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Abstract
In this study, a novel optimization-based method is proposed to determine the parameters of a rotating unbalance in a rotor-

bearing system. For that purpose, the weighted sum of squared difference between the analytical and predicted unbalance

response due to rotational unbalance is considered as the objective function. A hybrid algorithm integrating salp swarm

algorithm and Nelder–Mead algorithms is presented for detecting unbalance magnitude and phase as the unbalance

parameters. Parameters of the aforementioned optimization algorithm are determined systematically using the Taguchi

design of experiments method. The efficiency of the proposed method is compared with various optimization algorithms in

the literature. The optimization method is validated with different unbalances experimentally to consider the real-world

conditions. The results show the superiority of the proposed hybrid algorithm in terms of the accuracy of the unbalance

parameters and computational efficiency.

Keywords Rotational unbalance � Optimization � SSA–NM � Taguchi design � FEM � Rotor-bearing systems

1 Introduction

Rotating machines have been widely used in industrial

applications. Rotor unbalance is one of the primary sources

of undesired vibration in rotating machinery, which can

lead to catastrophic failures. Condition monitoring has

been commonly used for monitoring a parameter of con-

dition in machinery to identify a developing fault.

Therefore, predicting the unbalance parameters in rotary

machinery is an important capability that has been at the

heart of research literature recently (Mohanty 2018; Torres

Cedillo and Bonello 2014).

There have been many methods available in the litera-

ture to identify the unbalance parameters. Sanches and

Pederiva (2016) proposed a model-based approach to

identify the rotor unbalance and residual shaft bow, both

theoretically and experimentally. In this study, the finite

element method is used to derive the dynamic equations

governing the system, and the correlation-based method is

utilized to detect possible the faults. Similarly, Jalan and

Mohanty (2009) employed a model-based method to detect

fault of a rotor-bearing system in terms of its misalignment

and unbalance under steady-state conditions. Kalman filter

and recursive least square-based force identification

methods were used by Shrivastava and Mohanty (2018) to

detect the amplitude and the phase of unbalance in the rotor

disk bearing systems. Zou et al. (2019) used augment

Kalman filter (AKF) to identify unbalance load of rotor-

bearing systems. The proposed method can well identify

the unbalance parameters online and in real time. Linear

and nonlinear regression models are used by Nauclér and

Söderström (2010) to determine unbalance parameters.
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Similarly, the unbalance parameters of rotor-bearing sys-

tems using an algebraic method combined with an active

control scheme are investigated by Arias-Montiel et al.

(2014). A configuration consisting of two disks, which

were asymmetrically placed along the shaft with a ball

bearing at one end and active suspension at the other end,

was considered as a case study. The least angle regression

method is used by Chatzissavas and Dohnal (2015) in order

to predict different fault modes. In this study, multi-fault

identification method based on sparse vibration measure-

ments is used when the machine operates under constant

speed.

Deepthikumar et al. (2013) proposed a method to detect

a distributed unbalance by utilizing a polynomial curve for

modeling the eccentricity distribution using finite element

models. Sergio Guillermo Torres Cedillo et al. (2019)

introduced a noninvasive inverse problem method for the

balancing of nonlinear squeeze-film damped (SFD) rotor

dynamics applications. The SFD journal displacements are

estimated from the vibration of the casing using identified

inverse SFD models based on recurrent neural networks

(RNNs). Model-based fault diagnosis (MFD) methods and

quantification methods were analyzed by Lees et al. (2009).

Tiwari and Chougale (2014) proposed an identification

algorithm for the rotors that were fully levitated on active

magnetic bearings (AMBs). Unbalance parameters on the

supports of system are estimated by considering the prob-

lem as an inverse problem by Menshikov (2013). In this

study, Tikhonov regularization method is employed to

obtain the stable results. Pennacchi (2008, 2009) proposed

the M-estimators for the identification of the excitation in

mechanical systems. A novel method based on response

polar plot analysis is proposed by Ocampo et al. (2017). In

this study, a shaft system with two degrees of freedom and

unequal principal moments of inertia is considered.

Equivalent loads and vibration minimization methods are

used for the unbalance identification in a SPECTRA-

QUEST MFS rotor system experimentally by Sudhakar and

Sekhar (2011). In another study, Sekhar (2005) proposed a

model-based method and reduced basis dynamic expansion

to identify the crack and unbalance in the rotary systems

simultaneously. The multi-fault detection in rotor-bearing

systems based on vibration signal analysis is studied by Lal

and Tiwari (2012). In this study, least squares technique is

used to estimate the bearing and coupling dynamic

parameters, and residual unbalances.

Nowadays, metaheuristics optimization algorithms are

widely used in engineering problems as an alternative to

classical optimization methods (Dey et al. 2020; Kha-

lilpourazari and Khalilpourazary 2019; Li et al. 2020). In

this regard, a combination of modal expansion method and

metaheuristic optimization methods is used by Yao et al.

(2018) to detect the axial location of the unbalance and

phase for a rotor-bearing system with single and double

disks. In this study, the ant lion optimization algorithm

(ALO), simulated annealing (SA), and firefly optimization

algorithm (FOA) are utilized to solve the inverse problem.

The findings from this study were experimentally vali-

dated. Pavlenko et al. (2019a, b) developed a new method

using artificial neural networks (ANN) to improve the

quality of diagnosis in rotary machines. The proposed

methodology was demonstrated successfully on turbo-

pump units used in liquid rocket engines. In another work

of Pavlenko et al. (2019a, b), computational and analytical

methods were developed to improve the vibrational relia-

bility of rotary systems by estimating the parameters of the

dynamic state of turbomachines and realizing the virtual

balancing procedure through ANN.

There has been an exponential increase in the develop-

ment of metaheuristic algorithms in recent years (Abbasi

et al. 2021a, b). For example, several swarm intelligence

algorithms have been proposed to solve many engineering

problems. Harris hawk optimization (HHO) (2019),

inspired from the hunting behavior of Harris hawk birds,

was one of the most recently developed algorithms.

Applications of this algorithm to many engineering prob-

lems can be found in the literature. Abbassi et al. (2019)

used HHO algorithm to minimize entropy generation in

microchannel heat sinks. Mehta et al. (2019) demonstrated

the application of the HHO algorithm to solve the optimum

load dispatch problems. Engineering applications of the

whale optimization algorithm (WOA) (Mirjalili and Lewis

2016) and the grasshopper optimization algorithm (GOA)

(Saremi et al. 2017) have been reported extensively in the

literature. Salp swarm algorithm (SSA) (Mirjalili et al.

2017) is a new global optimization algorithm that simulates

the behaviors of salps during navigating and hunting. SSA

has shown superior performance compared to other algo-

rithms in several engineering problems. In these algo-

rithms, tuning of the parameters to avoid stagnation in local

optima is critical. Abbassi et al. (2019) proposed an effi-

cient method for extracting the parameters of photovoltaic

cells using the SSA algorithm. A novel hybrid meta-

heuristic chaotic salp swarm algorithm (CSSA) is proposed

by Sayed et al. (2018) to enhance the convergence rate and

accuracy of the SSA algorithm. Similarly, a new hybrid

algorithm that combines the sine cosine algorithm and salp

swarm algorithms is proposed (Singh et al. 2019) to

increase the efficiency and convergence of algorithm by

balancing the exploration and exploitation phases.

The aforementioned algorithms and methods were also

used as part of condition monitoring in engineering appli-

cations. For example, damage and failures in engineering

systems were determined using the inverse approach

(Vakil-Baghmisheh et al. 2008; He and Hwang 2006; Fir-

ouzi et al. 2021a, 2021b). For that purpose, the weighted
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squared difference between the measured and calculated

natural frequencies was considered as the objective func-

tion to predict the location and the depth of crack. This

procedure was found effective for the detection and iden-

tification of cracks in mechanical systems. Moezi et al.

(2015, 2018) and Firouzi et al. (2021a, 2021b) proposed

several metaheuristic algorithms to identify the location

and depth of a possible crack in the mechanical systems.

Similarly, Moradi et al. (2011) used bees algorithm to

estimate the location and depth of open edge cracks in

Euler–Bernoulli beams. Modified version of PSO algo-

rithm and self-adaptive fuzzy PSO are used by Jena et al.

(2015a, b) to predict the crack parameters.

