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Abstract
Mental stress is an issue that creates functional limitations in the workplace. Chronic stress leads to a number of psy-

chophysiological sicknesses. For instance, it raises the risk of depression, heart attack, and stroke. According to the most

recent findings in neuroscience, the human brain is the primary focus of mental stress. Perception of biological motion in

the human brain determines the risky and stressful situations. Neural signaling of the human brain is used as an objective

measure for determining the stress level of a subject. The oscillations of electroencephalography (EEG) signals are utilized

for classifying human stress. EEG signals have a higher temporal resolution and are rapidly distorted with unwanted noise,

resulting in a variety of artifacts. This study utilizes Extended Independent Component Analysis based approach for

artifacts removal. A Multiclass Common Spatial Pattern-based moving window technique is proposed here to obtain the

most distinguishable time segment of EEG trials. BiLSTM is used to improve classification results. In order to validate the

model performance, two publically available datasets (i.e., DEAP and SEED) are utilized. Employing these datasets, the

proposed model achieves state-of-the-art results (93.1, 96.84%) for EEG signal classification to identify stress.
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1 Introduction

Stress is described as an impression of being overwhelmed

or unable to deal with emotional or mental pressure.

Human body is sensitivity to any form of pressure and

threats it as stress. A number of situations or life events can

cause this. It occurs when we are stuck with something new

and unexpected. Stress is the source of many mental

infections. Various ways of stress exist which have nega-

tive influence on human life. It has a harsh effect on the

subject’s working relationships and on job performance. It

also contributes to the risk of anxiety and depression

(Sharma et al. 2020). The circumplex model proposed in

(Russell JA, 1980) located stress in the left quadrant of the

emotional space as shown in Fig. 1. Arousal varies from

inactive state (like tired, sleepiness) to active state (e.g.,

alert, excited). Whereas, valence scales from unpleasant

(like sad, stressed) to pleasant (e.g., happy, elated) (Koel-

stra et al. 2011).

Humans are subjected to two forms of stress: acute

stress and perceived stress. Acute stress is a rare compli-

cation likely to be the result of events such as an accident, a

severe career mistake, or a conflict with relatives/friends.

Perceived stress is a long-term illness that may be caused

by socioeconomic conditions like a boring job, an unsuc-

cessful marriage, family problems, or poverty (Arsalan

et al. 2019). The analysis of stress has been done using bio-

signals of the human brain (Mukherjee and Roy 2019).

A Brain Computer Interface (BCI) based on EEG signals,

empowers the humans to communicate directly with
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computers using their brain impulses (Ullah et al. 2021).

EEG data is exploited in brain computer interfaces to

trigger actions using computational intelligence approa-

ches. (Halim, Baig, and Bashir 2007). The reliable measure

of brain activity is the EEG alpha variability index, which

tends to be lower in stressful conditions (Giannakakis et al.

2019). These signals are time-variant measures (Bhavsar

et al. 2018) of individual body functions that occur in two

sections, physical and physiological bio-signals. Muscle

activity, eye blinking, head movements, facial expressions,

and speech are examples of physical bio-signals related to

external body movements. The body’s internal activities

such as heart rate (electrocardiogram ECG), blood volume

pulse (BVP), brain activity (EEG), and muscle excitability

(electromyography EMG) are related to physiological sig-

nals. To investigate the relationship between brain function

and emotional responses, the current brain waves are

captured as EEG signals (Halim and Rehan 2020). Stress

has been shown to have a wide range of adverse effects on

the brain, ranging from mental illnesses to brain shrinkage.

The activation of neurons in the brain generates electrical

impulses in response to a combination of multiple stimuli

(Zou et al. 2014).

EEG signal contains detailed information about indi-

vidual mental states as well as objective assessments. EEG

is exploited to measure brain functions, abnormalities, and

physiological dynamics (Sun, Liu, and Beadle 2005). Pat-

tern recognition in EEG signals can reliably differentiate a

range of emotional states. The electrical signals produced

by brain activity are minuscule (amplitude of around 10 to

100 lV), on the scale of a millionth of a volt. It also has a

lower frequency spectrum of 4 to 60 Hz. The electrical

signal on the scalp is made up of both actual brain signals

and noise artifacts. The other body parts such as eye

movements and blinking (electrooculography, EOG), heart

activity (ECG), facial muscle movements (facial elec-

tromyography, fEMG), muscle movements (electromyog-

raphy, EMG), produce attenuation in the EEG signals

(Mannan et al. 2018). The EEG signals generated from

various parts of the body are shown in Fig. 2. Non-physi-

ological distortions, such as power-line noise and rapid

impedance changes caused by electrode movement, arise

outside the body.

