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Abstract
Learning-based image restoration approaches typically learn to map distorted images to clean images. To remove multiple
combined distortions with unknownmixture ratios, most of the existing methods have focused on the development of different
deep neural network architectures and novel loss functions. Although these methods have proved their effectiveness on image
restoration tasks, they require expensive training data and produce results in a noninterpretable way. In this work, we present a
deep reinforcement learning (DRL) based method to restore the distorted images, which casts an image restoration Problem as
a Partially Observable Markov Decision Process (POMDP) where actions are defined as multiple pixel-wise image denoising
operations. In ourmethod, each agent possesses a pixel, the agent learns to adjust the corresponding pixel value by determining
the proper combination of the actions. We also develop a novel exploration scheme such that similar actions have similar
value, thereby avoiding overfitting in state-action value estimation. Through extensive experiments, we show that our method
can restore images with multiple combined distortions and our DRL approach performs comparable or better performance
against previous learning-based approaches. By visualizing the process of weighting multiple pixel-wise operations, we can
identify what combination of operations is employed for each pixel at each stage. We believe our work takes a step toward
the explainability and interpretability of learning-based image restoration methods.

1 Introduction

Image restoration has always been a hot topic in computer
vision. Both the traditional filtering methods and the deep
learning algorithms, which have attracted much attention
in recent years, have achieved high achievements in image
restoration (Dabov et al. 2007; Buades et al. 2005; Rudin
et al. 1992; Chen et al. 2015a; Burger et al. 2012). Due to the
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development of neural networks, deep learning has not only
made great success in image recognition and detection but
also achieved remarkable achievements in low-level tasks,
such as image denoising and image enhancement. However,
image restoration methods, which are based on deep learn-
ing, often train a single and large network, which requires
a large amount of training data, also with a large number
of parameters, so it makes these methods computationally
expensive and consumes resources. We can’t help asking,
since large neural networks are relatively complex, can we
combine simple networks or traditional filtering algorithms
with general restoration effects into an algorithm with strong
recovery effects through a certain method, and using a small
amount of data and calculation to realize image restoration.

Ensemble learning (Polikar 2012) provides ideas for us. In
ensemble learning, the weak classifiers can be integrated into
a strong classifier by boosting. Therefore, in image restora-
tion, it might be feasible to combine multiple algorithms
which are weak restoration performance into an algorithm
with excellent restoration performance. Coincidentally, there
are few recent articles using deep reinforcement learning to
do this kind of work.

Yu et al. (2018) tried this idea for the first time. They
perform a method called RL-Restore. In their previous
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experiments, they found that for a contaminated picture with
multiple noises, even if the type of pollution is known, the
order of the denoise methods used affects the quality of
the final restoration greatly. This is an exciting discovery.
Through this discovery, they convert the restoration problem
of multiple distortion images into an MDP problem. They
construct a toolbox that contains multiple small and simple
denoising networks and use deep reinforcement learning to
decide the optimal order of small neural networks using. In
their experiments, they found that the restoration effect of
their method is better than that of the large-scale neural net-
work, and the parameters of it are far less than those based
on deep learning. However, Suganuma et al. (2019) proved
that although the image restored by the RL-Restore method
(Yu et al. 2018) has a relatively good restoration effect, The
accuracy of its recognition will be greatly reduced in the sub-
sequent recognition task,which obviously should not be.And
an article (Xie et al. 2019) explains the reason why the accu-
racy of the image restored by the neural network is declined
during recognition at pixel-wise.

Furuta et al. (2019) proposed an RL-based image restora-
tion method at pixel-wise. Similar to the above, They also
used a toolbox, but it contains a variety of traditional filtering
algorithms. They modeled the problem as aMARL problem,
that is, eachpixel is regarded as an agent, and the value of each
pixel is changed by using the filtering algorithms which are
determined by the policy of deep reinforcement learning, so
as to achieve image restoration in pixel-wise. However, this
method only aims at the restoration of a single noisy image,
and the A3C algorithm used in this method is an on-policy
RL algorithm, so the sample is inefficient.

