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Abstract
Many population-dependent solutions have recently been suggested. Despite their widespread adoption in many appli-

cations, we are still researching using suggested methods to solve real-world problems. As a result, researchers must

significantly adjust and refine their procedures based on the main evolutionary processes to ensure faster convergence,

consistent equilibrium with high-quality results, and optimization. Thus, a new hybrid method using Aquila optimizer (AO)

and arithmetic optimization algorithm (AOA) is proposed in this paper. AO and AOA are both modern meta-heuristic

optimization methods. They can be applied to different problems, including image processing, machine learning, wireless

networks, power systems, engineering design etc. The proposed approach is examined concerning AO and AOA. To

determine results, each procedure is evaluated using the same parameters, such as population size and several iterations. By

changing the dimensions, the proposed approach (AO–AOA) is evaluated. The impact of varying dimensions is a standard

test that has been used in previous studies to optimize test functions that demonstrate the influence of varying dimensions

on the efficiency of AO–AOA. It is clear from this that it fits well with both high- and low-dimensional problems.

Population-based methods achieve efficient search results in high-dimensional problems.

Keywords Arithmetic optimization algorithm � Aquila optimizer � Engineering design problems � Metaheuristic �
Optimization methods

1 Introduction

In today’s world, technologies have less feature space and

rely on priorities and financial constraints in information,

knowledge-dependent, and expert systems. Researchers

must find a feasible solution and adequate details using

various algorithms for different problems such as image

segmentation (Mahajan et al. 2021), optimization (Liu

et al. 2019), target tracking systems (Yan et al. 2020), QoS-

aware and social suggestion (Li et al. 2014, 2017; Li and

Lin 2020), scheduling problems (Pang et al. 2018; Alawad

and Abed-alguni 2021), gold prize prediction (Wen et al.

2017), etc.

Optimization refers to the process of deciding suit-

able values for variables in a given problem to reduce and

optimize the objective function. There are optimization

challenges in a variety of fields of study. To solve an

optimization problem, several steps must be taken. The

parameters of the problem must then be specified.

Depending on the form of parameters, issues are classified
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as either continuous or discrete. Second, it is important to

understand the constraints imposed on the parameters

(Saremi et al. 2017).

Constraints divide optimization problems into two types

restricted and unregulated. The issue’s goals should be

discussed and answered (Coello 2002; Marler and Arora

2004). To find the best solution, mathematical optimization

relies heavily on gradient-based function awareness.

However, these techniques are already being used by a

variety of researchers and have few disadvantages. Local

optima entrapment has an impact on mathematical opti-

mization methods. It refers to an approach that assumes

that a local solution is a global solution and therefore fails

to achieve the best result.

They are often ineffective in problems involving

unknown or computationally expensive derivatives (Mir-

jalili et al. 2014). Stochastic optimization (Spall 2005) is

another form of an optimization algorithm that eliminates

these major drawbacks.

To prevent local optimization, stochastic approaches

depend on arbitrary operators. It starts the optimization

process by generating one or more random solutions to

problems. Compared to mathematical optimization meth-

ods, it is unnecessary to calculate the gradient of the

solution to evaluate the solutions using an objective func-

tion (s). Decisions on how to improve results are made

based on the practical principles that have been measured.

As a result, the problem is considered a black box, and it’s

a very useful method for dealing with real problems

involving unknown search spaces. Because of the benefits

mentioned above, stochastic methods are widely used

(Michalewicz 2013). Among stochastic optimization

methods, nature-inspired population-dependent methods

are the most popular (Yang 2010).

These methods approximate standard problem-solving

techniques, which are often used by species. The primary

goal of all animals is survival. To achieve this purpose,

they have grown and adapted in a variety of ways. It is also

wise to obtain advice from nature, the world’s greatest and

oldest optimizing compiler. These algorithms are divided

into two categories: single-solution based and multi-solu-

tion dependent. The first stage involves developing and

improving a single random solution for a specific problem,

while the second involves developing and improving

multiple solutions for a specific issue.