In medical research, the retrieval of individual brain

signals from a distorted EEG signal is the most challenging

task (Sharma et al. 2020). The most demanding aspect of

EEG analysis is detecting and eliminating artifacts. Artifact

removal, which involves removing all unwanted signals

from the signals released by the brain, is the first step in

any EEG data processing. It is important to eliminate noise

from the EEG signals, to make the neural activity better

analyzable. First, the desired brain signals must be

extracted from the raw EEG data (Oosugi et al. 2017). In

this study, a detailed investigation of separating artifacts

from EEG signals, dividing it into time segments, repre-

senting it through feature vectors, and finally its classifi-

cation is proposed. Splitting a multivariate signal into

related subcomponents is done using ICA. This is accom-

plished by suggesting that the individual components are

non-Gaussian signals which are statistically distinct from

each other. Adaptive filters with Least Mean Squares

(LMS) and Recursive least squares (RLS) are utilized to

filter noise from the EEG signals. The coefficients of the

filters vary in time due to a reference signal (noise), with

the intention of causing the filter to converge to an ideal

state. The M-CSP technique is used to derive features from

EEG signals. It makes use of spatial filters to increase

discriminability in the form of variances between several

features. Various characteristics are used as features to

distinguish the different levels of stress.

EEG data is susceptible to a variety of noise patterns,

which reduces the model accuracy of identification. We

propose the use of a Recurrent Neural Network (RNN)

based technique that learns the discriminative EEG char-

acteristics to overcome these issues. Specifically, from

time-series EEG data, to demonstrate the association

between subsequent data samples. In comparison to other

techniques, this network has internal memory, which

allows it to remember past information and have a higher

understanding of time series data and its context. An

extension of a long short-term memory network called

BiLSTM is utilized to learn and classify the features into

the desired labeled classes.
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2 Related work

EEG signals are electric impulse produced by a set of

particular pyramid nerve cells indicating neural activity.

Based on the functioning condition of the brain, numerous

types of rhythms can be seen in neural signals. Very small

alterations in the frequency patterns of these signals may

help in the early prediction of neurological problems or

identifying that some neural activity is occurring in

response to the external environment (Khosla et al. 2020).

A comprehensive and domain-specific information pool is

necessary to create an appropriate model for stress detec-

tion using EEG data (Hasan and Kim 2019).

In the domain of human behavior prediction, the study

of emotion recognition, as well as other associated prob-

lems, is gaining interest (Halim et al. 2017). Psychological

stress is a major health issue that has to be handled with

proper measures in order to keep society healthy. The

nervous system is made up of millions of neurons that play

an important role in controlling the behavior of the body.

Information will be sent from the human body to the brain

via these neurons. To examine cognitive activities, brain

imaging or signals are needed. Biosignals that could be

accurately recorded in connection to such behavior are

ECG, EEG, and EMG signals. The physical measures that

could be used are eye activity, pupil size, respiratory rate,

speech, and skin temperature (Giannakakis et al. 2019).

Arsalan et al. (2019) presented an experimental study

employing EEG data to make the right phase for charac-

terizing perceived mental stress. The subject’s stress is

recorded using a benchmark stress scale questionnaire,

which is then employed to annotate the EEG data. They

suggested a novel feature selection method based on clas-

sification accuracy, which chooses characteristics from the

relevant EEG frequency band. Stress levels are classified

using three classifiers, such as SVM, naı̈ve Bayes, and

multilayer perceptron. Driving a vehicle during a stress

condition decreases the driver’s command over the vehicle,

which often leads to road accidents. Halim et al. (2020)

proposed a model to identify the ongoing neural activity

using EEG signals. The relationship between neural

activity and emotional states is discovered in this

paradigm.

Early diagnosis of psychological stress is essential for

successful treatment. In comparison to conventional

methods, automation techniques are effective and benefi-

cial in respect of diagnostics speed. Xia et al. (2018) pro-

vide a robust approach for the early diagnosis of

psychological stress by analyzing differences in both EEG

and ECG signals, collected from 22 male participants.

They observed that the results obtained demonstrate sig-

nificant physiological variations between the stress-free

and stress situation at an individual scale. Following the

recent developments in wearable EEG technology, EEG’s

capacity to detect stress can be expanded to field employ-

ees. Jebelli et al. (2018) suggest a method for automatically

identifying employees’ stress on work sites. This study

collected EEG recordings of construction workers and

manipulated them to obtain high-quality data. Salivary

cortisol, which is a stress hormone, is also acquired from

workers at various places to determine their stress levels.

