existing methods and depicted in
Table 7. However, the solution outcomes determined by our
proposed optimization techniques are quite better, but it can-
not be claimed that our techniques are always outperformed,
because it depends on the experience and opinion of various
experts, but it can be stated that our results are much nearer
to reality because we have utilized the opinions of several
experts with degrees of neutral thoughts in decision-making
processes.

4.3 Production planning problem

Example 3 (see Zeleny 1986, Rouhbakhsh et al. 2020): A
production company produces two different items I1 and I2
by using three different raw materials R1, R2 and R3 and
intends to maximize the total profit after-sales. The different
input data of resources required to produce each unit of I1 and
I2 are summarized in Table 8. The maximum capacity avail-
able materials are restricted to 27, 45, and 15 tons for each
R1, R2, and R3, respectively. The individual profit incurred

over each product is also well-known in advance and such
that item I1 yields a profit of 1 million yen per ton, whereas
I2 incurs a profit of 2 million yen per ton. Under the available
resources, the company aims to determine the optimal pro-
duction policy of each unit of items I1 and I2 in such a way
that the overall profit is maximum. Furthermore, it should be
kept in mind that the item I1 releases three units of pollu-
tion per ton, while I2 generates two units of pollutions per
ton. Therefore, it is indispensable for the decision-maker(s)
or experts to not only enhance the total profit but also reduce
the amount of pollution.

Assume that x1 and x2 represent the number of tonnes
produced of each items I1 and I2, respectively. Therefore,
the mathematical formulations of the production planning
problem can be given as follows (4.46):

Min O1(x) = −x1 − 2x2
Min O2(x) = 3x1 + 2x2
s.t .

2x1 + 6x2 ≤ 27
3x1 + x2 ≤ 15
8x1 + 6x2 ≤ 45
x1, x2 ≥ 0.

(4.46)
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Table 6 Example 2: The
optimal solutions of NHFMOPP
with different weights using
optimization technique-II

Weights Decision variables Objective functions

(w1, w2, w3) (x∗
1 , x∗

2 , x∗
3 ) O∗

1 O∗
2 O∗

3

(0.6, 0.2, 0.2) (44.94, 50.63, 41.77) 8040.97 10020.23 9319.25

(0.2, 0.6, 0.2) (45.22, 49.61, 43.52) 7983.60 10056.99 9355.50

(0.2, 0.2, 0.6) (52.51, 41.35, 45.81) 7562.17 10222.67 8883.50

Table 7 Example 2: Solution results comparison with other approaches

Different methods Total profits O∗
1 Quality O∗

2 Worker satisfaction O∗
3

Fuzzy method Bharati (2018) 6826.79 10514.17 8060.73

Intuitionistic fuzzy method Bharati
(2018)

7217.97 10359.73 8498.60

Interval-valued intuitionistic fuzzy
method Bharati and Singh (2018)

7769.64 10141.91 9116.10

Hesitant fuzzy method Bharati
(2018)

6508.54 10639.84 7704.50

Optimistic HFPOSs λ∗M=0.84
Rouhbakhsh et al. (2020)

8021.62 10032.01 9331.00

Pessimistic HFPOSs λ∗m=0.56
Rouhbakhsh et al. (2020)

7845.72 10110.95 9201.25

Second method
(w1 = 0.2, w2 = 0.7, w3 = 0.1)
Rouhbakhsh et al. (2020)

7983.60 10056.99 9355.50

Proposed optimistic NHFPOSs
φ∗M=0.85

8021.69 10032.06 9331.43

Proposed pessimistic NHFPOSs
φ∗m=0.58

7419.82 10278.74 8724.50

Proposed optimization technique-II
(w1 = 0.2, w2 = 0.6, w3 = 0.2)

7983.60 10056.99 9355.50

After solving the problem (4.46), we have obtained the indi-
vidual minimum and maximum values for each objective
functions L1 = −10, L2 = 0, U1 = 0 and U2 = 16.5,
respectively.

