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Abstract
Parameter estimation has become a crucial issue in the development of uncertain differential equation. This paper presents
a new parameter estimation method in uncertain differential equation based on uncertain maximum likelihood estimation,
and gives some analytical formulae of the uncertain maximum likelihood estimators in special linear uncertain differential
equations. In addition, some numerical examples are provided to illustrate this parameter estimation method.
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1 Introduction

For the sake of modeling the human’s belief degrees rea-
sonably, uncertainty theory was established by Liu (2007) in
2007 and then perfected by Liu (2009) in 2009. Up to now,
uncertainty theory has become a new branch of axiomatic
mathematics and has been widely applied in many fields of
science and technology.

For the purpose of handling the dynamic systems with
continuous-time noises, uncertain differential equation was
first proposed by Liu (2008) as a kind of differential equation
driven by Liu processes. Up to now, uncertain differen-
tial equation has been extensively studied and has made
significant progress. In the theoretical aspect of uncertain
differential equation, Chen and Liu (2010) first proposed
the existence and uniqueness theorem of the solution of
uncertain differential equation under linear growth condi-
tion and Lipschitz condition. Following the existence and
uniqueness theorem, Liu (2009) first defined the concept of
stability of uncertain differential equation. Later, Yao et al.
(2013) gave some stability theorems to develop the sta-
bility analysis of uncertain differential equation, and then
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other types of stability were discussed by Sheng and Wang
(2014), Yao et al. (2015), Yang et al. (2017), etc. As the
most significant contribution to uncertain differential equa-
tion, Yao-Chen formula was proposed by Yao and Chen
(2013), which associated uncertain differential equation with
ordinary differential equations, and showed that the solu-
tion of an uncertain differential equation can be represented
by the solutions of a family of ordinary differential equa-
tions. Based on the Yao-Chen formula, Yao and Chen (2013)
first proposed a numerical method for solving uncertain dif-
ferential equation, which was then extended by Yang and
Shen (2015), Yang and Ralescu (2015), Gao (2016), etc. In
the practical aspect, uncertain differential equation has been
widely applied in various fields and spawned many theoret-
ical branches. For example, uncertain differential equation
was widely applied in finance markets by Liu (2013) and
generated uncertain finance theory. In addition, uncertain
differential equation was applied in uncertain optimal con-
trol (Zhu 2010), uncertain differential game (Yang and Gao
2013), uncertain population model (Zhang and Yang 2020),
uncertain heat conduction equation (Yang and Yao 2017),
uncertain stringvibration equation (GaoandRalescu (2019)),
uncertain spring vibration equation (Jia and Dai 2021) and
uncertain epidemic model (Li et al. 2017).

However, there exist unknown parameters in the model
established in the real world. Therefore, how to estimate
the unknown parameters based on the observations of the
solution to uncertain differential equation is a critical prob-
lem. For the purpose of solving this problem, Yao and Liu
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(2020) proposed a method of moment estimation based on
the difference form of uncertain differential equation. Fol-
lowing that, Liu and Yang (2019) applied the method of
moment estimation to the parameter estimation of high-order
uncertain differential equation. Later, Sheng et al. (2020) pre-
sented amethod of least squares estimation for estimating the
unknown parameters. In addition, Lio and Liu (2020a) pro-
posed a method of estimating the unknown initial value of
uncertain differential equation based on observed data. Up to
now, the parameter estimation of uncertain differential equa-
tion has received more and more attentions from scholars.

As another important method of parameter estimation,
uncertain maximum likelihood estimation was proposed by
Lio and Liu (2020b) under the framework of uncertainty the-
ory, and was applied in regression analysis by estimating the
unknown parameters of uncertain regression models. Since
then, uncertain maximum likelihood estimation has attracted
the attention of many scholars. In this paper, it is our goal to
present a parameter estimation method for uncertain differ-
ential equation based on the uncertain maximum likelihood
estimation. The overall structure of this paper takes the form
of five sections, including this introductory section. Section 2
begins by introducing some concepts of uncertainty theory
and Sect. 3 begins by proposing the parameter estimation
method for uncertain differential equation, and giving some
analytical formulae of the uncertain maximum likelihood
estimators in special linear uncertain differential equations.
In Sect. 4, we apply the proposed estimation method in some
numerical examples. Finally, a concise conclusion is given
in Sect. 5.