The frequency and time domain characteristics of EEG

data are computed employing static and moving window-

ing techniques. Next, the authors employed SVM algo-

rithms to detect workers’ stress level.

The EEG is a non-invasive brain imaging technique that

may be used to evaluate various cognitive functions. It has

the benefits of portability, reduced cost, and higher spatial

resolution (Mannan et al. 2018). Literature shows that

different features of EEG signals are indicative of different

states of neural activity that depict people’s emotions and

behaviors (Bhavsar et al. 2018). Emotions are
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Fig. 2 EEG signals contributed by multiple body parts
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psychological conditions, characterized by personal expe-

rience, physiological reactions, and behavioral responses.

These are a collection of various overlapped sensations that

do not remain in isolation (Halim et al. 2020). However,

EEG signals are continually contaminated with artifacts,

which makes their decoding challenging. Therefore,

detecting and eliminating artifacts are critical (Zou et al.

2014). To address the issues of EEG signal processing,

artifact removal, and source localization, studies have

explored EEG sources via spatial segregation and source

activity localization (Sun, Liu, and Beadle 2005). The

concept of source identification and source localization was

studied using the ICA method. Which statistically gener-

ates separate sources from highly correlated EEG data. It

fragments EEG recordings into a number of artifact-related

and event-related components and is used to clean EEG

recordings.

The critical aspects in developing a highly effective BCI

system for emotion identification from EEG signals are

features extractions and classification. Rahman et al.

(2020) introduce a new feature extraction approach that

combines Principal Component Analysis (PCA) with

t-statistics. To categorize emotional states, four classifiers

are used such as SVM, ANN, k-NN, and linear discrimi-

nant analysis (LDA). CSP algorithm is a successful

approach for categorizing two-class EEG data, but its

strength is dependent on the frequency range used by the

subject (Ang et al. 2012a, b). In conventional CSP

approach, a sample-based covariance-matrix estimate is

employed. As a result, if the amount of training data is

limited, its efficiency in EEG classification decreases. A

regularized algorithm called R-CSP is proposed by (Lu

et al. 2010), in which the covariance-matrix estimating is

normalized by two variables to reduce the estimate bias

while decreasing the estimated variance. The R-CSPs are

then integrated to provide an ensemble-based outcome.

They matched their proposed technique to four other par-

ticipating techniques using dataset IVa of BCI Competition

III. The outcomes of three sets of tests conducted in various

testing conditions show that it outperforms the other

techniques in terms of average classification results. For

obtaining discriminant features, CSP is an effective feature

extraction technique. However, CSP features, on the other

hand, are compact, and feature sequences in the feature

map are selected frequently. Fu et al. (2020) present a

sparse method that incorporates sparse approaches and

recursive searches into the CSP, which can filter out certain

EEG channels with its most noticeable characteristics. To

enhance classification accuracy, two regularization factors

are applied to the linear discriminant analysis. The

empirical results from the BCI competition dataset show

that the proposed technique is 10.75% more accurate than

the traditional algorithm.

In EEG signals processing, conventional methods

involve wavelet, chaos analysis, matching and tracking

etcetera, however, they all require custom design, and

retrieval of EEG characteristics. These techniques have a

lot of inconsistency and do not take into consideration the

temporal aspects of EEG data, which are essential for

emotion detection (Yang et al. 2020). The BiLSTM net-

work used in this study has the ability to handle traditional

deep learning algorithm’s shortcomings in interacting with

temporal data.

3 Proposed work

Previous investigations describe that the EEG signals and

artifacts possess a high-frequency overlap with each other.

M-CSP has better discriminative capabilities, however, it is

prone to noise artifacts. Therefore, the E-ICA method is

employed to retain the stress-related EEG signals while

separating the remaining unwanted signals from the raw

EEG data and removing the artifacts. Therefore, even if the

raw EEG signals have poor quality, the proposed method

still has the capacity to produce accurate classification

results.

3.1 Raw EEG signals

The potential difference between both the active and ref-

erence electrodes over time is the observed EEG signal,

and its amplitude is recorded in micro-volts (lV) (Rashid
et al. 2020). These potential changes are caused by ionic

current flows within the brain’s neurons. EEG is a powerful

tool for obtaining brain waves from the scalp surface area

that correspond to distinct brain states. These signals are

further classified on the basis of their frequency ranges

(0.1 Hz to 100 Hz) into different classes, such as delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–80 Hz) respectively (Kumar

and Bhuvaneswari 2012). The frequency, amplitude, or

shape of a pulse is analyzed to identify whether the subject

is normal or pathological. DEAP (Koelstra et al. 2011), a

publically available dataset, is used to evaluate perfor-

mance of the proposed model.