μG1
1
(x) =

⎧

⎨

⎩

1 if O1(x) ≤ −10
O1(x)−(−8)

−2 if − 10 ≤ O1(x) ≤ −8
0 if O1(x) ≥ −8

(4.47)

λG1
1
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O1(x) ≤ −10 − y1
O1(x)−(−10−y1)

y1
if − 10 − y1 ≤ O1(x) ≤ −10

0 if O1(x) ≥ −10

(4.48)

νG1
1
(x) =

⎧

⎨

⎩

0 if O1(x) ≤ −10 + z1
O1(x)−(−10+z1)

(−2+z1)
if − 10 + z1 ≤ O1(x) ≤ −8

1 if O1(x) ≥ −8

(4.49)

Also, one DM or expert provides the aspiration levels for
the second objective which expressed his neutrosophic fuzzy

Table 8 Example 3: resources input dataset

I1 I2 Total availability

R1 (ton) 2 6 27

R1 (ton) 8 6 45

R1 (ton) 3 1 15

Profit (million yen) 1 2

Pollution 3 2

goals by the following three membership functions:

μG1
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 9
O2(x)−14

−5 if 9 ≤ O2(x) ≤ 14
0 if O2(x) ≥ 14

(4.50)

λG1
2
(x) =

⎧

⎪

⎨

⎪

⎩

1 if O2(x) ≤ 9 − y2
O2(x)−(−9−y2)

y2
if 9 − y2 ≤ O2(x) ≤ 9

0 if O2(x) ≥ 9
(4.51)
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νG1
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 9 + z2
O2(x)−(9+z2)

(−5+z2)
if 9 + z2 ≤ O2(x) ≤ 14

1 if O2(x) ≥ 14
(4.52)

Using the problem (3.10), the equivalent neutrosophic
decision-making problem can be stated as follows (4.53):

Maximize φ (φ = α − β − γ )

s.t. O1(x)−(−8)
−2 ≥ α

O1(x)−(−8)
y1

≤ β

O1(x)−(−10−z1)
(−2+z1)

≤ γ

O2(x)−14
−5 ≥ α

O2(x)−14
y2

≤ β

O2(x)−(9+z2)
(−5+z2)

≤ γ

constraints (4.46)

(4.53)

The optimal solution of the bi-objective programming prob-
lem (4.53) is x∗ = (x∗

1 , x
∗
2 ) = (0.87, 4.21), O1 =

−9.29, O2 = 11.03 with the degree of satisfaction φ∗ =
0.64, respectively. It should be noted that φ∗ = 0.64 rep-
resents the overall satisfaction of neutrosophic fuzzy goals
of the DM is 64%. Furthermore, assume the neutrosophic
hesitant fuzzy goals of the DMs or experts for first objective
function are expressed by the differentmembership functions
as follows:

μG2
1
(x) =

⎧

⎨

⎩

1 if O1(x) ≤ −11
O1(x)−(−5)

−6 if − 11 ≤ O1(x) ≤ −5
0 if O1(x) ≥ −5

(4.54)

λG2
1
(x) =

⎧

⎨

⎩

1 if O1(x) ≤ −11 − y1
O1(x)−(−11−y1)

y1
if − 11 − y1 ≤ O1(x) ≤ −11

0 if O1(x) ≥ −11

(4.55)

νG2
1
(x) =

⎧

⎨

⎩

0 if O1(x) ≤ −11 + z1
O1(x)−(−11+z1)

(−6+z1)
if − 11 + z1 ≤ O1(x) ≤ −5

1 if O1(x) ≥ −5

(4.56)

μG3
1
(x) =

⎧

⎨

⎩

1 if O1(x) ≤ −12
O1(x)−(−7)

−5 if − 12 ≤ O1(x) ≤ −7
0 if O1(x) ≥ −7

(4.57)

λG3
1
(x) =

⎧

⎨

⎩

1 if O1(x) ≤ −12 − y1
O1(x)−(−12−y1)

y1
if − 12 − y1 ≤ O1(x) ≤ −12

0 if O1(x) ≥ −12

(4.58)

νG3
1
(x) =

⎧

⎨

⎩

0 if O1(x) ≤ −12 + z1
O1(x)−(−12+z1)

(−5+z1)
if − 12 + z1 ≤ O1(x) ≤ −7

1 if O1(x) ≥ −7
(4.59)

μG2
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 2
O2(x)−10

−8 if 2 ≤ O2(x) ≤ 10
0 if O2(x) ≥ 10

(4.60)

