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Abstract
Let R be a commutative ring with 1. In Biswas et al. (Disc Math Algorithms Appl 11(1):1950013, 2019), we introduced a
graph G(R) whose vertices are elements of R and two distinct vertices a, b are adjacent if and only if aR + bR = eR for
some nonzero idempotent e in R. Let G ′(R) be the subgraph of G(R) generated by the non-units of R. In this paper, we
characterize those rings R for which the graph G ′(R) is connected and Eulerian. Also we characterize those rings R for which
genus of the graph G ′(R) is ≤ 2. Finally, we show that the graph G ′(R) is a line graph of some graph if and only if R is either
a regular ring or a local ring.

Keywords Connected graph · Euler graph · Genus · Line graph · Regular ring · Local ring

1 Introduction

The algebraic graph theory is an interesting subject for graph
theorists as well as algebraists, since it relates two different
areas of mathematics, involves some combinatorial approach
and can be studied different levels of mathematical expertise
and sophistication. One may associate rings to graphs for
the benefit of studying ring structures to find some results
about the graph structures and vice versa. For example,
we may refer to Anderson and Naseer (1993), Anderson
and Livingston (1999), Biswas et al. (2019), Biswas et al.
(2020), Beck (1988), Maimani et al. (2008), Pranjali (2015),
Redmond (2007), Redmond (2002) and Sharma and Bhat-
wadekar (1995).

The interplay between ring theoretic and graph theoretic
properties was studied by several authors, and this approach
has since become increasingly very popular in abstract alge-
braic graph theory. The area of graph theory and ring theory
both benefits from the study of subgraph of the generalized
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co-maximal graphs. The knowledge of algebraic properties
of rings can innovate new ideas for studying several proper-
ties of graphs. On the other hand after translating algebraic
properties of rings into graph theoretic language, difficult
problems in ring theorymight bemore easily solved by using
techniques from graph theory.Motivated by these techniques
we try to apply the above method to the class of subgraph
of the generalized co-maximal graphs. As an application,
a graph theoretic problem that seems rather unmanageable
when restricted to methods from graph theory is solved using
a straightforward ring theoretic argument.

In Biswas et al. (2019), we defined the graph G(R) on
a commutative ring R with 1, having vertices as elements
of R, where two distinct vertices a and b are adjacent if
and only if aR + bR = eR for some nonzero idempotent
e in R. In Biswas et al. (2019), we proved that chromatic
number χ(G(R)) is the number of regular elements of R.
We also characterized completeness of the graph and some
other properties related to the graph.

Motivated by the papers (Maimani et al. 2008) and Wang
(2008), in this paper we define the subgraph G ′(R) which
is generated by non-units of the ring R and we study the
substructure of the graph G(R). The aim of this paper is to
study the notions of diameter, Eulerian property and other
graph theoretic properties of G ′(R). We also able to deter-
mine those rings R for whichG ′(R) is connected, those rings
R forwhichG ′(R) is Eulerian. InAsir andMano (2020),Asir
and Mano (2019), Tamizh Chelvam and Selvakumar (2017),
Tamizh Chelvam and Asir (2013) and Wang (2008), some
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authors studied the genus of graphs over rings. In this paper,
we characterize the class of rings for which genus of the sub-
graph G ′(R) is less or equal to 2. Finally, we derive some
results related to the line graph L(G ′(R)).

If a surface is homeomorphic to a sphere with g handles,
then the genus of this surface is g. A graph can be drawn
without crossings on the surface of genus g, but not on the
oneof genus g−1, is called a graphof genus g.Wewriteγ (G)

for the genus of a graph G. If a graph G can be embedded in
a plane, we say the graph G is planar, i.e., γ (G) = 0 and if a
graph G can be embedded in a torus not a plane, we say the
graph G is toroidal, i.e., γ (G) = 1.

Throughout this paper, we assumed that the ring R is a
finite commutative ring with identity, U (R) stands for the
set of units of R and r(R) denotes the set of regular elements
of R. The notation Fn stands for a finite field of order n and
we use the notation a ↔ b if a, b are adjacent in a graph G.

2 Connectedness and diameter of G′(R)

In this section, we determine some necessary and sufficient
conditions for the connectedness of the subgraph G ′(R) of
the graphG(R) over a finite commutative ring R with 1. Also
we determine some conditions under which diam(G ′(R)) is
1 or 2.

From Biswas et al. (2019), we get the following lemma
which helps us to prove some propositions and theorems.

Lemma 2.1 (Biswas et al. 2019) Let R = R1×R2×· · ·×Rk

be a finite commutative ring with identity such that each Ri

is local with unique maximal ideal Mi . Two distinct vertices
(x1, x2, . . . , xk) and (y1, y2, . . . , yk) are adjacent if and only
if xi Ri + yi Ri is either Ri or {0} for i = 1, 2, . . . , k (but not
{0} for at least one i).
Example 2.2 Consider the rings Z3 × Z4 and Z4 × Z4. Then
the vertex set of the graph G ′(Z3×Z4) is Z3×Z4−U (Z3×
Z4) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (2, 0),
(2, 2)} and the vertex set ofG ′(Z4×Z4) isZ4×Z4−U (Z4×
Z4) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (2, 0),
(2, 1), (2, 2), (2, 3), (3, 0), (3, 2)}.

From Fig. 1, it follows that the graph G ′(Z3 × Z4) is
connected, where Z3 is a regular ring. It follows from Fig. 2
that the graph G ′(Z4 × Z4) is not connected as (2̄, 2̄) is not
adjacent with any other vertex in G ′(Z4 × Z4), where Z4 is
not a regular ring.

From Example 2.2, we have the following result.

Theorem 2.3 Let R = R1 × R2 × · · · × Rk for some local
rings R1, R2, . . . , Rk. Then G ′(R) is connected if and only
if at least one of Ri is regular.

(1, 2) (2, 2)(0, 2)

(0, 3)(0, 1)

(1, 0)

(0, 0) (2, 0)

Fig. 1 G ′(Z3 × Z4)

(2,1) (2,3) (2,0)

(3,0)

(0,1)

(0,2)

(1,0)

(1,2)

(3,2)

(2,2)(0,3) (0,0)

Fig. 2 G ′(Z4 × Z4)

Proof We first assume that G ′(R) is connected. If possi-
ble, let no Ri be regular for i = 1, 2, . . . , k. Then each
Ri has a unique nonzero maximal ideal Mi . Thus there
exists mi ∈ Mi \ {0} for each i . Now we have a vertex
(m1,m2, . . . ,mi , . . . ,mk) of G ′(R). Suppose
(a1, a2, . . . , ak) is an arbitrary vertex in G ′(R). Then at least
one ai ∈ Mi . Without loss of generality, let a1 ∈ M1.
Since a1R1 + m1R1 ⊆ M1( �= e1R1) for any idempo-
tent e1 ∈ R1, (a1, a2, . . . , ak) � (m1,m2, . . . ,mk), by
Lemma 2.1. Again since the vertex (a1, a2, . . . , ak) is arbi-
trary, it follows that deg((m1,m2, . . . ,mk)) = 0 in G ′(R).
This contradicts the connectedness of G ′(R). So at least one
of Ri is regular.