In this data, the EEG signal of 32 subjects was collected

where each subject watched 40 one-minute-long music

video clips. The subjects rated every video using the four

scales (arousal, valence, like/dislike, and dominance). Each

dimension has a continuous rating score ranging from 1 to

9. EEG was captured using 32 AgCl electrodes at a sam-

pling frequency of 512 Hz. The 10/20 international system

was adopted for electrode placement on the scalp, in EEG

data collection. The EEG 32-channel data was then split

into 63-s trials, where the three-second pre-trials discarded
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and the 60-s trials are maintained for further analysis. The

captured electrical signals get corrupted with artifacts,

which has an adverse effect on EEG signal analysis.

Therefore, there is a need to develop methods for detecting

and retrieving clean EEG data from encephalogram sam-

ples. The other signal sources which contaminated EEG

signals are separated in the pre-processing step. The data-

sets employed in this study are shown in Table 1.

3.2 Pre-processing

Deep neural networks learn from data in a hierarchical

manner. Therefore, unlike traditional machine learning

approaches, it reduces the requirement for domain exper-

tise and the need for intensive feature extraction. However,

the acquisition of EEG signals provides us with a large

amount of data to examine. For example, each participant

in the DEAP dataset has 40 trials, each of which comprises

information from 40 EEG channels. In a single trial, there

are 322,560 measurements since each channel includes

8064 data points. Due to the scanty of hardware sources,

evaluating such data is challenging, and this may also

include data that does not significantly contribute to the

validity of the simulation results. As a solution, we start by

normalizing our data with the help of suitable preprocess-

ing approaches.

Pre-processing is performed to eliminate artifacts from

EEG data. Broadly, two types of EEG artifact sources

exist; environmental/external sources and physiological

sources. In this study, the external noise sources are kept

constant. Physiological noise is generated by a variety of

body functions, such as eye activity EOG, heart activity

ECG, muscle activity EMG, and breathing are just a few

examples (Chen et al. 2017).

The multi-channel EEG signals x t½ � 2 RM at sample

time t can be represented as,

x t½ � ¼ a t½ � þ e t½ � ð1Þ

where, a t½ � 2 RM represents artifacts and e t½ � 2 RM shows

the EEG signals. The artifacts signals a t½ � contain different

types of noise signals. The signals x t½ �; a t½ � and e t½ � are

modeled as m-dimensional stochastic variables that appear

at specific sampling intervals t 2 N.

3.2.1 E-ICA

The ICA approach has seen a lot of growth over the years,

notably in domains like biomedicine, radar signals, and

pattern recognition etcetera. The classic EEG artifacts

removal methods involve eliminating noise from observed

data having clear artifacts features like frequency and peak

amplitude exceeding a certain limit. This might result in a

significant quantity of data loss, particularly in studies

examining brain activity (Chen et al. 2021). While on the

other hand, the ICA technique is an interactive optimiza-

tion strategy that is characterized by high-order statistics.

This technique is primarily employed to identify and

retrieve the potential portion of the multidimensional signal

and to separate it into statistically independent compo-

nents. The eye movement distortions in EEG signals are

considered to be created by distinct signal sources. Using

ICA fragmentation, the eye movement artifacts may be

eliminated and the original EEG data can be recovered.

The cognitive functions are not linked to just one por-

tion of the brain, therefore a single event may impact

numerous brain activities. A single channel’s EEG signals

are made up of a combination of various sources. The

objective of this step is to separate EEG signals associated

with varying degrees of stress levels from other signals.

This study utilizes an E-ICA-based approach to decompose

the superposed signals and to eliminate a wide range of

artifacts from multichannel EEG recordings. This approach

assumes that the time series recorded on the scalp are

spatially stable mixtures of the activities of temporally

independent cerebral and artifactual sources. At the elec-

trodes, the summation of potentials from various areas of

the brain, scalp, and body is assumed linear. The trans-

mission latencies between the sources and the electrodes

are considered to be negligible. The components will be

first detected and classified as neural or artifacts sources

using hard thresholding. Eye movements largely project to

frontal areas using a lowpass spatial pattern. The proposed

E-ICA is combined with Singular Spectrum Analysis

(SSA) developed by (Noorbasha, Sudha, and Control 2021)

for removal of EOG artifacts. Joint Blind Source Separa-

tion (JBSS) models introduced by (Liu et al. 2021) is

employed to remove muscle artifacts.