As it is of significant importance to determine the

unbalance parameters in rotating machinery, there has been

a variety of methods available in the literature. Even

though the optimization methods were employed for this

purpose (Yao et al. 2018), there is still room for

improvement for the accurate determination of these

parameters. The main aim of the research is to improve the

accuracy of the unbalance parameters compared to the

previous methods which may be needed for critical engi-

neering applications. A hybrid salp swarm–Nelder–Mead

(SSA–NM) algorithm is proposed, where the objective

function is considered as the weighted squared difference

between the analytical and predicted unbalance response in

this study. Optimization parameters are tuned systemati-

cally using the Taguchi design of experiments (DOE)

methods for fair comparison of the results. Besides, the

comparison of the computational efficiency of the proposed

algorithm with the recent optimization algorithms such as

whale optimization algorithm (WOA), grasshopper opti-

mization algorithm (GOA), salp swarm algorithm (SSA),

and Harris hawk optimization (HHO) is made.

The organization of the remainder of the paper is as

follows: Firstly, the mathematical models are explained in

Sect. 2. Thereafter, the analysis methods used in this study

are briefly described in Sect. 3. The proposed methodology

and flowchart of the SSA–NM algorithm and the Taguchi

design method are detailed in Sect. 4. The proposed

method is demonstrated in two case studies in Sect. 5. The

case studies are: 1) the rotor system with a single disk and

2) the rotor system with double disks. Finally, conclusions

are presented in Sect. 6.

2 Research methodology

In this section, finite element models for the rotor system

(Sect. 2.1), element stiffness and mass matrices for Euler–

Bernoulli element (Sect. 2.2) and equation of motion

(Sect. 2.3) describing the rotor system are presented in

detail.

2.1 Finite element models

In this study, two case studies are considered: (1) single-

disk rotor and (2) double-disk rotor system. The rotor

system is modeled using the finite element method by

discretizing the continuous rotor-bearing system as lumped

masses and support points. Each rotor shaft is modeled as

an Euler–Bernoulli beam element with constant cross

section and material properties. This type of element has

translational and rotational degrees of freedom per node in

the both planes. The disk is modeled as a rigid mass, and

the gyroscopic effects are taken into account. The bearings

are represented by using translational spring and damper at

the corresponding nodes. Single-disk and double-disk rotor

systems are shown in Fig. 1a and b, respectively. There are

13 nodes for both cases. Rigid disk is lumped at node 9 for

the single-disk system. Similarly, two disks are located at

nodes 7 and 9 for double-disk configurations.

Equation of motion can be formulated in the standard

matrix form as follows:

M½ � sð Þ
52�52 €gf g52�1

þ C½ � sð Þ
52�52�x G½ � sð Þ

52�52

� �
_gf g52�1þ K½ � sð Þ

52�52 gf g52�1

¼ ff g52�1

ð1Þ

where M½ �, C½ �, G½ �, K½ �, gf g and ff g are global mass

matrix, global damping matrix, global gyroscopic matrix,

global stiffness matrix (including bearings stiffness), nodal

displacement vector, and force vector, respectively. The

global stiffness matrix is assembled considering the ele-

ment stiffness matrix for each Euler–Bernoulli beam ele-

ment. Since the geometry and material properties for each

element are the same, the same element stiffness matrix is

obtained. Similarly, the global mass matrix is obtained

from the mass matrix for each element. In the assembly of

the global mass matrix, the mass of the each disk is lumped

and added to the proper location on the global mass matrix.

The equations related to global mass, gyroscopic, and

stiffness matrices are well known. For detailed information

on the formulation, the reader is referred to (Tiwari 2017;

Pavlenko et al. 2017, 2018). The nodal displacement vector

is given in Eq. (2).

gf g52�1¼

u1

uy1

t1
ux1

..

.

u13

uy13

t13

ux13

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2Þ
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The gyroscopic matrix for each element is given in

Eq. (3):

G½ � ¼ �x

0 0 0 0

0 0 0 IP
0 0 0 0

0 �IP 0 0

2
664

3
775

_u
_uy

_t
_ux

8>><
>>:

9>>=
>>;

ð3Þ

IP is the polar mass moment of inertia. In next subsection,

the details of the FE formulation of the models are

described briefly.

2.2 FE formulation of Euler–Bernoulli Beam

In this section, the FE formulation, based on the Galerkin

method, for the rotor-bearing system, is explained. The

analysis is performed in the transverse plane, i.e., y–z

plane, as shown in Fig. 2. For that purpose, the shaft is

discretized into several FEs, and the formulation of an

element at a distance z from the global coordinate system

in the plane y–z is derived. Each node of the element has

four degrees of freedom (DOFs): (1) u and t are the

translational displacement, and (2) ux and uy are the

rotational displacement of the nodes. Therefore, this ele-

ment has eight DOFs: (u1,t1,ux1, uy1, u2, t2, ux2, uy2),

where subscripts 1 and 2 refer to the first and second nodes

of the element. The displacement within the element can be

expressed by using the appropriate shape functions as

shown in Eq. (4).

t eð Þ z; tð Þ ¼ N zð Þ½ � g tð Þf g neð Þ ð4Þ

N zð Þb c is a row vector containing the shape functions,

which will be described later in this subsection. g tð Þf g is

the displacement vector containing translational and

Fig. 1 Finite element model for

rotor system with a single disk

and b double disks

Fig. 2 a FE discretization of the

shaft and b DOFs of an element
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rotational displacement of the element, e and ne represent

the element and node numbers of the element, respectively.

The displacement given in Eq. (4) is then substituted to

the differential equation governing the Euler–Bernoulli

beam, which is shown in Eq. (5). The resulting equation,

which represents the residue (Re), is shown in Eq. (6). The

reader is referred to Tiwari (2017) for more detailed

derivation by the application of Hamilton’s principle.

EIxx
o4t z; tð Þ
oz4

þ qA
o2t z; tð Þ

ot2
¼ f z; tð Þ þ f0 tð Þd� z� z0ð Þ ð5Þ

Re ¼ EIxx
o4t
oz4

þ qA
o2t
ot2

eð Þ

� f z; tð Þ � f0 tð Þd� z� z0ð Þ ð6Þ

where d� is the direct delta function, f z; tð Þ is the dis-

tributed external force, and q is the density. The residue is

then minimized over the element domain as given in

Eq. (7):

r
L

0

Ni zð ÞR eð Þ dz ¼ 0; i ¼ 1; 2; . . .; r ð7Þ

where r is the number of DOFs (r = 4 for this study). Ni

represents the ith shape function, while L is the element

length.

The weak form of the finite element is obtained by

solving Eq. (7):

ZL

0

qANi zð Þo
2t eð Þ

ot2
dz

þ Ni
o

oz
EIxx

o2t eð Þ

oz2

� �
L

0
� dNi

dz
EIxx

o2t eð Þ

oz2

� �����
����
L

0

þ
ZL

0

d2Ni

dz
EIxx

o2t eð Þ

oz2
dz

� r
L

0

Ni f z; tð Þ þ f0 tð Þd� z� z0ð Þf g dz ¼ 0; i ¼ 1; 2; . . .; r

ð8Þ

where the prime represents the partial derivative with

respect to z. Then the proper shape function is derived.

2.3 Element stiffness and mass matrix

The element stiffness and mass matrices are obtained using

the weak form and the shape functions.

The element stiffness matrix in terms of the parameters

of the model is given by:

K½ � eð Þ¼ EIxx
L3

12 �6L �12 �6L
�6L 4L2 6L 2L2

�12 �6L 12 6L
�6L 4L2 6L 4L2

2
664

3
775 ð9Þ

Finally, the mass matrix is given by:

M½ � eð Þ¼ qAL
420

156 �22L 54 13L
�22l 4L2 �13L �3L2

54 �13L 156 22L
13L �3L2 22L 4L2

2
664

3
775 ð10Þ

The global assembly matrix is assembled using the

element stiffness, mass matrix, and the connectivity

information between the nodes of the FE model. For a

more detailed explanation, the reader is referred to Tiwari

(2017).

3 Analysıs methods

In this section, the analysis methods used in the proposed

optimization algorithm are presented. More specifically,

modal analysis is detailed in Sect. 3.1, the details of the

unbalance response are given in Sect. 3.2. Finally, the

bearing parameters used in the finite element model are

explained in Sect. 3.3.