Conversely, suppose that at least one Ri is regular.Without
loss of generality, let R1 be regular. Since R1 is local and
regular, R1 = U (R1)

⋃{0}. Let (x1, x2, . . . , xk) be a vertex
ofG ′(R). Since x1 ∈ R1, x1R1 = e1R1 for some idempotent
e1 ∈ R1. Consider a regular element (0, 1, 1, . . . , 1) ∈ R \
U (R). Since x1R1 + 0R1 = e1R1 and xi Ri + 1Ri = Ri for
i = 2, 3, . . . , k, so we have (x1, x2, . . . , xk) is adjacent with
(0, 1, 1, . . . , 1), by Lemma 2.1. Thus any vertex in G ′(R)

is adjacent with (0, 1, 1, . . . , 1) ∈ R \U (R). Therefore, the
graph G ′(R) is connected. �	
Theorem 2.4 Let R = R1 × R2 × · · · × Rk, where Ri is a
local ring for each i . Then diam(G ′(R)) = 1 if and only if
R is a regular ring.
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Proof First suppose that diam(G ′(R)) = 1. If possible, let
R be not a regular ring. This implies that at least one of
Ri is not regular. Let us suppose that R1 be not regular.
Then M1 �= {0}, where M1 is the unique maximal ideal
of R1. Let b1 ∈ M1 \ {0}. Then we have two elements
(b1, 1, 1, . . . , 1, 1, 1, . . . .,1) and (0, 1, 1, . . . , 1, 1, 1, . . . ,1)
in the vertex set of G ′(R). Now b1R1 + 0R1 = b1R1 ⊆
M1 and hence b1R1 �= e1R1 for any idempotent e1 ∈
R1. Thus by Lemma 2.1, (b1, 1, 1, . . . , 1, 1, 1, . . . ., 1) and
(0, 1, 1, . . . , 1, 1, 1, . . . , 1) are not adjacent. This contradicts
the fact that diam(G ′(R)) = 1. Hence R is a regular ring.

The converse part is trivial. �	
Theorem 2.5 Let R = R1 × R2 × · · · × Rk for some local
rings R1, R2, . . . , Rk. Then diam(G ′(R)) = 2 if and only if
at least one of Ri is a regular ring but not all.

Proof Let diam(G ′(R)) = 2. Then by Theorem 2.4, it fol-
lows that R is not regular. Thus there exists at least one of Ri

which is not regular. Since diam(G ′(R)) is finite, G ′(R) is
connected. Now by Theorem 2.3, at least one of Ri is regular.
Thus there exists at least one Ri which is regular but not all.

Conversely, suppose that at least one of Ri is a regular ring
but not all. Thus diam(G ′(R)) > 1 (I ).

Without loss of generality, let R1 be a regular ring. Let
us take two elements x = (a1, a2, . . . , ai , . . . , ak) and
y = (b1, b2, . . . , bi , . . . , bk) in R \U (R). Now we consider
an element c = (0, 1, . . . , 1, 1, 1, . . . , 1) ∈ R \U (R). Since
R1 is regular, 0R1+a1R1 = a1R1 = e1R1 and 0R1+b1R1 =
b1R1 = e2R1 for some idempotents e1, e2 ∈ R1. Since
a1R1+0R1 = e1R1 andai Ri+1Ri = Ri for i = 2, 3, . . . , k,
we have (a1, a2, . . . , ak) and (0, 1, 1, . . . , 1) are adjacent, by
Lemma 2.1. Similarly, (b1, b2, . . . , bk) and (0, 1, 1, . . . , 1)
are also adjacent. So we have a path x ↔ c ↔ y. Thus it
follows that d(x, y) ≤ 2. Hence diam(G ′(R)) ≤ 2 (I I ).

Now from (I ) and (I I ), it follows that diam(G ′(R)) = 2.
�	

From Theorems 2.4 and 2.5, we have the following char-
acterizing result.

Theorem 2.6 Let R be a finite commutative ringwith identity.
Then there exists at least one direct summand of R which is
regular if and only if 1 ≤ diam(G ′(R)) ≤ 2.

3 Degrees and Eulerianity of G′(R)

In this section, we determine some necessary and sufficient
conditions for the Eulerianity of the subgraph G ′(R) of the
graph G(R) over a finite commutative ring R with identity.

In Biswas et al. (2019), we proved the following result for
the graph G(R) :

Theorem 3.1 (Biswas et al. 2019) Let R1 ⊕ R2 ⊕ · · · ⊕ Rk

be a finite commutative ring with identity such that each
Ri is a local ring with unique maximal ideal Mi . Let a =
(a1, a2, . . . , ak) be an element of R1 ⊕ R2 ⊕ · · · ⊕ Rk. Then
deg(a) in G(R) is either

(i) |R1| · · · |Rq |(|U (Rq+1)| + 1) · · · (|U (Rk)| + 1) − 1 or
(i i) |R1||R2| · · · |Rk | − 1 or

(i i i) (|U (R1)| + 1)(|U (R2)| + 1) · · · (|U (Rk)| + 1) − 1 or
(iv) |U (R1)||U (R2)| · · · |U (Rm)||Rm+1| · · · |Rm+n|

(|U (Rm+n+1)| + 1) · · · (|U (Rk)| + 1) or
(v) |U (R1)||U (R2)| · · · |U (Rl)|(|U (Rl+1)| + 1) · · ·

(|U (Rk)| + 1) or
(vi) |U (R1)||U (R2)| · · · |U (Rp)||Rp+1| · · · |Rk | or

(vi i) |U (R1)||U (R2)| · · · |U (Rk)|,

where l,m, n, p, q are integers with 1 ≤ l,m, n, p, q < k.

Remark 3.2 For a finite commutative ring R with 1, the graph
G ′(R) is the subgraph of the graph G(R) and vertex set of
G ′(R) is R \U (R), where R is the vertex set of G(R). Then
for any vertex x of G ′(R), degG ′(R)(x) = degG(R)(x) −
|U (R)|, where degG ′(R)(x) is the degree of x in G ′(R) and
degG(R)(x) is the degree of x in G(R).

Lemma 3.3 Let R be a finite commutative ring with 1 except
R = F1 × F2 × · · · × Fk, where each Fi is a field of charac-
teristic 2. Then |U (R)| is even.
Proof Let R be a finite commutative ring with 1. Then it
follows from Bini and Flamini (2002), there exist local rings
R1, R2, . . . ,Rk withuniquemaximal idealsM1, M2, . . . ,Mk ,
respectively, such that R = R1 × R2 × · · · × Rk .

Case 1 : Assume |R| is odd. Then |Ri | is odd for all i .
This implies |Mi | is odd for all i . Since Ri is local, |U (Ri )| =
|Ri |−|Mi | is odd as both |Ri | and |Mi | are odd. So |U (R)| =
|U (R1)||U (R2)| · · · |U (Rk)| is even as each |U (Ri )| is even.

Case 2 : Suppose |R| is even.
Subcase 2a : Suppose that at least one |Ri | is odd.Without

loss of generality, let |R1| be odd. Then |U (R1)| is even. So
|U (R)| = |U (R1)| · · · |U (Rk)| is even as |U (R1)| is even.

Subcase 2b : Assume each |Ri | is even and R �= F1×F2×
· · · × Fk , where each Fi is a field of characteristic 2. Since
|R| is even, each Ri is a local ring of order 2ri . Also R �=
F1 × F2 ×· · ·× Fk . This implies that there exists at least one
Ri which is not a field. Assume that R1 is a local ringwhich is
not a field of characteristic 2. Since R1 is not field, M �= {0}.
So |M | = 2m form ≥ 1.Now |U (R)| = |R|−|M | = 2n−2m

is even. So |U (R)| = |U (R1)||U (R2)| · · · |U (Rk)| is even as
|U (R1)| is even. �	

InFig. 1,wenotice that the graphG ′(Z3×Z4) is connected
and deg((0̄, 1̄)) = 7. Thus the graph G ′(Z3 × Z4) is not
Eulerian. So the graph G ′(R) is not always Eulerian. Now
we have the following result.
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Theorem 3.4 Let R = R1 × R2 × · · · × Rk be a finite com-
mutative ring with 1, where each Ri is a finite local ring, at
least one Ri is regular and k ≥ 2. Then G ′(R) is Eulerian
if and only if either |R| is odd or R = F1 × F2 × · · · × Fk,
where each Fi is a field of characteristic 2.

Proof It is given that at least one Ri is regular. This implies
that G ′(R) is connected by Theorem 2.3.