In addition, the above methods are all performed in the
discrete action space, that is, only one denoiser is used in
each step of the processing. The multi-noise image contains
a variety of noises. If only one denoiser is used in each step, it
will inevitably not be able to complete the restoration task in a

few time steps. But if the step is too long, using the RL algo-
rithm to solve the problem seems meaningless. Moreover,
a pixel is not independent. Whether using a small denois-
ing network or a traditional denoising method, a change in
one pixel will inevitably cause changes in the surrounding
neighboring pixels of it, which add a new challenge to the
restoration of multi-noise images.

The method we proposed in this paper examines the prob-
lem from a new perspective for image denoising at the
pixel-wise, that is, there is a certain connection between the
pixel value of a damaged image after filtering and the pixel
value of the real image. For a certain pixel of the real image,
its pixel value may be similar to the pixel value of the image
after filtering by a certain type, or itmay be similar to the pixel
value synthesized by weight after multiple filtering process-
ing. Therefore, from this point of view, our method changes
the pixel value in a way of weight synthesis. Our method
performs a variety of traditional filtering operations on noisy
image synchronously, then use a deep reinforcement learning
algorithm to learn a policy which gives each pixel a group
of weights of filters, and uses these weights to fuse images
(which processed by traditional denoisers) into a clear image.
We set the weight to the action of our policy, thus our agent
will be in the continuous action space. In addition, by assign-
ing weights to each filtered image and synthesizing a clear
image according to the weights, a pixel can be changed with-
out affecting surrounding pixels, and the coupling problem
between adjacent pixels can be avoided.

We model our task as a POMDP problem and use the pol-
icy gradient RLmethod to solve the task of continuous action
space. In addition, each pixel requires to change, we define
each pixel as an agent, so our problem will be transformed
into a MARL problem under POMDP.

The main framework of this method is shown in Fig. 1, it
consists of two parts: One is a toolbox that contains several

Fig. 1 Illustration of our method
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traditional image filters. Another is an agent that dynamically
chooses the action which changes the weights of each pixel
at each step for a group of filters. The main contributions of
this paper are:

• We redefine the restoration task of multi-noise images
as a MARL problem under POMDP and proposes an
integrated denoising method.

• We propose a multi-noise image restoration method at
pixel-wise in the continuous action space.

• We solve the problems of the deterministic policy gradi-
ent method in the continuous action space, which caused
by insufficient state information under POMDP.

2 Related work

2.1 Multiple degradation for a single image

It is not uncommon to use traditional filtering methods and
CNN-based methods to process a single image contaminated
by a single pollution source. Whether it is a single pro-
cessing task for various single images such as denoising,
anti-artifacts, or color enhancement, the effects of traditional
filtering methods and methods based on deep learning are
also obvious to all. However, for the contaminated images
in the real environment, the pollution is often not from a
single source. For such tasks, traditional filtering methods
appear to be inadequate. CNN-based methods, such as Kim
et al. (2016) used a 20-layer neural network and proposed a
VDSRmulti-scale single image super-resolution reconstruc-
tion method. Zhang et al. (2017) proposed a 20-layer CNN
network that can handle multiple recovery tasks at the same
time. However, these CNN-based processing methods and
Guo and Chao (2017), etc., do not consider the problem of
mixed pollution, that is, the situation where a single image
contains multiple losses at the same time. In addition, since
a large-scale neural network is required to process complex
tasks, its network parameters are many and the calculations
are more complicated. Although methods such as Chen et al.
(2015b) and Han et al. (2015) can compress large networks,
there are still many parameters after compression for the neu-
ral networks needs to perform a lot of recursive operations.