λG2
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 2 − y2
O2(x)−(2−y2)

y2
if 2 − y2 ≤ O2(x) ≤ 2

0 if O2(x) ≥ 2
(4.61)

νG2
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 2 + z2
O2(x)−(2+z2)

(−8+z2)
if 2 + z2 ≤ O2(x) ≤ 10

1 if O2(x) ≥ 10
(4.62)

μG3
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 0
O2(x)−15

−15 if 0 ≤ O2(x) ≤ 15
0 if O2(x) ≥ 15

(4.63)

λG3
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 0 − y2
O2(x)−y2

y2
if 0 − y2 ≤ O2(x) ≤ 0

0 if O2(x) ≥ 0
(4.64)

νG3
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 0 + z2
O2(x)−(z2)
(−15+z2)

if 0 + z2 ≤ O2(x) ≤ 15
1 if O2(x) ≥ 15

(4.65)

μG4
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 8
O2(x)−16.5

−8.5 if 8 ≤ O2(x) ≤ 16.5
0 if O2(x) ≥ 16.5

(4.66)

λG4
2
(x) =

⎧

⎨

⎩

1 if O2(x) ≤ 8 − y2
O2(x)−(8−y2)

y2
if 8 − y2 ≤ O2(x) ≤ 8

0 if O2(x) ≥ 8
(4.67)

νG4
2
(x) =

⎧

⎨

⎩

0 if O2(x) ≤ 8 + z2
O2(x)−(8+z2)

(−8.5+z2)
if 8 + z2 ≤ O2(x) ≤ 16.5

1 if O2(x) ≥ 16.5
(4.68)

Therefore, we have neutrosophic hesitant fuzzy decision set
as follows:

˜G1 = {x, h
˜G1

(x) | x ∈ X}, ˜G2 = {x, h
˜G2

(x) | x ∈ X}

where X is a feasible solution region and

h
˜G1

(x) =

⎧

⎪

⎨

⎪

⎩

μ
˜G1

(x) = {μG1
1
(x), μG2

1
(x), μG3

1
(x)}

λ
˜G1

(x) = {λG1
1
(x), λG2

1
(x), λG3

1
(x)}

ν
˜G1

(x) = {νG1
1
(x), νG2

1
(x), νG3

1
(x)}

and h
˜G2

(x)

=

⎧

⎪

⎨

⎪

⎩

μ
˜G2

(x) = {μG1
2
(x), μG2

2
(x), μG3

2
(x), μG4

2
(x)}

λ
˜G2

(x) = {λG1
2
(x), λG2

2
(x), λG3

2
(x), λG4

2
(x)}

ν
˜G2

(x) = {νG1
2
(x), νG2

2
(x), νG3

2
(x), νG4

2
(x)}

(4.69)

Thus, the neutrosophic hesitant fuzzy decision for this prob-
lem (Example 3) is stated as follows:

DN
h = ˜G1 ∩ ˜G2 = {x, hDN

h
(x) | x ∈ X}

with
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Table 9 Example 3: Optimal solutions of NHFMOPP using optimiza-
tion technique-I