Methods with multiple solutions are more popular than

methods with a single solution (Mirjalili and Lewis 2013).

Since multiple solutions are improved during the opti-

mization phase, multi-solution models have a higher

inherently higher local optimum-avoidance. Certain meth-

ods to leaping from the locally optimal help the solution

trapped in a locally optimal.

Current techniques search a larger portion of the search

space than single-solution approaches, increasing the glo-

bal optimum probability. Simulated annealing and hill-

climbing are two popular methods that depend on a single

solution (Kirkpatrick et al. 1983; Davis 1991). They are

both ideal, but the stochastics’ cooling factor is strong

since they avoid the local optimum of SA. Iterated local

search and tabu search are two recent methods that depend

on a single solution (Lourenço et al. 2003; Fogel et al.

1966; Glover 1989).

Particle swarm optimization (Eberhat and Kennedy

1995), genetic algorithms (GA) (Holland 1992), differen-

tial evolution (DE) (Storn and Price 1997), and ant opti-

mization (ACO) (Colorni et al. 1991) are some common

multi-solution-based methods. Darwin’s evolutionary the-

ory inspired the GA approach. In this approach, solutions

are viewed as entities, and solution parameters replace

genes. This approach’s main motivation is survival of the

fittest species, where the strongest tend to be more inter-

ested in improving bad solutions.

Previous research has identified various swarm intelli-

gence optimization approaches, including the firefly algo-

rithm (FA) (Yang 2010; Yang et al. 2010), dolphin

echolocation (DEL) (Kaveh and Farhoudi 2013, 2016),

grey wolf optimizer (GWO) (Marler and Arora 2004;

Abed-alguni and Alawad 2021), and bat algorithm (BA)

(Yang 2010). BA and DEL use echolocation like dolphins

to locate food and bats to navigate. However, FA mimics

the mating behavior of fireflies. The cuckoo’s reproductive

activity is used in the Cuckoo Search (CS) (Yang 2010;

Yang and Deb 2010; Abed-alguni et al. 2021) method.

Grey wolf hunting behavior is used in the GWO swarm

process technique. Other techniques, such as state of matter

search (SMS) (Cuevas et al. 2014, 2013), use various types

of matter to solve problems.

The flower pollination algorithm (FPA) (Yang 2012), on

the other hand, uses flower pollination and survival

behavior for pollination. The question now is why there is a

need for new approaches when there are so many that

already exist. The solution to this question is in the No Free

Lunch (NFL) theorem (Wolpert and Macready 1997),

which has scientifically proven that no optimization tech-

nique can solve all optimization problems. In other words,

when all optimization problems are considered, techniques

in this field perform similarly on average. This theorem has

influenced the rapidly evolving algorithms proposed in

recent decades. It has been one of the motives for writing

this article.

Aquila Optimizer (AO) (Abualigah et al. 2021) is a

nature-inspired algorithm. The Aquila is among the most

common birds of prey in the Northern Hemisphere. Aquila

is perhaps the most commonly distributed species of
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Aquila. Aquila, like all birds, is a member of the Accip-

itridae family.

AOA (Abualigah et al. 2020) is a new meta-heuristic

method that uses common mathematical operations such as

Division (D), Addition (A), Multiplication (M), Subtraction

(S), which are applied and modeled to execute optimization

in a wide variety of search fields (Boussaı̈d et al. 2013).

We proposed a hybrid approach in this paper that

combines two meta-heuristic approaches, AO and AOA.

Their gradient-free and simple structure, black-box nature-

inspired methods with higher local optimum avoidance and

letting issues are widely used in engineering and other

problems (Mahajan et al. 2021; Gogna and Tayal 2013;

Zhou et al. 2011; Steenhof et al. 1997). As a result, we are

still researching the application of suggested approaches to

real-world problems.

The main contributions of the paper are:

1. The application of global optimization utilizing AO–

AOA gives better results when experimental results are

compared with AOA, AO, GOA, GWO.