Now we assume that |R| is odd. This implies that
|Ri | is odd for each i and hence |U (Ri )| is even, by
Lemma 3.3. Let x ∈ R1 × R2 × · · · × Rk \ U (R1 × R2 ×
· · · × Rk). By rearranging the components of R1 × R2 ×
· · · × Rk if necessarily x is either (u1, . . . , uq , 0, . . . , 0) or
(0, 0, . . . , 0) or (a1, a2, . . . , am, um+1, . . . , um+n, 0, . . . , 0)
or (a1, a2, . . . , al , 0, . . . , 0)or (a1, a2, . . . , ap, u p+1, . . . ,uk),
where ai ∈ Mi \ {0} and ui ∈ U (Ri ).

Case 1 : Assume x = (u1, u2, . . . , uq , 0, 0, . . . , 0). Then
by Remark 3.2 and Theorem 3.1, we have [deg(x)]G ′(R) =
degG(R)(x) − |U (R)| = |R1| · · · |Rq |(|U (Rq+1)| + 1) · · ·
(|U (Rk)| + 1) − |U (R1)||U (R2)| · · · |U (Rk)| − 1 which is
even, since |Ri | and |U (Ri )| + 1 are odd for all i .

Case 2 : Clearly, [deg((0, 0, 0, . . . , 0))]G ′(R) =
degG(R)((0, 0, . . . , 0))−|U (R)| = (|U (R1)|+1)(|U (R2)|+
1) · · · (|U (Ri )|+1) · · · (|U (Rk)|+1)−|U (R1)||U (R2)| · · ·
|U (Rk)| − 1 is even, since |U (Ri )| is even for all i .

Case 3 : Assume x = (a1, a2, . . . , am, um+1, . . . , um+n,

0, . . . , 0). Then by Remark 3.2 and Theorem 3.1, it follows
that [deg(x)]G ′(R) = degG(R)(x) − |U (R)| = |U (R1)| · · ·
|U (Rm)||Rm+1| · · · |Rm+n|(|U (Rm+n+1)| + 1) · · · (|U (Rk)|
+1)−|U (R1)||U (R2)| · · · |U (Rk)|which is even, since each
|U (Ri )| is even and each |Ri | is odd.

Case 4 : Assume x = (a1, a2, . . . , al , 0, . . . , 0). Then by
Remark 3.2 andTheorem3.1, it follows that [deg(x)]G ′(R) =
degG(R)(x) − |U (R)| = |U (R1)||U (R2)| · · · |U (Rl)|
(|U (Rl+1)| + 1) · · · (|U (Rk)| + 1) − |U (R1)||U (R2)| · · ·
|U (Rk)| which is even, since |U (R1)| is even.

Case 5 : Assume x = (a1, a2, . . . , ap, u p+1, . . . , uk) be a
vertex of G ′(R). Then [deg(x)]G ′(R) = |U (R1)||U (R2)| · · ·
|U (Rp)||Rp+1| · · · |Rk |−|U (R1)||U (R2)| · · · |U (Rk)|which
is even, since |U (R1)| is even.

SinceG ′(R) is connected and degree of any vertex is even,
it follows that G ′(R) is Eulerian.

Again we assume that R = F1 × F2 × · · · × Fk ,
where each Fi is a field of characteristic 2. Now |U (R)| =
|U (F1)||U (F2)| · · · |U (Fk)| is odd as each |U (Fi )| = |Fi |−1
is odd. Let x be a vertex ofG ′(R). Since R = F1×F2×· · ·×
Fk is regular, x is adjacent with any other vertex ofG ′(R). So
[deg(x)]G ′(R) = degG(R)(x) − |U (R)| = |R| − 1− |U (R)|
is even as |R| is even and |U (R)| is odd.

Since G ′(F1 × F2 × · · · × Fk) is connected and degree of
any vertex is even, G ′(F1 × F2 × · · · × Fk) is Eulerian.

Conversely, suppose that G ′(R) is Eulerian. If possible,
let |R| be even and R �= F1 × F2 × · · · × Fk , where

each Fi is a field of characteristic 2. Then by Lemma 3.3,
|U (R)| is even. Since |R| is even, there exists at least one
Ri whose order is 2n . Let R1 be such a local ring of order
2n . Now [deg((1, 0, 0, . . . , 0))]G ′(R) = |R1|(|U (R2)| +
1) · · · (|U (Ri )| + 1)| · · · (|U (Rk)| + 1) − |U (R)| − 1 is
odd which is a contradiction. Hence either |R| is odd or
R = F1 × F2 × · · · × Fk , where each Fi is a field of charac-
teristic 2. �	

4 Study of genus of the graph G′(R)

In this section, wemainly study the genus of the graphG ′(R)

of the graph G(R). We discuss some known results from
Harary (1972) which is used here.

Lemma 4.1 γ (Kn) = { 1
12 (n − 3)(n − 4)}, where {x} is the

least integer that is greater than or equal to x. In particular,
γ (Kn) = 1 if n = 5, 6, 7.

Lemma 4.2 γ (Km,n) = { 14 (m − 2)(n − 2)}, where {x} is the
least integer that is greater than or equal to x.

The following remark is an easy observation.

Remark 4.3 γ (H) ≤ γ (G) for all subgraphs H of G.

Lemma 4.4 Let R be a finite local ring and M be its unique
maximal ideal. Then |U (R)| ≥ |M |, where U (R) is the set
of units of R and hence |r(R)| ≥ |R|

2 + 1 if |R| is even and

|r(R)| ≥ |R|−1
2 + 3 if |R|(> 3) is odd.

Proof Case 1 : Let |R| = 2n for some positive integer n. Let
M be the unique maximal ideal of R. If a ∈ M = J (R), then
1 − a ∈ U (R) = R − M . This implies |M | ≤ |U (R)|. Now
|R| = |M |+|U (R)| ≤ |U (R)|+|U (R)| = 2|U (R)| implies
|U (R)| ≥ |R|

2 . Since R is local ring, so |r(R)| = |U (R)|+1.

Hence |r(R)| = |U (R)| + 1 ≥ |R|
2 + 1.

Case 2 : Let |R| = 2n + 1 for some positive integer n.
Clearly, n is not a factor of 2n + 1 but |M | is a factor of
2n + 1. Thus |M | �= n and |M | � n + 1. So |M | ≤ n − 1.
Thus |U (R)| ≥ 2n+ 1− n+ 1 = n+ 2 = |R|−1

2 + 2. Hence

|r(R)| ≥ |R|−1
2 + 3. �	

Lemma 4.5 γ (G ′(R1×Z2)) ≤ 1 for R1 = Z2, Z3, Z4,
Z2[x]
<x2>

,
F4 and Z5.

Proof The vertex set of the graph G ′(Z5 × Z2) is V (Z5 ×
Z2) = Z5 × Z2 −U (Z5 × Z2). Then |V (G ′(Z5 × Z2))| = 6
and all the vertices are regular elements in Z5 × Z2. So the
graphG ′(Z5×Z2) ∼= K6. Thus γ (G ′(Z5×Z2)) = γ (K6) =
1, by Lemma 4.1.

Similarly, we have γ (G ′(F4 × Z2)) = γ (K5) = 1 as
G ′(F4 × Z2) ∼= K5.
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(1̄, 0̄)
(0̄, 1̄) (2̄, 1̄)

(3̄, 0̄)(0̄, 0̄) (2̄, 0̄)

Fig. 3 G ′(Z4 × Z2)

The vertex set of the graph G ′(Z4 × Z2) is Z4 × Z2 −
U (Z4 × Z2) = {(1̄, 0̄), (2̄, 0̄), (3̄, 0̄), (0̄, 0̄), (0̄, 1̄), (2̄, 1̄)}.

The graph G ′(Z4 × Z2) is shown in the Fig. 3.