r th-problem x∗r = (x∗r
1 , x∗r

2 ) O∗
1 O∗

2 φ∗r

1st-problem (0.79, 4.24) −9.27 10.85 0.63

2nd-problem (0, 4.3) −8.60 8.60 0.21

3rd-problem (0, 4.41) −8.82 8.82 0.41

4th-problem (0.87, 4.21) −9.29 11.03 0.64

5th-problem (0.66, 4.28) −9.22 10.54 0.71

6th-problem (0, 3.57) −7.14 7.14 0.36

7th-problem (0, 3.93) −7.86 7.86 0.48

8th-problem (0.66, 4.28) −9.22 10.54 0.71

9th-problem (0.12, 4.12) −9.36 11.6 0.47

10th-problem (0, 4.07) −8.14 8.14 0.23

11th-problem (0, 4.5) −9.00 9.00 0.40

12th-problem (1.41, 4.03) −9.47 12.29 0.49

hDN
h
(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μ
˜Gi

(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min {μG1
1
(x), μG1

2
(x)}, min {μG1

1
(x), μG2

2
(x)},

min {μG1
1
(x), μG3

2
(x)}, min {μG1

1
(x), μG4

2
(x)},

min {μG2
1
(x), μG1

2
(x)}, min {μG2

1
(x), μG2

2
(x)},

min {μG2
1
(x), μG3

2
(x)}, min {μG2

1
(x), μG4

2
(x)},

min {μG3
1
(x), μG1

2
(x)}, min {μG3

1
(x), μG2

2
(x)},

min {μG3
1
(x), μG3

2
(x)}, min {μG3

1
(x), μG4

2
(x)}

λ
˜Gi

(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max {λG1
1
(x), λG1

2
(x)}, max {λG1

1
(x), λG2

2
(x)},

max {λG1
1
(x), λG3

2
(x)}, max {λG1

1
(x), λG4

2
(x)},

max {λG2
1
(x), λG1

2
(x)}, max {λG2

1
(x), λG2

2
(x)},

max {λG2
1
(x), λG3

2
(x)}, max {λG2

1
(x), λG4

2
(x)},

max {λG3
1
(x), λG1

2
(x)}, max {λG3

1
(x), λG2

2
(x)},

max {λG3
1
(x), λG3

2
(x)}, max {λG3

1
(x), λG4

2
(x)}

ν
˜Gi

(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max {νG1
1
(x), νG1

2
(x)}, max {νG1

1
(x), νG2

2
(x)},

max {νG1
1
(x), νG3

2
(x)}, max {νG1

1
(x), νG4

2
(x)},

max {νG2
1
(x), νG1

2
(x)}, max {νG2

1
(x), νG2

2
(x)},

max {νG2
1
(x), νG3

2
(x)}, max {νG2

1
(x), νG4

2
(x)},

max {νG3
1
(x), νG1

2
(x)}, max {νG3

1
(x), νG2

2
(x)},

max {νG3
1
(x), νG3

2
(x)}, max {νG3

1
(x), νG4

2
(x)}

(4.70)

for each x ∈ X . Thus, our aim is tomaximize the truthμ
˜Gi

(x)
hesitant membership function and minimization of inde-
terminacy λ

˜Gi
(x) and falsity ν

˜Gi
(x) hesitant membership

functions of hDN
h
(x), respectively. The obtained NHFPOSs

are summarized in Table 9. The optimistic and pessimistic
NHFPOSs are depicted in Table 10 and compared with
HFPOSs (Rouhbakhsh et al. 2020).

With the aid of Remark 4, the pessimistic NHFPOSs can
be determined by solving the following problem (4.71):

Optimize H2(x)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max min {μG1
1
(x), μG2

1
(x), μG3

1
(x), μG1

2
(x), μG2

2
(x), μG3

2
(x),

μG4
2
(x)}

min max {λG1
1
(x), λG2

1
(x), λG3

1
(x), λG1

2
(x), λG2

2
(x),

λG3
2
(x), λG4

2
(x)}

min max {νG1
1
(x), νG2

1
(x), νG3

1
(x), νG1

2
(x), νG2

2
(x), νG3

2
(x),

νG4
2
(x)}

s.t . x ∈ X . (4.71)

The optimal solution of problem (4.71) is obtained as x∗ =
(0, 4.3), and φ∗ = 0.21 with objective functions values
O1 = −8.60, O2 = 8.60which is the pessimisticNHFPOSs
as depicted in Table 10.

Furthermore, suppose that O1 is more important than O2,
such that w1 = 0.75 and w2 = 0.25, then by implementing
the optimization technique-II, we have obtained the follow-
ing problem (4.72):
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Table 10 Example 3:
Optimistic and pessimistic
NHFPOSs of NHFMOPP

Methods Satisfaction level O∗
1 O∗

2

Optimistic HFPOSs Rouhbakhsh et al. (2020) λ∗M = 0.70 −9.21 10.51

Pessimistic HFPOSs Rouhbakhsh et al. (2020) λ∗m = 0.20 −8.40 8.40

Proposed optimistic NHFPOSs φ∗M = 0.71 −9.22 10.54

Proposed pessimistic NHFPOSs φ∗m = 0.21 −8.60 8.60

max 0.75

(

μ
G1
1
(x)+μ

G2
1
(x)+μ

G3
1
(x)−λ

G1
1
(x)−λ

G2
1
(x)−λ

G3
1
(x)−ν

G1
1
(x)−ν

G2
1
(x)−ν

G3
1
(x)