2. AO–AOA reduced the computational complexity and it

also works efficiently for both high- and low-

dimensional problems.

The paper is organized in such a way that Sect. 2

expounds on AO. Section 3 delves into AOA. Section 4

addresses the proposed work. Section 5 discusses the

findings. Section 6 discusses the conclusion and future

scope.

2 Aquila optimizer

Aquila optimizer (AO) (Abualigah et al. 2021) is a nature-

inspired algorithm. The Aquila is among the most common

birds of prey in the Northern Hemisphere. Aquila is per-

haps the most commonly distributed species of Aquila.

Aquila, like all birds, is a member of the Accipitridae

family. Aquila is usually dark brown with light Golden-

brown plumage on the back of the body. Young Aquilas in

this category have a white tail and typically have minor

white markings on their wings. Aquila utilizes its strength

and agility, as well as its strong feet and wide, sharpened

nails, to capture a variety of prey, primarily rabbits, hares,

deeps, marmots, squirrels, and other ground animals

(Steenhof et al. 1997). Aquila and their distinct behaviors

can be seen in the wild.

2.1 Motivation and its behavior while catching
prey

Aquila retains territory that can reach up to 200 km. They

build large nests in mountains and other high places.

Breeding begins in the spring; they are monogamous and

live together for several years, if not their entire lives.

Females can lay up to four eggs, which they incubate for

six weeks. In most cases, one or two newborns survive to

fledge in around 12 weeks.

These young Aquila normally gain complete trust in the

fall, after which they spread out to create a territory for

themselves. Aquila is one of the most studied birds in the

world due to its hunting courage.

When male Aquilas hunted alone, they caught substan-

tially more prey. Aquila hunts squirrels, rabbits, and a

variety of other species with their speed and sharp talons.

They’ve even been identified as a threat to full-grown deer

(Hatch 1968). Land squirrels are the most notable species

in Aquila’s diet.

The Aquila is known to use four hunting methods, with

several distinct variations and the majority of Aquila’s

ability to cleverly and easily switch back and forth between

hunting methods depending on the situation.

Four main points used by Aquila for hunting are

1. Contour flight along with glide attack (Meinertzhagen

1940).

2. High soar along with vertical stoop (Carnie 1954).

3. The slow attack along with low flight (Dekker 1985).

4. Grabbing the prey while walking (Watson 2010).

2.2 Initialization of solution

AO is a population-dependent approach in which the

optimization rule begins with the population of candidate

solutions Xð Þ as shown in Eq. 1, which is produced

stochastically here between the given problem’s upper

bound (UB) and lower bound (LB). In each iteration, the

optimum solution is calculated as the optimal solution

(Abualigah et al. 2021).

X ¼

x1;1 x1;2
..
. ..

.
x1;Dim�1 x1;Dim

x2;1 x2;2
..
. ..

.
x2;Dim�2 x2;Dim

..

. ..
. ..

. ..
. ..

. ..
.

xN�1;1
..
.

: ..
. ..

.
xN�1;Dim

xN;1
..
. ..

. ..
.

xN;Dim�1 xN;Dim

2
6666666664

3
7777777775

ð1Þ

where X ¼ solution of current candidate; X is randomly

generated by Eq. 2

Xi;j ¼ rand� UBj � LBj

� �
þ LBj ð2Þ

where Xi ¼ value of decision of ith solution; N ¼ No. of

candidate solution; Dim = Dimension Size; rand = random

no.; LBj ¼ lower bound of jth; UBj ¼ upper bound of jth;

i ¼ 1; 2. . .;N; j ¼ 1; 2. . .;Dim.

Hybrid Aquila optimizer with arithmetic optimization algorithm for… 4865

123



2.3 Mathematically representation of AO

The AO (Abualigah et al. 2021) method represents Aqui-

la’s hunting behavior, displaying each phase of the hunt’s

behaviors. As a result, the proposed AO algorithm’s opti-

mization procedures are divided into four methods. AO can

be shifted from exploration to exploitation by utilizing

various behavioral conditions like

If;
t� 2

3

� �
� T; execution of exloration steps

otherwise; execution of exploitation steps

8<
:

Four steps are involved in a mathematical model of AO

(Abualigah et al. 2021).