2.2 Deep reinforcement learning for image
processing

Deep reinforcement learning algorithms have also achieved
success in some image processing fields. Park et al. (2018)
proposed an image color enhancement method based on
deep reinforcement learning. They convert the image color
enhancement process into an MDP process, and define the
output action as a global color enhancement operation, then

use the deep reinforcement learning algorithm to learn the
best global enhanced action sequence. Cao et al. (2017) took
advantage of reinforcement learning and proposed a super-
resolution reconstruction method of Attention-aware Face
Hallucination. Li et al. (2018) applied the deep reinforcement
learning method to the image cropping task. This method
formulates the image cropping task as a sequential decision,
and proposed an Aesthetics Aware Reinforcement Learning
(A2-RL) framework to solve the aesthetic problem in image
cropping. Li et al. (2020) combines deep reinforcement learn-
ing at pixel-wise to achieveMRI image reconstruction. Li and
Zhang (2019) proposed an automatic thumbnail generation
method based on deep reinforcement learning. Liao et al.
(2020) implemented an image segmentation task based on
reinforcement learning and cross-entropy at pixel-wise.

2.3 POMDP

The real environment is often not fully observable. For the
agent, the state it can observe is generally limited. Partially
Observable Markov Decision Process (POMDP) is a general
Markov decision process. In the POMDP model, the agent
must make use of the limited information in the environment
to make decisions, but the observed information is incom-
plete, so in practice, POMDP is usually computationally
difficult to solve. Using value iteration to solve is amethod of
approximately solving POMDP (White and Scherer 1989),
but these methods will turn the complexity of the entire prob-
lem into an exponential function based on the value iteration
algorithm, whichmay cause a dimensional explosion. There-
fore, methods such as (Koller and Parr 2013; Guestrin et al.
2001) decompose the entire problem to reduce the scale of
the problem. In addition, in recent years, the use of learning-
based algorithms to solve themhas also achieved good results
(Bertsekas and Tsitsiklis 1995; Lin andMitchell 1992), espe-
cially the emergence of RNN, which makes it possible for
agents to make decisions based on historical information.

2.4 MARL

Multi-Agent Reinforcement Learning (MARL) (Tan 1993)
is an important branch of the multi-agent system. There are
at least two agents in the multi-agent reinforcement learn-
ing system. Unlike the single-agent reinforcement learning,
each agent is not only affected by the environment but also
affected by other agents. MARL is used to solve the sequen-
tial decision-making problem of multiple agents in the same
environment. Each agent needs to interact with the envi-
ronment and other agents to make it achieve more rewards
(Lowe et al. 2017). Compared with the single-agent system,
the multi-agent system has the following characteristics: (1)
the state transition of the multi-agent system depends on the
actions of all agents. (2) In a multi-agent system, the rewards
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received by each agent are not only related to its actions,
but also related to the actions of other agents. Due to the
above two characteristics, the task of solvingmulti-agent sys-
tems is more complicated and difficult. Generally speaking,
multi-agent reinforcement learning algorithms are mainly
divided into three categories: full cooperation, full compe-
tition, and combining them for different application tasks
(Yang et al. 2018). The basic algorithms for solving multi-
agent reinforcement learning include MiniMax-Q (Littman
1994), NashQ (Singsanga et al. 2010), FFQ (Littman 2001),
WoLF-PHC (Bowling and Veloso 2001), and other main-
stream methods include MADDPG (Rashid et al. 2018),
QMIX, MFMRL (Buşoniu et al. 2010) and so on.

3 Problem statement

A human expert removes multiple combined distortions by
applying a set of image denoising operations. To imitate this
process, we formulate image restoration as a problem of find-
ing an optimal operation combination of denoising actions.

