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Abstract
Within the Nelson family, two mutually incomparable generalizations of Nelson constructive logic with strong negation have
been proposed so far. The first and more well-known, Nelson paraconsistent logic, results from dropping the explosion axiom
of Nelson logic; a more recent series of papers considers the logic (dubbed quasi-Nelson logic) obtained by rejecting the
double negation law, which is thus also weaker than intuitionistic logic. The algebraic counterparts of these logical calculi are
the varieties of N4-lattices and quasi-Nelson algebras, respectively. In the present paper we propose the class of quasi-N4-
lattices as a common generalization of both.We show that a number of key results, including the twist-structure representation
of N4-lattices and quasi-Nelson algebras, can be uniformly established in this more general setting; our new representation
employs twist-structures defined over Brouwerian algebras enriched with a nucleus operator. We further show that quasi-N4-
lattices form a variety that is arithmetical, possesses a ternary as well as a quaternary deductive term, and enjoys EDPC and
the strong congruence extension property.
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1 Introduction

The recent series of papers Rivieccio and Spinks (2019);
Liang and Nascimento (2019); Rivieccio and Spinks (2020);
Rivieccio and Jansana (2021) introduced and developed
the basic theory of a non-involutive generalization of Nel-
son constructive logic with strong negation (Nelson 1949).
The new logic was dubbed quasi-Nelson logic (Liang and
Nascimento 2019), and the corresponding algebraic models
quasi-Nelson algebras. The cited papers show how a num-
ber of features and results characteristic of Nelson logic and
of its algebraic counterpart (the class of Nelson algebras,
alias Nelson residuated lattices) smoothly extend to the non-
involutive setting. In particular, it is shown in Rivieccio and
Spinks (2020) that quasi-Nelson algebras can be character-
ized as the class of (0, 1)-congruence orderable residuated
lattices, mirroring the characterization of Nelson algebras
as the (0, 1)-congruence orderable involutive residuated lat-
tices obtained in Spinks et al. (2019). The papers Rivieccio
and Spinks (2019, 2020); Rivieccio and Jansana (2021) fur-
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ther develop a twist-structure representation for quasi-Nelson
algebras that is a straightforward generalization of the well-
known representation for Nelson algebras due to Vakarelov,
Fidel and Sendlewski.

An alternative and older generalization of Nelson alge-
bras is the class of N4-lattices which was introduced as
the algebraic counterpart of the paraconsistent version of
Nelson logic (Almukdad and Nelson 1984; Odintsov 2003,
2004, 2008). In logical terms, paraconsistent Nelson logic
is a weakening of Nelson constructive logic that results
from rejecting the explosion axiom p → (∼ p → q),
whereas quasi-Nelson logic rejects the double negation law
∼ ∼ p → p. In consequence, the algebraic models of quasi-
Nelson logic are residuated lattices that are both integral and
bounded1 but not necessarily involutive, whereas N4-lattices
are residuated structures that possess an involutive negation
(satisfying∼∼ x ≈ x) but are in general neither bounded nor
integral. As in the case of quasi-Nelson algebras, a number
of key results on Nelson algebras have also been extended
to their paraconsistent counterpart. In particular, Odintsov

1 That is, every quasi-Nelson algebra A has a definable algebraic con-
stant (usually denoted by 1) which is both the greatest element of the
lattice order ofA and the neutral element of the monoid operation (mul-
tiplicative conjunction) of A. The negation of 1 (usually denoted by 0)
is the least element of the lattice order.
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(2003, 2004, 2008) obtained a twist-structure representation
for N4-lattices, and Spinks and Veroff (2018) showed how
paraconsistent Nelson logic can be viewed as a contraction-
free relevance logic.

While it is easily shown that Nelson logic is the least logic
that includes2 both quasi-Nelson and paraconsistent Nelson
logic, the above considerations suggest that the latter are
mutually incomparable weakenings of the logic originally
introduced by Nelson (1949). The question thus arises of
whether one could find a common framework encompassing
all three logics and, more interestingly, whether in such a set-
ting one might be able to reproduce the characteristic results
on quasi-Nelson and paraconsistent Nelson logic mentioned
above. The present paper is a first attempt at tackling this
question.

Taking an algebraic approach, we shall introduce the class
of quasi-N4-lattices (QN4-lattices) as a common generaliza-
tion of quasi-Nelson algebras and N4-lattices. The definition
we propose is such that N4-lattices turn out to be precisely
the QN4-lattices satisfying the double negation law, and
quasi-Nelson algebras are precisely the QN4-lattices satis-
fying the explosive law (Proposition 3.8). We will show that
QN4-lattices admit a twist-structure representation entirely
analogous to the known ones (Theorem 3.3), and using this
representation we will obtain a number of results that mir-
ror the ones already established for quasi-Nelson algebras
and N4-lattices. In particular, we characterize the congru-
ences and the (logical) filters on QN4-lattices, and we
show that this class (forms a variety which) has equa-
tionally definable principal congruences, enjoys the strong
congruence extension property and is arithmetical (i.e., both
congruence-distributive and congruence-permutable). This
last result provides a new proof of congruence-permutability
that specializes to both N4-lattices (Spinks and Veroff 2018,
Thm. 4.24) and quasi-Nelson algebras.

2 QN4-lattices as twist-structures

In this section we see that twist-structures provide a most
straightforward means to devise a common generalization of
N4-lattices and quasi-Nelson algebras. The construction we
are going to introduce (Definition 2.2) is an obvious exten-
sion of the twist-structures used in Rivieccio and Spinks
(2019, 2020); Rivieccio and Jansana (2021) to represent
quasi-Nelson algebras, as well as of Odintsov’s represen-
tation of N4-lattices (Odintsov 2004).

2 We view logics as consequence relations on the algebra of formu-
las over a fixed algebraic signature, partially ordered by set-theoretic
inclusion.

Recall that a Brouwerian algebra3 is an algebra 〈B; ∧,

∨,→〉 such that 〈B; ∧,∨〉 is a lattice with order ≤ and →
is the residuum of ∧, that is, a ∧ b ≤ c iff a ≤ b → c,
for all a, b, c ∈ B. The latter property entails that the lattice
〈B; ∧,∨〉 is distributive and has a top element 1 (while the
bottom element may not exist), so 1 can be safely added to
the algebraic language as a primitive nullary operation.

Definition 2.1 Given a Brouwerian algebra 〈B; ∧,∨,→〉,
we say that a unary operator � : B → B is a nucleus if,
for all a, b ∈ B,

(i) �(a ∧ b) = �a ∧ �b.
(ii) a ≤ �a = ��a.

Nuclei defined on (bounded) Brouwerian algebras are con-
sidered, for instance, inMacnab (1981). The above properties
entail that �1 = 1 and �(a → b) ≤ �a → �b for all
a, b ∈ B (cf. the proof of item (xiv) of Proposition2.4 below),
suggesting that � may be viewed as a modal operator. We
shall refer to an algebraB = 〈B; ∧,∨,→,�〉 as to a nuclear
Brouwerian algebra.

Definition 2.2 Let B = 〈B; ∧B,∨B,→B,�B〉 be a nuclear
Brouwerian algebra. The algebraB�� =〈B×B; ∧,∨,→,∼〉
is defined as follows. For all 〈a1, a2〉, 〈b1, b2〉 ∈ B × B,

∼〈a1, a2〉 = 〈a2,�B a1〉
〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧B b1,�B(a2 ∨ b2)〉
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈a1 ∨B b1, a2 ∧B b2〉

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →B b1,�B a1 ∧B b2〉.

A quasi-N4 twist-structure A over B is a subalgebra of B��
satisfying the following properties: π1[A] = B and�B a2 =
a2 for all 〈a1, a2〉 ∈ A.

As mentioned earlier, the preceding construction is a
straightforwardgeneralizationof those employed inOdintsov
(2004, 2008); Rivieccio and Spinks (2019, 2020); Riviec-
cio and Jansana (2021). Indeed, one can readily verify that
any N4-lattice or quasi-Nelson algebra can be constructed by
suitably restricting the requirements of Definition 2.2 (more
on this below). We shall henceforth write A ≤ B�� to mean
that A is a quasi-N4 twist-structure over a nuclear Brouwe-
rian algebra B. In order to simplify the notation, from now
on we shall also overload the symbols ∧,∨,→ to denote
operations on B as well as on B�� (the context will clarify
whether these apply to elements of B or to ordered pairs in
B × B).

3 Brouwerian algebras are the algebraic counterpart of the negation-
free fragment of intuitionistic logic, that is, the zero-free subreducts of
Heyting algebras.
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Notice that the set S := {〈a1, a2〉 ∈ B × B : �a2 = a2}
is closed under all the operations of B��, and is therefore
the universe of (the largest) twist-structure over B. Indeed,
if 〈a1, a2〉 ∈ S, then ∼〈a1, a2〉 = 〈a2,�a1〉 ∈ S because
��a1 = �a1, by Definition 2.1.ii. The same reasoning
shows that S is closed under ∧. Regarding ∨, it suffices to
observe that a2 ∧ b2 = �a2 ∧ �b2 = �(a2 ∧ b2) for all
〈a1, a2〉, 〈b1, b2〉 ∈ S (the last equality holding true by Defi-
nition 2.1.i). A similar reasoning shows that S is closed under
→, for we have �a1 ∧ b2 = �a1 ∧ �b2 = �(a1 ∧ b2).

It is clear that, on every twist-structureA ≤ B��, the oper-
ation ∨ determines a semilattice structure (which is actually
a lattice having∧ as meet: see the next proposition).We shall
use the symbol ≤ for this lattice order (overloaded to denote
also the lattice order of the underlying Brouwerian algebra).
It is easy to check that, for all 〈a1, a2〉, 〈b1, b2〉 ∈ A, one has
〈a1, a2〉 ≤ 〈b1, b2〉 iff (a1 ≤ b1 and b2 ≤ a2).

From now on, given a twist-structureA (or more generally
any algebra A having an operation → ) and elements a, b ∈
A, we shall abbreviate |a| := a → a, and define the relations
 and ≡ as follows. We let a  b iff a → b = |a → b|, and
≡ :=  ∩ ()−1. Thus, one has a ≡ b iff (a  b and b a).

Proposition 2.3 For every A ≤ B��, the following hold.

(i) The reduct 〈A; ∧,∨〉 is a distributive lattice .
(ii) The relation  is a quasiorder (i.e., reflexive and tran-

sitive) on A.
(iii) The relation ≡ is a congruence on the reduct 〈A; ∧,∨,

→〉 and the quotient B(A) = 〈A; ∧,∨,→〉/≡ is a
Brouwerian algebra. Moreover, the operator ν given
by ν[a] := ∼ ∼ a/≡ for all a ∈ A is a nucleus in the
sense of Definition 2.1, so the algebra 〈B(A), ν〉 is a
nuclear Brouwerian algebra.

(iv) For all a, b ∈ A, it holds that ∼(a → b) ≡
∼ ∼(a ∧ ∼ b).

(v) For all a, b ∈ A, it holds that a ≤ b iff a  b and
∼ b  ∼ a.

(vi) For all a, b ∈ A,

1. ∼(a ∨ b) = ∼ a ∧ ∼ b
2. ∼ ∼ a ∧ ∼ ∼ b = ∼ ∼(a ∧ b)
3. ∼ a = ∼ ∼ ∼ a
4. a ≤ ∼∼ a.

Proof In the following proofs, 〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉
denote generic elements of A = 〈A,∧,∨,→,∼〉.
(i). It is clear that 〈A; ∨〉 is a semilattice, whose order we
will denote by ≤∨. Observe that 〈a1, a2〉 ≤∨ 〈b1, b2〉 iff
a1 ≤ b1 and b2 ≤ a2, where ≤ denotes the lattice order of
the Brouwerian algebra B. We proceed to show that ∧ is the
meet relative to≤∨. To this end, assume 〈a1, a2〉 ≤∨ 〈b1, b2〉,
i.e., a1 ≤ b1 and b2 ≤ a2. Then we have a1 = a1 ∧ b1
and (recalling that a2 = �a2) �(a2 ∨ b2) = �a2 = a2,

so 〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1, a2〉, as required. Conversely,
assuming 〈a1, a2〉∧〈b1, b2〉 = 〈a1, a2〉, we havea1 = a1∧b1
(so a1 ≤ b1) and �(a2 ∨ b2) = a2. Since � is monotone (by
Definition 2.1.i) and �b2 = b2, from b2 ≤ a2 ∨ b2 we have
b2 = �b2 ≤ �(a2 ∨ b2) = a2 and so b2 ≤ a2, as required.
It remains to check the distributive law. Recalling that the
lattice reduct of B is distributive, we compute:

〈a1, a2〉 ∧ (〈b1, b2〉 ∨ 〈c1, c2〉)
= 〈a1 ∧ (b1 ∨ c1),�(a2 ∨ (b2 ∧ c2)〉
= 〈(a1 ∧ b1) ∨ (a1 ∧ c1),�((a2 ∨ b2) ∧ (a2 ∨ c2)〉
= 〈(a1 ∧ b1) ∨ (a1 ∧ c1),�(a2 ∨ b2)

∧ �(a2 ∨ c2)〉 by Def. 2.1.i

= 〈a1 ∧ b1,�(a2 ∨ b2)〉 ∨ 〈a1 ∧ c1,�(a2 ∨ c2)〉
= (〈a1, a2〉 ∧ 〈b1, b2〉) ∨ (〈a1, a2〉 ∧ 〈c1, c2〉).