1. Expanded Exploration X1ð Þ In this step, high soar

along with vertical stoop behavior of Aquila is

mathematically represented in Eq. 3

X1 t þ 1ð Þ ¼ Xbest tð Þ � 1� t

T

� �

þ XM tð Þ � Xbest tð Þ � randð Þ ð3Þ

where X1 t þ 1ð Þ ¼ next iteration’s solution for t; Xbest tð Þ ¼
optimum solution till tth iteration; 1� t

T

� �
¼ for control-

ling exploration; XM tð Þ ¼ mean value of solution at tth

iteration, evaluated using Eq. 4; rand = random value

within 0 – 1; T = max. iterations; t = present iteration

XM tð Þ ¼ 1

N

XN
i¼1

Xi tð Þ; 8j ¼ 1; 2; . . .;Dim ð4Þ

Dim = size of dimension; N ¼ no. of candidate.

2. Narrow Exploration X2ð Þ In this contour flight along

with glide attack behavior of Aquila is mathematically

represented in Eq. 5

X2 t þ 1ð Þ ¼ Xbest tð Þ � Levy Dð Þ
þ XR tð Þ þ y� xð Þ � rand

ð5Þ

X2 t þ 1ð Þ ¼ next iteration’s solution for t; D = space of

dimension; Levy (D) = flight distribution function of levy,

evaluated using Eq. 6; XR tð Þ ¼ random solution within

[1 N] at ith iteration

Levy Dð Þ ¼ s� u� r

tj j
1
b

ð6Þ

where s ¼ constant values (0.01); u and t = random no.

within 0 – 1. r is evaluated by Eq. 7

r ¼
C 1þ bð Þ � sin e pb

2

� �

C 1þb
2

� �
� b� 2 b�1

2

� �
0
@

1
A ð7Þ

where b ¼ constant value (1.5); Spiral shape is presented

by y and x in Eq. 5, are evaluated as

y ¼ r � cos hð Þ ð8Þ
x ¼ r � sin hð Þ ð9Þ

where

r ¼ r1 þ U þ D1 ð10Þ
h ¼ �x� D1 þ h1 ð11Þ

h1 ¼
3� p
2

ð12Þ

r1 has value range from 1 to 20 for no. of search cycles.

U = 0.00565; D1 = integer no; x = 0.005.

3. Expanded Exploitation X3ð Þ In this slow attack, along

with the low flight behavior of Aquila is mathemati-

cally represented in Eq. 13

X3 t þ 1ð Þ ¼ Xbest tð Þ � XM tð Þð Þ � a� rand

þ UB� LBð Þ � randþ LBð Þ � d ð13Þ

where X3 t þ 1ð Þ ¼ next iteration’s solution for t; Xbest tð Þ ¼
supposed location of prey till ith iteration; XM tð Þ ¼ mean

value of solution at tth iteration, evaluated using Eq. 4;

rand = random no. b/w 0� 1; a and d ¼ adjustable ex-

ploitation parameters (0.1); UB and LB ¼ upper and lower

bound.

4. Narrowed Exploitation X4ð Þ In this grabbing the prey

while walking behavior of Aquila is mathematically

represented in Eq. 14

X4 t þ 1ð Þ ¼ QF � Xbest tð Þ � G1 � X tð Þ � randð Þ
� G2 � Levy Dð Þ þ rand� G1

ð14Þ

where X4 t þ 1ð Þ ¼ next iteration’s solution for t;

QF = quality function, evaluated by using Eq. 15; G1 ¼
different motions of AO evaluated using Eq. 16; G2 ¼
decreasing value b/w 2� 0.