Let I it be the i-th pixel of the modified image It ∈
R

H×W×C that has N pixels (i = 1, · · · , N ). Here, N :=
H ·W , I0 is denoted as the original distorted image, H ,W and
C are its height, width and the number of channels, respec-
tively.Since different areas of the image may be distorted by
multiple noises, it is necessary to restore the image at the
pixel level. Each pixel corresponds to an agent, each agent
a ∈ A ≡ {1, · · · , N } receives the local observation oat ∈ O
provided by an observation function O (It , a) and takes an
action uat ∈ U according to a stationary policy πa(uat |oat ).
Here, the action uat ∈ R

M denotes the attention weights on
the pixel-wise outputs of the toolbox containing M parallel
image denoising operations,U is a probability simplex. After
adjusting its corresponding pixel value I at , each agent obtains
a reward rat that measures howmuch themodified pixel value
I at+1 has improved compared to the previous one. Given the
input image It and the joint actionut := [

u1t , . . . , u
N
t

]
at time

step t , the environment change to the next state It+1 accord-
ing to the state transition probability P(I (t + 1)|I (t),ut ).
All agents work together to enhance the image in an iterative
way, and terminate this process when themaximum time step
T is achieved.

The goal of the RL-based image restoration problem is
to learn the optimal joint policies ß = (

π1, . . . , πN
)
that

maximize themean of the total expected rewards at all pixels:

max
ß

Eτ∼pß(τ )

[
T∑

t=0

γ t 1

N

N∑

a=1

rat

]

s.t.
M∑

k=1

ua,k
t = 1, uat ∼ πa (

uat |oat
)
, a = 1, . . . , N . (1)

where γ is the discounted factor, the trajectory τ :={
o10, u

1
0, . . . , o

N
0 , uN

0 , . . . , o1T , u1T , . . . , oNT , uN
T

}
. the induced

trajectory distribution pπ (τ ) is given by

pπ (τ ) = p (I0)
T∏

t=0

(
N∏

a=1

π
(
uat |ot

)
)

(2)

P (I (t + 1)|I (t),ut ) ,

The common approach is to divide this decision-making
problem into N independent subproblems and train N net-
works, where the i-th policy learns to maximize the expected
discounted cumulative rewards at the i-th pixel J

(
π i

) =
Eτ∼pß(τ )

[∑T
t=0 γ t r it

]
. However, this method is not suitable

for situations where the size of an input image in the test is
different from the one in the training, and it becomes com-
putationally impractical as the number of agents increases
to thousands. Moreover, since the pixel-wise outputs of the
toolbox are invisible to each agent, the policy π (·|ot ) leads
to the poor performance of image restoration in this partially
observable setting. In the next section, we propose a sample
efficient and computationally tractable RL method to solve
these issues.

4 Learning to restore the distorted images

In RL based pixel-wise image restoration, the input informa-
tion oit each agent i receives at step t consists of the pixel
value I it and its neighborhood pixels provided by a obser-
vation function O (It , i), based on which the corresponding
policy performs inference. The field-of-view of the observa-
tion function has an important influence on restoring images,
the small field contains little useful information, but the large
field will include redundant observation that is useless to the
i-th agent, leading to high computational burden. Rather than
designing the observation function in a hand-crafted way, we
use convolutional blocks to provide the agent with its neigh-
borhood information. Another advantage of convolutional
blocks is that all the N agents can share their parameter,
leading to the high-efficient computation.

Partial observability arises from two sources including a
restricted field-of-view and the invisibility of the output of
the toolbox to all agents. Each agent i should learn to form
memories based on interactions with the environment to han-
dle partially observed problems, thus the optimal policy of
agents in principle require to access to the historical expe-
rience ht = {I0,u0, . . . , It−1, ut−1, It }. Here, we use Gate
Recurrent Unit (GRU) network to effectivelyextract this his-
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Fig. 2 The network architecture of our method

torical information in their recurrent state, which is given
by

ht = GRU (ht−1, It ,ut−1) , (3)

where h−1 and u−1 are the zero start state. The attention
weights ut ∈ R

N×M on the pixel-wise output of the toolbox
are calculated as follow

ui,mt =
exp

(
zi,mt

)

∑M
k=1 exp

(
zi,kt

) ,

zt = F (ht ) , i = 1, . . . , N . (4)

where F(·) is the convolution operator. The modified image
at step t + 1 is given by

I it+1 =
M∑

m=1

ui,mt Ī m,i
t , Ī mt = gm (It ) ∈ R

N×C , (5)

where gm(·) is the m-th image denoising operation in the
toolbox. Therefore the entire architecture of the policy net-
work in Fig. 2 includes three modules: it uses convolutional
blocks to learn low-level features. The GRU block combines
these features with historical information extracted from past
experience to learn high-level features, based on which all
agent make decisions.