(ii). Observe that,for all〈a1, a2〉 ∈ A,one has |〈a1, a2〉| =
〈a1 → a1,�a1 ∧ a2〉 = 〈1,�a1 ∧ a2〉 and therefore
〈a1, a2〉 = |〈a1, a2〉| if and only if a1 = 1 (the latter equiva-
lence holds because a1 = 1 entails �a1 ∧ a2 = �1 ∧ a2 =
1 ∧ a2 = a2). Thus, 〈a1, a2〉 → 〈b1, b2〉 = |〈a1, a2〉 →
〈b1, b2〉| holds if and only if a1 → b1 = 1, which is equiv-
alent (in a Brouwerian algebra) to a1 ≤ b1. Thus, we have
〈a1, a2〉〈b1, b2〉 iff a1 ≤ b1, which easily entails that the
relation  is reflexive and transitive.
(iii). By the preceding item, we have 〈a1, a2〉 ≡ 〈b1, b2〉 if
and only if a1 = b1. Given the definitions of the operations
∧,∨ and →, this easily entails that ≡ is a congruence on
the reduct 〈A; ∧,∨,→〉. Using these observations, it is easy
to show that B(A) is isomorphic to B. It remains to check
that ν is a nucleus on B(A). This easily follows from the
observation that ∼ ∼〈a1, a2〉 = 〈�a1,�a2〉 = 〈�a1, a2〉.
(iv). As observed above, we have 〈a1, a2〉 ≡ 〈b1, b2〉 if and
only if a1 = b1. Thus, it suffices to check that the first
components of ∼(〈a1, a2〉 → 〈b1, b2〉) and ∼ ∼(〈a1, a2〉 ∧
∼〈b1, b2〉) are equal. We have ∼(〈a1, a2〉 → 〈b1, b2〉) =
〈�a1 ∧ b2,�(a1 → b1)〉 and ∼ ∼(〈a1, a2〉 ∧ ∼〈b1, b2〉) =
∼ ∼(〈a1 ∧ b2,�(a2 ∨ �b1)〉 = 〈�(a1 ∧ b2),�(a2 ∨ �b1)〉.
Since � preserves finite meets and �b2 = b2, we have
�(a1 ∧ b2) = �a1 ∧ �b2 = �a1 ∧ b2, as required.
(v). As observed in item (i), we have 〈a1, a2〉 ≤ 〈b1, b2〉
iff a1 ≤ b1 and b2 ≤ a2. On the other hand, we noted
in item (ii) that 〈a1, a2〉〈b1, b2〉 iff a1 ≤ b1. To con-
clude the proof, it is sufficient to observe that ∼〈b1, b2〉 =
〈b2,�b1〉〈a2,�a1〉 = ∼〈a1, a2〉 iff b2 ≤ a2.
(vi).1. The firstcomponentsof ∼(〈a1, a2〉 ∨ 〈b1, b2〉) and of
∼〈a1, a2〉 ∧ ∼〈b1, b2〉 are identical. The second ones are,
respectively, �(a1 ∨ b1) and �(�a1 ∨ �b1). Observe that
Definition2.1.ii entails a1 ∨ b1 ≤ �a1 ∨ �b. Using Defini-
tion2.1.i (monotonicity of �), this gives us �(a1 ∨ b1) ≤
�(�a1 ∨�b1). On the other hand, from a1, b1 ≤ a1 ∨b1 we

123



2674 U. Rivieccio

have �a1,�b1 ≤ �(a1 ∨ b1), so �a1 ∨ �b1 ≤ �(a1 ∨ b1).
Usingmonotonicity of� andDefinition2.1.ii, the latter gives
us�(�a1∨�b1) ≤ ��(a1∨b1) = �(a1∨b1), as required.
(vi).2. As observed earlier, the double negation does not
affect secondcomponents. Thefirst component of∼ ∼(〈a1, a2〉∧
〈b1, b2〉) is�(a1∧b1), and thefirst component of∼ ∼〈a1, a2〉
∧ ∼ ∼〈b1, b2〉 is �a1 ∧ �b. Thus, the result follows imme-
diately from Definition 2.1.i.
(vi).3. Observe that the assumption a2 = �a2 gives us
∼ ∼ ∼〈a1, a2〉 = 〈�a2,�a1〉 = 〈a2,�a1〉 = ∼〈a1, a2〉.
(vi).4. As above, we only need to check the inequality of
the first components, which easily follows from x ≤ �x
(Definition 2.1.ii). ��

Items(vi)1. to (vi)4. of Proposition 2.3 entail that the
{∧,∨,∼}-reduct of every quasi-N4 twist-structure is a lower
quasi-De Morgan lattice in the terminology of Sankap-
panavar (see Definition 3.1 below), hence our choice of the
terms quasi-N4 twist-structure and quasi-N4-lattice. Items
(ii) and (v) also illustrate that the implication → does not
determine the lattice order on a twist-structure, in the sense
that one can have a → b = |a → b| even if a � b. To
restore the connection between order and implication that is
common to many algebras of logic, one can define a second
implication by x ⇒ y := (x → y) ∧ (∼ y → ∼ x). For
every A ≤ B�� and for all 〈a1, a2〉, 〈b1, b2〉 ∈ A, one has:

〈a1, a2〉 ⇒ 〈b1, b2〉
= 〈(a1 → b1) ∧ (b2 → a2),

�((�a1 ∧ b2) ∨ (�b2 ∧ �a1))〉
= 〈(a1 → b1) ∧ (b2 → a2),

�((�a1 ∧ �b2) ∨ (�b2 ∧ �a1))〉
= 〈(a1 → b1) ∧ (b2 → a2),�(�a1 ∧ �b2)〉
= 〈(a1 → b1) ∧ (b2 → a2),��a1 ∧ ��b2〉
= 〈(a1 → b1) ∧ (b2 → a2),�a1 ∧ b2〉.

It is then easy to check that, for all a, b ∈ A, one has a ⇒ b =
|a ⇒ b| if and only if a ≤ b. It follows that an equivalence
connective can be defined by x ⇔ y := (x ⇒ y)∧(y ⇒ x),
and one has:

〈a1, a2〉 ⇔ 〈b1, b2〉 = 〈(a1 ↔ b1) ∧ (a2 ↔ b2),

�((�a1 ∧ b2) ∨ (�b1 ∧ a2))〉

where a1 ↔ b1 := (a1 → b1) ∧ (b1 → a1). We then have
a ⇔ b = |a ⇔ b| if and only if a = b.

The next proposition shows that every quasi-N4 twist-
structure satisfies (nearly) all the identities that were used
by Odintsov (2008), Def. 8.5.1 to present the class of N4-
lattices as a variety (Odintsov 2008, Thm. 8.5.3). The one
exception is item (vii), which appears in Odintsov (2008),

Def. 8.5.1 as |a| ≤ ∼(a → b) → a, the latter being obvi-
ously equivalent to our item (vii) in an involutive context.
Later onwe are going to show (Proposition 3.7) that quasi-N4
twist-structures can also be presented as a variety of abstract
algebras.

Proposition 2.4 (cf. Odintsov 2008, Def. 8.5.1) For every
A ≤ B�� and for all a, b, c ∈ A, the following hold.

(i) |a| → b = b.
(ii) (a ∧ b) → c = a → (b → c).
(iii) a → (b ∧ c) = (a → b) ∧ (a → c).
(iv) (a ∨ b) → c = (a → c) ∧ (b → c).
(v) a ≤ b → a.
(vi) (a → b) ∧ (b → c) a → c.
(vii) |a| ≤ ∼(a → b) → ∼ ∼ a.
(viii) |a| ≤ b → (∼ a → ∼(b → a)).
(ix) |a| ≤ ∼(b → a) → ∼ a.
(x) a ∧ (a → b) ≤ b ∨ ∼(∼ b → ∼ a).
(xi) a ≤ |b| ∨ ∼(∼ b → ∼ a).
(xii) (a ⇔ b) → a = (a ⇔ b) → b.
(xiii) a → (b → c) = (a → b) → (a → c).
(xiv) a → b ∼ ∼ a → ∼ ∼ b.
(xv) (a ∧ b) → a = |(a ∧ b) → a|.
(xvi) a → b a → (b ∨ c).