Table 1 Shows benchmark datasets used in this study

Dataset Participants Trials Channels States Scale-rate Sampling-rate Year

DEAP 32 40 32 arousal, valence, dominance 1–9 (4.5 T) 512 2012

SEED 15 10 62 positive, negative, neutral N/A 1000 2015
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Utilizing ICA, the multi-channel EEG data X is seg-

mented into isolated components S with higher-order spa-

tial moments (Chen et al. 2018). After recognizing the

artifact components, they are eliminated, and the residual

EEG signal components are projected back to their native

spatial domain. This approach results in the regeneration of

an EEG signal, which is free of artifacts. Infomax algo-

rithm is used for EEG signal processing that retrieves

independent signals by exploiting entropy component

(Urigüen and Garcia-Zapirain 2015). It states that a func-

tion mapping collection of input data I to a set of output

values O should be selected or learned in such a way that

the Mutual Information (MI) between I and O is optimized,

this is subject to a set of noise processes. Infomax is built

on a neural network containing three columns of neurons,

each indicating a different type of information; like the

input data (I), the registered data (rÞ and estimated inde-

pendent data (Y). Every column of neurons in a matrix is

merged in a linear way. Using a neural network technique

based on information maximizing, we can blindly distin-

guish the super-Gaussian sources. The assumption is that

we can separate a source, si from mixtures xi such that, the

activity of every source is regarded statistically unrelated

of the other sources. This implies that the input time

ensemble is used to calculate their joint probability density

function. It is worth mentioning that the mutual informa-

tion between any two sources, si and sj, is assumed zero

such as,

Is u1; u2; . . .; uNð Þ ¼ E ln
fu uð Þ

QN
i¼1 fui uið Þ

" #

¼ 0 ð2Þ

where, E :½ � indicates expectation function. The main goal

of the blind separation task is to calculate a matrix W that

may be used to establish the corresponding linear equation:

I ¼ Wx ¼ Was ð3Þ

If the situation is re-established like by estimating,

Is ui; uj
� �

¼ 0 for all i 6¼ j. For example, suppose the mutual

entropy of two nonlinearly converted components of y such

as

H y1; y2ð Þ ¼ H y1ð Þ þ H y2ð Þ � I y1; y2ð Þ ð4Þ

where, yi ¼ g uið Þ and gðÞ is an integrable and limited

nonlinear function that offers the higher-order statistics

required to demonstrate independent criterion through its

Taylor expansion. The strategy for increasing the overall

entropy includes increasing individual entropies H yið Þ and
H y2ð Þ. Hence increasing H yð Þ in common, is comparable

to lessen the value of I yð Þ. When the latter reaches 0, the

two variables are considered statistically independent of

each other. We want to optimize the entropy H yð Þ by

iteratively altering the components of the square matrix W

via smaller quantities of data vectors taken randomly from

xf gwithout replacement.

A priori information of the source distribution is pro-

vided by the logistic sigmoid such as:

g1 uð Þ ¼ 1

1þ exp�u
ð5Þ

In ideal situation, the type of nonlinearity would be the

accumulative density function of distributions of indepen-

dent sources such as;

/i ¼
o

oui
ln
oyi
oui

ð6Þ

The natural gradient infomax algorithm’s initial version

is expressed as;

DW / oH yð Þ
oW

WTW ¼ I þ / uð ÞuT
� �

W ð7Þ

where,WTW . is the ‘‘natural gradient’’ term which prevents

matrix inversions and accelerates convergence. The

cumulative density function of the distributions of different

sources is commonly used to represent the weight matrix.

The function / uð Þ is the log-likelihood gradient vector,

often known as the score function, which is defined as the

relationship between u probability density function and its

derivative.

During a normal brain activity, the EEG signal follows

the pattern of super-Gaussian distribution. An abnormal

brain activity, such as epileptic seizures and nonepileptic

attacks, event-related potentials, or other physiological

artifacts, is indicated by a high positive normalized kurtosis

value (more than 5). Non-physiological artifacts and slow

brain activity exhibit sub-Gaussian distributions. There-

fore, an improved infomax method is suggested for the

separation of EEG data, which can separate both kindsf

distributions using a parametric density model:

DW / oH yð Þ
oW

WTW ¼ I � Ktanh uð ÞuT � uuT
� �

W ð8Þ

K. is an n-dimensional matrix containing the kii entries.

Where, kii ¼ 1 for super-Gaussian and kii ¼ �1 for sub

Gaussian process, respectively. Downsampling to 128 Hz

and a bandpass frequency filter from 4.0–45.0 Hz has been

used to preprocess the EEG data. Different types of arti-

facts were removed using preprocessing step. During pre-

processing ICA does not know anything about artifacts like

eye blinks and EMG. It separates signals into components

based on a statistical measure. It transforms N channels

into at most N. components. We have to feed all EEG

channels into the ICA. Whave to manually remove the

components that contain artifacts and reconstruct the

cleared EEG signal using the inverse transform.
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3.3 Feature Extraction

The EEG signals recorded by the BCI device are weak,

non-stationary, time-varying, and non-linear. A robust

feature extraction approach is essential for boosting iden-

tification accuracy (Geng et al. 2021). EEG signals are

often complex and include a significant amount of data.

Therefore, the potential to retrieve the relevant aspects

from EEG data is crucial. The goal of the feature extraction

stage is to reduce the data to a low-dimensional space while

keeping the valuable information provided by the EEG

signals (Saeidi et al. 2021). The EEG signals have varying

natures, and their statistical properties shift rapidly over

time. Therefore, in this study, we start with M-CSP-based

features extraction. Here, we employ spatial filters that

optimize the discrimination capacity of the signals classes

in order to derive optimal features. The preprocessed EEG

data is transformed into a sequence of p features employing

feature extraction approaches such that, x ¼ x1; � � � ; xp
� �T2

Xp that are suited for classification.

3.3.1 M-CSP

The CSP is a feature extraction approach, which employs

spatial filters w, that have a maximum variance for one

class and a minimum variance for the other class (Dong

et al. 2020). Therefore, the variance features enlarge the

gap between the two signal categories. The benefit of this

method is that it does not need to choose a frequency band

in advance. It distinguishes between distinct classes of

EEG data based on various types of motor activity using

spatial filters. This method is prone to outliers since it

needs the estimation of covariance matrices. In this study,

we have extended CSP to multiclass M-CSP with a dif-

ferent optimization criteria. We develop a set of spatial

filters (i.e., a spatial transform) with the variance of the

filter signal maximal for one class and minimal for the

other, and vice versa.

Let X1 of size n; t1ð Þ and X2 of size n; t2ð Þ be two

multivariate signal windows, where n shows the number of

signals and t1 and t2 show the number of samples. The CSP

approach is used to identify the component wT, which

maximizes the fraction of variance (second-order moment)

between the located windows:

w ¼ argmax
w

wx21
wX2

2

ð9Þ

Computing the two covariance matrices produces the

solution:

R1 ¼
x1X

T
1

t1

R2 ¼
X2X

T
2

t2

To extend it for multiclass common spatial pattern (M-

CSP), we have to expend it such as, let

Xc ¼ xc1; x
c
2; . . .; x

c
tc

h i
; where c ¼ 1; 2; . . .N, where N is

the number of classes. xci 2 RD�S is a D� S matrix that

describe the raw EEG data of the ith trial for class

c; i ¼ 1; 2; . . .; tc, and tc represents the total trial number for

class c:. Here D shows the number of channels and S

represents the number of samples. For each class, the

normalized spatial covariance matrices are described as:

Rc ¼
XcXcT

tr XcXcT
� � ; c ¼ 1; 2; . . .;C ð10Þ

where tr (�) represents the trace of matrix, and XcT indi-

cates the transpose of Xc. The matrices are diagonalised

simultaneously (also known as generalized eigenvalue

decomposition). The eigenvector matrix is found such that

P ¼ p1 � � � pn½ �. and the eigenvalues k1; � � � ; knf g. are

placed in decreasing order in the diagonal matrix D.:

PTR1P ¼ D

and

PTR2P ¼ In

where In shows the identity matrix. This is equal to the

Eigen decomposition of R�1
2 R1:

R�1
2 R1 ¼ PDP�1

wT corresponding to the first column of P:

W ¼ pT1

channels are rebuilt for each frequency by linearly

combining the electrode outputs using two fourth-order

CSPs. The aim of this process is to find the optimum

channel linear combination for detecting certain frequen-

cies based on previously recorded training data. The

M-CSP-based extracted features can be employed as input

to the classifiers.