3

)

+0.25

(

μ
G1
2
(x)+μ

G2
2
(x)+μ

G3
2
(x)+μ

G4
2
(x)−λ

G1
2
(x)−λ

G2
2
(x)−λ

G3
2
(x)−λ

G4
2
(x)−ν

G1
2
(x)−ν

G2
2
(x)−ν

G3
2
(x)−ν

G4
2
(x)

4

)

s.t . x ∈ X .

(4.72)

On solving the problem (4.72), we have obtained the opti-
mal solution x∗ = (0, 4.2), and φ∗ = 0.2 with objective
functions values O1 = −8.40, O2 = 8.40. According to
Theorem 4, < x∗, Hp(x∗) | x∗ ∈ X > is a NHFPOS.

4.4 Computational steps and discussion

This paper investigated the two different optimization tech-
niques for MOPPs under the neutrosophic hesitant fuzzy
environment. The robustness of proposed techniques is also
presented by performing the Pareto optimality tests. The
stepwise solution algorithm for optimization technique-I is
presented as follows:

1. Elicit the differentmembership functionsμ
˜

G
ki
i

(x), λ
˜

G
ki
i

(x)

and ν
˜

G
ki
i

(x) ∀ ki = 1, 2, . . . , li DMs and develop

˜Gi = {x, μ
˜Gi

(x), λ
˜Gi

(x), ν
˜Gi

(x) | x ∈ X} such that
μ

˜Gi
(x) = {μG1

i
(x), μG2

i
(x), . . . , μ

G
li
i
(x)}, λ

˜Gi
(x) =

{λG1
i
(x), λG2

i
(x), . . . , λ

G
li
i
(x)} and ν

˜Gi
(x) = {νG1

i
(x),

νG2
i
(x), . . . , ν

G
li
i
(x)} as neutrosophic hesitant fuzzy goals

for objective function Oi ∀ i = 1, 2, . . . , p.
2. For every r = 1, 2, . . . , τ where τ = l1l2 . . . l p, select

one θir ∈ {1, 2, . . . , li } ∀ i = 1, 2, . . . , p and construct
the problem (3.16).

3. After solving r th model of the problem (3.16), we deter-
mine the maximal degree of the aspiration level φ∗r
with the optimal solution x∗r and elicit Hp(x∗r ) =
{μ

˜G
ki
i
(x∗r ), λ

˜G
ki
i
(x∗r ), ν

˜G
k j
j

(x∗r )| i = 1, 2, . . . , p} and
k j = 1, 2, . . . , l j .

4. It can be suggested that < φ∗m, x∗m, Hp(x∗m) > as
the pessimistic NHFPOS which φ∗m = min {φ∗1, φ∗2,
. . . , φ∗τ } and< φ∗M , x∗M , Hp(x∗M ) > as the optimistic
NHFPOS which φ∗M = min {φ∗1, φ∗2, . . . , φ∗τ }

The stepwise solution algorithm for optimization technique-
II is summarized as follows:

1. Follow the first step of optimization technique-I.
2. Evaluate the arithmetic-mean score function χ(μ

˜Gi
(x)),

χ(λ
˜Gi

(x)) and χ(ν
˜Gi

(x)) for each μ
˜Gi

(x), λ
˜Gi

(x) and
ν
˜Gi

(x), respectively.
3. Assign the positive weights wi to the i th objective func-

tion Oi (x) according to the decision makers’ preference.
Construct the problem (3.26) and solve it to obtain the
optimal solution x∗r , define < x∗, Hp(x∗) > as NHF-
POS for the NHFMOPP.

Toanalyze the computational complexity,Table 11presents
an overview of the dimensions involved among the NHF-
MOPP inproblem (3.12) includingn variables,m constraints,
and p objectives in the first and second optimization tech-
niques with other methods.

In all the above discussed three examples, we have
obtained the truth, indeterminacy, and falsity membership
functions using the marginal evaluations of each objec-
tive function. Then, we took the opinion of different
experts/managers regarding the satisfaction values corre-
sponding to each membership function based on their previ-
ous knowledge or experiences.