2 Preliminary

This section will introduce some concepts and theorems
about uncertainty theory. The following symbols are used
throughout this paper:

a ∧ b : min(a, b), a ∨ b : max(a, b),
n∧

i=1

xi : min
1≤i≤n

xi ,
n∨

i=1

xi : max
1≤i≤n

xi .

Definition 1 (Liu 2007) Assume that Γ is a universal set and
L is a σ -algebra over Γ , M is a measurable set function on
the σ -algebra L by following three axioms:
Axiom 1. (Normality Axiom) M{Γ } = 1.
Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any
event Λ ∈ L.
Axiom 3. (Subadditivity Axiom) For any countable sequence
{Λi }, we always have

M

{ ∞⋃

i=1

Λi

}
≤

∞∑

i=1

M{Λi }.

Then the set functionM is called an uncertain measure, and
the triplet (Γ ,L,M) is called an uncertainty space.

For the purpose of obtaining the uncertain measure of
composite event, the product uncertain measure M on the
product σ -algebra L was defined by Liu (2009) by the fol-
lowing product axiom.
Axiom 4. (Product Axiom) Assume (Γi ,Li ,Mi ) are uncer-
tainty spaces for i = 1, 2, · · · M is an uncertain measure on
the σ -algebra satisfying

M

{ ∞∏

i=1

Λi

}
=

∞∧

i=1

Mi {Λi }

where Λi are arbitrarily chosen events from Li for i =
1, 2, · · · , respectively. Then, the uncertain measure M is
called a product uncertain measure.

An uncertain variable ξ is a measurable function from an
uncertainty space (Γ ,L,M) to the set of real numbers, i.e.,
the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ ) ∈ B}

is always an event for any Borel set B of real numbers. The
uncertainty distribution of an uncertain variable ξ is defined
by

Φ(x) = M{ξ ≤ x}, ∀x ∈ �.

A normal uncertain variable ξ ∼ N (e, σ ) has a normal
uncertainty distribution

Φ(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

, x ∈ �

and a normal uncertainty distribution is called standard if
e = 0 and σ = 1.

Definition 2 (Liu 2009) An uncertain process Ct is said to
be a Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz con-
tinuous,

(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t −Cs is a normal uncertain vari-

able with expected value 0 and variance t2.

3 Parameter estimation

In this section, we first introduce a parameter estimation
method for uncertain differential equation based on the
uncertain maximum likelihood estimation.
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Consider the uncertain differential equation denoted by

dXt = f (t, Xt ;μ)dt + g(t, Xt ; θ)dCt (1)

where Ct is a Liu process, f (t, x;μ) and g(t, x; θ) are two
real-valued measurable functions on T × � and satisfy that
(1) has a unique solution, i.e., f (t, x;μ) and g(t, x; θ) satisfy
the linear growth condition

| f (t, x;μ)| + |g(t, x; θ)| ≤ L(1 + |x |), ∀x ∈ �, t ≥ 0

and Lipschitz condition

| f (t, x;μ) − f (t, y;μ)| + |g(t, x; θ) − g(t, y; θ)|
≤ L|x − y|

for any x, y ∈ � and t ≥ 0 with some constant L , μ and θ

are two unknown parameters to be estimated on the basis of
the observations of the solution Xt . Now we write equation
(1) into the difference form by using the Euler method:

Xti+1 − Xti

= f (ti , Xti ;μ)(ti+1 − ti ) + g(ti , Xti ; θ)(Cti+1 − Cti ),

i.e.,

Xti+1 − Xti − f (ti , Xti ;μ)(ti+1 − ti )

g(ti , Xti ; θ)(ti+1 − ti )
= Cti+1 − Cti

ti+1 − ti
.