A major challenge of training deterministic policies in
image restoration is exploration. One choice to improve the
exploration ability of policies is to construct an exploration
policy, which is represented by a Gaussian noise source and
a deterministic neural network that transform a draw from
that noise source, i.e., ut = ßφ(ht , ε) with ε ∼ N (0, δ2).
Specially, the modified action of the i-th agent is given by

ũi,m = exp
(
zi,m + εm

)

∑M
k=1 exp

(
zi,k + εk

) ,

εk ∼ clip
(
N

(
0, σ 2

)
,−c, c

)
. (6)

where the added noise is clipped to keep the modified action
close to the original one. Further, we can easily obtain that

exp
(
zi,m − c

)

∑M
k=1 exp

(
zi,k + c

) < ũi,m <
exp

(
zi,m + c

)

∑M
k=1 exp

(
zi,k − c

) , (7)

then the modified action ũi,m is a random variable with sup-
port in

(
exp (−2c) ui,m, exp (2c) ui,m

)
.

Similar to TD3 algorithm, we use parameterized function
approximators for both the Q-function Qθ and policy πφ ,
and then alternatively performs policy evaluation and policy
improvement.

JQ (θs) = E

[

N−1
N∑

i=1

(
Qθs

(
hit , u

i
t

)∣
∣
∣
uit=πφ

(
hit

) − yit

)2
]

,
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yit = r it + γ min
s=1,2

Q θ̄s

(
hit+1, πφ̄

(
hit+1, ε

))
,

∇φ J (φ) = E

[

N−1
N∑

i=1

∇uit
Qθ1

(
hit , u

i
t

)∣
∣
∣
uit=πφ

(
hit

) ∇φπφ

(
hit

)
]

.

(8)

where φ̄ and θ̄s, s = 1, 2 are delayed parameters, and fitting
the value of themodified action can alleviate the narrow peak
of overfitting to the value estimation, decreasing the variance
of the target Q. The pseudo code of our algorithm is shown
in the Algorithm 1.

5 Experiment

5.1 Toolbox

Similar to Furuta et al. 2019, our experiment also uses a
toolbox that contains multiple traditional filters for image
denoising. In order to compare with Pixel-RL (Furuta et al.
2019) fairly, the toolbox designed in our experiment is the
same as Furuta et al. (2019) except for the “do-nothing” oper-
ation. Since the method of our experiment is to use a variety
of traditional denoising algorithms, which combined with
deep reinforcement learning and tries to integrate a vari-
ety of weak filters into a strong filter to achieve denoising
driven by knowledge and data, the “do-nothing” operation is
meaningless for our experiment, so it is removed. The tradi-
tional filters and their parameters in our toolbox are shown
in Table 1:

5.2 Reward

The goal of reinforcement learning is to obtain the largest
cumulative reward, and the reward determines the quality of
the policy adopted by the agent. In this paper, the image qual-
ity of each step is used to determine the reward. The reward is
defined by rt = Pt+1 − Pt , where Pt+1 is the peak signal-to-
noise ratio (PSNR) value between the image processed in the

Table 1 Tools in toolbox

Tools Filter size Parameters

Gaussian filter 5*5 σ = 0.5

Gaussian filter 5*5 σ = 1.5

Bilateral filter 5*5 σc = 0.1, σs = 5

Bilateral filter 5*5 σc = 1.0, σs = 5

Median filter 5*5 –

Box filter 5*5 –

Pixel value − = 1 – –

Pixel value + = 1 – –

t th step and the real image. Therefore, the cumulative reward
is defined as Ri j |i∈(0, h), j∈(0, w) = ∑T−1

t=0 rt = PT − P0,
which indicates that the cumulative reward is related to the
PSNR value of the last processed image and the PSNR value
of the initial state image.