3.1 Modal analysis

A modal analysis is performed to determine the modes and

mode shapes for the aforementioned cases. The modes and

corresponding mode shapes for the first three modes are

shown in Fig. 3 for the rotor system with the single disk

and the double disks. The parameters of the analysis are

summarized in Table 1. The comparison of the results

shows that the addition of the second disk reduces the

natural frequencies as a result of increased mass as

expected. The addition of the second disk affects the mode

shapes differently due to the fact that system stiffness in

each direction such as transverse or vertical directions is

different. Besides, the Campbell diagram and critical speed

for these two cases are shown in Fig. 4 and Table 2,

respectively. It is seen from Fig. 3, the first critical speeds

for rotor system with single disk and double disk are 55.5

and 41.6 rad/s, also second critical speeds are 300.55 and

252 rad/s, respectively. The Campbell diagram shows the

importance of including the gyroscopic effects clearly.

3.2 Unbalance response analysis

In this section, a method based on an optimization algo-

rithm is presented to determine the magnitude and phase of

unbalance mass using an unbalance response. The unbal-

ance response can be calculated for the rotor-bearing sys-

tem, shown in Fig. 1, according to the formulation

described in Sect. 2.
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An unbalance with known magnitude in g mm and

phase in degree is fixed to the disks. To obtain axial

position of unbalance, a reference coordinate system,

aligned with the y-axis at t = 0, is used to position the

unbalance axially. The phase is measured with respect to

this coordinate system. The angular speed, x, is in coun-

terclockwise direction as shown in Fig. 5. The unbalance

mass creates the vertical component of unbalance force

with a magnitude of mbrbx2ejuejxt, where mb is the

unbalance mass and rb is the offset of the unbalance mass

from the center of gravity of the disk. The force matrix is

shown in Eq. (11), where the force due to unbalance mass

is added to the proper location of the force vector.

F xð Þ
� �

¼

0

0

0

..

.

mbrbx2eju

..

.

0

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð11Þ

Fig. 3 Mode shapes (linear displacement) for the rotor system with single disk and double disk
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The unbalance response due to unbalance force is cal-

culated as given in Eq. (12):

� x2 M½ � gf g þ C½ �jx� jx2 G½ �
	 


gf g þ K½ � gf g ¼ F xð Þ
� �

gf g ¼ K½ � � x2 M½ � þ C½ �jx� jx2 G½ �
	 
�1

F xð Þ
� �

ð12Þ

The matrices M½ � and K½ � contain real numbers, whereas

force vector F
� �

and corresponding displacement vector

gf g have complex terms.

3.3 Bearing parameters calculation

Bearings are the most commonly used components in

rotating machinery. The hydrodynamic bearings are chosen

as flexible support of rotor systems in this study. The

Table 1 Parameters of the rotor-bearing systems

Parameters Value

Disk

Mass of disk 1 750 g

Mass of disk 2 750 g

Radius of disk 35 9 10-3 m

Idisk 1 (mass moment of inertia) 2.2969 9 10–1 g m2

Idisk 2 (mass moment of inertia) 2.2969 9 10–1 g m2

Shaft

Length 1.2 m

Length for each element (mesh size) 0.1 m

Diameter 0.01 m

Cross-sectional area 7.854 9 10–5 m2

Area moment of inertia 4.91 9 10–10 m4

Material

Young’s modulus 2.1 9 1011 N m-2

Density 7800 kg m-3

Polar mass moment of inertia 4.5938 9 10–1 g m2

Hydrodynamic bearings

Bearing bore 0.0254 m

Length of bearing 0.0127 m

Radial clearance 0.00254

Viscosity of lubricant 0.0242 N sec/m2

Fig. 4 Campbell diagram for two rotor systems

Table 2 Critical speed of rotor systems

Single disk (rad/s) Double disk (rad/s)

xn1 backward 54.68 41.18

xn1 forward 55.7 41.63

xn2 backward 265.5 230.7

xn2 forward 300.62 252.1

Fig. 5 The position of the unbalance mass on the disk

Identification of unbalance characteristics of rotating machinery using a novel optimization-based… 4837

123



empirical models of the hydrodynamic bearings are com-

mon in the literature. A simple representation of a hydro-

dynamic bearing is shown in Fig. 6. Lubrication fluid

between the bearing and the shaft prevents metal-to-metal

contact. This fluid acts as a direct coupler and affects the

critical speed and unbalance response of the machinery.

The analysis of hydrodynamic bearings can be per-

formed theoretically by properly modeling the bearing fluid

film. For modeling of a hydrodynamic bearing, the fol-

lowing assumptions are taken into account (Hamrock et al.

2004):

1. Film thickness is small compared with journal

dimensions.

2. Inertia of fluid in film is negligible.

3. There is laminar flow in the bearing fluid film.

4. The fluid is a simple Newtonian liquid with its

viscosity independent of the shear rate.

5. The viscosity and density of the fluid are constant

throughout the bearing.

The governing equations that represent the dynamic

behavior of hydrodynamic bearings were obtained by

Reynolds (1886):

o

os
h3 op

os

� �
þ o

oz
h3 op

oz

� �
¼ 6lU

oh

os
ð13Þ

where s is the distance around the bearing circumference of

the point under consideration measured from some arbi-

trary reference, z is the position of the point in the axial

direction, h is the film clearance, p is the lubricant pressure,

U is the tangential velocity of the journal surface, and l is

the dynamic viscosity of lubricant.

The variation of lubricant pressure in both the axial (z)

and circumferential (s) direction can be found using

Eq. (13). An approximate solution can be obtained by

making the short bearing approximation. For the short

bearing, eight parameters related to stiffness and damping

coefficient can be calculated as below (Hamrock et al.

2004; McCallion 1970):

kxy ¼
p p2 � 2p2e2 � 16 � p2ð Þe4
� �

Q eð Þ
e

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

kyx ¼
�p p2 þ 32 þ p2ð Þe2 þ 2 16 � p2ð Þe4

� �
Q eð Þ

e
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

kyy ¼
4 p2 þ 32 þ p2ð Þe2 þ 2 16 � p2ð Þe4
� �

Q eð Þ
1 � e2

kxx ¼ 4 2p2 þ 16 � p2
	 


e4
� �

Q eð Þ

cxx ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p
p2 þ 2 p2 � 8ð Þe2

� �
Q eð Þ

e

cyy ¼
2p p2 þ 2 24 � p2ð Þe2 þ p2e4

� �
Q eð Þ

e
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

cxy ¼ cyx ¼ �8 p2 þ 2 p2 � 8
	 


e2
� �

Q eð Þ

Q eð Þ ¼ 1

p2 þ 16 � p2ð Þe2f g3=2
e ¼ er

cr

ð14Þ

where er, cr are journal eccentricity and radial clearance,

respectively. e is the eccentricity ratio, which can be

determined from Eq. (15):

S
L

D

� �2

¼ 1 � e2ð Þ2

pe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1 � e2ð Þ þ 16e2

p ð15Þ

S ¼ lDLN
W

R

cr

� �2

ð16Þ

where S is Sommerfeld number, which is a non-di-

mensional number for hydrodynamic lubrication analysis.

is load on the bearing, D is the bearing bore, R is journal

radius, L is length of bearing, l is viscosity of lubricant, N

is the number of revolutions per second. The parameters

(diameter and length of bearing, radial clearance, and

viscosity of lubricant) are reported in Table 1. First, S is

Fig. 6 Schematic of a hydrodynamic bearing with linearized damping

and stiffness coefficients

Fig. 7 Process of obtaining bearing parameters
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calculated from the parameters of the bearing using

Eq. (16). Then, is obtained using the relationship between

S and given in Eq. (15). Once is determined, eight

parameters of the bearing are calculated according to

Eq. (14). Figure 7 shows the process of obtaining bearing

parameters. The results of bearing parameters are sum-

marized in Table 3:

4 Optimization methodology

4.1 Salp swarm algorithm

Salp swarm algorithm, which mimics the exploration and

foraging behavior of salps deep in the sea, is proposed by

Mirjalili et al. (2017). A group of salps moves unitedly,

which is known as a salp chain. Salp chain would lead to

better foraging and navigation. In the initialization step of

the salp swarm algorithm, the community of salps is sep-

arated into two groups: followers and leaders. The position

of leaders is updated according to Eq. (17):

y1
j ¼

Fj þ c1 ubj � lbj
	 


c2 þ lbj
	 


c3 � 0

Fj � c1 ubj � lbj
	 


c2 þ lbj
	 


c3\0

�
ð17Þ

where y1
j is the location of the best solution, which is the

leader of salps and Fj is the position of food source in the

jth dimension, ubj and lbj are the upper and lower bounds

in the jth dimension, respectively. c1, c2, and c3 are ran-

domly selected parameters. The parameters c2 and c3 are

random numbers between 0 and 1. The parameter, c1, is

used to balance the exploration and exploitation phases of

the algorithm and determined using Eq. (18):

c1 ¼ 2e�
4l
Lð Þ2

ð18Þ

where L is the maximum number of iterations, and l is the

current iteration. Similarly, the location of followers is

given by:

yij ¼
1

2
at2 þ v0t ð19Þ

where i C 2, yij demonstrates the location of ith follower

in jth dimension. In this equation, v0 is the initial speed and

t is time. a and v are calculated from Eq. (20):

a ¼ vfinal

v0

; v ¼ y� y0

t
ð20Þ

By considering v0 = 0, and replacing Dt with the itera-

tion number, j, Eq. (19) is rewritten as follows:

yij ¼
1

2
yij þ yi�1

j

� �
ð21Þ

where i C 2 and yij represents the location of ith follower

salp in the jth dimension.