From Fig. 3, it is clear that the graph G ′(Z4 × Z2) can be
drawn in the plane without crossing its edges. Thus G ′(Z4 ×
Z2) is planar, i.e., γ (G ′(Z4 × Z2)) = 0.

Since G ′( Z2[x]
<x2>

× Z2) ∼= G ′(Z4 × Z2), so we have

γ (G ′( Z2[x]
<x2>

× Z2)) = 0.
Again for R1 = Z3, γ (G ′(Z3 × Z2)) = 0 as G ′(Z3 ×

Z2) ∼= K4 and for R1 = Z2, γ (G ′(Z2×Z2)) = 0 asG ′(Z2×
Z2) ∼= K3. �	
Lemma 4.6 Let R be a finite commutative local ring of order
8. Then γ (G ′(R × Z2)) ≥ 3.

Proof Let R = F8. Then the vertex set of G ′(F8 × Z2) is
F8 × Z2 − U (F8 × Z2). Then G ′(F8 × Z2) ∼= K9. So by
Lemma 4.1, γ (G ′(F8 × Z2)) = γ (K9) = 3.

Let R( �= F8) be a local ring of order 8 and M be the
unique maximal ideal of R. Then |M | = 4, by Lemma 4.1 in
Wang (2008). Suppose M = {m1,m2,m3, 0} and U (R) =
{u1, u2, u3, 1}. The vertex set of G ′(R × Z2) is R × Z2−
U (R×Z2) = {(u1, 0̄), (u2, 0̄), (u3, 0̄), (1, 0̄), (0, 0̄), (0, 1̄),
(m1, 0̄), (m2, 0̄), (m3, 0̄), (m1, 1̄), (m2, 1̄), (m3, 1̄)}. We
divide thevertex set into two subsets {(u1, 0̄), (u2, 0̄), (u3, 0̄),
(1, 0̄)} and{(m1, 0̄), (m2, 0̄), (m3, 0̄), (0, 0̄), (m1, 1̄), (m2, 1̄),
(m3, 1̄), (0, 1̄)}. Then G ′(R × Z2) contains a subgraph
isomorphic to K4,8. So by Remark 4.3 and Lemma 4.2,
γ (G ′(R × Z2)) ≥ γ (K4,8) = { (4−2)(8−2)

4 } = {3} = 3.
�	

Lemma 4.7 γ (G ′(R1×Z3)) = 1 for R1 = Z5, F4,
Z2[x]
<x2>

, Z4

and Z3.

Proof The vertex set of G ′(Z5 × Z3) = Z5 × Z3 −U (Z5 ×
Z3) = {(1̄, 0̄), (2̄, 0̄), (3̄, 0̄), (4̄, 0̄), (0̄, 0̄), (0̄, 1̄), (0̄, 2̄)}.
Since all the vertices are regular elements ofZ5×Z3, the sub-
graphG ′(Z5×Z3) ∼= K7. Thus γ (G ′(Z5×Z3)) = γ (K7) =
1, by Lemma 4.1.

Similarly, we can easily verify γ (G ′(F4 × Z3)) =
γ (K6) = 1 as G ′(F4 × Z3) ∼= K6.

The vertex set ofG ′(Z4×Z3) = Z4×Z3−U (Z4×Z3) =
{(1̄, 0̄), (2̄, 0̄), (3̄, 0̄), (0̄, 0̄), (0̄, 1̄), (0̄, 2̄), (2̄, 1̄), (2̄, 2̄)}.
Clearly, the graphG ′(Z4×Z3) contains a subgraph generated

(1̄, 0̄)
(2̄, 1̄)

(2̄, 0̄)

(1̄, 0̄)

(1̄, 0̄) (1̄, 0̄)

(3̄, 0̄)

(0̄, 0̄)

(3̄, 0̄)

(0̄, 0̄)
(0̄, 1̄)

(2̄, 2̄)

(0̄, 2̄)

Fig. 4 G(Z4 × Z3)

by {(1̄, 0̄), (0̄, 1̄), (3̄, 0̄), (0̄, 2̄), (0̄, 0̄)} which is isomorphic
to K5. So by Remark 4.3 and Lemma 4.1, γ (G ′(Z4×Z3)) ≥
γ (K5) = 1 (I ).

Now the graph G ′(Z4 × Z3) is shown in the Fig. 4.
In Fig. 4, we note that the graphG ′(Z4×Z3) can be drawn

on the surface of genus one without crossing its edges. So
γ (G ′(Z4 × Z3)) ≤ 1 (I I ).

Therefore, by (I ) and (I I ), γ (G ′(Z4 × Z3)) = 1.
Similarly, γ (G ′( Z2[x]

<x2>
× Z3)) = 1 as G ′( Z2[x]

<x2>
× Z3) ∼=

G ′(Z4 × Z3).
Again for R1 = Z3, γ (G ′(Z3 × Z3)) = 1 as G ′(Z3 ×

Z3) ∼= K5. �	
Lemma 4.8 Let R be a finite commutative local ring of order
8. Then γ (G ′(R × Z3)) ≥ 4.

Proof Let R = F8. Then the vertex set of G ′(F8 × Z3) is
VG ′ = F8×Z3−U (F8×Z3). Here |VG ′ | = 10 and G ′(F8×
Z3) ∼= K10. So by Remark 4.3 and Lemma 4.1, γ (G ′(F8 ×
Z3)) ≥ γ (K10) = 4.

Let R( �= F8) be a local ring of order 8 and M be
its unique maximal ideal. Then we have |M | = 4. Let
M = {m1,m2,m3, 0} and {u1, u2, u3, 1} be the set of
units. The vertex set of G ′(R × Z3) is R × Z3 − U (R ×
Z3) = {(u1, 0̄), (u2, 0̄), (u3, 0̄), (1, 0̄), (0, 0̄), (0, 1̄), (0, 2̄),
(m1, 0̄), (m2, 0̄), (m3, 0̄), (m1, 1̄), (m2, 1̄), (m3, 1̄), (m1, 3̄),
(m2, 2̄), (m3, 2̄)}. Now we consider two vertex subsets
{(u1, 0̄), (u2, 0̄), (u3, 0̄), (1, 0̄)} and {(m1, 0̄), (m2, 0̄),
(m3, 0̄), (m1, 1̄), (m2, 1̄), (m3, 1̄), (m1, 3̄), (m2, 2̄), (m3, 2̄)}
of the vertex set. Then the graph G ′(R × Z3) contains a sub-
graph isomorphic to K4,9. So by Remark 4.3 and Lemma 4.2,
γ (G ′(R × Z3)) ≥ γ (K4,9) = 4. �	
Lemma 4.9 Let R1, R2 be two commutative local rings with
|R1| = 8 and |R2| = 4. Then γ (G ′(R1 × R2) ≥ 2.

Proof Let R1 = F8. Then the vertex set of G ′(F8 × R2) is
VG ′ = F8 × R2 − U (F8 × R2). Let S = r(F8 × R2) −
U (F8 × R2) be set of non-unit regular elements. Then |S| =
(|U (R1)|+1)(|U (R2)|+1)−|U (R1)||U (R2)| = |U (R1)|+
|U (R2)| + 1 ≥ 8. Since S forms a clique, G ′(F8 × R2)

contains a subgraph isomorphic to K8. So by Remark 4.3
and Lemma 4.1, γ (G ′(F8 × R2)) ≥ γ (K8) = 2.