5.3 Image restoration dataset

We use the same dataset—BSD68 dataset (Mairal et al.
2007)—as in Furuta et al. (2019), and preprocess the dataset
in the following operation. Firstly, the dataset is down-
sampled, and then the sampled image is divided into 63*63
sub-images. In our experiment, 3584 images were generated
for the dataset as the ground truth of the training data. The
two most common noises in the original images are Gaus-
sian noise and Poisson noise. Therefore, we randomly added
Gaussian noise and Poisson noise in random proportion to
the ground truth dataset to form the noise dataset. This oper-
ation ensures the authenticity of the training data since the
ratio of Gaussian to Poisson noise added to each image is
random.

Also, we used the DIV2K dataset (Agustsson and Timo-
fte 2017) which has been preprocessed in Yu et al. (2018)
as the ground truth of the training data. We generated two
sets of noise images for this dataset, one refers to Yu et al.
(2018) and generates the DIV2K-Mild dataset, and the other
dataset, the DIV2K-Mixed dataset, is generated using the
same processing with the BSD68 dataset. All of them have
3584 images.

The above three sets of datasets are all generated by arti-
ficially adding noise. To verify the effect of our method on
real noise images obtained by different camera parameters,
we also use the Mi3 dataset in the RENOIR dataset (Anaya
and Barbu 2018). The RENOIR data set is established by tak-
ing a low ISO image as ground truth and a high ISO image
as a noise image for the same scene, and adjusting camera
parameters, such as exposure time, to make the brightness of
the two images consistent. In our experiment, we select the
first 40 scenes of the Mi3 dataset in RENOIR as the experi-
mental data, and each scene contains 2 high-noise images
and 2 low-noise images. We select a low-noise image in
each scene as a ground-truth image, the images with different
ISO parameters as noisy images, and use the aforementioned
method to process 3584 images aswell. Thus, two sets of ISO
noise datasets, the RENOIR-Low dataset andRENOIR-High
dataset, are obtained.

In order to reveal the effect of each step in our method,
Figs. 3 and 4 show the results of each step of the test images
on the DIV2K dataset and the BSD68 dataset. It can be seen
that the image of each step is greatly improved, which means
our method can restore the noise image efficiently.

We use PSNR (Peak Signal to Noise Ratio) and SSIM
(Structural Similarity) to evaluate the image quality in our
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Algorithm 1
Initialize critic networks Qθ1 , Qθ2 and actor network πφ with random parameters θ1, θ2, φ
Initialize target networks θ̄1 ← θ1, θ̄2 ← θ2, φ̄ ← φ

Initialize replay buffer B
for episodes=1, M do

Initialize empty history h0 and action u0.
Receive the orignal distored image I0.
for t = 1, T do

ht ← It , ut−1, ht−1
Select raw action with exploration noise zt = πφ (ht ) + ε, ε ∼ N (

0, σ 2
)
.

Make the action ∈ (0, 1), ut = softmax (zt ).
end for
Store transition sequence (I0, u1, r1, I1, · · · , IT ) in B.
Sample a mini-batch of N episodes I i0, ui1, r i1, I i1, · · · , I iT from B.
Construct histories hit = (

oi1, ui1, · · · , uit−1, oit
)
.

Compute target values for each sample episode yi1, · · · , yiT using recurrent target networks

yit = r it + γmins=1,2Qθ ′
s

(
hit+1, πφ̄

(
hit+1

))

Update critics θs=1,2 ← minθs N
−1 ∑ (

yit − Qθs

(
hit , uit

) |uit=πφ

(
hit

)
)

if t mod d then
Update φ by the deterministic policy gradient:
∇φ J (φ) = N−1 ∑ ∇a Qθ1

(
hit , uit

) |uit=πφ

(
hit

)∇φπφ(hit )

end if
end for

Fig. 3 The test result of DIV2K dataset in each step

experiments. First, we compare the image results and the
PSNR of our method with the Pixel-RL method in the test
images of the DIV2K dataset and BSD68 dataset, which
shows in Figs. 5 and 6. The results show that our method
has stronger effects and clearer details than Pixel-RL.