According to the definition of Liu process,

Cti+1 − Cti

ti+1 − ti

follows a standard normal uncertainty distribution. That is,
we can get

Xti+1 − Xti − f (ti , Xti ;μ)(ti+1 − ti )

g(ti , Xti ; θ)(ti+1 − ti )
∼ N (0, 1). (2)

Suppose that there are n observed data xt1 , xt2 , · · · , xtn of the
solution Xt at time-points t1 < t2 < · · · < tn . By substituting
the observed data into equation (2), we write

hi (μ, θ) = xti+1 − xti − f (ti , xti ;μ)(ti+1 − ti )

g(ti , xti ; θ)(ti+1 − ti )
(3)

for i = 1, 2, · · · , n−1, which are n−1 functions containing
the unknown parameters. According to equation (2), we can
regard the values of h1(μ, θ), h2(μ, θ), · · · , hn−1(μ, θ) as
n − 1 samples of a standard normal uncertainty distribution
N (0, 1). Then, the following theorem gives the estimates of
the parametersμ and θ by the uncertainmaximum likelihood
estimation.

Theorem 1 Assume that xt1 , xt2 , · · · , xtn are observations of
the solution Xt of the uncertain differential equation (1) at
the times t1, t2, · · · , tn with t1 < t2 < · · · < tn, respectively.
Then, the estimates μ∗ and θ∗ obtained by means of the
uncertainmaximum likelihood estimation solve the following
system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∧

i=1

xti+1 − xti − f (ti , xti ;μ)(ti+1 − ti )

g(ti , xti ; θ)(ti+1 − ti )

+
n−1∨

i=1

xti+1 − xti − f (ti , xti ;μ)(ti+1 − ti )

g(ti , xti ; θ)(ti+1 − ti )
= 0

π√
3λ

n−1∨

i=1

∣∣∣∣
xti+1 − xti − f (ti , xti ;μ)(ti+1 − ti )

g(ti , xti ; θ)(ti+1 − ti )

∣∣∣∣ = 1

(4)

where λ is the root of the transcendental equation 1 + x +
exp(x) − x exp(x) = 0 and can be taken as 1.5434 approxi-
mately in numerical solution.

Proof At first, we can regard the values of h1(μ, θ),
h2(μ, θ), · · · , hn−1(μ, θ) as n−1 samples of the population
N (e, σ ) with uncertainty distribution

Φ(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

.

Notice that Φ(x) is differentiable and

Φ ′(x) =
π√
3σ

exp

(
π(e − x)√

3σ

)

(
1 + exp

(
π(e − x)√

3σ

))2 .

According to the definition of uncertain likelihood function
presented by Lio and Liu (2020b), the likelihood function is

L(e, σ | h1(μ, θ), h2(μ, θ), · · · , hn−1(μ, θ))

=
n−1∧

i=1

Φ ′(hi (μ, θ))

=
n−1∧

i=1

π√
3σ

exp

(
π (e − hi (μ, θ))√

3σ

)

(
1 + exp

(
π(e − hi (μ, θ))√

3σ

))2 .

Since Φ ′(x) decreases as |e − x | increases, we can rewrite
the likelihood function as

L(e, σ | h1(μ, θ), h2(μ, θ), · · · , hn−1(μ, θ))
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=

π√
3σ

exp

(
π√
3σ

n−1∨

i=1

|e − hi (μ, θ)|
)

(
1 + exp

(
π√
3σ

n−1∨

i=1

|e − hi (μ, θ)|
))2 .

Then, we can get the maximum likelihood estimates of e and
σ by solving the maximization problem

max
e,σ>0

π√
3σ

exp

(
π√
3σ

n−1∨

i=1

|e − hi (μ, θ)|
)

(
1 + exp

(
π√
3σ

n−1∨

i=1

|e − hi (μ, θ)|
))2 .