Suppose R1 �= F8. Let M1, M2 be unique maximal ide-
als of R1, R2, respectively. Then we have |M1| = 4. Let
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(1̄, 0̄) (4̄, 0̄) (0̄, 0̄) (1̄, 0̄)

(1̄, 0̄) (4̄, 0̄) (0̄, 0̄) (1̄, 0̄)

(3̄, 0̄)

(2̄, 0̄)

(3̄, 0̄)

(2̄, 0̄)
(0̄, 1̄) (0̄, 3̄)(3̄, 2̄)

(2̄, 2̄)

(1̄, 2̄)

(4̄, 2̄)

(0̄, 2̄)

Fig. 5 G(Z5 × Z4)

M1 = {m1,m2,m3, 0} and {u1, u2, u3, 1} be the set of
units. Since |R2| = 4, |U (R2)| ≥ 2, by Lemma 4.4. Let
u be a non-identity unit. The vertex set of G ′(R1 × R2)

is R1 × R2 − U (R1 × R2). Now we consider two subsets
{(m1, 0), (m2, 0), (m3, 0), (m1, 1), (m2, 1), (m3, 1), (m1, u),

(m2, u), (m3, u)} and {(u1, 0), (u2, 0), (u3, 0), (1, 0)} of the
vertex set. Then G ′(R1 × R2) contains a subgraph isomor-
phic to K4,9. So by Remark 4.3 and Lemma 4.2, γ (G ′(R1 ×
R2)) ≥ γ (K4,9) = 4. �	
Lemma 4.10 γ (G ′(R)) = 1 for R = Z5×Z4 andZ5× Z2[x]

<x2>
.

Proof In Z5 × Z4 −U (Z5 × Z4), S = {(0, 0), (0, 1), (0, 3),
(1, 0), (2, 0), (3, 0), (4, 0)} is the set of non-unit regular ele-
ments. So the subgraph generated by S is isomorphic to K7.
Since G ′(Z5 × Z4) contains a subgraph isomorphic to K7,
so by Remark 4.3 and Lemma 4.1, γ (G ′(Z5 ×Z4)) ≥ 1 (I ).

Now the graph G ′(Z5 × Z4) is shown in the Fig. 5.
In Fig. 5, we note that the graphG ′(Z5×Z4) can be drawn

on the surface of genus one without crossing its edges. So
γ (G ′(Z5 × Z4)) ≤ 1 (I I ).

Therefore, by (I ) and (I I ), γ (G ′(Z5 × Z4)) = 1.
Since G ′(Z5 × Z4) ∼= G ′(Z5 × Z2[x]

<x2>
), so γ (G ′(Z5 ×

Z2[x]
<x2>

)) = 1. �	
Lemma 4.11 γ (G ′(R)) = 1 for R = F4 × F4, Z4 ×
F4,

Z2[x]
<x2>

× F4, Z4 × Z4,
Z2[x]
<x2>

× Z4 and
Z2[x]
<x2>

× Z2[x]
<x2>

.

Proof InG ′(F4×F4), V (F4×F4) = F4×F4−U (F4×F4).
Then |V (F4×F4)| = 7 and each vertex is regular in F4×F4.
Thus G ′(F4 × F4) = K7. So by Lemma 4.1, γ (G ′(F4 ×
F4)) = γ (K7) = 1.

The vertex set of the graph G ′(Z4 × Z4) is Z4 × Z4 −
U (Z4 × Z4) = {(1̄, 0̄), (0̄, 1̄), (3̄, 0̄), (0̄, 3̄), (0̄, 0̄), (1̄, 2̄),
(2̄, 1̄), (2̄, 3̄), (3̄, 2̄), (2̄, 0̄), (0̄, 2̄), (2̄, 2̄)}. Clearly, the graph
G ′(Z4×Z4) contains a subgraph generated by {(1̄, 0̄), (0̄, 1̄),
(3̄, 0̄), (0̄, 3̄), (0̄, 0̄)} which is isomorphic to K5. So
γ (G ′(Z4 × Z4)) ≥ γ (K5) = 1 (I ).

The vertex set of the graph G ′(Z4 × F4) is Z4 × F4 −
U (Z4 × F4) = {(1̄, 0), (3̄, 0), (2̄, 0), (0̄, 0), (0̄, u1), (0̄, u2),
(0̄, u3), (2̄, u1), (2̄, u2), (2̄, u3)},whereF4 = {u1, u2, u3, 0}.

(1̄, ¯ ()0 1̄, 0̄)

(1̄, 0̄)(1̄, 0̄)

(2̄, 1̄)

(2̄, 1̄)

(1̄, 2̄)

(1̄, 2̄)

(2̄, 3̄)

(2̄, 3̄)

(3̄, 0̄) (3̄, 0̄)

(0̄, 0̄) (0̄, 0̄)

(0̄, ¯ ()1 0̄, 3̄)

(0̄, 1̄)

(0̄, 2̄)

(3̄, 2̄)

(2̄, 2̄)

Fig. 6 G(Z4 × Z4)

(0̄, u3)(0̄, u3)

(0̄, u1)

(0̄, u1)

(2̄, u1)
(2̄, u2)

(0̄, 0)

(0̄, 0)

(2̄, u3) (2̄, 0)

(0̄, u2)

(0̄, u2)

(0̄, u2)

(0̄, u2)

(3̄, 0)

(1̄, 0)

Fig. 7 G(Z4 × F4)

The graph G ′(Z4 × F4) contains a subgraph generated by
{(1̄, 0), (3̄, 0), (0̄, 0), (0̄, u1), (0̄, u2), (0̄, u3)} which is iso-
morphic to K6.

So by Remark 4.3 and Lemma 4.1, γ (G ′(Z4 × F4)) ≥
γ (K6) = 1 (I I ).

Now the graph G ′(Z4 × Z4) and G ′(Z4 × F4) are shown
in the Fig. 6 and Fig. 7 respectively.

In Fig. 6, we note that the graphG ′(Z4×Z4) can be drawn
on the surface of genus one without crossing its edges. So
γ (G ′(Z4 × Z4)) ≤ 1 (I I I ).

Therefore, by (I ) and (I I I ), γ (G ′(Z4 × Z4)) = 1.
Since G ′(Z4 × Z4) ∼= G ′( Z2[x]

<x2>
× Z4) ∼= G ′( Z2[x]

<x2>
×

Z2[x]
<x2>

), γ (G ′( Z2[x]
<x2>

× Z4)) = γ (G ′( Z2[x]
<x2>

× Z2[x]
<x2>

)) = 1.
In Fig. 7, we note that the graphG ′(Z4×F4) can be drawn

on the surface of genus one without crossing its edges. So
γ (G ′(Z4 × F4)) ≤ 1 (I V ).

Therefore, by (I I ) and (I V ), γ (G ′(Z4 × F4)) = 1.
Since G ′(Z4 × F4) ∼= G ′( Z2[x]

<x2>
× F4), γ (G ′( Z2[x]

<x2>
×

F4)) = 1. �	

Lemma 4.12 Let R = R1 × R2 × · · · × Rk for some local
rings Ri with 1 such that |R1| ≥ |R2| ≥ · · · ≥ |Rk |, i =
1, 2, 3, . . . , k and k ≥ 3. Then γ (G ′(R)) ≥ 2 except for
R = Z2 × Z2 × Z2.
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Proof Case 1 : Assume k = 3 and |R1| = |R2| = |R3| = 2.
Then Ri ∼= Z2, i = 1, 2, 3. In this case G ′(R) ∼= G ′(Z2 ×
Z2 × Z2) ∼= K7. So γ (G ′(R)) = γ (K7) = 1.

Case 2 : Suppose k = 3 and |R1| ≥ 3. Then |r(R1)| ≥
3. Now we consider three sets S1 = {0, 1, u1} ⊆ r(R1),
S2 = {0, 1} ⊆ r(R2) and S3 = {0, 1} ⊆ r(R3). Clearly,
S1 × S2 × S3 − {(1, 1, 1), (u1, 1, 1)} ⊆ R − U (R). Now
the elements of S1 × S2 × S3 −{(1, 1, 1), (u1, 1, 1)} forms a
complete subgraph of the graph G ′(R) which is isomorphic
to K10. Then by Remark 4.3 and Lemma 4.1, γ (G ′(R)) ≥
γ (K10) = 4.