Proof (i). Here and in subsequent items, we denote by a =
〈a1, a2〉, b = 〈b1, b2〉, c = 〈c1, c2〉 generic elements of A.
Observe that |〈a1, a2〉| = 〈a1 → a1,�a1 ∧a2〉 = 〈1,�a1 ∧
a2〉. Thus, |〈a1, a2〉| → 〈b1, b2〉 = 〈1 → b1,�1 ∧ b2〉 =
〈b1, b2〉, as required.
(ii). We have (〈a1, a2〉 ∧ 〈b1, b2〉) → 〈c1, c2〉 = 〈(a1 ∧
b1) → c1,�(a1 ∧ b1) ∧ c2〉 and 〈a1, a2〉 → (〈b1, b2〉 →
〈c1, c2〉) = 〈a1 → (b1 → c1),�a1 ∧ �b1 ∧ c2〉. To obtain
the desired result, it suffices to observe that every nuclear
Brouwerian algebra satisfies (x ∧ y) → z ≈ x → (y → z)
and �(x ∧ y) ≈ �x ∧ �y.
(iii). We have 〈a1, a2〉 → (〈b1, b2〉 ∧ 〈c1, c2〉) = 〈a1 →
(b1 ∧ c1),�a1 ∧ �(b2 ∨ c2)〉 and (〈a1, a2〉 → 〈b1, b2〉) ∧
(〈a1, a2〉 → 〈c1, c2〉) = 〈(a1 → b1)∧(a1 → c1),�((�a1∧
b2) ∨ (�a1 ∧ c2))〉. Equality of the first components then
follows from the observation that every Brouwerian algebra
satisfies x → (y ∧ z) ≈ (x → y) ∧ (x → z). Regarding the
second components, using the identity�(x ∧ y) ≈ �x ∧�y
and distributivity, we have�a1∧�(b2∨c2) = �(a1∧ (b2∨
c2)) = �((a1 ∧ b2) ∨ (a1 ∧ c2)). Recalling that �b2 = b2
and �c2 = c2, we also have �((�a1 ∧ b2) ∨ (�a1 ∧ c2)) =
�((�a1 ∧ �b2) ∨ (�a1 ∧ �c2)) = �(�(a1 ∧ b2) ∨ �(a1 ∧
c2)). The desired result then follows from the observation
(made in the proof of Proposition 2.3.vi.1) that every nuclear
Brouwerian algebra satisfies �(x ∨ y) ≈ �(�x ∨ �y).
(iv). Let us compute (〈a1, a2〉∨〈b1, b2〉) → 〈c1, c2〉 = 〈(a1∨
b1) → c1,�(a1 ∨ b1) ∧ c2〉 and (〈a1, a2〉 → 〈c1, c2〉) ∧
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(〈b1, b2〉 → 〈c1, c2〉) = 〈(a1 → c1)∧(b1 → c1),�((�a1∧
c2) ∨ (�b1 ∧ c2))〉. The equality of the first components
follows from the observation that every Brouwerian algebra
satisfies (x ∨ y) → z ≈ (x → z) ∧ (y → z). Regarding
the second components, we have �(a1 ∨ b1) ∧ c2 = �(a1 ∨
b1) ∧ �c2 = �((a1 ∨ b1) ∧ c2) = �((a1 ∨ c2) ∧ (b1 ∨
c2)) and �((�a1 ∧ c2) ∨ (�b1 ∧ c2)) = �((�a1 ∧ �c2) ∨
(�b1∧�c2)) = �(�(a1∧c2)∨�(b1∧c2)) The result then
followsbecause, as observed in item (iii) above, every nuclear
Brouwerian algebra satisfies �(x ∨ y) ≈ �(�x ∨ �y).
(v). In order to verify this and the subsequent inequalities,
recall that 〈a1, a2〉 ≤ 〈b1, b2〉 iff (a1 ≤ b1 and b2 ≤ a2).
Since �b1 ∧ a2 ≤ a2 and 〈b1, b2〉 → 〈a1, a2〉 = 〈b1 →
a1,�b1 ∧ a2〉, the result follows from the observation that
every Brouwerian algebra satisfies x ≤ y → x .
(vi). It is sufficient to check the inequality of the first compo-
nents of the expressions (〈a1, a2〉 → 〈b1, b2〉)∧(〈b1, b2〉 →
〈c1, c2〉) and 〈a1, a2〉 → 〈c1, c2〉. These are, respectively,
(a1 → b1) ∧ (b1 → c1) and a1 → c1. The result then fol-
lows, for everyBrouwerian algebra satisfies (x → y)∧(y →
z) ≤ x → z.
(vii). As we have seen earlier, |〈a1, a2〉| = 〈1,�a1 ∧ a2〉. To
obtain the desired result, it suffices to compute∼(〈a1, a2〉 →
〈b1, b2〉) → ∼ ∼〈a1, a2〉 = 〈(�a1 ∧ b1) → �a1,�(�a1 ∧
b1) ∧ a2〉 = 〈1,��a1 ∧ �b1 ∧ a2〉 = 〈1,�a1 ∧ �b1 ∧ a2〉.
(viii). Recall that |〈a1, a2〉| = 〈1,�a1 ∧ a2〉. To obtain the
desired result, let us compute 〈b1, b2〉 → (∼〈a1, a2〉 →
∼(〈b1, b2〉 → 〈a1, a2〉)) = 〈b1 → (a2 → (�b1 ∧
a2)),�b1 ∧ �a2 ∧ �(b1 → a1)〉 = 〈1,�a1 ∧ �a2 ∧ �b1〉.
The last equality was obtained as follows: one the one
hand, using the laws of Brouwerian algebras and the identity
x ≤ �x , we have b1 → (a2 → (�b1 ∧ a2)) = (b1 ∧ a2) →
(�b1∧a2) = 1. On the other hand, recalling that� preserves
finite meets, we have �b1 ∧ �(b1 → a1) = �(b1 ∧ (b1 →
a1)) = �(b1 ∧ a1) = �b1 ∧ �a1.
(ix). Recalling that �a2 = a2, we compute ∼(〈b1, b2〉 →
〈a1, a2〉) → ∼〈a1, a2〉 = 〈(�b1∧a2) → a2,�(�b1∧a2)∧
�a1〉 = 〈1,��b1 ∧ �a2 ∧ �a1〉 = 〈1,�b1 ∧ a2 ∧ �a1〉.
The result then follows.
(x). Let us compute 〈a1, a2〉∧(〈a1, a2〉 → 〈b1, b2〉) = 〈a1∧
(a1 → b1),�(a2 ∨ (�a1 ∧b2))〉 = 〈a1 ∧b1,�(a2 ∨ (�a1 ∧
b2))〉 and 〈b1, b2〉 ∨ ∼(∼〈b1, b2〉 → ∼〈a1, a2〉) = 〈b1 ∨
(�b2 ∧�a1), b2 ∧�(b2 → a2)〉 = 〈b1 ∨ (�b2 ∧�a1), b2 ∧
a2〉. The last equality was obtained using �b2 = b2 and the
observation that � preserves finite meets. Since a1 ∧ b1 ≤
b1 ≤ b1 ∨ (�b2 ∧ �a1) and b2 ∧ a2 ≤ a2 ≤ �a2 ≤ �(a2 ∨
(�a1 ∧ b2)), the result follows.
(xi). The result easily follows if we compute |〈b1, b2〉| ∨
∼(∼〈b1, b2〉 → ∼〈a1, a2〉) = 〈1∨(�b2∧�a1),�b1∧b2∧
�(b2 → a2)〉 = 〈1,�b1 ∧ b2 ∧ a2〉, where the last equality
holds because b2 ∧ �(b2 → a2) = �b2 ∧ �(b2 → a2) =
�(b2 ∧ (b2 → a2)) = �(b2 ∧ a2) = �b2 ∧ �a2 = b2 ∧ a2.

(xii). As observed earlier, 〈a1, a2〉 ⇔ 〈b1, b2〉 = 〈(a1 ↔
b1) ∧ (a2 ↔ b2),�((�a1 ∧ b2) ∨ (�b1 ∧ a2))〉. Thus,
(〈a1, a2〉 ⇔ 〈b1, b2〉) → 〈a1, a2〉 = 〈((a1 ↔ b1) ∧ (a2 ↔
b2)) → a1,�((a1 ↔ b1) ∧ (a2 ↔ b2)) ∧ a2〉 and, likewise,
(〈a1, a2〉 ⇔ 〈b1, b2〉) → 〈b1, b2〉 = 〈((a1 ↔ b1) ∧ (a2 ↔
b2)) → b1,�((a1 ↔ b1) ∧ (a2 ↔ b2)) ∧ b2〉. Note that
by item (ii) above we have ((a1 ↔ b1) ∧ (a2 ↔ b2)) →
a1 = (a2 ↔ b2) → ((a1 ↔ b1) → a1) and, similarly,
((a1 ↔ b1) ∧ (a2 ↔ b2)) → b1 = (a2 ↔ b2) → ((a1 ↔
b1) → b1). Then the equality of the first components is
guaranteed by the identity (x ↔ y) → x ≈ (x ↔ y) → y,
which holds on every Brouwerian algebra. As to the second
components, since a2 = �a2,we have�((a1 ↔ b1)∧(a2 ↔
b2)) ∧ a2 = �((a1 ↔ b1) ∧ (a2 ↔ b2)) ∧ �a2 = �((a1 ↔
b1)∧(a2 ↔ b2)∧a2) = �((a1 ↔ b1)∧(b2 → a2)∧(a2 →
b2)∧a2) = �((a1 ↔ b1)∧(b2 → a2)∧a2∧b2) = �((a1 ↔
b1) ∧ a2 ∧ b2 ∧ a2) = �((a1 ↔ b1) ∧ a2 ∧ b2). A similar
reasoning shows that �((a1 ↔ b1) ∧ (a2 ↔ b2)) ∧ b2 =
�((a1 ↔ b1) ∧ a2 ∧ b2), thus concluding our proof.
(xiii). Let us compute 〈a1, a2〉 → (〈b1, b2〉 → 〈c1, c2〉) =
〈a1 → (b1 → c1),�a1 ∧ �b2 ∧ c2〉 and (〈a1, a2〉 →
〈b1, b2〉) → (〈a1, a2〉 → 〈c1, c2〉) = 〈(a1 → b1) →
(a1 → c1),�(a1 → b1) ∧ �a1 ∧ c2〉. Equality of the
first components is thus a consequence of the identity x →
(y → z) ≈ (x → y) → (x → z), which is valid on
every Brouwerian algebra. Regarding the second compo-
nents, since the � operation preserves finite meets, we have
�(a1 → b1) ∧ �a1 ∧ c2 = �((a1 → b1) ∧ a1) ∧ c2 =
�(a1 ∧ b1) ∧ c2 = �a1 ∧ �b1 ∧ c2, as required.
(xiv). We only need to take care of the first components of
〈a1, a2〉 → 〈b1, b2〉 and ∼ ∼〈a1, a2〉 → ∼ ∼〈b1, b2〉. These
are, respectively, a1 → b1 and �a1 → �b1. Since x ≤ �x
is valid on every nuclear Brouwerian algebra, to show that
a1 → b1 ≤ �a1 → �b1, it suffices to check that �(a1 →
b1) ≤ �a1 → �b1. By residuation, we have�(a1 → b1) ≤
�a1 → �b1 iff �a1 ∧ �(a1 → b1) ≤ �b1. Since �a1 ∧
�(a1 → b1) = �(a1 ∧ (a1 → b1)) = �(a1 ∧ b1) =
�a1 ∧ �b1 ≤ �b1, the result follows.
(xv). Recalling item (ii), we have (〈a1, a2〉 ∧ 〈b1, b2〉) →
〈a1, a2〉 = 〈(a1 ∧ b1) → a1,�(a1 ∧ b1)∧ a2〉 = 〈1,�(a1 ∧
b1)∧a2〉 and |〈1,�(a1∧b1)∧a2〉| = 〈1 → 1,�1∧�(a1∧
b1) ∧ a2〉 = 〈1,�(a1 ∧ b1) ∧ a2〉, as required.
(xvi). As observed earlier (item (ii) of Proposition 2.3), it
suffices to check that a1 → b1 ≤ a → (b1 ∨ c1), which
obviously holds in a Brouwerian algebra. ��

The next proposition provides a recipe for producing con-
crete examples of quasi-N4 twist-structures.

LetB be a nuclear Brouwerian algebra, and let∇,� ⊆ B.
We shall say that ∇ is a dense filter if ∇ is a lattice filter of
〈B; ∧,∨〉 and, for all a, b ∈ B, one has �a ∨ (a → b) ∈ ∇.
We shall say that � is a �-ideal if � is a (non-empty) lattice
ideal of 〈B; ∧,∨〉 and �a ∈ � whenever a ∈ �. Let B�� be
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2676 U. Rivieccio

the algebra introduced in Definition 2.2, and let ∇,� ⊆ B
be, respectively, a dense filter and a �-ideal of B. Consider
the set:

Tw〈B,∇,�〉 : = {〈a1, a2〉 ∈ B × B :
a2 = �a2, a1 ∨ a2 ∈ ∇, a1 ∧ a2 ∈ �}.

Proposition 2.5 The set Tw〈B,∇,�〉 is closed under all the
operations of B��, and is therefore the universe of a twist-
structure over B.

Proof The case of negation is easy. Assume 〈a1, a2〉 ∈
Tw〈B,∇,�〉, so a2 = �a2, a1 ∨ a2 ∈ ∇ and a1 ∧ a2 ∈ �.
To show that ∼〈a1, a2〉 = 〈a2,�a1〉 ∈ A, we need to check
that�a1 = ��a1, a2∨�a1 ∈ ∇ and a2∧�a1 ∈ �. The first
condition follows from Definition 2.1.ii, which also entails
a1 ∨ a2 ≤ a2 ∨ �a1. Then a2 ∨ �a1 ∈ ∇, because ∇ is
increasing. The last condition follows from Definition 2.1.i
and the fact that � is �-closed: we have that a1 ∧ a2 ∈ �

entails �(a1 ∧ a2) = �a1 ∧ �a2 = �a1 ∧ a2 ∈ �.
Letting 〈a1, a2〉, 〈b1, b2〉 ∈ A, we check that A is closed

under conjunction. Since 〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧
b1,�(a2∨b2)〉, we need to show that��(a2∨b2) = �(a2∨
b2), which is immediate, that (a1 ∧ b1) ∨ �(a2 ∨ b2) ∈ ∇
and a1 ∧ b1 ∧ �(a2 ∨ b2) ∈ �. Regarding (a1 ∧ b1) ∨
�(a2 ∨ b2) ∈ ∇, observe that, by distributivity, we have
(a1∧b1)∨�(a2∨b2) = (a1∨�(a2∨b2))∧(b1∨�(a2∨b2)).
Since ∇ is increasing, it is thus sufficient to show that
(a1 ∨ a2 ∨ b2) ∧ (b1 ∨ a2 ∨ b2) ∈ ∇. By assumption,
a1 ∨ a2, b1 ∨ b2 ∈ ∇, so a1 ∨ a2 ∨ b2, b ∨ a2 ∨ b2 ∈ ∇,
because∇ is increasing. Since∇ is closed under finite meets,
we conclude (a ∨ a2 ∨ b2) ∧ (b ∨ a2 ∨ b2) ∈ ∇, as claimed.
Regarding a1∧b1∧�(a2∨b2) ∈ �, observe that, using items
(ii) and (i) of Definition 2.1, we have a1 ∧b1 ∧�(a2 ∨b2) ≤
�(a1 ∧ b1) ∧ �(a2 ∨ b2) = �(a1 ∧ b1 ∧ (a2 ∨ b2)).
Since � is decreasing, it is thus sufficient to show that
�(a1 ∧ b1 ∧ (a2 ∨ b2)) ∈ �. By distributivity, we have
�(a1 ∧b1 ∧ (a2 ∨b2)) = �((a1 ∧b1 ∧a2)∨ (a1 ∧b1 ∧b2)).
Since � is decreasing, the assumption a1 ∧ b1 ∈ � entails
a1 ∧ b1 ∧ a2, a1 ∧ b1 ∧ b2 ∈ �. Then (a1 ∧ b1 ∧ a2) ∨
(a1 ∧ b1 ∧ b2) ∈ �, because � is closed under finite joins.
Finally, we use the property of being �-closed to conclude
�((a1 ∧ b1 ∧ a2) ∨ (a1 ∧ b1 ∧ b2)) ∈ �, as claimed.