We also compare ourmethodwith the Pixel-RLmethod on
5 sets of datasets. The evaluation indicators are the average
PSNR value and SSIM value during the training processing.

To clarify the advantage of pixel-wise image denoising oper-
ation, we compare the proposed method with a baseline that
uses one filter randomly sampled from the toolbox to restore
distorted images at each step. Since multiple combined dis-
tortions are introduced into the images, this baseline performs
worse than a pixel-wise combination of denoising actions
obtained from our random policy. In Pixel-RL, in order to
further improve the recovery effect, the RMC (Reward Map

123



3268 J. Zhang et al.

Fig. 4 The test result of BSD68 dataset in each step

Fig. 5 The result of comparison in DIV2K dataset

Convolution) method is added by the authors. Therefore, we
compare our method with the two Pixel-RL methods (Pixel-
RL-w/o- RMC and Pixel-RL-RMC). In addition, in order
to explore the impact of adding noise to the policy on our
method, we regard our method which not adding noise as an
ablation experiment. The experimental results are shown in
Table 2:

The hyperparameters of this experiment are specifically
set as follows: the maximum step size of training is 1e6, and
the size of batch-size is 6. During agent training, the learning
rate is 7e−4, themaximumstep=5, the optimizer usesAdam
optimizer (Kingma and Ba 2014), buffer-size = 1e5, and the
update frequency C = 1000.
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Fig. 6 The result of comparison in BSD68 dataset

Table 2 The experimental results of five training datasets

Datasets BSD68 DIV2K-Mild DIV2K-Mixed RENOIR-Low RENOIR-High
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Raw 19.64 0.688 23.85 0.660 19.68 0.679 26.54 0.878 23.66 0.810

Baseline 22.81 0.755 24.49 0.722 22.63 0.739 30.02 0.830 28.42 0.796

Random 23.19 0.781 25.59 0.749 22.97 0.777 32.12 0.967 29.89 0.962

Pixel-RL-w/o-RMC 28.59 0.905 27.29 0.804 28.02 0.889 33.87 0.919 32.17 0.900

Pixel-RL-RMC 28.48 0.900 27.39 0.806 28.06 0.888 33.74 0.918 32.48 0.906

Ours-w/o-noise 29.11 0.904 26.44 0.789 28.22 0.909 32.98 0.966 31.27 0.961

Ours 29.81 0.910 26.50 0.799 29.48 0.921 32.98 0.970 31.22 0.964

Best results of different algorithms on the dataset

It can be seen from the experimental results in Table 2 that
our method greatly improves the image quality compared
with the original PSNR and SSIM values of the noise image.
First, the comparison with the baseline verifies the neces-
sity of pixel-level restoration. Then, using the same BSD68
dataset as inBuades et al. (2005), ourmethod outperforms the
Pixel-RL method in both PSNR and SSIM indicators. Sim-
ilarly, in the DIV2K-Mixed dataset with artificially added
mixed noise, our method is also superior to the Pixel-RL
method in these two indicators. Except that the SSIM of the
DIV2K-Mild dataset of our method is slightly lower than the
Pixel-RL method, the SSIM of the other four groups is better
than the Pixel-RL algorithm, that is, ourmethod is superior in
terms of guaranteeing image similarity (SSIM) than Pixel-
RL. Although the average PSNR value of the other three
data sets is slightly lower than that of the Pixel-RL algo-

Table 3 The test efficiency of Pixel-RL and our method

Algorithm Params (M) Time (s)

Pixel-RL 1.78 0.036

Ours 1.81 0.040

rithm, it can also be seen from the comparison result with
Random policy that the method proposed in this paper has
sufficient advantages in terms of integrated denoiser. In addi-
tion, the ablation experimentwithout adding noise shows that
the method of adding noise to the policy increases the agent’s
exploration ability while significantly improving the quality
of image denoising.