Case 3 : Let k ≥ 4. Then we have a subset S = {0, 1} ×
{0, 1} × {0, 1} × {0, 1} × · · · × {0, 1} − {(1, 1, . . . , 1)} ⊆
R −U (R). Here |S| ≥ 2k − 1 ≥ 15 as k ≥ 4. Thus the sub-
graph induced by S is isomorphic to K2k−1 and hence G

′(R)

has a subgraph isomorphic to K15. Then by Remark 4.3 and
Lemma 4.1, γ (G ′(R)) ≥ γ (K15) = 11.

Therefore, by Case 1, Case 2 and Case 3, γ (G ′(R)) ≥ 2
except for R = Z2 × Z2 × Z2. �	
Lemma 4.13 Let R = R1 × R2 for some commutative local
rings R1, R2 with |R1| ≥ |R2|. Then γ (G ′(R)) ≥ 2 if one of
the following holds:

(i) |R2| ≥ 5.
(ii) |R1| ≥ 7.

Proof Condition (i) holds, i.e., |R2| ≥ 5. Then |R1| ≥ 5.
So |r(R1)| = |U (R1)| + 1, |r(R2)| = |U (R2)| + 1 ≥ 5,
by Lemma 4.4. If S is the set of non-unit regular elements,
i.e., S = r(R1 × R2) − U (R1 × R2), then |S| = |r(R1 ×
R2) −U (R1 × R2)| = |r(R1)||r(R2)| − |U (R1)||U (R2)| =
(|U (R1)|+1)(|U (R2)|+1)−|U (R1)||U (R2)| = |U (R1)|+
|U (R2)| + 1 ≥ 4 + 4 + 1 = 9. Thus the subgraph induced
by S is isomorphic to K9. Therefore, by Remark 4.3 and
Lemma 4.1, γ (G ′(R1 × R2)) ≥ γ (K9) ≥ 2.

Condition (i i) holds, i.e., |R1| ≥ 7.
Case I : Suppose that |R1| = 7. If |R1| = 7 and

|R2| ≥ 2, then |U (R1)| = 6 and |U (R2)| ≥ 1. Let S be
the set of non-unit regular elements of R1 × R2. Then |S| =
|r(R1×R2)−U (R1×R2)| = (|U (R1)|+1)(|U (R2)|+1)−
|U (R1)||U (R2)| = |U (R1)|+|U (R2)|+1 ≥ 6+1+1 = 8.
The subgraph induced by S is isomorphic to K8. So by
Remark 4.3 and Lemma 4.1, γ (G ′(R1× R2)) ≥ γ (K8) = 2.

Case I I : Assume |R1| = 8. If |R1| = 8 and |R2| = 2,
then by Lemma 4.6, γ (G ′(R1 × R2)) ≥ 2. If |R1| = 8 and
|R2| = 3, then by Lemma 4.8, γ (G ′(R1 × R2)) ≥ 2. If
|R1| = 8 and |R2| = 4, then by Lemma 4.9, γ (G ′(R1 ×
R2)) ≥ 2. If |R1| = 8 and |R2| ≥ 5, then by condition (i),
γ (G ′(R1 × R2)) ≥ 2.

Case I I I : Let |R1| ≥ 9 and |R2| ≥ 2. Then |r(R1)| ≥ 7
and |r(R2)| ≥ 2 by Lemma 4.4. So the number of non-
unit regular elements is |r(R1)||r(R2)|− |U (R1)||U (R2)| =

(|U (R1)|+1)(|U (R2)|+1)−|U (R1)||U (R2)| = |U (R1)|+
|U (R2)|+1 ≥ 6+1+1 = 8. So the subgraph inducedbynon-
unit regular elements is isomorphic to K8. Thus γ (G ′(R1 ×
R2)) ≥ γ (K8) = 2. �	
Theorem 4.14 Let R be a finite commutative non-local
ring with 1. Then G ′(R) is either toroidal or planar, i.e.,
γ (G ′(R)) ≤ 1 if and only if R is isomorphic to one of
the following rings: Z2 × Z2 × Z2, Z5 × Z4, Z5 × Z2[x]

<x2>
,

Z2[x]
<x2>

× Z2[x]
<x2>

, Z4 ×Z4, Z4×F4, F4 ×F4, Z5×Z3, F4 ×Z3,

Z4 × Z3,
Z2[x]
<x2>

× Z3, Z3 × Z3, Z5 × Z2, Z4 × Z2, F4 × Z2,
Z2[x]
<x2>

× Z2, Z3 × Z2 and Z2 × Z2.

Proof Assume that γ (G ′(R)) ≤ 1. Since R is a finite com-
mutative ring with 1, R = R1 × R2 × · · · × Rk for some
local rings R1, R2, . . . , Rk . We may assume that |R1| ≥
|R2| ≥ · · · ≥ |Rk |. By Lemma 4.12, we may assume that
k ≤ 3. However, if k = 3, then R = Z2 × Z2 × Z2, by
Lemma 4.12. In this case, γ (G ′(R)) = γ (K7) = 1, as
G ′(Z2 × Z2 × Z2) ∼= K7.

Assume that k = 2. Then by Lemma 4.13, |R2| ≤ 4 and
|R1| < 7.

Case 1 : Let |R2| = 2. In this case, R2 ∼= Z2. Now
we have R1 is isomorphic to one of the following rings:
Z5, F4, Z4,

Z2[x]
<x2>

, Z3, Z2. Then by Lemma 4.5, γ (G ′(R1 ×
Z2)) ≤ 1 for R1 = Z5, F4,

Z2[x]
<x2>

, Z4, Z3 and Z2.
Case 2 : Suppose |R2| = 3. In this case, R2 ∼= Z3. Since

3 ≤ |R1| < 7, so R1 is isomorphic to one of the follow-
ing rings: Z5, F4, Z4,

Z2[x]
<x2>

and Z3. Then by Lemma 4.7,

γ (G ′(R1 × Z3)) ≤ 1 for R1 = Z5, F4,
Z2[x]
<x2>

, Z4 and Z3.

Case 3 : Suppose |R2| = 4. Then R2 ∼= F4, Z4,
Z2[x]
<x2>

.
Subcase 3a : Suppose R2 ∼= F4. Since 4 ≤ |R1| < 7, so

R1 ∼= Z5, F4, Z4,
Z2[x]
<x2>

. The graph G ′(Z5 × F4) ∼= K8 as
Z5 × F4 is regular ring. Thus γ (G ′(Z5 × F4)) = 2. Also for
R1 = Z2[x]

<x2>
, Z4, F4, γ (G ′(R1 × F4)) = 1, by Lemma 4.11.

Subcase 3b : Let R2 ∼= Z4,
Z2[x]
<x2>

. Then |R1| ≥ 4 and by
Lemma 4.13, |R1| < 7. So R1 is isomorphic to one of the
following rings : Z5, F4, Z4,

Z2[x]
<x2>

. Thus by Lemma 4.10,

γ (G ′(R)) = 1, where R ∼= Z5 × Z4, Z5 × Z2[x]
<x2>

. Now by
Lemma 4.11, γ (G ′(R)) = 1, where R ∼= F4 × Z4, Z4 ×
Z4,

Z2[x]
<x2>

× F4,
Z2[x]
<x2>

× Z4 and
Z2[x]
<x2>

× Z2[x]
<x2>

.
Conversely, assume that R is isomorphic to one of the

following rings :Z2×Z2×Z2,Z5×Z4,Z5× Z2[x]
<x2>

, Z2[x]
<x2>

×
Z2[x]
<x2>

,Z4×Z4,Z4×F4, F4×F4,Z5×Z3, F4×Z3,Z4×Z3,
Z2[x]
<x2>

×Z3,Z3×Z3,Z5×Z2,Z4×Z2, F4×Z2,
Z2[x]
<x2>

×Z2,
Z3 × Z2 and Z2 × Z2. Then by Lemmas 4.5, 4.7, 4.10, 4.11
and 4.12, γ (G ′(R)) ≤ 1. �	

From Lemmas 4.5, 4.7 and Theorem 4.14, we have the
following necessary and sufficient condition for the planarity
of G ′(R).
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Theorem 4.15 Let R be a finite commutative non-local ring
with 1. Then G ′(R) is planar, i.e., γ (G ′(R)) = 0 if and only
if R is isomorphic to one of the rings : Z4 × Z2,

Z2[x]
<x2>

×
Z2, Z3 × Z2 and Z2 × Z2.