The case of disjunction is more straightforward. We need
to show that�(a2 ∧b2) = a2 ∧b2, that a1 ∨b1 ∨ (a2 ∧b2) ∈
∇ and (a1 ∨ b1) ∧ a2 ∧ b2 ∈ �. The first claim follows
from Definition 2.1.i, for the assumptions �a2 = a2 and
�b2 = b2 imply �(a2 ∧ b2) = �a2 ∧ �b2 = a2 ∧ b2.
As to a1 ∨ b1 ∨ (a2 ∧ b2) ∈ ∇, by distributivity we have
a1∨b1∨(a2∧b2) = (a1∨b1∨a2)∧(a1∨b1∨b2), so the result
can be established as in the case of conjunction. Likewise, to
obtain (a1 ∨ b) ∧ a2 ∧ b2 ∈ � we can use distributivity to
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Fig. 1 Quasi-N4-lattices as twist-structures

have (a1 ∨ b) ∧ a2 ∧ b2 = (a1 ∧ a2 ∧ b2) ∨ (b1 ∧ a2 ∧ b2)
and reason as before.

Finally, to check that A is closed under →, we need to
show that�(�a1∧b2) = �a1∧b2, (a1 → b1)∨(�a1∧b2) ∈
∇, and (a1 → b1) ∧ �a1 ∧ b2 ∈ �. Using Definition 2.1
and the assumption that �b2 = b2, we have �(�a1 ∧ b2) =
��a1 ∧�b2 = �a1 ∧b2. To show that (a1 → b1)∨ (�a1 ∧
b2) = ((a1 → b1)∨�a1)∧ ((a1 → b1)∨ b2) ∈ ∇, observe
that (a1 → b1) ∨ �a1 ∈ ∇ because ∇ is dense, and, by
the properties of the implication (in particular, the inequality
x ≤ y → x), we have b1 ∨ b2 ≤ (a1 → b1) ∨ b2. Since ∇
is increasing, the assumption that b1 ∨ b2 ∈ ∇ gives us the
required result. Lastly, to show that (a1 → b1)∧�a1 ∧b2 ∈
�, recall that, by assumption, b1 ∧ b2 ∈ �. Thus, b1 ∧ b2 ∧
a1 ∈ �, because � is decreasing. Since � is �-closed, we
thus have �(b1 ∧ b2 ∧ a1) ∈ �. To finish the proof, it is
sufficient to observe that (a1 → b1) ∧ �a1 ∧ b2 ≤ �(a1 →
b)∧�a1∧�b2 = �((a1 → b1)∧a1∧b2) = �(b1∧a1∧b2),
where the last equality holds because x ∧ (x → y) = x ∧ y
holds on every Brouwerian algebra. ��
Example 2.6 LetB = 〈B,∧,∨,→ �〉 be a nuclear Brouwe-
rian algebrawhose lattice reduct is the three-elementHeyting
algebra with universe B = {0, a, 1}. The nucleus on B is
defined by �0 = 0 and �a = �1 = 1. The largest quasi-
N4 twist-structure over B�� is the six-element algebra A6

depicted in Fig. 1, which is constructed as Tw〈B, B, B〉
according to Proposition 2.5. By letting ∇ = {a, 1} and
� = B, one obtains the five-element subalgebra A5 with
universe A5 = A6 − {〈0, 0〉}. Likewise, the four-element
chain A4, corresponding to the choice ∇ = {1} and � = B,
has universe A4 = A5−{〈a, 0〉}. Note that all these algebras
are neither quasi-Nelson algebras nor N4-lattices.

3 The variety of quasi-N4-lattices

In this section we introduce the abstract class of quasi-
N4-lattices (Definition 3.2) and proceed to show that each
quasi-N4-lattice can be viewed as a twist-structure of the
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type introduced above (Theorem 3.3). We then use this
result to prove that quasi-N4-lattices form a variety (Propo-
sition 3.7) and to establish a number of other results about
filters and congruences on these algebras. We are going
take the properties in Proposition 2.3 as our official defi-
nition for quasi-N4-lattices. As mentioned earlier, just as the
implication-free reduct of every N4-lattice forms an algebra
that is known in the literature as a De Morgan lattice, so the
implication-free reducts of quasi-N4-lattices from structures
that have been studied before under the name of quasi-De
Morgan lattices4.

Definition 3.1 (cf. Sankappanavar (1987)) A semi-De Mor-
gan lattice is an algebra 〈A; ∧,∨,∼〉 of type 〈2, 2, 1〉 such
that 〈A; ∧,∨〉 is a distributive lattice and the following iden-
tities are satisfied:

(SDM1) ∼(x ∨ y) ≈ ∼ x ∧ ∼ y.
(SDM2) ∼ ∼(x ∧ y) ≈ ∼ ∼ x ∧ ∼ ∼ y.
(SDM3) ∼ x ≈ ∼ ∼∼ x .

ADe Morgan lattice is a semi-De Mogan lattice that is invo-
lutive, i.e., one that satisfies x ≈ ∼ ∼ x . A (lower) quasi-De
Morgan lattice is a semi-De Morgan lattice additionally sat-
isfying x ≤ ∼ ∼ x (here,α ≤ β is a shorthand for the identity
α ≈ α ∧ β).

Definition 3.2 A quasi-N4-lattice (QN4-lattice) is an alge-
bra A = 〈A; ∧,∨,→,∼〉 of type 〈2, 2, 2, 1〉 satisfying the
following properties:

(QN4a) The reduct 〈A; ∧,∨〉 is a distributive lattice (with
order ≤).

(QN4b) The relation ≡ :=  ∩ ()−1 is a congruence on
the reduct 〈A; ∧,∨,→〉 and the quotient B(A) =
〈A; ∧,∨,→〉/≡ is a Brouwerian algebra. More-
over, the operator � given by �[a] := ∼ ∼ a/≡
for all a ∈ A is a nucleus, so the algebra 〈B(A),�〉
is a nuclear Brouwerian algebra.

(QN4c) For all a, b ∈ A, it holds that ∼(a → b) ≡
∼ ∼(a ∧ ∼ b).

(QN4d) For all a, b ∈ A, it holds that a ≤ b iff a  b and
∼ b  ∼ a.

(QN4e) For all a, b ∈ A,

(QN4e.1) ∼(a ∨ b) = ∼ a ∧ ∼ b
(QN4e.2) ∼ ∼ a ∧ ∼ ∼ b = ∼∼(a ∧ b)
(QN4e.3) ∼ a = ∼ ∼ ∼ a
(QN4e.4) a ≤ ∼ ∼ a

4 Actually Sankappanavar’s paper (Sankappanavar 1987) only intro-
duced the stronger notions of semi- and quasi-De Morgan algebras,
the difference being that, according to his definitions, the lattice reduct
must always be bounded.

The previous definitions entail that the {→}-free reduct
of a quasi-N4-lattice is a lower quasi-De Morgan lattice
(cf. Proposition 3.4). Obviously Definition 3.2 generalizes
the one introduced by Odintsov for N4-lattices Odintsov
(2004) as well as the definition of quasi-Nelson algebras
first introduced in Rivieccio and Spinks (2019); see Propo-
sition 3.8 below for a more precise statement of the relations
among these classes of algebras.

Theorem 3.3 Every quasi-N4-lattice A = 〈A; ∧,∨,→,∼〉
is isomorphic to a twist-structure over 〈B(A),�〉 through the
map ι : A → A/≡ × A/≡ given by ι(a) := 〈a/≡,∼ a/≡〉
for all a ∈ A.

Proof Item (QN4b) in Definition 3.2 guarantees that 〈B(A),

�〉�� is a nuclear Brouwerian algebra, so one can apply Defi-
nition 2.2 to obtain the algebra 〈B(A),�〉��. Item (QN4d)
ensures that the map ι is injective. Also observe that the
requirement π1[ι(A)] = A/≡ from Definition 2.2 is triv-
ially satisfied. We shall denote by [a] the equivalence class
of each a ∈ A modulo the relation ≡. Thus, ι(a) =
〈[a], [∼ a]〉 for all a ∈ A; notice that, by (QN4e.3), we
have �[∼ a] = [∼∼ ∼ a] = [∼ a], as required by Defini-
tion2.2. Let us check that ιpreserves the algebraic operations.
The case of negation is straightforward: for all a ∈ A,
we have ι(∼ a) = 〈[∼ a], [∼ ∼ a]〉 = 〈[∼ a],�[a]〉 =
∼〈[a], [∼ a]〉 = ∼ ι(a). Regarding the meet, we have:

ι(a ∧ b) = 〈[a ∧ b], [∼(a ∧ b)]〉
= 〈[a ∧ b], [∼ ∼ ∼(a ∧ b)]〉 by (QN4e.3)

= 〈[a ∧ b], [∼(∼ ∼ a ∧ ∼ ∼ b)]〉 by (QN4e.2)

= 〈[a ∧ b], [∼ ∼(∼ a ∨ ∼ b)]〉 by (QN4e.1)

= 〈[a ∧ b],�[∼ a ∨ ∼ b]〉
= 〈[a] ∧ [b],�([∼ a] ∨ [∼ b])〉
= 〈[a], [∼ a]〉 ∧ 〈[b], [∼ b]〉
= ι(a) ∧ ι(b).

Regarding the join:

ι(a ∨ b) = 〈[a ∨ b], [∼(a ∨ b)]〉
= 〈[a ∧ b], [∼ a ∧ ∼ b]〉 by (QN4e.1)

= 〈[a] ∨ [b], [∼ a] ∧ [∼ b]〉
= 〈[a], [∼ a]〉 ∨ 〈[b], [∼ b]〉
= ι(a) ∨ ι(b).

Lastly, the implication:

ι(a → b) = 〈[a → b], [∼(a → b)]〉
= 〈[a → b], [∼ ∼(a ∧ ∼ b)]〉 by (QN4c)

= 〈[a → b], [∼ ∼ a ∧ ∼ ∼ ∼ b])〉 by (QN4e.2)

123



2678 U. Rivieccio

= 〈[a → b], [∼ ∼ a ∧ ∼ b])〉 by (QN4e.3)

= 〈[a] → [b],�[a] ∧ [∼ b])〉
= 〈[a], [∼ a]〉 → 〈[b], [∼ b]〉
= ι(a) → ι(b).

��

Relying on Theorem 3.3, we will from now on, when-
ever convenient, identify an arbitrary quasi-N4-lattice with
a twist-structure A ≤ B��. We state the following result as a
first consequence of this observation.

Proposition 3.4 Let A = 〈A; ∧,∨,→,∼〉 be a quasi-N4-
lattice.

(i) 〈A; ∧,∨,∼〉 is a lower quasi-De Morgan lattice.
(ii) 〈A; ∧,∨,∼〉 is a De Morgan lattice if and only if A is

an N4-lattice (cf. Proposition 3.8).

Remark 3.5 Spinks and Veroff (2018, Thm. 2.1) have shown
that, in the setting of N4-lattices, the weak implication is
term definable using the strong one and the conjunction.
This result has some logical import, for it allows one to view
Nelson’s paraconsistent logic as a contraction-free relevance
logic. Thanks to the twist representation, we can show that
the same term does the job in the non-involutive setting of
quasi-N4-lattices aswell (see Proposition 3.6). Indeed, defin-
ing:

x ⇒e y := (x ∧ (y ⇒ y)) ⇒ y

the weak implication can be introduced as follows:

x → y := (x ∧ ((x ⇒e y) ⇒ (x ⇒e y))) ⇒ (x ⇒e y).

This suggests that quasi-N4-lattices could be axiomatized
in the language {∧,∨, ∗,⇒,∼}, and we speculate whether
such apresentationmight be obtainedby a suitable adaptation
of the axiom system for the relevance logic RW, as in the case
of Nelson’s paraconsistent logic (Spinks and Veroff 2018,
Thm. 2.1).