Since the likelihood function is decreasing with respect to

n−1∨

i=1

|e − hi (μ, θ)| ,

the maximum likelihood estimate e∗ solves the following
minimization problem

min
e

n−1∨

i=1

|e − hi (μ, θ)|

whose minimum solution is

e∗ = 1

2

(
n−1∧

i=1

hi (μ, θ) +
n−1∨

i=1

hi (μ, θ)

)
, (5)

and then the maximum likelihood estimate σ ∗ solves the
maximization problem

max
σ>0

π√
3σ

exp

(
π√
3σ

n−1∨

i=1

∣∣e∗ − hi (μ, θ)
∣∣
)

(
1 + exp

(
π√
3σ

n−1∨

i=1

|e∗ − hi (μ, θ)|
))2 . (6)

Here we set y = π√
3σ

and k =
n−1∨

i=1

∣∣e∗ − hi (μ, θ)
∣∣. Then,

the maximization problem (6) is transformed into the follow-
ing maximization problem

max
y>0

y exp(ky)

(1 + exp (ky))2
. (7)

Let us write

p(y) = y exp(ky)

(1 + exp (ky))2
.

Notice that

p′(y) = exp(ky)(1 + ky + exp(ky) − ky exp(ky))

(1 + exp(ky))3
.

It is easy to see that p′ (λ/k) = 0, where λ is the root of the
transcendental equation 1+ x + exp(x) − x exp(x) = 0 and
can be taken as 1.5434 approximately in numerical solution.
Then we can obtain p′(y) > 0 when 0 < y < λ/k and
p′(y) < 0 when y > λ/k. Thus, y∗ = λ/k is the maximum
point of p(y) in the feasible region, which implies that y∗
is the maximum solution of the maximization problem (7).
Then,

σ ∗ = π√
3y∗ = π√

3λ

n−1∨

i=1

∣∣e∗ − hi (μ, θ)
∣∣ (8)

is the maximum solution of the maximization problem (6)
immediately. Thus, e∗ and σ ∗ are the maximum likelihood
estimates of e and σ , respectively.

Since h1(μ, θ), h2(μ, θ), · · · , hn−1(μ, θ) are actually
the samples of the standard normal uncertainty distribution
N (0, 1), we must have

e∗ = 0, σ ∗ = 1.

Therefore, it follows from (5) and (8) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1∧

i=1

hi (μ, θ) +
n−1∨

i=1

hi (μ, θ) = 0

π√
3λ

n−1∨

i=1

|hi (μ, θ)| = 1

(9)

whose solutionsμ∗ and θ∗ are the estimates of the parameters
μ and θ , respectively. That is, we can get the estimates of the
parameters μ and θ by solving the system of equations (4).
The theorem is proved. ��

The above method of estimating the parameters of uncer-
tain differential equations is called the method of uncertain
maximum likelihood.

Remark 1 Sometimes the systemof equations (4) has no solu-
tion, or we often cannot find the exact solution of the system
of equations (4) when f (t, x;μ) and g(t, x; θ) are nonlinear
functions with respect to μ and θ , respectively. In this case,
we can get the numerical solution of the system of equations
(4) by solving the following minimization problem,

min
μ,θ

⎛

⎝
(
n−1∧

i=1

hi (μ, θ) +
n−1∨

i=1

hi (μ, θ)

)2
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+
(

π√
3λ

n−1∨

i=1

|hi (μ, θ)| − 1

)2⎞

⎠ (10)

where h1(μ, θ), h2(μ, θ), · · · , hn−1(μ, θ) are defined by
(3), and some numerical methods such as Newton’s method,
secant method and simplex method can be used.

As an important class of uncertain differential equations,
linear uncertain differential equations have been widely used
in financial markets. For example, Liu (2009) first proposed a
stockmodel inwhich the stock price is determined by a linear
uncertain differential equation. Later, Peng and Yao (2011)
studied a new stock model in which the stock price follows
a mean-reverting process. After that, Chen and Gao (2013)
investigated an uncertain interest ratemodel by assuming that
the interest rate follows a linear uncertain differential equa-
tion, and Liu et al. (2015) presented an uncertain currency
model where the exchange rate follows a linear uncertain
differential equation. Next we will give some analytical for-
mulae of the uncertain maximum likelihood estimators in
special linear uncertain differential equations.