From Lemmas 4.12, 4.13 and Theorem 4.14, we have the
following theorem.

Theorem 4.16 Let R = R1 × R2 × · · · × Rk, where Ri is a
finite local ring for every i and |R1| ≥ |R2| ≥ · · · ≥ |Rk |.
Then γ (G ′(R)) ≥ 2 if and only if one of these five conditions
holds: (i) k ≥ 4; (ii) k = 3 and |R1| ≥ 3; (iii) k = 2,
|R2| ≥ 5; (iv) k = 2, |R1| ≥ 7 and (v) k = 2, R1 ∼= Z5 and
R2 ∼= F4.

5 Line graph of G′(R)

In this section, we characterize those rings for which G ′(R)

is a line graph of some graph G. Here we also study some
properties of the line graph L(G ′(R)) of the graph G ′(R).

Definition 5.1 The line graph L(G) of a graph G is defined
as follows : The vertices of L(G) are taken as the edges of
G and two vertices are adjacent whenever the corresponding
edges ofG are adjacent (i.e., they share a vertex in common).

Theorem 5.2 Let R be a finite commutative ring with 1. Then
G ′(R) is a line graph of some graph G if and only if R is
either a regular ring or a local ring.

Proof Suppose that R is either a regular ring or a local
ring. First assume that R is a finite local ring. Then G ′(R)

is a totally disconnected graph of order m, where m =
|R \ U (R)|. So G ′(R) ∼= L(mK2). Again if R is a non-
local regular ring, then G ′(R) ∼= Kn , where n = |R \U (R)|
and hence G ′(R) ∼= L(K1,n).

Conversely, assume that G ′(R) is a line graph of some
graphG. If possible, let R be neither a regular ring nor a local
ring. This implies that there exist local rings R1, R2, . . . , Rk

with uniquemaximal idealsM1, M2, . . . , Mk of R1, R2, . . . ,

Rk , respectively, and k ≥ 2 such that R = R1×R2×· · ·×Rk

and at least one of Ri is not regular. Without loss of general-
ity, let R1 be not regular. Then M1 �= {0}. Let a ∈ M1 \ {0}
be a non-regular element of R1. Now consider the sub-
set A = {(a, 0, 0, . . . , 0), (a, 1, 1, . . . , 1), (1, 0, 0, . . . , 0)
(0, 0, 0, . . . , 0)} of G ′(R1 × R2 × · · · × Rk). Then the sub-
graph induced by A is isomorphic to K1,3 which is forbidden
for line graph, by Theorem 1 in Soltes (1994) and hence
G ′(R) is not a line graph. Thus R is either a regular or a local
ring. �	
Proposition 5.3 (Sharma and Gaur 2015) Let G be a con-
nected graph. Then L(G) is a connected graph.

Lemma 5.4 (Sharma and Gaur 2015) Let G be a simple con-
nected graph. Then diam(L(G)) ≤ diam(G) + 1.

Lemma 5.5 Let R = R1 × R2 × · · · × Rk for some
local rings R1, R2, . . . , Rk with the unique maximal ideals
M1, M2, . . . , Mk, respectively. If the subset I = (M1\{0})×
(M2\{0})×· · ·×(Mk \{0}) �= φ, then the subgraph induced
by (R \U (R)) \ I is a connected subgraph in G ′(R).

Proof Consider the set A = {(0, 1, 1, . . . , 1), (1, 0, 1, . . . ,
1), (1, 1, 0, 1, . . . , 1), . . . , (1, 1, . . . , 1, 0)} of the elements
of (R \ U (R)) \ I . It is obvious that the subgraph induced
by A forms a clique. Again we consider an arbitrary vertex v

from (R\U (R))\I . Thenv = (a1, a2, . . . , ak),where at least
one of ai ∈ U (Ri )∪{0} and not of all ai is unit. Assume a1 ∈
U (R1) ∪ {0}. Then (a1, a2, . . . , ak) ↔ (0, 1, 1, . . . , 0) ∈ A.
Since v is arbitrary, any vertex of (R \U (R)) \ I is adjacent
to some element of A which induces a clique. Therefore, the
subgraph induced by (R \U (R))\ I is a connected subgraph
in G ′(R). �	
Theorem 5.6 Let R be a finite commutative non-local ring
with 1 except Z2 × Z2. Then L(G ′(R)) is connected with
2 ≤ diam(L(G ′(R))) ≤ 3.

Proof Suppose that R is a finite commutative non-local ring.
Then R = R1 × R2 × · · · × Rk for some local rings
R1, R2, . . . , Rk with theuniquemaximal idealsM1, M2, . . . ,

Mk , respectively, and k ≥ 2.
Case 1 : Suppose at least one Ri is regular. Then

by Theorem 2.3, G ′(R) is connected. So by Proposi-
tions 5.3 and 5.4, the line graph L(G ′(R)) is connected
with diam(L(G ′(R))) ≤ 3. It can be easily verified that
L(G ′(Z2 × Z2)) ∼= K3 as G ′(Z2 × Z2) ∼= K3 but for oth-
ers R, G ′(R) is isomorphic to neither K1,n nor K3. So we
have L(G ′(R)) is complete only for R = Z2 × Z2. Hence
diam(L(G ′(R))) > 1. So 2 ≤ diam(L(G ′(R))) ≤ 3.

Case 2 : Suppose no Ri is regular. Thus Mi \ {0} �= φ

for each i . In the graph G ′(R), the subgraph induced by the
subset I = (M1 \ {0}) × (M2 \ {0}) × · · · × (Mk \ {0})
is isomorphic to |I |K1 and we denote it by GI . It is easily
observed that no vertex of I is adjacent to some vertices of
(R \ U (R)) \ I . The remaining vertices (R \ U (R)) \ I of
G ′(R) form a connected subgraph, by Lemma 5.5 and denote
it by GIc . Now the graph G ′(R) is the union of these two
subgraphs, i.e.,G ′(R) = GI∪GIc . So E(G ′(R)) = E(GIc ).
This implies that V (L(G ′(R))) = E(G ′(R)) = E(GIc ) =
V (L(GIc )). Since GIc is connected subgraph, the line graph
L(GIc ) is connected, by Proposition 5.3. So the line graph
L(G ′(R)) = L(GIc ) is connected.

Now we consider two arbitrary vertices e1, e2 ∈
V (L(G ′(R))). This implies e1, e2 ∈ E(GIc ). Then there
exists 4 vertices (x1, x2, . . . , xk), (x∗

1 , x
∗
2 , . . . , x

∗
k ), (y1, y2,

. . . , yk) and (y∗
1 , y

∗
2 , . . . , y

∗
k ) in (R \ U (R)) \ I such

that e1 = [(x1, x2, . . . , xk), (x∗
1 , x

∗
2 , . . . , x

∗
k )] and e2 =

[(y1, y2, . . . , yk), (y∗
1 , y

∗
2 , s

∗
3 , . . . , y

∗
k )]. Since (x1, x2, . . . ,

xk), (y1, y2, . . . , yk) ∈ (R \ U (R)) \ I , then at least one
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of xi ∈ U (Ri ) ∪ {0} and at least one of yi ∈ U (Ri ) ∪ {0}.
Without loss of generality, suppose x1 ∈ U (R1) ∪ {0} and
y2 ∈ U (R2) ∪ {0}.