Let us also observe that, on a quasi-Nelson algebra A
(cf. Proposition 3.8), the term x ⇒ x is constant and is
interpreted as the top element 1 of the lattice order. Hence,
one has, for all a, b ∈ A, a ⇒e b = a ⇒ b and

a → b = (a ∧ ((a ⇒e b) ⇒ (a ⇒e b))) ⇒ (a ⇒e b)

= (a ∧ 1) ⇒ (a ⇒ b) = a ⇒ (a ⇒ b),

thus recovering the usual definition of the weak implication
from the strong for Nelson algebras, as was to be expected.

Proposition 3.6 Every quasi-N4-lattice satisfies the follow-
ing identity:

x → y = (x ∧ ((x ⇒e y) ⇒ (x ⇒e y))) ⇒ (x ⇒e y).

Proof LettingA ≤ B�� and a = 〈a1, a2〉, b = 〈b1, b2〉, let us
compute the sub-terms of (a∧ ((a ⇒e b) ⇒ (a ⇒e b))) ⇒
(a ⇒e b). We have:

a ⇒e b = (〈a1, a2〉 ∧ 〈1,�b1 ∧ b2)〉 ⇒ 〈b1, b2〉
= 〈a1,�(a2 ∨ (�b1 ∧ b2))〉 ⇒ 〈b1, b2〉
= 〈(a1 → b1) ∧ (b2 → �(a2 ∨ (�b1 ∧ b2)),�a1 ∧ b2〉
= 〈(a1 → b1) ∧ (b2 → �(a2 ∨ �b1),�a1 ∧ b2〉

where the last equality holds because:

b2 → �(a2 ∨ (�b1 ∧ b2))

= b2 → �((a2 ∨ �b1) ∧ (a1 ∨ b2))

= b2 → (�(a2 ∨ �b1) ∧ �(a1 ∨ b2))

= (b2 → �(a2 ∨ �b1)) ∧ (b2 → �(a1 ∨ b2))

= (b2 → �(a2 ∨ �b1)) ∧ 1

= b2 → �(a2 ∨ �b1).

Thus, we have:

(a ⇒e b) ⇒ (a ⇒e b)

= 〈1,�((a1 → b1) ∧ (b2 → �(a2 ∨ �b1)) ∧ �a1 ∧ b2〉
= 〈1,�(a1 ∧ b1 ∧ b2).〉

where the last equality is justified by the following compu-
tations:

�((a1 → b1) ∧ (b2 → �(a2 ∨ �b1)) ∧ �a1 ∧ b2

= �(a1 ∧ (a1 → b1)) ∧ b2 ∧ �(a2 ∨ �b1))

= �(a1 ∧ b1) ∧ b2 ∧ �(a2 ∨ �b1))

= �(a1 ∧ b1 ∧ (a2 ∨ �b1)) ∧ �b2

= �(a1 ∧ b1 ∧ b2).

Hence, a ∧ (a ⇒e b) = 〈a1,�(a2 ∨ �(a1 ∧ b1 ∧ b2))〉. It is
now easy to check that the second component of (a∧((a ⇒e

b) ⇒ (a ⇒e b))) ⇒ (a ⇒e b) is �a1 ∧ �a1 ∧ b2 =
�a1 ∧ b2, as required. The first component is

(a1 → ((a1 → b1) ∧ (b2 → �(a2 ∨ �b1)))) ∧
((�a1 ∧ b2) → �(a2 ∨ �(a1 ∧ b1 ∧ b2))).

The first member of the conjunction can be rewritten as fol-
lows:

a1 → ((a1 → b1) ∧ (b2 → �(a2 ∨ �b1)))
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= (a1→ (a1→ b1)) ∧ (a1→ (b2→ �(a2 ∨ �b1)))

= (a1 → b1) ∧ (a1 → (b2 → �(a2 ∨ �b1)))

= a1 → (b1 ∧ (b2 → �(a2 ∨ �b1)))

= a1 → b1,

the last equality being justified by the following inequalities:
b1 ≤ b2 → (a2 ∨ b1) ≤ b2 → �(a2 ∨ �b1). As to the
second member of the conjunction, observe that

�(a2 ∨ �(a1 ∧ b1 ∧ b2))

= �(a2 ∨ (�a1 ∧ �b1 ∧ �b2))

= �(a2 ∨ (�a1 ∧ �b1 ∧ �b2))

= �(a2 ∨ (�a1 ∧ �b1 ∧ b2))

= �((a2 ∨ �a1) ∧ (a2 ∨ �b1) ∧ (a2 ∨ b2))

= �(a2 ∨ �a1) ∧ �(a2 ∨ �b1) ∧ �(a2 ∨ b2).

Thus, we have:

(�a1 ∧ b2) → �(a2 ∨ �(a1 ∧ b1 ∧ b2))

= (�a1 ∧ b2) → (�(a2 ∨ �a1)

∧ �(a2 ∨ �b1) ∧ �(a2 ∨ b2))

= ((�a1 ∧ b2) → �(a2 ∨ �a1))

∧ ((�a1 ∧ b2) → �(a2 ∨ �b1))

∧ ((�a1 ∧ b2) → �(a2 ∨ b2))

= 1 ∧ ((�a1 ∧ b2) → �(a2 ∨ �b1)) ∧ 1

= (�a1 ∧ b2) → �(a2 ∨ �b1).

To conclude the proof, it therefore suffices to verify the
inequality:

a1 → b1 ≤ (�a1 ∧ b2) → �(a2 ∨ �b1)

which is equivalent, by residuation, to the following one:

�a1 ∧ b2 ∧ (a1 → b1) ≤ �(a2 ∨ �b1).

In turn, the latter holds becauseof the following (in)equalities:

�a1 ∧ b2 ∧ (a1 → b1) ≤ �a1 ∧ �b2 ∧ �(a1 → b1)

= �(a1 ∧ b2 ∧ (a1 → b1))

= �(a1 ∧ b2 ∧ b1)

≤ �b1

≤ �(a2 ∨ �b1).

��
In the next proposition we see that the (Odintsov-style)

non-equational presentation for QN4-lattices given in Defi-
nition 3.2 can be replaced with an equational one, entailing
that QN4-lattices form a variety of algebras.

Proposition 3.7 Items (QN4b) and (QN4d) in Definition 3.2
can be equivalently replaced by the following identities:

(i) |x | → y ≈ y.
(ii) (x ∧ y) → x ≈ |(x ∧ y) → x |.
(iii) (x ∧ y) → z ≈ x → (y → z).
(iv) (x ⇔ y) → x ≈ (x ⇔ y) → y.
(v) (x ∨ y) → z ≈ (x → z) ∧ (y → z)
(vi) x → (y ∧ z) ≈ (x → y) ∧ (x → z).
(vii) (x → y) ∧ (y → z) x → z.
(viii) x → y  x → (y ∨ z).
(ix) x → (y → z) ≈ (x → y) → (x → z).
(x) x → y  ∼ ∼ x → ∼ ∼ y.

Hence, the class of quasi-N4-lattices is a variety.

Proof We have seen in Proposition 2.4 that every quasi-N4-
lattice A ≤ B�� satisfies items (i) to (x).

Conversely, let A = 〈A; ∧,∨,→,∼〉 be an algebra sat-
isfying items (i)–(x) above, as well as (QN4a), (QN4c) and
(QN4e) from Definition 3.2. Let us check (QN4b).

To show that ≡ is an equivalence relation, it suffices to
observe that  is reflexive and transitive. Reflexivity follows
immediately from item (i); to check transitivity, assume a  b
and b c. Observe that items (iii) and (i) entail that (|c| ∧
d) → e = d → e for all c, d, e ∈ A. Then our assumptions
imply ((a → b) ∧ (b → c)) → (a → c) = (|a → b| ∧
|b → c|) → (a → c) = a → c which, by (vii), gives us
a → c = |((a → b) ∧ (b → c)) → (a → c)|. Thus, by (i),
we have (a → c) → (a → c) = |((a → b) ∧ (b → c)) →
(a → c)| → (a → c) = a → c. Hence, a  c, as claimed.

We proceed in a similar way to check that≡ is compatible
with the lattice operations and the implication.

Assuming a  b and letting c ∈ A, we use (iii) to obtain
(a ∧ c) → (b ∧ c) = c → (a → (b ∧ c) = c → ((a →
b)∧(a → c)) = (c → (a → b))∧(c → (a → c)) = (c →
(a → b)) ∧ ((c ∧ a) → c). Observe that (c ∧ a) → c =
|(c ∧ a) → c| by item (ii). Likewise, using the assumption
a  b together with items (iii) and (ii), we have c → (a →
b) = c → ((a → b) → (a → b)) = ((a → b) ∧ c) →
(a → b) = |c → (a → b)|. Thus, ((a ∧ c) → (b ∧ c)) →
((a∧c) → (b∧c)) = ((c → (a → b))∧((c∧a) → c)) →
((a∧ c) → (b∧ c)) = (|c → (a → b)|∧ |(c∧a) → c|) →
((a∧c) → (b∧c)) = (a∧c) → (b∧c). Hence, a∧c b∧c.
Using this, it is easy to show that  is compatible with the
meet.

A similar reasoning shows that a  b entails a∨c b∨c.
Using (v) and (iii), we have (a ∨ c) → (b ∨ c) = (a →
(b ∨ c))) ∧ (c → (b ∨ c)). From the assumption a  b and
item (viii), we have a → (b ∨ c) = |a → (b ∨ c)|. Indeed,
using also (i), we have a → (b ∨ c) = |a → b| → (a →
(b∨c)) = (a → b) → (a → (b∨c)) = |(a → b) → (a →
(b ∨ c))| = ||a → b| → (a → (b ∨ c))| = |a → (b ∨ c)|.
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Observe that c ≤ b∨ c entails c → (b∨ c) = |c → (b∨ c)|.
This holds because, using (ii), from c = c ∧ (b ∨ c) we
can obtain c → (b ∨ c) = (c ∧ (b ∨ c)) → (b ∨ c) =
|(c ∧ (b ∨ c)) → (b ∨ c)| = |c → (b ∨ c)|. We then have
(a ∨ c) → (b ∨ c) = (|a → (b ∨ c))| ∧ |c → (b ∨ c)|) →
((a ∨ c) → (b ∨ c)) = (a → (b ∨ c))) ∧ (c → (b ∨ c)) →
((a ∨ c) → (b ∨ c)) = ((a ∨ c) → (b ∨ c)) → ((a ∨ c) →
(b ∨ c)), as required. Using this, it is easy to verify that ≡ is
compatible with the join.

To show that≡ is compatible with the implication, wewill
check that a  b entails c → a  c → b and b → c a → c
for all c ∈ A. Regarding the former claim, using (ix) we have
(c → a) → (c → b) = c → (a → b). By (i), (iii) and (ii),
we have c → (a → b) = |a → b| → (c → (a → b)) =
(a → b) → (c → (a → b)) = ((a → b) ∧ c) → (a →
b)) = (c ∧ (a → b)) → (a → b) = |(c ∧ (a → b)) →
(a → b)| = |c → (a → b)|. Hence, c → a  c → b.

To show that b → c a → c, observe that b(b →
c) → c holds because, by (ii), we have b → ((b → c) →
c) = (b → c) → (b → c). Then, from the assumption a  b
and the transitivity of , we obtain a (b → c) → c. By
(iii), we have a → ((b → c) → c) = (b → c) → (a → c),
so the result easily follows.

We proceed to show that the quotientA/≡ is a Brouwerian
algebra. Since 〈A,∧,∨〉 is a distributive lattice, so is the
corresponding reduct of A/≡. Thus, it suffices to check the
residuation law, i.e., that for all a, b, c ∈ A, one has [a] ∧
[b] ≤ [c] if and only if [a] ≤ [b] → [c], where [a], [b], [c] ∈
A/≡. Assume [a] ∧ [b] ≤ [c], i.e., [a ∧ b ∧ c] = [a ∧ b].
The assumption gives us, in particular a ∧ b a ∧ b ∧ c.
Since a ∧ b∧ c c holds by (ii), by the transitivity of , we
have a ∧ b c. Thus, (a → b) → c = |(a → b) → c|.
Since (a → b) → c = a → (b → c) holds by (iii),
it follows that a → (b → c) = |a → (b → c)|, i.e.,
a  b → c. Since a  a, using the compatibility of  with
the meet, we conclude a ∧ a = a  a ∧ (b → c). Since
a ∧ (b → c) a holds by (ii), we obtain [a ∧ (b → c)] =
[a], as required. Conversely, assume [a ∧ (b → c)] = [a].
Since a ∧ b ∧ c a ∧ b holds by (ii), it suffices to show that
a ∧ b a ∧ b ∧ c. In fact, showing a ∧ b c is enough, for
we can use a ∧ b a ∧ b and the compatibility of  with
the meet to obtain a ∧ b ∧ a ∧ b = a ∧ b a ∧ b ∧ c.
From the assumption [a ∧ (b → c)] = [a] and (iii), we have
a  a ∧ (b → c) b → c. Hence, a  b → c. Using (iii),
we have |a → (b → c)| = a → (b → c) = (a ∧ b) → c.
Hence, the required result easily follows.