4.2 Proposed hybrid algorithm using Nelder–
Mead

The SSA algorithm is a powerful algorithm that has led to

superior results in many engineering problems. However,

this algorithm has still drawbacks such as being trapped to

local optimum and slow convergence. There is no one

algorithm that works for every case according to no free

lunch theorem (NFL). In the literature, it is shown that

combining metaheuristics algorithms with the Nelder–

Mead algorithm can lead to better convergence (Yıldız
et al. 2019; Nelder and Mead 1965; Sarakhsi et al. 2016;

Mesbahi et al. 2016). The Nelder–Mead simplex method

(Nelder and Mead 1965) is effective in finding improved

solutions. This algorithm has shown superiority over the

other algorithms based on random search. Therefore,

integrating the SSA and Nelder–Mead (NM) algorithms is

proposed for enhancing these deficiencies.

The steps of the proposed hybrid algorithm are as fol-

lows: Firstly, the location and phase angle of the unbalance

are obtained using the SSA algorithm. Secondly, the pre-

dicted phase and location are used as initial guesses for the

Table 3 Stiffness and coefficient of bearing with respect to speed of the rotor (Tiwari 2017)

Stiffness coefficient (N/m) Damping coefficient (N-s/m)

Speed (RPM) kxx kxy kyx kyy cxx cxy ¼ cyx cyy

2000 2.86 9 109 5.83 9 108 1.36 9 108 7.69 9 107 7.19 9 106 3.85 9 105 0.99 9 105

4000 2.11 9 109 5.50 9 108 1.40 9 108 9.91 9 107 1.94 9 106 3.34 9 105 0.88 9 105

6000 1.64 9 109 7.47 9 108 0.99 9 108 7.81 9 107 1.07 9 106 1.30 9 105 0.36 9 105

8000 1.41 9 109 7.17 9 108 0.90 9 108 7.86 9 107 0.75 9 106 0.98 9 105 0.29 9 105

10,000 1.27 9 109 3.97 9 108 0.84 9 108 7.89 9 107 0.57 9 106 0.79 9 105 0.25 9 105

12,000 1.15 9 109 3.68 9 108 0.79 9 108 7.93 9 107 0.75 9 106 0.66 9 105 0.22 9 105

14,000 1.07 9 109 2.86 9 108 0.76 9 108 7.96 9 107 0.38 9 106 0.57 9 105 0.19 9 105
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Nelder–Mead algorithm to improve the accuracy and rate

of convergence of the SSA algorithm. The flowchart of the

proposed hybrid SSA–NM optimization algorithm is

shown in Fig. 8.

4.3 Optimization of unbalance response

In this subsection, the objective function for finding mag-

nitude and phase of unbalance mass is presented. The

objective function is considered as the weighted squared

difference between the measured and calculated unbalance

response as given in Eq. (22). Besides, the constraints are

given in Eq. (23) in the negative null form. The former

specifies the lower and upper bounds on the unbalance

mass, while the latter is for specifying the lower and upper

bounds on the phase angle.

Cost munb;uunbð Þ ¼
X
i

Wi g
�
i � gi

	 
2 ð22Þ

0\munb\500 g mm

0\uunb\360
� ð23Þ

where i is number of nodes, Wi is the ith weighting

factor, gi, g
�
i are the ith measured unbalance response of the

Fig. 8 The flowchart of the

SSA–NM algorithm
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unbalanced system, and the ith unbalance response esti-

mated from the optimization algorithm, respectively.

Weighting factor is considered 1
i for each node. The

unbalance response related to each node is calculated

according to Eq. (12). The optimization algorithm starts to

find the optimal unbalance response, g�i , which is function

of desired mass and phase of unbalance during selected

iterations. Using more unbalance response related to modes

in the objective function improves the accuracy of the

optimization results. Eight test cases, as shown in Table 4,

are considered with different magnitude of unbalance and

phase angles for the rotor system with a single disk and

double disks (Table 4). The magnitude of the unbalance is

varied between 115 and 232 g mm. Similarly, the phase

angles range between 30� and 225� in the test cases.

The displacement results are plotted against spin speed

are plotted in Figs. 9 and 10 for the rotor systems with

single disk and double disk, respectively. Besides, the

displacement of node 7 and node 9 corresponding to the

spin speed of 2000 rpm is summarized in Table 5. The

variation of the results is due to the different magnitude and

phase angles for the unbalance mass.

5 Taguchi design of experiment (DOE)
method

As one of the objectives of the paper is to benchmark the

accuracy and computational efficiency of the proposed

method compared to four recent optimization algorithms,

the optimization parameters are determined systematically.

In this section, the details of the application of the Taguchi

method are presented to tune the parameters of the pro-

posed optimization algorithm. Design matrix consisting of

orthogonal arrays is used to determine the best levels of the

design factors by reducing the variance for the design of

experiments in the Taguchi method. The essence of this

method is to minimize the variance of the signal-to-noise

ratio (S/N), which is considered as the objective function.

Thus, this method enables us to gain insight into the effect

of many design factors with a minimum number of

experiments. The flowchart of the Taguchi DOE is shown

in Fig. 11. The brief description of the five main steps is as

follows:

• Phase 1 (Plan) The objective, measurement method,

and main design factors are defined in this step.

• Phase 2 (Design) The noise factors, testing conditions,

and objective functions are designed according to the

factors and levels in the step.

• Phase 3 (Conducting) The design of the experiment

matrix is conducted, and the results are generated in the

third phase of the method.

• Phase 4 (Analysis) The results from the previous step

are analyzed for determining the best design model.

Various techniques such as S/N ratio are performed for

analyzing the results based on the test condition.

• Phase 5 (Verification) The results from the DOE are

verified by estimating how close the results match the

actual performance. Besides, the expected improvement

with the new design condition is estimated in the final

step.

The levels of the Taguchi method for the aforemen-

tioned optimization algorithms are presented in Table 6.

Orthogonal arrays (OA) are used in this method to reduce

the large number of experiments, which eventually reduce

the computational time. For that purpose, the L25 array of

Taguchi design of experiment method is used in this study

(Roy 2001). The Taguchi method performs a sensitivity

analysis to select a suitable level for each parameter. The

sensitivity function (S/N ratio) is defined in Eq. (24):

Table 4 Eight test cases

Test number Single disk Double disk

Magnitude (g mm)* Phase (�) Magnitude 1 (g mm) Phase 1 (�) Magnitude 2 (g mm) Phase 2 (�)

1 115 30 90 30 126 135

2 145 30 105 30 150 135

3 138 135 108 135 147 315

4 174 135 126 135 175 315

5 161 180 126 180 168 45

6 203 180 147 180 200 45

7 184 225 144 225 189 30

8 232 225 168 225 225 30

*g mm = gram 9 millimeter
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S/N ratio ¼ �10 log
X y2

i

x

 �
ð24Þ

where yi is the value of optimization objective function

shown in Eq. (22) and x is the number of repetitions of

optimization method for solving the problem.

The results of the DOE study are shown in Fig. 12. The

best parameters for case study 1 and case study 2 with the

highest quality are reported in Tables 7 and 8, respectively.

6 Results and dıscussıon

In this section, the results of five algorithms are presented:

(1) GOA, (2) WOA, (3) HHO, (4) SSA, and (5) SSA–NM.