If y1 ∈ U (R1) ∪ {0}, then (x1, x2, . . . , xk) ↔ (0, 1, 1,
. . . , 1) and (y1, y2, y3, . . . , yk) ↔ (0, 1, 1, . . . , 1). Thus we
have two vertices e3 = [(x1, x2, . . . , xk), (0, 1, 1, . . . , 1)]
and e4 = [(0, 1, 1, . . . , 1), (y1, y2, y3, . . . , yk)] such that
e1 ↔ e3 ↔ e4 ↔ e2. So in this case, diam(L(G ′(R))) ≤ 3.

Suppose y1 ∈ M1 \ {0}. Since (y1, y2, . . . , yk) ↔
(y∗

1 , y
∗
2 , y

∗
3 , . . . , y

∗
k ), so y1R1 + y∗

1 R1 = {0} or Ri . This
implies y∗

1 ∈ U (R1). Then (x1, x2, . . . , xk) ↔ (0, 1, 1, . . . ,
1) and (y∗

1 , y
∗
2 , y

∗
3 , . . . , y

∗
k ) ↔ (0, 1, 1, . . . , 1). Thus we

have e∗
3 = [(x1, x2, . . . , xk), (0, 1, 1, . . . , 1)] and e∗

4 =
[(0, 1, 1, . . . , 1), (y∗

1 , y
∗
2 , y

∗
3 , . . . , y

∗
k )]. Then e1 ↔ e∗

3 ↔
e∗
4 ↔ e2. Since e1 and e2 are arbitrary, sodiam(L(G ′(R))) ≤
3. It can be easily checked that L(G ′(R)) is never com-
plete. Hence diam(L(G ′(R))) > 1. Therefore, 2 ≤
diam(L(G ′(R))) ≤ 3. �	

Theorem 5.7 Let R = R1 × R2 × · · · × Rk for some
local rings R1, R2, . . . , Rk with unique maximal ideals
M1, M2, . . . , Mk, respectively. Suppose p =
|{i : Ri is non-regular local ring}|. Then

diam(L(G ′(R))) =
{
3 if p ≥ 2 and k ≥ 3
2 otherwise.

Proof Let p ≥ 2 and k ≥ 3. Without loss of gener-
ality, we assume that R1, R2 are non-regular. Let r1 ∈
M1 \ {0}, s1 ∈ M2 \ {0}. Now we consider the edges e1 =
[(r1, 1, 0, . . . , 0), (1, s1, 0, . . . , 0)] and e2 = [(0, 0, 1, . . . ,
0), (0, 0, 0, . . . , 0)]. Then we can see that the subgraph
induced by {(r1, 1, 0, . . . , 0), (1, s1, 0, . . . , 0), (0, 0, 1, . . . ,
0), (0, 0, 0, . . . , 0)} is isomorphic to 2K2. So in the line graph
L(G ′(R)), there is no vertex e3 such that e1 ↔ e3 ↔ e2.
Thus diam(L(G ′(R))) > 2. So diam(L(G ′(R))) = 3, by
Theorem 5.6.

Suppose that p = 2 and k = 2. Let e1, e2 be
two vertices of L(G ′(R)). Then there exist four vertices
(x1, x2), (x∗

1 , x
∗
2 ), (y1, y2), (y

∗
1 , y

∗
2 ) of G

′(R) such that e1 =
[(x1, x2), (x∗

1 , x
∗
2 )] and e2 = [(y1, y2), (y∗

1 , y
∗
2 )]. Then

(x1, x2) ↔ (x∗
1 , x

∗
2 ) and (y1, y2) ↔ (y∗

1 , y
∗
2 ). This implies

that x1R1 + x∗
1 R1 = {0} or R1, x2R2 + x∗

2 R2 = {0} or R2,
y1R1 + y∗

1 R1 = {0} or R1 and y2R2 + y∗
2 R2 = {0} or R2.

Clearly, (x1, x2) is adjacent with either (y1, y2) or (y∗
1 , y

∗
2 ).

Thus we have an edge either e3 = [(x1, x2), (y1, y2)] or e4 =
[(x1, x2), (y∗

1 , y
∗
2 )]. Then e1 ↔ e3 ↔ e2 or e1 ↔ e4 ↔ e2

in L(G ′(R)). So diam(L(G ′(R))) = 2 as e1, e2 are arbitrary
vertices of L(G ′(R)).

Assume that p ≤ 1.
Case 1 : Let p = 1. Without loss of generality, sup-

pose that R1 is non-regular and R2, R3, . . . , Rk are regular.
Let e1, e2 be two vertices of L(G ′(R)). Then there exist

four vertices (x1, r2, r3, r4, . . . , rk), (x∗
1 , r

∗
2 , r∗

3 , r∗
4 , . . . , r∗

k ),
(y1, s2, s3, s4, . . . , sk) and (y∗

1 , s
∗
2 , s

∗
3 , s

∗
4 , . . . , s

∗
k ) of G

′(R)

such that e1 = [(x1, r2, r3, r4, . . . , rk), (x∗
1 , r

∗
2 , r∗

3 , r∗
4 , . . . ,

r∗
k )] and e2 = [(y1, s2, s3, s4, . . . , sk), (y∗

1 , s
∗
2 , s

∗
3 , s

∗
4 , . . . ,

s∗
k )]. Then (x1, r2, r3, r4, . . . , rk) ↔ (x∗

1 , r
∗
2 , r∗

3 , r∗
4 , . . . , r∗

k )

and (y1, s2, s3, s4, . . . , sk) ↔ (y∗
1 , s

∗
2 , s

∗
3 , s

∗
4 , . . . , s

∗
k ). This

implies that x1R1+x∗
1 R1 = {0}or R1 and y1R1+y∗

1 R1 = {0}
or R1. This implies either x1 = x∗

1 = 0 or at least one of
x1, x∗

1 is unit and either y1 = y∗
1 = 0 or at least one of y1, y∗

1
is unit. Clearly, (x1, r2, r3, r4, . . . , rk) is adjacent with either
(y1, s2, s3, s4, . . . , sk) or (y∗

1 , s
∗
2 , s

∗
3 , s

∗
4 , . . . , s

∗
k ). Thus we

have an edge either e3 = [(x1, r2, r3, r4, . . . , rk), (y1, s2, s3,
s4, . . . , sk)] or e4 = [(x1, r2, r3, r4, . . . , rk), (y∗

1 , s
∗
2 , s

∗
3 ,

s∗
4 , . . . , s

∗
k )]. Then e1 ↔ e3 ↔ e2 or e1 ↔ e4 ↔ e2 in

L(G ′(R)). Hence diam(L(G ′(R))) = 2.
Case 2 : Let p = 0. Then each Ri is regular and hence R

is regular. Then G ′(R) is complete. So diam(G ′(R)) = 1.
Thus diam(L(G ′(R))) ≤ diam(G ′(R)) + 1 = 2. Since
diam(L(G ′(R))) ≥ 2, it follows that diam(L(G ′(R))) = 2.

�	

Corollary 5.8 Let n = pr11 pr22 · · · prkk , where p1, p2, . . . , pk
be distinct primes and r1, r2, . . . , rk be nonnegative integers.
Then

diam(L(G ′(Zn)))

=
{
3 if at least two ri ≥ 2 and k ≥ 3
2 otherwise.

Conclusion : The paper is divided into some sections. In
Sects. 2 and 3 we identify those rings R for which the graph
G ′(R) is connected and Eulerian. In Sect. 4, we character-
ize those rings R for which the graph G ′(R) will be either
toroidal or planar. In Sect. 5, we prove that for any non-local
ring R, L(G ′(R)) is connected with diam(L(G ′(R))) ≤ 3.
We are unable to characterize those rings R for which the
genus of the graph G ′(R) is 2. Thus it will be more interest-
ing to find the rings R for which the genus of the graphG ′(R)

is 2 and there shall be big opportunities for further study of
the graph G ′(R) with topological aspects in the future.
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