Let us check that �[a] := [∼∼ a] is a nucleus operator.
To begin with, notice that � is well defined on A/≡ because
a ≡ b entails ∼ ∼ a ≡ ∼ ∼ b by (x). Further, by (QN4e.2),
we have �([a] ∧ [b]) = �[a ∧ b] = [∼ ∼(a ∧ b)] =
[∼ ∼ a∧∼ ∼ b] = [∼ ∼ a]∧ [∼ ∼ b] = �[a]∧�[b]. Thus,
� preserves finitemeets. By (QN4e.4), we have [a]∧�[a] =
[a] ∧ [∼ ∼ a] = [a ∧ ∼∼ a] = [a], so [a] ≤ �[a]. Lastly

by (QN4e.3) we have ��[a] = [∼ ∼ ∼ ∼ a] = [∼ ∼ a] =
�[a].

To show that (QN4d) is satisfied, assume a ≤ b. Then a =
a∧b, so (ii) gives us a → b = (a∧b) → b = |(a∧b) → b|.
Then, by (i), we have (a → b) → (a → b) = |a → b| =
|(a ∧ b) → b| → (a → b) = a → b. Hence, a  b.
Observe that, by (QN4e.1), a ∨ b = b entails ∼(a ∨ b) =
∼ a ∧ ∼ b = ∼ b, i.e., ∼ b ≤ ∼ a. Then we can apply the
preceding reasoning to obtain∼ b∼ a. Conversely, assume
a  b and ∼ b∼ a. Recall that (|c| ∧ d) → e = d → e
for all c, d, e ∈ A. This holds because, by (iii) and (i), we
have (|c| ∧ d) → e = |c| → (d → e) = d → e. Now, we
can instantiate (iv) as follows: ((a ∨ b) ⇔ b) → (a ∨ b) =
((a ∨ b) ⇔ b) → b. Using (QN4e.1) followed by items (v)
and (vi), we have (a ∨ b) ⇔ b = ((a ∨ b) → b) ∧ (∼ b →
∼(a∨b))∧(b → (a∨b))∧(∼(a∨b) → ∼ a) = ((a∨b) →
b)∧(∼ b → (∼ a∧∼ b))∧(b → (a∨b))∧((∼ a∧∼ b) →
∼ a) = (a → b) ∧ (b → b) ∧ (∼ b → ∼ a) ∧ (∼ b →
∼ b) ∧ (b → (a ∨ b)) ∧ ((∼ a ∧ ∼ b) → ∼ a). We have
a → b = |a → b| and ∼ b → ∼ a = | ∼ b → ∼ a|
by assumption; moreover, (i) entails b → b = |b → b|
and, likewise ∼ b → ∼ b = | ∼ b → ∼ b|. We have just
shown that b ≤ a ∨ b entails b a ∨ b. Lastly, (ii) entails
(∼ a ∧ ∼ b) → ∼ a = |(∼ a ∧ ∼ b) → ∼ a|. Joining these
observations, we have ((a ∨ b) ⇔ b) → (a ∨ b) = (|a →
b| ∧ |b → b| ∧ | ∼ b → ∼ a| ∧ | ∼ b → ∼ b| ∧ |b →
(a ∨ b)| ∧ |(∼ a ∧ ∼ b) → ∼ a|) → (a ∨ b) = a ∨ b =
((a ∨ b) ⇔ b) → b = b. Hence, a ≤ b. ��

It is well known that the lattice reduct of a N4-lattice may
be unbounded or bounded (in which case both bounds exist).
We see in the next proposition that the situation is different
in the non-involutive case. When the bounds exist, we shall
denote by (resp.) 0 and 1 the bottom and top element of the
lattice reduct of a quasi-N4-lattice.

Proposition 3.8 Let A be a quasi-N4-lattice.

(i) A is a quasi-Nelson algebra iff A � x ∧ ∼ x  y iff
A � ∼ |x | ≈ 0.

(ii) A � |x | ≈ |y| iff A � |x | ≈ 1.
(iii) A is an N4-lattice iff A � ∼ ∼ x ≤ x.

Proof (i). Using the twist representation established in Riv-
ieccio and Spinks (2019), it is easy to check that every
quasi-Nelson algebra as introduced in Rivieccio and Spinks
(2019), Def. 4.1 satisfies both x ∧ ∼ x  y and ∼ |x | ≈ 0.
To show that a quasi-N4-lattice A satisfying x ∧ ∼ x  y is
a quasi-Nelson algebra according to (Rivieccio and Spinks
2019, Def. 4.1), it suffices to verify that the lattice reduct ofA
is bounded. AssumingA ≤ B�� and letting a = 〈a1, a2〉, b =
〈b1, b2〉 ∈ A, let us compute 〈a1, a2〉 ∧ ∼〈a1, a2〉 = 〈a1 ∧
a2,�(�a1 ∨ a2)〉 = 〈a1 ∧ a2,�(a1 ∨ a2)〉. The last equality
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holds because �a2 = a2 and, as observed earlier, B satis-
fies �(x ∨ y) ≈ �(�x ∨ �y). We then have 〈a1, a2〉 ∧
∼〈a1, a2〉 = 〈a1∧a2,�(a1∨a2)〉〈b1∧b2,�(b1∨b2)〉 =
〈b1, b2〉 ∧ ∼〈b1, b2〉 for all 〈a1, a2〉, 〈b1, b2〉 ∈ A. Hence,
a1 ∧ a2 ≤ b1 ∧ b2 (so, by symmetry, a1 ∧ a2 = b1 ∧ b2).
We claim that a1 ∧ a2 is the bottom element of the lattice
order of B. To see this, let c1 ∈ B be an arbitrary element of
B. By the requirement π1[A] = B, there is c2 ∈ B such
that 〈c1, c2〉 ∈ A. We then have a1 ∧ a2 = c1 ∧ c2 ≤
c1. That is, a1 ∧ a2 is the bottom element of the lattice
order of B. Thus, letting a1 ∧ a2 := 0, we have, for all
〈a1, a2〉, 〈b1, b2〉 ∈ A, that |〈a1, a2〉| = 〈1, 0〉 = |〈b1, b2〉|.
Thus, 〈1, 0〉 is the top element of the lattice order of A,
and ∼〈1, 0〉 = 〈0,�1〉 = 〈0, 1〉 is the bottom element,
as required. To conclude the proof, assuming A ≤ B�� as
before, suppose A � ∼ |x | ≈ 0. Then, for every element
〈a1, a2〉 ∈ A, we have ∼ |〈a1, a2〉| = 〈�a1 ∧ a2,�1〉 =
〈�a1 ∧ a2, 1〉 = 〈0, 1〉, that is, �a1 ∧ a2 = 0. The latter
entails a1 ∧a2 = 0 because a1 ∧a2 ≤ �a1 ∧a2. This imme-
diately implies A � x ∧ ∼ x  y, which as we have seen is
equivalent to A being a quasi-Nelson algebra.

(ii). The leftward implication is clear. As to the rightward
one, given arbitrary elements 〈a1, a2〉, 〈b1, b2〉 ∈ A, assume
|〈a1, a2〉| = 〈1,�a1 ∧ a2〉 = 〈1,�b1 ∧ b2〉 = |〈b1, b2〉|.
We may thus let c2 := �a1 ∧ a2. Since every quasi-N4-
lattice satisfies 〈a1, a2〉 ≤ |〈a1, a2〉| = 〈1, c2〉, this entails
that |〈1, c2〉| is the top element of the lattice order of A.
Observe that c2 need not be the minimum on B, but it is the
minimum of those elements of B that are fixed under the �
operation. Indeed, observe that c2 = �c2 and that, for all
〈d1, d2〉 ∈ A, from 〈d1, d2〉 ≤ 〈1, c2〉 we have c2 ≤ d2.

(iii). The rightward implication is clear. As to the left-
ward one, assume A � ∼ ∼ x ≤ x and let a1 ∈ B. Then
there is a2 ∈ B such that 〈a1, a2〉 ∈ A, and ∼∼〈a1, a2〉 =
〈�a1, a2〉 ≤ 〈a1, a2〉. This means that B satisfies �x ≤ x
(and, hence, �x ≈ x). Thus, � is the identity map on B,
which entails that Definition 2.2 reduces to Odintsov’s defi-
nition of twist-structures for N4-lattices. ��

Proposition 3.8 entails that a quasi-N4-lattice is a Nel-
son algebra if and only if both items (i) and (iii) hold. Also
observe that (i) implies (ii). In fact, a quasi-N4-latticeAmay
have a top element without necessarily having a bottom ele-
ment, but not the other way round: if 0 is the bottom element,
then ∼ 0 is necessarily the top element. Indeed, since the
negation is order-reversing, from 0 ≤ ∼ a and a ≤ ∼ ∼ a
we have a ≤ ∼ ∼ a ≤ ∼ 0, for all a ∈ A. Thus, ∼ 0 = 1.

Let QN, N4, and QN4 denote the varieties of quasi-
Nelson algebras, N4-lattices and QN4-lattices, respectively.
Let us also denote by V(QN ∪ N4) the variety generated
by QN ∪ N4. Having observed that V(QN ∪ N4) ⊆ QN4,
one may wonder whether this inclusion is strict. This is

indeed the case. In fact, it is easy to verify that the following
identity

((x ∧ ∼ x) → y) ∨ (∼ ∼ z → z)

≈ |((x ∧ ∼ x) → y) ∨ (∼ ∼ z → z)| (1)

is verified by allmembers ofQN∪N4. However, in the algebra
A4 depicted in Fig. 1, we have, for instance:

((〈a, 1〉 ∧ ∼〈a, 1〉) → 〈0, 1〉) ∨ (∼ ∼〈a, 1〉 → 〈a, 1〉)
= 〈a, 1〉 �= 〈1, 1〉 = |〈a, 1〉|.

Hence, A4 /∈ V(QN∪N4). Later we are going to see (Theo-
rem 4.7) that adding the identity (1) toQN4 is indeed enough
to axiomatize V(QN ∪ N4).

4 Congruence properties

4.1 Filters and congruences

In this subsection we introduce a notion of filter for QN4-
lattices that will allow us to establish an isomorphism
between the lattice of filters on an arbitrary QN4-lattice A
and the lattice of congruences on A (Theorem 4.4). We are
also going to show that the lattice of congruences on each
QN4-lattice A ≤ B�� is isomorphic to the lattice of congru-
ences on the (nuclear) Brouwerian algebra B (Corollary 4.6)

Recall that a filter of a Brouwerian algebra B is a set F ⊆
B that is non-empty, increasing and closed under finitemeets.
An equivalent definition is to require F to be non-empty and
closed under modus ponens, meaning that a, a → b ∈ F
entail b ∈ F for all a, b ∈ B. The (po)set of all filters of a
Brouwerian algebra B will be denoted by Fi(B).

Given a quasi-N4-lattice A and F ⊆ A, we shall say that
F is an (implicative) filter if (i) |a| ∈ F for all a ∈ A, and (ii)
F is closed under modus ponens (→-mp): if a, a → b ∈ A,
then b ∈ F , for all a, b ∈ A. Observe that every implicative
filter F satisfies the following property: If a ∈ F and a  b,
then (a → b ∈ F , hence) b ∈ F . The (po)set of all filters of
a quasi-N4-lattice A will be denoted by Fi(A).