More specifically, the accuracy of the magnitude and phase

of the unbalance is compared. Besides, the computational

(a) (b)

Fig. 9 Unbalance response for the rotor system with a single disk a test 1 and b test 2

Fig. 10 Unbalance response for the rotor with double disks a test 1 and b test 2

Table 5 Results for unbalance response due to the rotational unbal-

ance for rotational speed of 2000 rpm

Test number Single disk Double disk

Node 9 (m) Node 7 (m) Node 9 (m)

1 8.249e-5 1.248e-4 1.992e-4

2 1.040e-4 1.412e-4 2.362e-4

3 9.899e-5 1.393e-4 2.794e-4

4 1.248e-4 1.624e-4 3.307e-4

5 1.155e-4 1.655e-4 3.013e-4

6 1.456e-4 1.929e-4 3.568e-4

7 1.319e-4 1.865e-4 3.604e-4

8 1.664e-4 2.174e-4 4.266e-4
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efficiency of each algorithm is discussed. For the demon-

stration purposes, two case studies are considered: (1) rotor

system with a single disk and (2) rotor system with double

disks. Considering the random and probabilistic nature of

the optimization methods, all the algorithms are run ten

times. The average of the results is then presented for

accuracy and computational efficiency. The results for case

studies 1 and 2 are presented in Sects. 5.1 and 5.2,

respectively. The effect of rotor speed on identification

methodology is examined in Sect. 5.3. The proposed

methodology is demonstrated on a multi-disks in Sect. 5.4.

Finally, the optimization method is applied to different

unbalances experimentally to take into account the practi-

cal issues.

6.1 Case study 1: rotor system with a single disk

Eight tests are considered for the rotor-bearing system with

different unbalance magnitudes and phase angles, as shown

in Table 4. The unbalance response for each test is

Fig. 11 The flowchart for the

application of Taguchi method

to tune the optimization

parameters
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calculated according to the formulation outlined in

Sect. 3.2. The aforementioned optimization algorithms are

then used to determine the magnitude and phase of the

aforementioned cases. The results for the rotor system with

a single disk are summarized in Table 9.

The results indicate that all of the optimization algo-

rithms are capable of predicting the phase of unbalance

mass with very high accuracy for each test condition.

However, the results on the magnitude of unbalance mass

show some variation. The SSA algorithm is more accurate

than GOA, WOA, and HHO algorithms. The results also

indicate that the exploitation phase of SSA is more efficient

than the exploration phase. This conclusion is supported by

the fact that mere exploration does not guarantee the global

optimum, and a proper balance between the exploration

and exploitation phases is required. Therefore, a hybrid

approach was used by integrating SSA and N–M algo-

rithms. The Nelder–Mead algorithm is in considered as a

deterministic class of optimization. One of the main

advantages of this algorithm is its reliability, which means

that it guarantees convergence. However, one important

disadvantage of this algorithm is that it can cause local

optima stagnation problem as the characteristics of deter-

ministic optimization algorithms. On the other hand, SSA

is known as one of the best algorithms available in the

literature to avoid local optima stagnation in most of

engineering problems. Local optima stagnation occurs

when an optimization algorithm finds a local solution and

considers it as the global optimum solution. A real search

space usually has a large number of local solutions.

Therefore, an optimization algorithm should be able to

avoid them efficiently to determine the global optimum

(Mirjalili et al. 2017). As a result, combining these two

algorithms results in finding the optimal solution in term of

best accuracy as shown in Table 8, the best results (i.e., the

minimum value for the objective function or the most

accurate prediction of magnitude and phase angle for the

unbalance mass) are obtained from the application of the

hybrid the SSA–NM algorithm. This indicates the success

of the SSA–NM method in solving the optimization

problem of unbalance mass detection. The performance of

the Nelder–Mead algorithm depends on the initial guess

from the application of the SSA algorithm to optimize the

objective function.

Relative error between the optimization algorithm and

actual values for each test is shown in Table 10. The results

show that the SSA–NM algorithm is able to find the opti-

mal solution exactly. The SSA algorithm has predicted the

maximum error of 3.31% as the second best algorithm

among the algorithms considered in this study.

The aforementioned algorithms are compared on the

convergence speed for the eight test cases in Fig. 13. The

results indicate that the speed of convergence is improved

significantly with the application of the SSA–NM

algorithm.

To mimic actual situation of these two study cases,

different levels of noise are introduced and the results in

terms of the accuracy are benchmarked with the other

algorithms available in the literature. The optimization

procedure was performed by using SSA–NM being the

Table 6 The levels of each

optimization algorithm for

Taguchi DOE method

Optimization algorithm Parameter Level

1 2 3 4 5

GOA Attraction length scalea 1.3 1.4 1.5 1.6 1.7

Intensity of attractionb 0.3 0.4 0.5 0.6 0.7

Search agent number 20 25 30 35 40

Iteration 250 300 350 400 450

HHO Search agent 20 25 30 35 40

Iteration 300 350 400 450 500

Beta c 1.3 1.4 1.5 1.6 1.7

WOA Search agent 20 25 30 35 40

Iteration 300 350 400 450 500

bd 0.8 0.9 1 1.1 1.2

SSA Search agent 20 25 30 35 40

Iteration 350 400 450 500 550

aAttraction length scale is a constant in social forces function (Saremi et al. 2017)
bIntensity of attraction is a constant in social forces function (Saremi et al. 2017)
cBeta is a constant in levy flight function (Heidari et al. 2019)
db is a constant for defining the shape of the logarithmic spiral in spiral updating position (Mirjalili and

Lewis 2016)
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(a)

(b)

(c)

(d)

Fig. 12 Taguchi design parameters for a GOA, b HHO, c WOA, and d SSA algorithms
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most accurate algorithm. The results and relative error

results are reported in Table 11. The results show that

maximum relative error is 0.4% on magnitude and 1.4%

for the phase angle when there is 5% noise in the data.

Therefore, the methodology is able to compete with

methods in the literature.

6.2 Case study 2: rotor system with double disks

The proposed methodology is applied to the rotor system

with double disks in this section. The number of variables

in the objective function is changed to four to account for

Table 7 Optimization parameters used in case study 1

Optimization algorithm Parameter Value

GOA Attraction length scale 1.4

Intensity of attraction 0.3

Search agent number 35

Iteration 450

HHO Search agent 30

Iteration 450

Beta 1.5

WOA Search agent 25

Iteration 500

b 0.9

SSA Search agent 35

Iteration 500

SSA–NM Search agent 35

Iteration 500

Table 8 Optimization parameters used in case study 2

Optimization algorithm Parameter Value

GOA Attraction length scale 1.5

Intensity of attraction 0.5

Search agent number 40

Iteration 2000

HHO Search agent 40

Iteration 2000

Beta 1.5

WOA Search agent 40

Iteration 2000

b 1

SSA Search agent 40

Iteration 2000

SSA–NM Search agent 40

Iteration 2000
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the addition of the second disk. For this case study, eight

different test conditions are considered, as shown in

Table 12. More variables in the optimization problems

make it more difficult to converge. For instance, it is shown

that for the rotor system with double disks, FOA (fruit fly

algorithm) is not able to determine the unbalance param-

eters with the increase in the optimization variables (Yao

et al. 2018).

Table 12 shows the result of optimization for double

disks for solving the unbalance mass detection problem.

Similar to case study 1, the performance of the SSA

algorithm is better than GOA, WOA, and HHO algorithms

on the prediction of the rotational unbalance mass. The

improvement is attributed to: (1) the graduate movement of

follower salps prevents the SSA algorithm from being

trapped to local optima, and (2) the adaptive mechanism of

SSA allows this algorithm to avoid local solutions and

eventually finds an accurate estimation of the best solution.

The proposed hybrid algorithm shows a superior perfor-

mance in this problem. Similarly, the results on the relative

error are presented in Table 13. The error related to the

SSA–NM algorithm is zero. After that, SSA, HHO, GOA,

and WOA have a minimum relative error, respectively. The

results are also plotted in Fig. 14 to show the convergence

of each algorithm. The results with the noise levels and the

relative error on the magnitude and phase angle are sum-

marized in Tables 14 and 15, respectively. The results

show acceptable accuracy for detecting unbalance mass.

6.3 Effect of rotor speed on ıdentification
process

One of the major concerns in the identification process is

the effect of the rotor speed. The robustness of the devel-

oped methodology is investigated in terms of the rotor

speed in this section. For that purpose, the unbalance

response at multiple speeds for test 1 is used to identify the

parameters of the unbalance for mutual verification. Sim-

ilarly, different levels of noise as in case study 1 and 2 are

considered in the analyses. The estimation of the unbalance

parameters and the relative error between actual and

estimated parameters corresponding to 0%, 1%, 3%, and

5% random noises for single disk and double disks cases

are summarized in Tables 16 and 17, respectively. It is

observed from Table 17, for the case study with single and

double disks, the relative error considering the noise in the

system is almost constant for the range of rotor speeds from

4000 to 12,000 rpm. The maximum relative error occurs

for the rotor system with double disks where 5% noise is

considered in the system. The simulation results demon-

strate the robustness of the proposed methodology for the

estimation of the rotational unbalance parameters.