Corollary 1 Consider the uncertain differential equation

dXt = μdt + θdCt

where μ and θ > 0 are two unknown parameters to be esti-
mated. Assume that xt1 , xt2 , · · · , xtn are observations of the
solution Xt of the uncertain differential equation at the times
t1, t2, · · · , tn with t1 < t2 < · · · < tn, respectively. Then, the
estimates of the parameters μ and θ are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ∗ = 1

2

(
n−1∧

i=1

xti+1 − xti
ti+1 − ti

+
n−1∨

i=1

xti+1 − xti
ti+1 − ti

)

θ∗ = π√
3λ

n−1∨

i=1

∣∣∣∣
xti+1 − xti
ti+1 − ti

− μ∗
∣∣∣∣ .

(11)

Proof By substituting the observed data into equation (3),
we can get

hi (μ, θ) = xti+1 − xti − μ(ti+1 − ti )

θ(ti+1 − ti )
, i = 1, 2, · · · , n−1.

According to Theorem 1, the estimates of the unknown
parameters solve

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∧

i=1

xti+1 − xti − μ(ti+1 − ti )

θ(ti+1 − ti )

+
n−1∨

i=1

xti+1 − xti − μ(ti+1 − ti )

θ(ti+1 − ti )
= 0

π√
3λ

n−1∨

i=1

∣∣∣∣
xti+1 − xti − μ(ti+1 − ti )

θ(ti+1 − ti )

∣∣∣∣ = 1.

By solving the above system of equations, we can get the
estimates of μ and θ shown in (11). ��
Corollary 2 Consider the uncertain differential equation

dXt = μXtdt + θXtdCt

where μ and θ > 0 are two unknown parameters to be esti-
mated. Assume that xt1 , xt2 , · · · , xtn are observations of the
solution Xt of the uncertain differential equation at the times
t1, t2, · · · , tn with t1 < t2 < · · · < tn, respectively. Then, the
estimates of the parameters μ and θ are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ∗ = 1

2

(
n−1∧

i=1

xti+1 − xti
xti (ti+1 − ti )

+
n−1∨

i=1

xti+1 − xti
xti (ti+1 − ti

)

)

θ∗ = π√
3λ

n−1∨

i=1

∣∣∣∣
xti+1 − xti

xti (ti+1 − ti )
− μ∗

∣∣∣∣ .
(12)

Proof By substituting the observed data into equation (3),
we can get

hi (μ, θ) = xti+1 − xti − μxti (ti+1 − ti )

θxti (ti+1 − ti )

for i = 1, 2, · · · , n − 1. According to Theorem 1, the esti-
mates of the unknown parameters solve

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∧

i=1

xti+1 − xti − μxti (ti+1 − ti )

θxti (ti+1 − ti )

+
n−1∨

i=1

xti+1 − xti − μxti (ti+1 − ti )

θxti (ti+1 − ti )
= 0

π√
3λ

n−1∨

i=1

∣∣∣∣
xti+1 − xti − μxti (ti+1 − ti )

θxti (ti+1 − ti )

∣∣∣∣ = 1.

By solving the above system of equations, we can get the
estimates of μ and θ shown in (12). ��

4 Numerical examples

Now we apply the method of uncertain maximum likelihood
in three numerical examples to estimate the unknown param-
eters.

Example 1 For the following uncertain differential equation

dXt = μdt + θdCt

with 16 observations given in Table 1, and the two parameters
μ and θ > 0 are unknown which should be estimated. By
substituting the observed data into (11), we have

μ∗ = 1.1178, θ∗ = 1.1879.
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Table 1 Observations of
Example 1

i 1 2 3 4 5 6 7 8

ti 0.00 0.09 0.18 0.33 0.48 0.60 0.69 0.78

xti 0.0000 0.1252 0.1348 0.4350 0.6647 0.9104 1.0464 1.1049

i 9 10 11 12 13 14 15 16

ti 0.87 1.02 1.14 1.29 1.38 1.50 1.56 1.71

xti 1.2181 1.4125 1.4971 1.8163 1.9469 2.1097 2.2322 2.2517

Fig. 1 α-paths and Observations of Xt in Example 1

Therefore, the uncertain differential equation is

dXt = 1.1178dt + 1.1879dCt (13)

whose 0.27-path and 0.85-path are shown in Fig. 1. As we
can see, all the observations fall in these two α-paths, which
indicates that the estimates

μ∗ = 1.1178, θ∗ = 1.1879

are acceptable.