When preys escape from 1st place to last place, then

slope used by AO to catch the prey is evaluated by Eq. 17

QF tð Þ ¼ t
2�randðÞ�1

1�Tð Þ2 ð15Þ
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G1 ¼ 2� rand()� 1 ð16Þ

G2 ¼ 2� 1� t

T

� �
ð17Þ

where QF tð Þ ¼ quality function at ith iteration; rand ¼
random no. b/w 0� 1; T ¼ max. iterations; t ¼ present

iteration.

3 Arithmetic optimization algorithm

AOA (Abualigah et al. 2020) is a new meta-heuristic method

that uses common mathematical operations such as Division

(D), Addition (A), Multiplication (M), Subtraction (S), as

shown in Fig. 1, which is applied and modeled to execute

optimization in awidevariety of searchfields (Abualigah et al.

2020). Commonly, population-based algorithms (PBA)

launch their improvement processes by randomly selecting

several candidate strategies. This defined solution is enhanced

incrementally by a set of optimization standards and analyzed

sequentially by a particular objective function, and that’s the

basis of optimization techniques. Although PBA is stochas-

tically trying to find some efficient strategy to optimization

problems, a single-run solution is not guaranteed. However,

the chance of an optimum global solution to the problem is

enhanced by a large set of possible solutions and optimization

simulations (Gogna and Tayal 2013). Considering variations

among meta-heuristic methods in PBA approaches, the opti-

mization process comprises two cycles: exploitation vs.

exploration. The previous examples for extensive coverage

are search fields through search agents to bypass local solu-

tions. Above is an increase in the performance of solutions

achieved during the exploration process.

3.1 Motivation

Arithmetic is a key component of mathematics and its most

important components of modern math, including analysis,

geometry and algebra. Arithmetic operators (AO)

(Abualigah et al. 2021) are traditionally used for the study

of numbers (Abualigah et al. 2020). These basic math

functions are used for optimization for finding ideal ele-

ments, particularly with selected solutions. Optimization

challenges have appeared in all mathematical fields, such

as engineering, economics and computer science to orga-

nizational analysis and technology, and the advancement of

optimization methods has drawn mathematics attention

from time to time. The key motivation of the new AOA is

the use of AO to solve problems. The behavior of AO and

their effect mostly on existing algorithms, the arrangement

of AO and their superiority is shown in Fig. 2. AOA is then

proposed based on a statistical model.

3.2 Initial stage

The method of optimization starts with selected sets

denoted by A as in Eq. 18. The ideal set in every iteration is

Fig. 1 Shows AOA search

phases (Abualigah et al. 2020)
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created randomly and is taken as the optimum solution

(Abualigah et al. 2020).

A ¼

a1;1 a1;2 . . . . . . a1;j a1;1 a1;n
a2;1 a2;2 . . . . . . a2;j . . . a2;n
a3;1 a3;2 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
aN�1;1 . . . . . . . . . aN�1;j . . . aN�1;n

aN;1 . . . . . . . . . aN;j aN;n�1 aN;n

2
6666664

3
7777775

ð18Þ

Exploitation/Exploration should be carefully chosen at

the start of AOA. The coefficient of math optimizer

accelerated (MOA) is defined in Eq. 19.

MOAðCiterÞ ¼ Minþ Citer �
Max�Min

Miter

� �
ð19Þ

where MOAðCiterÞ ¼ ith iteration function value; Miter ¼
Max. no. of iteration; Max andMin ¼ Accelerated Func-

tion of Max. and Min. Values; Citer ¼ current iteration

ð within 1 and Miter).