Table 18 shows the results of the aforementioned algo-

rithms in the literature for identifying unbalance mass. The

proposed optimization-based method has a higher accuracy

than the other algorithms. More specifically, the maximum

relative error on the magnitude and phase of unbalance

mass for the majority of the eight cases is almost zero for

the rotor system with a single and double disk. In the lit-

erature, various optimization methods have been tested

only on one test case for the rotor system with double disk.

In this study, the proposed algorithm has been compared

with the aforementioned algorithms for eight test cases. As

the results point out, the accuracy of the proposed algo-

rithm is improved compared to the other algorithms in the

literature, and the parameters can be calculated with high

accuracy.

The unbalance response of the rotor-bearing system is

obtained from the proper sensors which is placed in the

suitable place on the rotor. As it is seen in previous parts,

this methodology successfully achieves the unbalanced

parameters containing mass and radial distance needed for

correction of unbalance in the system. The system can be

balanced subjected to the condition that trial mass is kept at

the specific radius, diametrically opposite to the disk

eccentricity direction.

6.4 Verification of proposed method on a multi-
disks case

In this part, a rotor-bearing system with multi-disks (four

disks) is considered to challenge the proposed methodology

Table 10 Relative error between actual and calculated value for magnitude and phase for case study 1

Indicator GOA WOA HHO SSA SSA–NM

Magnitude

(%)

Phase

(%)

Magnitude

(%)

Phase

(%)

Magnitude

(%)

Phase

(%)

Magnitude

(%)

Phase

(%)

Magnitude

(%)

Phase

(%)

Min 0.7629 0 0.9919 0 0.5721 0 0.3452 0 0 0

Avg 3.7537 0 4.0113 0 3.7646 0 2.0001 0 0 0

Max 8.8291 0.0003 8.8124 0 8.7621 0 3.3156 0 0 0
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13 Objective function vs. iteration number for case study 1 a test 1, b test 2, c test 3, d test 4, e test 5, f test 6, g test 7, and h test 8
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for a complicated system. For this purpose, two disks are

added to doubled-disk case: one disk at node 5 and the

other one in node 3. Two unbalances are placed in disk 1

and disk 2 (node 9, 7) and the methodology is performed to

identify the parameters of unbalances. Tests 1 and 4 are

chosen with 5% level of noise at 4000 rpm speed of rotor.

The results and related error for identification process are

reported in Table 19. The results show little increment in

errors in compared to single disk and double disks which is

normal behavior for such complicated system. But these

range of errors are acceptable for this system and the

unbalances are estimated with good accuracy.

6.5 Experimental validation

In this section, the rotor test rig and the way to obtain

vibration response from the system is explained. When the

system operates without any fault in the system, the

vibration response is named as the response of the

undamaged system. The vibration response is called the

damaged response with the fault in the system. The

residual vibration of the system is the difference between

vibration responses of the undamaged and damaged sys-

tem. The optimization process described in the previous

sections is able to identify the unbalance parameters con-

sidering the residual vibration.

The rotor test rig used in this study is from IIT Guwahati

and is shown in Fig. 15. The experimental setup consists of

the shaft (diameter 10 mm and length 510 mm), a bush

bearing, proximity sensors (eddy current displacement

sensors: the probe sensitivity is 7874 V/m), and a motor

speed control unit. The shaft has two detachable disks

(placed at one-third of the shaft span) of 800 gm (with steel

disks of inside diameter 10 mm, outside diameter 78 mm

and thickness 25 mm) each mounted on it and having holes

at different orientation at a distance 3 cm from disk center

for addition of unbalances. The FEM model is created

using 15 Timoshenko beam elements.

As the first part of the model validation, an impulse test

is performed on the test rig to compare the natural fre-

quency of test rig and the FEM model. Displacement

amplitude vs. frequency from this test is shown in Fig. 16.

The first natural frequency of test rig and finite element

model is 26 Hz and 24.93 Hz, respectively. The relative

error is 4.3% due to conditions prevailing at bush bearings.

Two displacement sensors (eddy current sensor) are

placed near two disks. The rotor runs at 900 rpm with and

without the addition of the unbalance trials in the damaged

rotor system. The displacement signals can be seen on the

oscilloscope for left and right disks (named as left and right

plane) and can be digitized for further processing. The

vibrational response is as a result of the presence of

residual unbalance, which is due to manufacturing toler-

ances, thermal distortion, as well as permanent bow. Per-

manent bow or residual bow can be produced in the shaft as

a result of creep, and impulsive force. The effect of

unbalance on the system is shown on displacement versus

time curve, and orbit plot in Figs. 17 and 18, respectively.

Table 11 Optimization results for case study 1 with noise

Test

number

Actual value Calculated value

SSA–NM

1% Noise 3% Noise 5% Noise

Magnitude (g mm) Phase (�) Magnitude (g mm) Phase (�) Magnitude (g mm) Phase (�) Magnitude (g mm) Phase (�)

1 115 30 114.9107 29.9145 114.7283 29.7437 114.5342 29.5728

2 145 30 144.8825 29.9145 144.6542 29.7437 144.4191 29.5728

3 138 135 137.8907 135.1027 137.6729 135.3083 137.4489 135.5139

4 174 135 173.8611 135.1027 173.5853 135.3083 173.3063 135.5139

5 161 180 160.8711 180.0666 160.6115 180.2000 160.3603 180.3333

6 203 180 202.8365 180.0666 202.5127 180.2000 202.1872 180.3333

7 184 225 183.8505 225.0305 183.5541 225.0916 183.2657 225.1527

8 232 225 231.8194 225.0305 231.4523 225.0916 231.0626 225.1527

Error Indicator Magnitude (%) Phase (%) Magnitude (%) Phase (%) Magnitude (%) Phase (%)

Min. 0.0776 0.0135 0.2361 0.0407 0.3973 0.0678

Avg. 0.0796 0.1029 0.2387 0.3086 0.4005 0.5144

Max. 0.0812 0.2851 0.2423 0.8543 0.4051 1.4240
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Total six tests for first case (one unbalance with two

variables) and one test for second case (two unbalances

with four variables) are designed to verify the proposed

methodology. The response of these tests is measured and

used in the unbalance identification algorithms. The rotor

runs at 900 rpm and response of one sensor is used in the

identification algorithm. The results for single and double

unbalance cases are shown in Tables 20 and 21, respec-

tively. The results show that the unbalance parameters

including magnitude and phase can be identified by the

proposed optimization methodology. The best result

belongs to SSA–NM algorithm. For the single unbalance,

the maximum and minimum relative errors of magnitude

related to SSA–NM algorithm are 12.25% and 6.25%,

respectively. Also maximum and minimum relative errors

of phase related to SSA–NM algorithm are 6.8% and

0.12%, respectively. The relative errors related to double

unbalance cases for magnitudes and phases are 13.19% and

17.94% and 6.51% and 14.65%, respectively, which is

calculated by SSA–NM algorithm. The other algorithms

identified the unbalance with huge errors that can be seen

in Tables 20 and 21. As it is expected, the relative errors of

double unbalances case are higher than the single unbal-

ance case since the second case has more variables in

comparison with the first case. Therefore, it is more chal-

lenging for the optimization algorithm to detect unbal-

ances. In addition, the results demonstrate that the

proposed methodology can identify the unbalances in the

system with acceptable accuracy.