As a matter of discussion, it should be answered that how
the proposed optimization techniques are capable of yield-
ing a better solution than other existing approaches? For this
purpose, in general, we all better know that using the neu-
tral thoughts and opinions of several experts or DMs for a
problem is very much related to reality and yields more ana-
lytical results and more reliable too. We are not claiming
that if we seek the opinion of various experts along with
neutral thoughts (indeterminacy degree), then the quantita-
tive solutions would be better in the neutrosophic hesitant
fuzzy environment, it fully complies over the indeterminacy
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Table 11 Computational complexity comparison with other approaches

Approaches Number of variables Number of constraints Number of problems

Fuzzy Approach Zimmermann (1978) n+1 m+p 1

Intuitionistic Fuzzy Approach Angelov (1997) n+2 2(p+m)+2 1

NHFPA Technique Ahmad et al. (2018) n+3 3(p+m) p+3

NHFMOPP using Optimization Technique-I n+1 m+p l1l1 . . . , l p

NHFMOPP using Optimization Technique-II n m 1

degrees under the different opinion of experts; in fact, the
proposed optimization techniques unifies and captures the
degrees of neutrality and hesitancy of various experts or DMs
simultaneously for solving MOPPs.

In optimization technique-I, alternative solutions are
reflected toward the DMs’ specific viewpoints. Hence, each
solution has its importance and particular utilization for
DMs’ as the optimistic NHFPOS or the pessimistic NHFPOS
andmanymore. Furthermore, eachNHFPOS in the optimiza-
tion technique-I is elaborated as the satisfactory degrees of
the experts from objective function values; consequently, one
can choose an NHFPOS among the specified solutions. Con-
clusively, this technique determines the final decision from a
set of solutions. If anyone is not interested in a neutrosophic
hesitant fuzzy set, select one of them, such as the optimistic
or pessimistic NHFPOS.

In optimization technique-II, one can deal with a single
programming problem by assigning weights to each objec-
tive function when their preference is different. Thus, this
technique is used in the real-life applications of MOPPs in
the neutrosophic hesitant fuzzy environment when the prior-
ities of each objective function play an essential role and are
conflicting in nature. Additionally, in this technique, with the
aggregation of the experts’ or DMs’ opinions under neutral
thoughts, only a single programming problem needs to be
solved. However, we lose some information.

5 Conclusions

In this study, an effective modeling and optimization frame-
work for the MOPPs has been presented under neutrosophic
hesitant fuzzy uncertainty. This paper used the neutro-
sophic hesitant fuzzy sets in modeling and optimizing the
multiobjective programming problems with neutrosophic
hesitant fuzzy objectives called the neutrosophic hesitant
fuzzy multiobjective programming problems. Then, a novel
solution concept, namely neutrosophic hesitant fuzzy Pareto
optimal solutions, is developed to solve NHFMOPPs. Neu-
tral/indeterminacy is the area of ignorance of a proposition’s
value, between truth and a falsity degree. The indeterminacy
factor is incorporated that leads the decision-making process

more realistic in nature. The two different techniques have
beenproposedunder the neutrosophic hesitant fuzzy environ-
ment, which consists of independent indeterminacy/neutral
thoughts under hesitations in decision-making processes.
The superiority of the proposed techniques is revealed by the
fact that they give a set of solutions based on various experts’
satisfaction levels in the neutrosophic hesitant fuzzy environ-
ments. One can obtain different NHFPOSs using the two
proposed optimization techniques. These alternative solu-
tions respond to the DMs’ predetermined points of view.
Thus, each solution has its importance for the DM(s). The
DM(s) may select a promising optimal solution according to
the adverse situation.

The propounded study has some limitations that can
be addressed in future research. Various metaheuristic
approaches may be applied to solve the NHFMOPP as a
future research scope. The discussed NHFMOPPs can be
applied to various real-life applications such as transportation
problems, supplier selection problems, inventory control, and
portfolio optimization. Therefore, the proposed techniques
would beworth useful in the situation where neutral thoughts
and hesitation values exist simultaneously in the decision-
making processes.
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