3.3 Exploration stage

The exploratory nature of AOA is discussed, as per the AO,

mathematical calculations whether using Division ðDÞ or

Multiplication ðMÞ operator have obtained high distribu-

tion values or decisions that contribute to an exploration

search method. However, as opposed to other operators,

these D and M operators never easily reach the objective

due to the high distribution of S and A operators. AOA

exploration operators exploit the search field arbitrarily

through many regions and seek a better alternative

dependent on two key search techniques M and D search

techniques as shown in Eq. 20 (Yang et al. 2021).

where ai Citer þ 1ð Þ ¼ ith solution of next iteration;

ai;j Citer þ 1ð Þ ¼ jth position in current iteration; l ¼ con-

trol parameter � 0:5; LBj andUBj ¼ Lower and Upper

bound limit; e ¼ smallest integer no.; bestaj ¼ jth position

of optimum solution till now

MOPðCiterÞ ¼ 1� C
1
a
iter

M
1
a
iter

ð21Þ

where Math Optimizer Probability (MOP) = coefficient;

MOPðCiterÞ ¼ ith iteration function value; Citer ¼ current

iteration; Miter ¼ Max. iterations � 5.

3.4 Exploitation stage

The exploitation nature of AOA is discussed, as per AO

mathematical formulas, whether using addition Að Þ or

subtraction Sð Þ as they provided high-density results. AOA

exploitation operators exploit the search field deeply

through many regions and seek a better alternative

dependent on two key search techniques A and S search

techniques as shown in Eq. 22 (Abualigah et al. 2020).

4 Proposed work

A variety of population-based methods have recently been

suggested. Despite their widespread use in various engi-

neering applications, we are still investigating suggested

methods for solving real-world problems. As a result,

researchers must dramatically change and develop their

approaches, often focused on major evolutionary processes,

to achieve faster integration, consistent balance with high-

quality performance, and optimization. Thus, a new hybrid

method using Aquila Optimizer (AO) and Arithmetic

Optimization Algorithm (AOA) is proposed in this paper.

Aquila Optimizer (AO) (Abualigah et al. 2021) is a nature-

inspired algorithm. The Aquila is among the most common

birds of prey in the Northern Hemisphere. Aquila is per-

haps the most commonly distributed species of Aquila.

ai;j Citer þ 1ð Þ ¼ bestaj �MOP� UBj � LBj

� �
� lþ LBj

� �
; r3\0:5

bestaj þMOP� UBj � LBj

� �
� lþ LBj

� �
; otherwise

�
ð22Þ

ai;j Citer þ 1ð Þ ¼ bestaj � MOP� eð Þ � UBj � LBj

� �
� lþ LBj

� �
; r2\0:5

bestaj �MOP� UBj � LBj

� �
� lþ LBj

� �
; otherwise

�
ð20Þ
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Aquila, like all birds, is a member of the Accipitridae

family.

Arithmetic is a key component of mathematics and its

most important components of modern math, including

analysis, geometry and algebra. Arithmetic operators (AO)

(Abualigah et al. 2021) are traditionally used for the study

of numbers (Gogna and Tayal 2013).

AO and AOA are both modern meta-heuristic opti-

mization methods. They can be applied to different prob-

lems, including image processing, machine learning,

wireless networks, power systems, engineering design etc.

To determine efficiency, each technique is evaluated using

the same parameters, such as population size and no. of

iterations. The proposed method (AO–AOA) is evaluated

by varying the dimensions. The impact of varying dimen-

sions is a standard test utilized in previous studies for

optimizing test functions that show the effect of varying

dimensions on AO–AOA efficiency. It is clear from this

that it fits well with both high- and low-dimensional

problems. Population-based methods produce efficient

search results in high-dimensional problems. The complete

step-by-step overview and working of the proposed model

is represented in Fig. 3.

From Fig. 3, the different steps used in the proposed

method according to their executions are explained. The

1st step is determining parameters in this different

parameter to be used are determined or defined. The 2nd

step is to generate the solution using the defined parame-

ters. The 3rd step is to calculate the fitness function fol-

lowed by selecting the best solution in 4th step. In 5th step,

there is a condition, if the value of the random number

(rand) is greater than 0:5; then AO is not used, and if the

value is less than 0:5; AOA is used. Then in 6th step, if the

desired criteria is met, then the best solution is returned in

7th step; otherwise, by feedback lope, it is again fed to 3rd

step for calculating the fitness function.