Remark 2 In fact, the true values of parameters in Example 1
are

μ = 1, θ = 1,

themoment estimation and least squares estimationof param-
eters are

μ̂1 = 1.3070, θ̂1 = 0.6318,

and

μ̂2 = 1.3350, θ̂2 = 0.6543,

respectively. Obviously, for such observations, the uncertain
maximum likelihood estimation is best. The reason is that
when the sample size is small, the sample moments can-
not provide good estimates of the corresponding population
moments, and the outliers will cause greater interference to
the noise term, which will cause the least square estimation
to be worse than the uncertain maximum likelihood estima-
tion. Therefore, when the sample size is small, we should
choose the method of uncertain maximum likelihood instead
of other methods.

Example 2 For the following uncertain differential equation

dXt = μXtdt + θXtdCt

with 14 observations given in Table 2, and the two parameters
μ and θ > 0 are unknown which should be estimated. By
substituting the observed data into (12), we have

μ∗ = 2.5962, θ∗ = 3.8656.

Therefore, the uncertain differential equation is

dXt = 2.5962Xtdt + 3.8656XtdCt (14)

whose 0.29-path and 0.80-path are shown in Fig. 2. As we
can see, all the observations fall in these two α-paths, which
indicates that the estimates

μ∗ = 2.5962, θ∗ = 3.8656

are acceptable.

Example 3 For the following uncertain differential equation

dXt = cos(μt)dt + sin(θ t)dCt

with 16 observations given in Table 3, and the two parameters
μ > 0 and θ > 0 are unknown which should be estimated.
By substituting the observations into equation (3), we can get

hi (μ, θ) = xti+1 − xti − cos(μti )(ti+1 − ti )

sin(θ ti )(ti+1 − ti )

123
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Table 2 Observations of
Example 2

i 1 2 3 4 5 6 7

ti 0.00 0.02 0.07 0.12 0.17 0.19 0.20

xti 1.0000 1.0601 1.3430 1.2965 1.5004 1.5368 1.5883

i 8 9 10 11 12 13 14

ti 0.25 0.31 0.36 0.4 0.46 0.49 0.50

xti 1.6384 1.9354 2.0366 2.7557 2.8937 3.1743 3.2962

Fig. 2 α-paths and Observations of Xt in Example 2

Table 3 Observations of Example 3

i 1 2 3 4 5 6 7 8

ti 0.00 0.15 0.30 0.36 0.51 0.63 0.69 0.78

xti 0.0000 0.1376 0.2730 0.3514 0.5169 0.7085 0.7544 0.6854

i 9 10 11 12 13 14 15 16

ti 0.90 1.05 1.20 1.26 1.41 1.56 1.65 1.80

xti 0.8071 1.0045 1.0428 1.0621 1.0848 0.9574 0.9225 0.6665

for i = 1, 2, · · · , 15. Then, we can solve the minimization
problem (10) by using MATLAB1, and get the estimates of
μ and θ which are

μ∗ = 1.6171, θ∗ = 1.4219.

Therefore, the uncertain differential equation is

dXt = cos(1.6171t)dt + sin(1.4219t)dCt (15)

whose 0.15-path and 0.82-path are shown in Fig. 3. As we
can see, all the observations fall in these two α-paths, which
indicates that the estimates

μ∗ = 1.6171, θ∗ = 1.4219

1 MATLAB R2019a, 9.6.0.1072779, maci64, Optimization Toolbox,
“fminsearch” function.

Fig. 3 α-paths and Observations of Xt in Example 3

are acceptable.

5 Conclusion

This paper first proposed the method of uncertain max-
imum likelihood to estimate the unknown parameters in
uncertain differential equation, and gave some analytical for-
mulae of the uncertain maximum likelihood estimators in
special linear uncertain differential equations. In addition,
some numerical examples were also provided to illustrate
the method of uncertain maximum likelihood in this paper.
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