Every implicative filter F of a quasi-N4-lattice A =
〈A; ∧,∨,→,∼〉 is a lattice filter of the lattice reduct
〈A; ∧,∨〉, while the converse need not hold in general. Let us
check this on a twist-structure A ≤ B��. Assume 〈a1, a2〉 ∈
F and 〈a1, a2〉 ≤ 〈b1, b2〉 for some 〈b1, b2〉 ∈ A. Then
a1 ≤ b1, which entails 〈a1, a2〉 → 〈b1, b2〉 = 〈1,�a1 ∧b2〉.
Observe that |〈1,�a1 ∧ b2〉| = 〈1,�1 ∧ �a1 ∧ b2〉 =
〈1,�a1∧b2〉 ∈ F . Thus, by (→-mp), we have 〈b1, b2〉 ∈ F ,
as required. Now assume 〈a1, a2〉, 〈b1, b2〉 ∈ F . Observe
that 〈a1, a2〉 → (〈b1, b2〉 → (〈a1, a2〉 ∧ 〈b1, b2〉)) =
〈a1 → (b1 → (a1 ∧ b1)),�a1 ∧ �b1 ∧ �(a2 ∨ b2)〉 =
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〈1,�a1 ∧ �b1 ∧ �(a2 ∨ b2)〉 ∈ F . Then we can apply (→-
mp) to obtain 〈a1, a2〉∧〈b1, b2〉 ∈ F , as required. (To see that
a lattice filter need not be an implicative filter, observe that
the singleton filter {〈1, 0〉} on any of the algebras depicted
in Fig. 1 does not satisfy the first requirement for being an
implicative filter, because |〈1, 1〉| = 〈1, 1〉 /∈ {〈1, 0〉}).
Proposition 4.1 Let A ≤ B��, F1 ⊆ B and F ⊆ A.

(i) If F1 ∈ Fi(B), then (F1 × B) ∩ A ∈ Fi(A).
(ii) If F ∈ Fi(A), then F = (π1[F] × B) ∩ A, where

π1[F] ∈ Fi(B).

Proof (i). Let F := (F1 × B) ∩ A. Recall that, for all
〈a1, a2〉 ∈ A, we have |〈a1, a2〉| = 〈1,�a1 ∧ a2〉. Since
1 ∈ F1, we have 〈1, b2〉 ∈ F1 × B for every b2 ∈ B. Thus,
for all 〈a1, a2〉 ∈ A, we have |〈a1, a2〉| ∈ F . Now assume
〈a1, a2〉, 〈a1, a2〉 → 〈b1, b2〉 ∈ (F1 × B) ∩ A. We have
a1, a1 → b1 ∈ F1. Since F1 is an implicative filter, we have
b1 ∈ F1. Hence, 〈b1, b2〉 ∈ F1 × B, giving us the desired
result.

(ii). It is clear that F ⊆ (π1[F] × A2) ∩ A. For the con-
verse inclusion, assume 〈a1, a2〉 ∈ A is such that 〈a1, a2〉 ∈
π1[F] × A. Then there is b2 ∈ A with 〈a1, b2〉 ∈ F . Since
〈a1, b2〉 → 〈a1, a2〉 = 〈1,�a1 ∧ a2〉 = |〈a1, a2〉| ∈ F , by
(→-mp)we have 〈a1, a2〉 ∈ F , as required.Next, let us check
that π1[F] is a filter. It is clear that π1[F] is non-empty. Now
suppose a1, a1 →1 b1 ∈ π1[F]. Then there is an element
a2 ∈ A such that 〈a1, a2〉 ∈ F . Also, by the requirement
π1[A] = A, the assumption b1 ∈ A entails that there is an
element b2 ∈ A with 〈b1, b2〉 ∈ A. Observe that 〈a1, a2〉 →
〈b1, b2〉 = 〈a1 → b1,�a1 ∧ b2〉 ∈ (π1[F] × A) ∩ A = F .
Then we can use (→-mp) to conclude 〈b1, b2〉 ∈ F , and so
b1 ∈ π1[F]. Thus, π1[F] is an implicative filter (hence, a
lattice filter) of B. ��
Theorem 4.2 For every QN4-lattice A ≤ B��, the first-
coordinate projection map π1 is a complete lattice isomor-
phism between Fi(A) and Fi(B).

Proof It is clear that the map π1 is order-preserving. To show
that it is also order-reflecting, assume π1[F] ⊆ π1[G] for
some F,G ∈ Fi(A). Then, using Proposition 4.1.ii, we have
F = (π1[F] × A−) ∩ A ⊆ (π1[G] × A−) ∩ A = G. Hence,
F = G. Thus,π1 is an order embedding.Moreover,π1 is sur-
jective. Indeed, let F1 ∈ Fi(B). Then, by Proposition 4.1.i,
we have F := (F1 × A) ∩ A ∈ Fi(A), and F1 = π1[F]. ��

It is easy to verify that the isomorphism mentioned in
Theorem 4.2 preserves the property of being a prime filter
(defined in the usual way); also observe that the theorem
implies that eachQN4-latticeA ≤ B�� has a least implicative
filter F0 = ({1} × B) ∩ A, which can also be described as
F0 = {|a| : a ∈ A}.

Given a QN4-latticeA and a congruence θ ∈ Con(A), we
define Fθ := {a ∈ A : 〈a, |a|〉 ∈ θ}. Conversely, for each
F ∈ Fi(A), we let θF := {〈a, b〉 ∈ A × A : a → b, b →
a,∼ a → ∼ b,∼ b → ∼ a ∈ F}.
Lemma 4.3 Let A be a quasi-N4-lattice, let θ ∈ Con(A),
F ∈ Fi(A), and a, b ∈ A. Then,

(i) If 〈a, |b|〉 ∈ θ , then 〈a, |a|〉 ∈ θ .
(ii) Fθ ∈ Fi(A).
(iii) θF ∈ Con(A).
(iv) FθF = F.
(v) θFθ = θ .

Proof (i). Let us assume A ≤ B��. Then 〈a, |b|〉 ∈ θ and
Proposition 2.4.i entail 〈a → a, |b| → a〉 = 〈a → a, a〉 =
〈|a|, a〉 ∈ θ .

(ii). For all a ∈ A, we have |a| = ||a||, so (by reflexivity of
θ ) we obtain |a| ∈ Fθ . To show that Fθ is closed under (→-
mp), assume a, a → b ∈ Fθ , i.e., 〈a, |a|〉, 〈a → b, |a →
b|〉 ∈ θ . Then 〈a ∧ (a → b), |a| ∧ |a → b|〉 ∈ θ . It is
easy to check (on a twist-structure) that ||a| ∧ |a → b|| =
|a| ∧ |a → b|. Then, by item (i) above, we have 〈a ∧ (a →
b), |a ∧ (a → b)|〉 ∈ θ , so 〈(a ∧ (a → b)) → b, |a ∧
(a → b)| → b〉 = 〈(a ∧ (a → b)) → b, b〉 ∈ θ . Letting
a = 〈a1, a2〉, b = 〈b1, b2〉, let us compute (a∧ (a → b)) →
b = (〈a1, a2〉∧ (〈a1, a2〉 → 〈b1, b2〉)) → 〈b1, b2〉 = 〈(a1 ∧
(a1 → b1)) → b1,�(a1 ∧ (a1 → b1)) ∧ b2〉 = 〈(a1 ∧
b1) → b1,�(a1 ∧ b1) ∧ b2〉 = 〈1,�a1 ∧ �b1 ∧ b2〉. Thus,
|(a ∧ (a → b)) → b| = (a ∧ (a → b)) → b. Thus, by item
(i) above, from 〈(a ∧ (a → b)) → b, b〉 = 〈|(a ∧ (a →
b)) → b|, b〉 ∈ θ we obtain 〈b, |b| ∈ θ . Hence, b ∈ Fθ , as
required.

(iii). Let us assume A ≤ B��. Let 〈a, b〉 ∈ θF , that is,
a → b, b → a,∼ a → ∼ b,∼ b → ∼ a ∈ F . Observe that
a → b ∼ ∼ a → ∼ ∼ b. Indeed, letting a = 〈a1, a2〉, b =
〈b1, b2〉, we have ∼ ∼〈a1, a2〉 → ∼ ∼〈b1, b2〉 = 〈�a1 →
�b1,�a1 ∧b2〉. The result then follows because a1 → b1 ≤
�(a1 → b1) ≤ �a1 → �b1. Then from a → b, b → a ∈
F we obtain ∼ ∼ a → ∼ ∼ b,∼ ∼ b → ∼ ∼ a ∈ F . Hence,
〈∼ a,∼ b〉 ∈ θF .

To check that θF is compatible with the lattice operations,
it is sufficient to verify that 〈a∧c, b∧c〉, 〈a∨c, b∨c〉 ∈ θF for
all c ∈ A.Using items (ii) and (iii) of Proposition 2.4,wehave
(a∧c) → (b∧c) = ((a∧c) → b)∧ ((a∧c) → c) = ((c∧
a) → b)∧((a∧c) → c) = (c → (a → b))∧((a∧c) → c).
It is easy to check that (a ∧ c) → c = |(a ∧ c) → c|, hence
(a ∧ c) → c ∈ F . Since a → b c → (a → b), the
assumption a → b ∈ F gives us c → (a → b) ∈ F .
Since F is closed under finite meets, we obtain (c → (a →
b))∧((a∧c) → c) = (a∧c) → (b∧c) ∈ F , as required. A
similar reasoning shows that (b∧c) → (a∧c) ∈ F . To show
that ∼(a ∧ c) → ∼(b ∧ c) ∈ F , it is sufficient to observe
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that ∼ a → ∼ b ∼(a ∧ c) → ∼(b ∧ c). To see that the
latter holds, letting a = 〈a1, a2〉, b = 〈b1, b2〉, c = 〈c1, c2〉,
we compute ∼〈a1, a2〉 → ∼〈b1, b2〉 = 〈a2 → b2, a2 ∧
�b1〉 and ∼(〈a1, a2〉∧ 〈c1, c2〉) → ∼(〈b1, b2〉∧ 〈c1, c2〉) =
〈�(a2∨c2) → �(b2∨c2),�(a2∨c2)∧�(b1∧c1)〉. It suffices
to check that a2 → b2 ≤ �(a2 ∨ c2) → �(b2 ∨ c2), which
does hold because, using the properties of the implication of
Brouwerian algebras, we have a2 → b2 ≤ (a2 → (b2 ∨
c2)) ∧ 1 = (a2 → (b2 ∨ c2)) ∧ (c2 → (b2 ∨ c2)) = (a2 ∨
c2) → (b2∨c2) ≤ �((a2∨c2) → (b2∨c2)) ≤ �(a2∨c2) →
�(b2 ∨ c2). A similar reasoning allows us to conclude that
∼(b ∧ c) → ∼(a ∧ c) ∈ F .

We proceed to check that 〈a∨c, b∨c〉 ∈ θF . To show that
(a∨c) → (b∨c) ∈ F , recall that (a∨c) → (b∨c) = (a →
(b∨c))∧(c → (b∨c)) holds by item (iv) of Proposition 2.4.
From a → b ∈ F and a → b a → (b ∨ c), we conclude
a → (b ∨ c) ∈ F . That c → (b ∨ c) follows from the
observation that c → (b ∨ c) = |c → (b ∨ c)|. Then the
desired result follows because F is closed under finite meets.
A similar reasoning establishes (b ∨ c) → (a ∨ c) ∈ F . To
show ∼(a ∨ c) → ∼(b ∨ c) ∈ F , it suffices to observe
that ∼(a ∨ c) → ∼(b ∨ c) = (∼ a ∧ ∼ c) → (∼ b ∧ ∼ c)
holds by (QN4e.1) in Definition 3.2. Then the result follows
from the above proof that θF is compatible with the meet,
and similarly we obtain ∼(b ∨ c) → ∼(a ∨ c) ∈ F .