As Pixel-RL needs to load a pre-trained model during the
training process., when the pre-trainedmodel is removed, the
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Fig. 7 The visualized restoration processing of three test images

training time of the algorithm will increase significantly, and
it will converge at about 15e5 steps. Our method does not
need to load the pre-trained model, and can reach conver-
gence within 1e6 steps, which is a 1/3 step reduction. Also,
we compared the size of the two methods’ models and the
average test time of the two methods on 100 test images, the
results are shown in Table 3. We can see from the results
that the test efficiency between Pixel-RL and our method
is almost near. Since the two methods use similar network
structures, but the output dimensionality of our method is
higher, it shows that the test efficiency of our method is bet-
ter than that of the Pixel-RLmethod. In addition, our method
only uses 3854 images for training, which realizes the task of
image restoration under small sample conditions. Compared
with the 25,296 training images of Pixel-RL, the method in
this paper also has higher training efficiency.

In order to explore the specific actions performed by our
method,wevisualized the restoration process of the images at
each step. Figure 7 is the result of three random test images on
the BSD68 dataset. The result is represented by a stacked bar
graph. In the stacked bar chart, each bar represents the pro-
portion of actions taken at a certain step in the process.Wecan
see that, at the beginning of the restoration, since the image
containsmultiple noises, it ismore important to choose a suit-
able filter. After that, the filtered image is fine-tuned through
the increase or decrease of the pixel value, and finally the
other noise generated in the previous steps is removed by the
subsequent operation again, so as to achieve the restoration
task of the multi-noise image. The interpretable details are
described below: At step = 1 or 2, since the image is con-

taminated by a variety of noises, choosing suitable filters can
make the policy obtain greater rewards. At step = 3, since the
image will become blurred after being processed by filters,
the reward will not increase but may decrease if the policy
continues to select the filters. Therefore, the policy chooses
the pixel value operation (+1or−1) to further improve image
clarity. At step=4, the policy mainly selects the bilateral fil-
ter, for it not only reduces the luminosity and color difference
between pixels caused by the +1 or −1 operation, but also
retains the edge information of the image. At step = 5, since
the noise of the image has been basically processed, the pol-
icy considers more about improving the clarity of the image,
so more −1 operations are selected.

6 Conclusion

Wepropose amethod,which integrates a variety of traditional
denoisers into a strong denoiser to restore the images which
contain more than one type of noise and traditional denois-
ers cannot directly restoration. We redefine this problem as
MARL problem on the condition of POMDP. To solve this
newproblem,we propose amethodwhich combine the recur-
rent neural network with the off-policy RL algorithm and
optimized the exploration of agent in pixel-wise. Through a
variety of parallel processing of the image and a learned pol-
icy based on RL, each pixel is given a weight, and an image
that is closest to the true pixel value is merged according
to the weight. Several experiments showed that our method
not only achieves the recovery task of damaged images very
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well, but also requires only a few samples to achieve the
recovery effect. However, this method still has limitations.
The quality of the final restored image is largely limited by
the effect of the traditional filter in toolbox, so how to adap-
tively change the traditional filter during the training process
to make it well adapted to various environmental conditions
will be important.
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Zhang K, Yang Z, Başar T (2019) Multi-agent reinforcement learning:
a selective overview of theories and algorithms. ArXiv preprint
arXiv:1911.10635

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1802.05438
http://arxiv.org/abs/1911.10635

	Boosting denoisers with reinforcement learning for image restoration
	Abstract
	1 Introduction
	2 Related work
	2.1 Multiple degradation for a single image
	2.2 Deep reinforcement learning for image processing
	2.3 POMDP
	2.4 MARL

	3 Problem statement
	4 Learning to restore the distorted images
	5 Experiment
	5.1 Toolbox
	5.2 Reward
	5.3 Image restoration dataset

	6 Conclusion
	Acknowledgements
	References