Table 12 Optimization results

for case study 2
Test number Actual value Calculated value

GOA WOA HHO SSA SSA–NM

1 M1 90 102.6586 81.7191 89.075 92.8812 90

Ph1 30 29.9999 29.9964 29.9622 29.9999 30

M2 126 143.7220 114.3715 124.5874 130.0337 126

Ph2 135 134.9999 134.9951 135.0085 135.0001 135

2 M1 105 112.9087 111.6402 114.3101 107.4656 105

Ph1 30 29.9999 30.0030 30.0055 29.9999 30

M2 150 161.2980 159.5739 163.3796 153.5223 150

Ph2 135 134.9999 135.0114 135.0076 134.9999 135

3 M1 108 118.9877 103.9379 101.2289 111.5486 108

Ph1 135 134.9988 134.9984 135.1455 134.9999 135

M2 147 110.7097 186.3186 153.5444 150.5618 147

Ph2 315 315.0014 315.0013 314.9988 315 315

4 M1 126 139.0367 133.4452 119.5689 120.5154 126

Ph1 135 134.9986 134.8778 134.8122 135 135

M2 175 125.1400 185.8932 185.4484 169.5623 174.9999

Ph2 315 315.0016 315.2111 314.7885 315 315

5 M1 126 146.9154 131.8347 122.0560 132.146 126

Ph1 180 179.9999 180.0166 180.0239 180 180

M2 168 195.8879 175.7332 162.6686 176.1946 168

Ph2 45 44.9999 44.9743 44.9641 44.9999 45

6 M1 147 155.3643 153.6711 137.2593 150.3022 147

Ph1 180 179.9999 179.9698 179.9805 179.9999 180

M2 200 211.3800 209.3525 183.5539 204.4929 200

Ph2 45 44.9999 45.0249 44.9653 45.0001 45

7 M1 144 148.7368 147.9914 127.4656 144.9279 144

Ph1 225 224.9952 224.9794 225.0336 225.0001 225

M2 189 195.0008 193.3104 168.1809 190.2241 189

Ph2 30 30.0001 30.0009 29.9753 29.9999 29.9999

8 M1 168 152.1775 175.1127 172.7673 170.6793 168

Ph1 225 225.0008 224.9994 224.9745 225.0001 225

M2 225 203.8496 234.9050 230.2009 228.5954 225

Ph2 30 30.0000 30.0158 30.0082 29.9999 30
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The balancing of the rotor system is carried out utilizing

the balance masses estimated in Table 21. The balance

masses are added at the respective planes, and the rotor

system is operated at 900 rpm. The percentage reduction in

displacement amplitude is shown in Table 22, i.e., found

out to be 42% at the left plane location and 47% at the right

plane location. The appreciable reduction in the dynamic

response of the rotor system shows the effectiveness of the

algorithm in the detection of the unbalances. The orbit plot

of the rotor system at both balancing planes is shown in

Fig. 19. It should be mentioned that to show the extent of

balancing after addition of the balance mass, the residual

shaft bow is removed from the responses in Fig. 19. The

Table 13 Relative error for magnitude and phase for case study 2

Indicator GOA WOA HHO SSA SSA–NM

Min.

M1 (%) 3.2894 2.7718 1.0277 0.6443 0

Ph1 (%) 0 0.0002 0.0108 0 0

M2 (%) 3.1750 2.2806 1.1211 0.6476 0

Ph2 (%) 0 0.0004 0.0004 0 0

Avg.

M1 (%) 9.6393 5.1711 5.668 2.8189 0

Ph1 (%) 0.0005 0.0186 0.0552 0 0

M2 (%) 13.7051 8.0682 5.6483 2.5562 0

Ph2 (%) 0.0001 0.0309 0.0432 0.0001 0

Max.

M1 (%) 16.5995 9.201 11.4822 4.8777 0

Ph1 (%) 0.0020 0.0905 0.1391 0 0

M2 (%) 28.4914 26.7473 11.0154 4.87777 0

Ph2 (%) 0.0005 0.0670 0.0823 0.0003 0

Table 14 Optimization results for case study 2 with noise

Test number Actual value SSA–NM calculated value

1% Noise 3% Noise 5% Noise

1 M1 90 89.8123 89.4485 89.0842

Ph1 30 28.8629 29.5882 29.3129

M2 126 125.6776 125.0459 124.4093

Ph2 135 135.1471 135.4412 135.7347

2 M1 105 104.7783 104.3435 103.9178

Ph1 30 29.8630 29.5886 29.3134

M2 150 149.6231 148.8784 148.1421

Ph2 135 135.1466 135.4394 135.7317

3 M1 108 107.8315 107.4115 106.8987

Ph1 135 134.8125 134.6326 134.4532

M2 147 147.5674 146.3547 145.2315

Ph2 315 315.2122 315.7625 315.8215

4 M1 126 125.7888 125.5468 124.7845

Ph1 135 134.8854 134.7452 134.3954

M2 175 174.7112 174.1325 173.7412

Ph2 315 315.2313 315.8523 315.9542

5 M1 126 125.8787 125.6361 125.4098

Ph1 180 180.1273 180.3822 180.6375

M2 168 167.5671 166.6866 165.8075

Ph2 45 44.8696 44.6095 44.3502

6 M1 147 146.8524 146.5609 146.2833

Ph1 180 180.1267 180.3805 180.6347

M2 200 199.5036 198.4991 197.4906

Ph2 45 44.8702 44.6112 44.3531

7 M1 144 143.5600 142.7191 141.9388

Table 15 Relative error for magnitude and phase for case study 2

with noise for SSA–NM algorithm

Indicator SSA–NM

1% Noise 3% Noise 5% Noise

Min

M1 0.0962 0.2379 0.4683

Ph1 0.0408 0.1219 0.2022

M2 0.1650 0.4389 0.7192

Ph2 0.0673 0.2420 0.2608

Avg

M1 0.1924 0.4821 0.9754

Ph1 0.1700 0.4841 0.818

M2 0.2845 0.8289 1.2761

Ph2 0.2034 1.6209 0.9974

Max

M1 0.3055 0.8895 1.4313

Ph1 0.4568 1.3723 2.2903

M2 0.3860 1.6027 1.6842

Ph2 0.3464 1.0380 1.7283

Table 14 (continued)

Test number Actual value SSA–NM calculated value

1% Noise 3% Noise 5% Noise

Ph1 225 225.0926 225.2765 225.4585

M2 189 189.7007 190.9971 192.1831

Ph2 30 29.8960 29.6885 29.4814

8 M1 168 167.5050 167.6003 165.6747

Ph1 225 225.0919 225.2743 225.4550

M2 225 225.7686 228.6062 228.4689

Ph2 30 29.8966 29.6901 29.4839
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system is rotated at the low speed (250 rpm) and the dis-

placement response due to shaft bow is obtained. (Contri-

bution of the unbalance forces are less at lower speeds.)

The 19 harmonics of low speed is subtracted from the 19

harmonics of the displacement responses at high speed to

remove the bow effect. Then the orbit plot of the modified

response is obtained that shows the vibrational amplitude

due to unbalances only at 900 rpm.

bFig. 14 Objective function vs. iteration number for case study 2 a test

1, b test 2, c test 3, d test 4, e test 5, f test 6, g test 7, and h test 8

Table 16 Effect of speed for finding unbalance For Test 1 and SSA–NM algorithm

Test 1

Magnitude: 115 g mm

Phase: 30�

Single disk

Speed (RPM) 0% Noise 1% Noise 3% Noise 5% Noise

Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase

4000 115 29.9999 114.7071 29.9434 114.0344 29.8301 113.4311 29.7169

6000 115 30 114.6587 29.9019 114.0036 29.7058 113.4432 29.5097

8000 115 29.9999 114.6562 29.9016 114.0249 29.7048 113.3577 29.5080

10,000 115 30 114.7082 29.9484 114.0101 29.8454 113.6011 29.7423

12,000 115 30 114.694 29.8687 114.0517 29.6061 113.4131 29.3435

Test 1

M1: 90 g mm

Ph1: 30�
M2: 126 g mm

Ph2: 135�

Double disks

Speed (RPM) 0% Noise 1% Noise 3% Noise 5% Noise

4000 M1 90 89.8463 89.5356 89.2258

Ph1 29.9999 29.7543 29.2647 28.7775

M2 126 125.2954 123.8952 122.5147

Ph2 135 135.2833 135.8552 136.4342

6000 M1 90 89.7912 89.5641 88.8965

Ph1 29.9999 29.9412 29.4512 29.2548

M2 126 125.7356 124.5425 124.4125

Ph2 135 135.1521 135.1585 135.7546

8000 M1 89.9999 88.8433 86.5635 84.3128

Ph1 30 29.9762 29.928 29.8786

M2 125.9999 125.9457 125.8342 125.6962

Ph2 135 135.1195 135.3564 135.5901

10,000 M1 90 89.8558 89.5753 89.3103

Ph1 30 29.9035 29.7106 29.5178

M2 126 125.7210 125.175 124.6517

Ph2 134.9999 135.0552 135.1656 135.276

12,000 M1 90 89.7458 89.229 88.6908

Ph1 30 29.7257 29.177 28.6304

M2 126 125.5949 124.7768 123.9336

Ph2 135 135.0789 135.2361 135.3923
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7 Conclusıons

A new methodology was proposed to identify the unbal-

ance characteristics of rotating machinery based on the

unbalance response. The objective function is considered

as the weighted squared difference between the measured

and the calculated unbalance responses. The proposed

hybrid algorithm combines the power of the SSA algorithm

to avoid local optima stagnation, and the reliability of the

Nelder–Mead algorithm to find a more accurate solution

for the rotational unbalance parameters. The performance

of the proposed hybrid algorithm is compared to four

algorithms in the literature. For a fair comparison of the

results, the optimization parameters for all the algorithms

are tuned systematically using the Taguchi method. The

methodology is demonstrated on a rotor system with a

single disk and double disks. The former has two design

variables in the objective function, while the latter has four.