3.4 Classification

The proposed EEG classification workflow involves data

preprocessing, feature extraction, partitioning the datasets

for classifiers, determining the class of new data, and val-

idating the performances of classification algorithms on the

test datasets. Deep learning networks have resulted in

various impressive solutions to a variety of modern
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problems. Its superiority over conventional statistical

method is due to its layered architecture and better accu-

racy when trained on big datasets. We develop an RNN-

based technique for automated identification of stress

levels using EEG data to determine a subject’s stress

levels. We divide the time-series EEGs into short segments

since the beginnings of a stress level appear at random in

the EEG signals. The temporal associations between sub-

sequent EEG data points are captured during the pre-pro-

cessing stage. The features obtained from EEG signals are

then sent into LSTM cells, which acquire the most reliable

and discriminative EEG characteristics for detecting stress

levels. The acquired features are then forwarded to the

softmax layer, which computes cross-entropy among true

and predicted outputs. The proposed model is then tested

with well-known benchmark datasets such as DEAP and

SEED. We test the model’s detection accuracy in ideal

settings when the EEG data has been processed for artifacts

removal. The obtained results indicate that this technique

outperforms various previous studies in terms of detection

accuracy. However, to increase the accuracy, we employ

BiLSTM to acquire information on previous EEG data too.

Because regular LSTM can only handle unidirectional time

signals. As illustrated in Fig. 3, BiLSTM is an extension of

LSTM. It delivers both the positive and inverted EEG

sequences to the learning technique, and it operates similar

to merging the two LSTM together. We divide the data

sequence into multiple input Xð Þ/output Yð Þ patterns

known as samples. Where multiple time steps are used as

input and one-time step is employed as output. The input

shape determines the size of time steps, samples, and

number of features.

The context relationship in the input EEG feature

sequence is extracted using the first layer of the LSTM.

Each sequence has 125 frame characteristics, hence 125

LSTM cells are assigned to them in this layer. The second

layer, i.e., the fully-connected layer acts as a classifier and

incorporates information.

To categorize each subject’s stress levels, we employ

categories such as arousal, valence, and dominance. We

use softmax to translate the values obtained via linear

transformation into three probability values, which corre-

spond to each category of stress levels. The highest prob-

ability value represents the relevant stress level for the

tested EEG signal. For optimization, the mini-batch gra-

dient descent technique is employed. The Minimum Square

Error (MSE) is used as a loss function. To minimize

overfitting, ‘‘dropout’’ was introduced to the LSTM layer

and fully connected layer. The higher the dropout, the less

LSTM cells will transmit their output to the next layer; the

lower the dropout, the more LSTM cells in one layer will

pass their output to the next layer. We set the dropout at 0.4

to avoid overfitting and reduce the model’s complexity.

Three thousand LSTM training epochs were determined. A

high learning rate (0.01) is used for the first few hundred

epochs to speed up the training process, and then it was

gradually reduced to a lower rate (0.0003) to get more

stable results.

3.4.1 Validation

Two publically available datasets, namely, DEAP (Koel-

stra et al. 2011), and SEED (Zheng et al. 2018), are used to

validate the proposed frameworks. The validity of BiLSTM

Yt-1 Yt Yt+1

σ 

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Forward layer

Backward  layer

Xt-1 Xt Xt+1

σ σ 

Fig. 3 Block diagram of BiLSTM model

10694 A. U. Rahman et al.

123



in a stress recognition task employing EEG signal char-

acteristics is tested in two different ways, using both

datasets. A tenfold cross-validation approach is employed

to verify the classification results. All participants’ data

samples are randomly divided into 9 folds for training and

onefold for testing. The validation procedure is performed

ten times to get average results.

4 Results

This section presents the experimental results of the pro-

posed model for stress level detection. Each dataset com-

prises of EEG signal recordings from various numbers of

participants, with varying trails, channels, states, scale rate,

and sampling rate.

The data is split into two parts in the experiments: 80%

is used for training and 20% for testing. The EEG dataset

contains N channels for trials xð Þ. Using experiment on

DEAP dataset each subject file contains a data array of 40

trials 9 32 channels 9 8064 data, and a label array of 40

trials 9 4 subjective ratings. Three classification experi-

ments using the DEAP dataset, of two classes (arousal,

valence), three classes (arousal, valance, dominance), and

four classes are performed as shown in Table 2. Each trial’s

data is split down into smaller portions using M-CSP by

taking a narrower window of length l sample points with an

overlap of t. sample points, resulting in N segments. We

select a reference duration of 63 s for each trial, with the

first three seconds being spent in preparation and the

remaining 60 s being recorded while watching the movie.

As a result, for each channel, there are 63 s*128 Hz =

8,064 sample points in each trail. After that, a series of

spatial filters are applied to all of the segments. Each trail’s

63 s are subdivided into 1 s segments, with 128 sampling

points in each segment. The data array is then formulated

as 40 (trials) * 32 channels * 63 (time segments) * 128

(sampling points).