5 Results and discussion

The proposed approach is examined, and the proposed

system’s efficiency is correlated with the performance of

existing methods. The implementation and testing are done

in i5� 1:70GHz processor using MATLAB software. The

proposed method’s performance (i.e., AO ? AOA) is

examined on five engineering problems and 23 test func-

tions. The results are further compared with AOA, PSO,

Fig. 2 Shows arithmetic operators according to superiority

Fig. 3 Shows step-by-step working of the proposed method

Hybrid Aquila optimizer with arithmetic optimization algorithm for… 4869

123



Fig. 4 Convergence behavior of AO–AOA in contrast with other methods
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Fig. 4 continued
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Fig. 4 continued
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Fig. 4 continued
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WOA, GOA, AO, GWO, HGSO, IAO (improved Aquila

Optimizer, AO–AOA).

To evaluate the performance, each method is tested on

the same parameters like population size and no. of itera-

tion. The proposed AO–AOA is evaluated by varying the

dimensions. The impact of varying dimensions is a stan-

dard test used in previous studies for optimizing test

functions that show the effect of varying dimensions on

AO–AOA efficiency. From this, it is noted that it works

efficiently for both high- and low-dimensional problems.

In high-dimensional problem population, dependent

methods give efficient search results. In this work, AO–

AOA is used to test scalable multi, and unimodal test

functions (F1–F13) with two different dimensions (10 and

100) and results of comparative methods are tested using

ten benchmark functions (F14–F23). The AO–AOA is

dealing with 13 functions (F1–F13) with two different

dimensions is compared using standard deviation (SD) and

average fitness value (Avg).

AO–AOA gives the most optimum results in 10, which

shows that any optimization methods give optimum results

in low dimensions. Now. AO–AOA is testing using high

dimensions (100), which also gave the optimum results. To

verify, the proposed AO–AOA is compared with previ-

ously state-of-art algorithms using the same dimensions (10

and 100) and test function. When the results were analyzed,

it showed that AO–AOA is the most optimum in different

cases.

It is compared with other methods to evaluate the con-

vergence behavior of AO–AOA, as shown in Fig. 4. The

curves of convergence with test functions (F1–F13) can be

seen in Fig. 4. After observing Fig. 4, it becomes clear that

AO–AOA gives low and stable convergence compared

with other methods. AO–AOA has more optimum global

search capability and fast convergence and attained opti-

mum results than other methods on the same test functions

concerning convergence speed and global search

capability.

The average runtime of the proposed AO–AOA algo-

rithm is compared with other pre-existing methods with 10

dimensions is shown in Table 1, and with 100 dimensions

is shown in Table 2. As AO–AOA depends on the popu-

lation method, there is no need for optimization so, the

running time needed by AO–AOA is less in terms of sec-

onds when compared with other methods. So, the compu-

tational efficiency of the proposed AO–AOA is much

optimum than other methods. Observing the results shows

that the AO–AOA is on top, followed by other methods.

If we notice the values in Table 3, the AO–AOA is very

competitive and superior compared with others on test

functions (F14–F23). No. of optimization methods

obtained optimum results, but AO–AOA has the best when

compared with all. So, AO–AOA is capable of obtaining

optimum results.

6 Conclusion

This paper proposes a hybrid approach (AO–AOA) based

on population-based models to solve optimization prob-

lems. AO and AOA are both modern meta-heuristic opti-

mization methods. They can be applied to different

problems, including image processing, machine learning,

wireless networks, power systems, engineering design etc.

The proposed AO–AOA system has been validated on a

detailed set of 23 functions (F1–F23). The obtained find-

ings were compared to other cutting-edge methods such as

AOA, PSO, WOA, GOA, AO, GWO, HGSO. Observing

the experimental results, it became apparent that AO–AOA

has faster convergence with optimal global search capa-

bility and generates better results.

Furthermore, AO and AOA can be combined with other

existing cutting-edge algorithms, improving the algorithm

and providing more accurate results with less computa-

tional time, which is needed in real-time applications and

problems.
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