The proposed methodology can determine the rotational

unbalance parameters exactly for the rotor system with a

single disk and double disks. For both case studies, the

minimum and the maximum relative error between the

optimized and actual values are 0% for the rotational

unbalance mass and for the phase angle for the systems

without any noise. The accuracy of the proposed method is

much higher than the other algorithms considered in this

case study. Moreover, this study shows that the proposed

methodology can identify the parameters of the unbalance

Table 17 Relative error for different rotor speeds in Test 1 using SSA–NM algorithm

Speed (RPM) 0% Noise 1% Noise 3% Noise 5% Noise

Magnitude (%) Phase (%) Magnitude (%) Phase (%) Magnitude (%) Phase (%) Magnitude (%) Phase (%)

Single disk

4000 0 0.0003 0.2546 0.1886 0.8396 0.5663 1.3642 0.9436

6000 0 0 0.2967 0.3270 0.8664 0.9806 1.3537 1.6343

8000 0 0.0003 0.2989 0.3280 0.8479 0.9840 1.4281 1.6400

10,000 0 0 0.2537 0.1720 0.8607 0.5153 1.2164 0.8590

12,000 0 0 0.2660 0.4376 0.8246 1.3130 1.3799 2.1883

Speed (RPM) 0% Noise 1% Noise 3% Noise 5% Noise

Double disks

4000 M1 (%) 0 0.1707 0.5159 0.8601

Ph1 (%) 0.0003 0.8188 2.4508 4.0747

M2 (%) 0 0.5591 1.6704 2.7660

Ph2 (%) 0 0.2098 0.6335 1.0623

6000 M1 (%) 0 0.2319 0.4843 1.2260

Ph1 (%) 0.0003 0.1958 1.8291 2.4837

M2 (%) 0 0.2098 1.1566 1.2598

Ph2 (%) 0 0.1127 0.1173 0.5589

8000 M1 (%) 0.0001 1.2851 3.8182 6.3190

Ph1 (%) 0 0.0791 0.2398 0.4044

M2 (%) 0 0.0430 0.1315 0.2410

Ph2 (%) 0 0.0885 0.2640 0.4371

10,000 M1 (%) 0 0.1601 0.4717 0.7662

Ph1 (%) 0 0.3214 0.9643 1.6072

M2 (%) 0 0.2214 0.6547 1.0700

Ph2 (%) 0 0.0408 0.1226 0.2044

12,000 M1 (%) 0 0.2823 0.8565 1.4546

Ph1 (%) 0 0.9142 2.7409 4.5652

M2 (%) 0 0.3214 0.9707 1.6399

Ph2 (%) 0 0.0584 0.1748 0.2905
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accurately for different rotor speeds in the presence of

different noise levels. In addition, an experiment is con-

ducted to verify the proposed method. The proposed

algorithm is able to detect the unbalance characteristics

with acceptable accuracy.

The research findings indicate that the new hybrid

method has great potential to improve the accuracy of the

solutions for engineering problems efficiently. Also, this

methodology has high potential capabilities to combine

with a suitable control system. With using active magnetic

bearing in the system which can easily tune the stiffness

and damping of the vibration, considering the magnitude of

possible unbalances the unwanted vibration of the system

Table 18 Comparison of the proposed algorithm with previous research studies

Reference Proposed method Indicator Rel. error magnitude (%) Rel. error phase (%)

Single disk

Yao et al. (2018) Modal expansion with optimization (FOA) Min 6.51 0.08

Avg 8.24 0.31

Max 10.08 0.84

Present work Unbalance response with optimization (SSA–NM) Min 0.39 0.06

Avg 0.40 0.51

Max 0.40 1.42

Reference Proposed method Indicator Error M1

(%)

Error Ph1

(%)

Error M2

(%)

Error Ph2

(%)

Double disks

Yao et al.

(2018)

Modal expansion with optimization (ALO)

30.4 12.74 2.07 19.09

Yao et al.

(2018)

Combining modal expansion and inverse problem with

optimization (ALO)

0.41 0.38 2.13 1.12

Present work Unbalance response with optimization (SSA–NM) Min 0.46 0.20 0.71 0.26

Avg 0.97 0.81 1.27 0.99

Max 1.43 2.29 1.68 1.72

Table 19 Optimization results and relative error for multi-case disks with 5% noise for SSA–NM algorithm at 4000 rpm

Test number Multi-disks

Assumed valued Predicted

5% Noise Relative errors

1 M1 90 85.91 4.54

Ph1 30 28.43 5.20

M2 126 124.02 1.57

Ph2 135 136.18 0.87

4 M1 126 121.54 3.54

Ph1 135 132.90 1.56

M2 175 173.23 1.01

Ph2 315 311.24 1.19
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Fig. 15 The rotor test rig

(a)

(b)

Fig. 16 a Displacement vs. time

curve and b displacement

amplitude vs. frequency curve

for impulsive force applied in

the rotor system
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(a)

(b)

Fig. 17 Displacement versus

time curve at a left plane and

b right plane with and without

addition of trial unbalance at

900 rpm
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(a) (b)

Fig. 18 Orbit plot at a left plane and b right plane with and without addition of trial unbalance at 900 rpm

Table 20 Experimental results of the single unbalance in the system

Test numbera Actual value OPT methods Calculated by algorithms Error

Magnitude (g mmb) Phase (�) Magnitude (g mm) Phase (�) Magnitude (%) Phase (%)

1 36 360 SSA–NM 40.41 358.18 12.25 0.51

SSA 43.25 356.79 20.14 0.89

HHO 48.36 355.98 34.33 1.12

WOA 53.46 355.81 48.50 1.16

GOA 18.3 356.13 49.17 1.07

2 36 360 SSA–NM 33.69 357.98 6.42 0.56

SSA 31.92 357.53 11.33 0.68

HHO 30.64 357.11 14.88 0.80

WOA 46.41 355.47 28.91 1.25

GOA 27.62 354.86 23.27 1.42

3 36 45 SSA–NM 39.66 41.94 10.17 6.8

SSA 41.24 41.17 14.55 8.51

HHO 43.47 40.62 20.75 9.73

WOA 28.49 40.98 20.86 8.93

GOA 27.65 39.41 23.19 12.42

4 36 135 SSA–NM 33.28 135.18 7.55 0.14

SSA 31.45 135.45 12.63 0.33

HHO 31.59 136.03 12.25 0.76

WOA 28.41 137.47 21.08 1.82

GOA 25.74 135.69 28.50 0.51

5 36 180 SSA–NM 38.85 177.78 7.92 1.23

SSA 39.77 175.64 10.47 2.42
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(a) (b)

Fig. 19 Orbit plot at a left plane and b right plane before and after balancing at 900 RPM

Table 20 (continued)

Test numbera Actual value OPT methods Calculated by algorithms Error

Magnitude (g mmb) Phase (�) Magnitude (g mm) Phase (�) Magnitude (%) Phase (%)

HHO 42.69 174.69 18.58 2.95

WOA 24.69 175.63 31.41 2.42

GOA 27.69 176 23.08 2.22

6 36 270 SSA–NM 33.75 269.68 6.25 0.12

SSA 31.76 268.14 11.77 0.68

HHO 30.86 268 14.27 0.74

WOA 26.87 267.36 25.36 0.97

GOA 25.14 265.98 30.16 1.48

The numbers in bold show the best results compared to other methods considered in this study
aTrial of test numbers 1, 3, 5 is located on left disk and trial of test numbers 2, 4, 6 is located on right disk
bGram 9 millimeter
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can be simply reduced. Control application of such these

methods will be the subject of our future research work.
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