A feature matrix is created by computing the variance-

based characteristics of each segment from a single trial.

The features extracted are in the range of four frequency

bands such as theta (4–7 Hz), alpha (8–13 Hz), beta (14–

30 Hz), and gamma (31–45 Hz), respectively. BiLSTM is

an advanced model based on LSTM that can process input

data twice from different directions and therefore enhance

training proficiency. Using this approach, the temporal and

atial information of the segment data may be learnt and

integrated. The dense layers preceding the softmax layers

are normalized independently and added element-by-ele-

ment to provide the final predicted class label, along with

another softmax layer. The Adam optimizing algorithm is

used to enhance the cross-entropy loss function with a

final learning rate of 0.0003. In training using trials such as

Di ¼ X1; y1ð Þ; . . .; XNi ; yNið Þ
� �

are given as input to the

model, where Ni represents the total number of conducted

trials for ith subject. During testing, we evaluate the models

using trial data X j and obtain prediction y j for the trial-wise

correctness. The efficiency of the classification method is

evaluated using classification accuracy. It is calculated as

correctly predicted outcomes divided by the total number

of predictions. The accuracy of the proposed model is

determined by applying it to each dataset and each par-

ticipant independently. Using the number of classes gen-

erated, the average accuracy of all participants is

determined for each dataset.

Table 2 Classification accuracies using LSTM and BiLSTM models

Dataset Classes LSTM BiLSTM

Emotional State Accuracy (%) Emotional State Accuracy (%)

DEAP (2-classes) Class-1 Arousal 0.891 Arousal 0.943

Class-2 Valence 0.813 Valence 0.958

DEAP (3-classes) Class-1 Arousal 0.885 Arousal 0.912

Class-2 Valence 0.917 Valence 0.925

Class-3 Dominance 0.872 Dominance 0.936

DEAP (4-classes) Class-1 High arousal, low valence 0.869 High arousal, low valence 0.931

Class-2 High arousal, high valence 0.843 High arousal, high valence 0.923

Class-3 Low arousal, low valence 0.871 Low arousal, low valence 0.894

Class-4 Low arousal, high valence 0.853 Low arousal, high valence 0.907

SEED (3-classes) Class-1 Positive 0.923 Positive 0.968

Class-2 Negative 0.914 Negative 0.952

Class-3 Neutral 0.876 Neutral 0.947

Bold represent the best results
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EEG signals revealed a substantial reduction in alpha

rhythmic power in all electrode points measured when

subjects are stressed. A higher stress level in the Pre-

Frontal Cortex (PFC) corresponds to a decreased EEG

alpha rhythmic power. The results indicate that the subjects

having depression produce abnormal brain signals. The

proposed method’s results are compared to those of other

approaches that employed either the DEAP or SEED

datasets or both, as shown in Table 3. We achieved the

highest accuracy using DEAP dataset of 95.8% for two

classes, 93.6% for three classes, and 93.1% for four classes

respectively. The highest accuracy achieved for SEED

dataset using three classes is 96.84%. Subjects that are in

happy mode have high values of valence while those who

are stressed have low values. The subjects who have high

arousal values are excited while those having low values

are calm.

The shortcoming of the proposed approach is that,

unlike the conventional CSP approach, it is implemented in

an iterative manner. Since an incorrect setting will keep the

iterations in a local optimum. This approach also has the

shortcoming of being noise-sensitive and relying on multi-

channel analysis, which results in more computing

efficiency.

5 Conclusion

EEG is a time series signal which requires the use of

models like BiLSTM that can effectively process time

sequence signals. To determine the spatial distribution of

an EEG wave or activity. The reader must compare the

appearance of the wave in all of the channels. To determine

the frequency of an EEG rhythm, the reader must count the

number of peaks per second. It is difficult to interpret EEG

signals because of excessive artifacts present in the signals.

The goal of this study was to investigate if E-ICA-based

approaches, like Infomax, might be suitable choice for

EEG artifacts removal. To apply the EEG signals to clas-

sification, we have to transform it into feature vectors. The

key issue is how to extract the import features for best

classification. In this study, we utilized spatial filter M-CSP

that lead to optimal variances for the discrimination of

multiple classes related to stress levels of EEG signals. In

classification, through fine-tuning the BiLSTM model, we

perform better than the past methods considered in this

work.

In the future one may extend the proposed model to

multi-modal emotion recognition. Other EEG-related areas

where the proposed model can be used including BCI,

brain illness diagnosis and assessment like epileptic sei-

zures etcetera can be considered to evaluate the perfor-

mance of the proposed approach.
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