Lastly, let us check that θF is compatible with the implica-
tion.We do this in two steps, showing that 〈a, b〉 ∈ θF entails
〈a → c, b → c〉 ∈ θF and 〈c → a, c → b〉 ∈ θF for all
c ∈ A. To see that (a → c) → (b → c) ∈ F , observe that
(b → a) ∧ (a → c) b → c holds by item (vi) of Proposi-
tion 2.4. Using also item (ii) of Proposition 2.4, we thus have
((b → a) ∧ (a → c)) → (b → c) = (b → a) → ((a →
c)) → (b → c)) = |(b → a) → ((a → c)) → (b → c))|.
Hence, b → a (a → c)) → (b → c). Thus, from
b → a ∈ F we obtain (a → c)) → (b → c) ∈ F ,
as required. A similar reasoning shows that a → b ∈ F
entails (b → c)) → (a → c) ∈ F . To see that ∼(a →
c) → ∼(b → c) ∈ F , recall that we have shown earlier
that 〈a, b〉 ∈ θF entails 〈∼ a,∼ b〉 ∈ θF , and therefore also
〈∼ ∼ a,∼ ∼ b〉 ∈ θF . By compatibility of θF with the meet,
we have 〈∼ ∼ a ∧ ∼ c,∼ ∼ b ∧ ∼ c〉 ∈ θF . Thus, in partic-
ular, (∼ ∼ a ∧ ∼ c) → (∼ ∼ b ∧ ∼ c) ∈ F . To conclude the
proof, it suffices to observe that (∼ ∼ a ∧ ∼ c) → (∼ ∼ b ∧
∼ c) ∼(a → c) → ∼(b → c). This is a consequence
of (QN4c), (QN4e.2) and (QN4e.3) in Definition 3.2, and
can be easily verified on a twist-structure: indeed, we have
(∼ ∼〈a1, a2〉 ∧ ∼〈c1, c2〉) → (∼ ∼〈b1, b2〉 ∧ ∼〈c1, c2〉) =
〈(�a1 ∧ c2) → (�b1 ∧ c2),�(�a1 ∧ c2) ∧ �(b2 ∨ �c1)〉
and ∼(〈a1, a2〉 → 〈c1, c2〉) → ∼(〈b1, b2〉 → 〈c1, c2〉) =
〈(�a1∧c2) → (�b1∧c2),�(�a1∧c2)∧�(�b1 → �c1)〉.
A similar reasoning shows ∼(b → c) → ∼(a → c) ∈ F .
We have established that 〈a, b〉 ∈ θF entails 〈a → c, b →
c〉 ∈ θF . We proceed to show that 〈c → a, c → b〉 ∈ θF .

It suffices to check that (c → a) → (c → b) ∈ F and
∼(c → a) → ∼(c → b) ∈ F . The former is straightfor-
ward: just observe that a → b c → (a → b)(c →
a) → (c → b). As to the latter, we reason as before and
recall that (∼ ∼ c ∧ ∼ a) → (∼ ∼ c ∧ ∼ b) ∼(c → a) →
∼(c → b). To conclude the proof, it suffices to observe that,
as shown earlier, 〈a, b〉 ∈ θF entails 〈∼ a,∼ b〉 ∈ θF and
this latter gives us 〈∼ ∼ c ∧ ∼ a,∼ ∼ c ∧ ∼ b〉 ∈ θF .

(iv). Applying the definitions, we have a ∈ FθF iff
〈a, |a|〉 ∈ θF iff a → |a|, |a| → a,∼ a → ∼ |a|,∼ |a| →
∼ a ∈ F . Since |a| → a = a, we have FθF ⊆ F . To
check the converse inclusion, assume a ∈ F , and observe
that b → |b| = |b → |b||, so b → |b| ∈ F for all
b ∈ A. Hence, a → |a|, |a| → a ∈ F . To conclude
the proof, it suffices to note that a ∼ a → ∼ |a| and
∼ |a| → ∼ a = | ∼ |a| → ∼ a|. The latter follows from
item (ix) of Proposition 2.4, and the former can be easily
checked on a twist-structure. Indeed, we have ∼〈a1, a2〉 →
∼ |〈a1, a2〉| = 〈a2 → (�a1 ∧ a2),�a2 ∧ 1〉 = 〈a2 →
�a1,�a2 ∧ 1〉, so the result follows from the observation
that a1 ≤ �a1 ≤ a2 → �a1.

(v). Assume 〈a, b〉 ∈ θFθ . Applying the definitions, we
have 〈a, b〉 ∈ θFθ iff a → b, b → a,∼ a → ∼ b,∼ b →
∼ a ∈ Fθ iff 〈a → b, |a → b|〉, 〈b → a, |b → a|〉, 〈∼ a →
∼ b, | ∼ a → ∼ b|〉, 〈∼ b → ∼ a, | ∼ b → ∼ a|〉 ∈ θ . Then
we have 〈(a → b) ∧ (∼ b → ∼ a) ∧ (∼ a → ∼ b) ∧ (b →
a), |a → b| ∧ | ∼ b → ∼ a| ∧ | ∼ a → ∼ b| ∧ |b → a|〉 =
〈a ⇔ b, |a → b| ∧ | ∼ b → ∼ a| ∧ | ∼ a → ∼ b| ∧ |b →
a|〉 ∈ θ . From the latter, we obtain 〈(a ⇔ b) → a, (|a →
b|∧| ∼ b → ∼ a|∧| ∼ a → ∼ b|∧|b → a|) → a〉 = 〈(a ⇔
b) → a, a〉 ∈ θ . The last equality holds because, using items
(i) and (ii) of Proposition 2.4, we have (|c| ∧ |d|) → e =
|c| → (|d| → e) = |c| → e = e for all c, d, e ∈ A. In a
similar way we obtain 〈(a ⇔ b) → b, b〉 ∈ θ . By item (xii)
of Proposition 2.4, we have (a ⇔ b) → a = (a ⇔ b) → b.
Hence, 〈(a ⇔ b) → a, (a ⇔ b) → b〉 ∈ θ , which gives us
〈a, b〉 ∈ θ . Thus, θFθ ⊆ θ . The converse inclusion is easier.
Assuming 〈a, b〉 ∈ θ , we have 〈a → b, b → b〉 ∈ θ , which
gives us 〈(a → b) → (a → b), (b → b) → (a → b)〉 =
〈|a → b|, a → b〉 ∈ θ , as required. In a similar way we have
〈|b → a|, b → a〉 ∈ θ . To obtain 〈| ∼ a → ∼ b|,∼ a →
∼ b〉, 〈| ∼ b → ∼ a|,∼ b → ∼ a〉 ∈ θ one can also reason
in a similar way: it suffices to observe that 〈a, b〉 ∈ θ entails
〈∼ a,∼ b〉 ∈ θ . ��
Theorem 4.4 The maps given by θ �→ Fθ and F �→ θF
establish an isomorphism between the complete lattices
Fi(A) and Con(A).

Proof Both maps are clearly order-preserving. Lemma 4.5
entails they are also order-reflecting (hence injective) and
inverses of one another. ��
Lemma 4.5 Let B = 〈B,∧,∨,→,�〉 be a nuclear Brouw-
erian algebra. Then Con(B) = Con(〈B,∧,∨,→〉).
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Proof Let θ ∈ Con(〈B,∧,∨,→〉), and assume 〈a, b〉 ∈ θ .
Then 〈a → b, b → b〉 = 〈a → b, 1〉 ∈ θ . Since a →
b ≤ �(a → b) ≤ �a → �b, from 〈a → b, 1〉 ∈ θ

we obtain 〈(a → b) ∨ (�a → �b), 1 ∨ (�a → �b)〉 =
〈�a → �b, 1〉 ∈ θ . From the latter, we have 〈�a ∧ (�a →
�b),�a ∧ 1〉 = 〈�a ∧ �b,�a〉 ∈ θ . A similar reasoning
establishes 〈�a ∧ �b,�b〉 ∈ θ , so 〈�a,�b〉 ∈ θ . Hence,
θ ∈ Con(B), as required. ��
Corollary 4.6 Let A ≤ B�� be a quasi-N4-lattice, where
B = 〈B,∧,∨,→,�〉. Then Con(A) ∼= Con(B) =
Con(〈B,∧,∨,→〉).
Proof The equality Con(B) = Con(〈B,∧,∨,→〉) has
been established in Lemma 4.5. The required result will
be obtained by composing the following isomorphisms. It
is well known that the lattice filters Fi(B) of a Brouw-
erian algebra form a complete lattice that is isomorphic
to Con(〈B,∧,∨,→〉). In turn, by Theorem 4.2, we have
Fi(B) ∼= Fi(A), and Theorem 4.4 gives us Fi(A) ∼=
Con(A). ��

It may be interesting to illustrate the correspondence that
we obtain by composing the isomorphisms mentioned in the
proof of Corollary 4.6. Every η ∈ Con(B) determines a con-
gruence ηA ∈ Con(A) given by:

ηA := {〈〈a1, a2〉, 〈b1, b2〉〉∈A×A : 〈a1, b1〉, 〈a2, b2〉∈η}.

Conversely, for θ ∈ Con(A), we have θB ∈ Con(B) given
by:

θB : = {〈a, b〉 ∈ B × B : there is c ∈ B s.t. 〈a ↔ b, c〉 ∈ A

and 〈〈a ↔ b, c〉, |〈a ↔ b, c〉|〉 ∈ θ}.

The previous results allow us to justify an observation
announced at the end of the preceding section.

Theorem 4.7 V(QN∪N4) is axiomatized relative to QN4 by
the identity (1):

((x ∧ ∼ x) → y) ∨ (∼∼ z → z) ≈
|((x ∧ ∼ x) → y) ∨ (∼ ∼ z → z)|.

Proof Let K be the subvariety of QN4 axiomatized by the
identity (1). We have observed earlier that V(QN∪N4) ⊆ K.
To verify the converse inclusion, we are going to show
that every subdirectly irreducible member of K belongs to
QN ∪ N4. Let then A ≤ B�� be a subdirectly irreducible
QN4-lattice inK. ByCorollary 4.6 (see also item (ii) ofCorol-
lary 4.13), the �-free reduct of B is a subdirectly irreducible
Brouwerian algebra. Then B has a unique co-atom (see, e.g.,
Galatos et al. 2007, Thm. 1.23) which entails that the least
lattice filter {1} on B is prime. Using Theorem 4.2, it is easy

to see that F = ({1} × B) ∩ A, which is the least filter
on A, is also prime. By (1), for all elements a, b, c ∈ A,
we have ((a ∧ ∼ a) → b) ∨ (∼ ∼ c → c) ∈ F . Since F
is prime, this means that either (a ∧ ∼ a) → b ∈ F or
∼ ∼ c → c ∈ F . Recalling Proposition 3.8, we have in the
former case A ∈ QN, and in the latter A ∈ N4, as required.

��

4.2 EDPC, CEP and congruence-permutability

We shall now proceed to show that the variety of QN4-
lattices possesses a ternary deduction term and a quaternary
deductive term in the sense of Blok and Pigozzi (1994), as
well as aMaltsev termwitnessing congruence-permutability.
This entails that quasi-N4-lattices have equationally defin-
able principal congruences (EDPC) and a strong version of
the congruence extension property (CEP).

Let:

(q(x, y, z)) := (x ⇔ y) → z.

Lemma 4.8 Let A be a quasi-N4-lattice and a, b, c, d ∈ A.

(i) q(a, a, b) = b.
(ii) q(a, b, a) = q(a, b, b).
(iii) q(a, b,∼ c) = q(a, b,∼ q(a, b, c)).
(iv) q(a, b, c → d) = q(a, b, q(a, b, c) → q(a, b, d)).
(v) q(a, b, c ∧ d) = q(a, b, q(a, b, c) ∧ q(a, b, d)).
(vi) q(a, b, c ∨ d) = q(a, b, q(a, b, c) ∨ q(a, b, d)).
(vii) q(a, b, q(c, d, e)) = q(c, d, q(a, b, e)).

Proof (i). Throughout the proof, we will assume A ≤ B��
and work with generic elements a = 〈a1, a2〉, b = 〈b1, b2〉
etc. Recall that 〈a1, a2〉 ⇔ 〈b1, b2〉 = 〈(a1 ↔ b1) ∧
(a2 ↔ b2),�((�a1 ∧ b2) ∨ (�b1 ∧ a2))〉. Thus, 〈a1, a2〉 ⇔
〈a1, a2〉 = 〈(a1 ↔ a1)∧(a2 ↔ a2),�((�a1∧a2)∨(�a1∧
a2))〉 = 〈1,�a1∧a2〉 = |〈1,�a1∧a2〉|. Then the result fol-
lows from item (i) of Proposition 2.4.

(ii). This is item (xii) of Proposition 2.4.
(iii). From now on, to simplify the notation, let us

abbreviate α1 := a1 ↔ b1 and α2 := a2 ↔ b2 Tak-
ing into account item (i), we have q(〈a1, a2〉, 〈b1, b2〉,∼〈
c1, c2〉) = 〈(α1 ∧ α2) → c2,�α1 ∧ �α2 ∧ �c1〉 and
∼ q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉) = 〈�α1∧�α2∧c2,�((α1∧
α2) → c1)〉. Thus, q(a, b,∼ q(a, b, c)) = 〈(α1 ∧ α2) →
(�α1 ∧ �α2 ∧ c2),�α1 ∧ �α2 ∧ �((α1 ∧ α2) → c1)〉. We
must therefore show that

(α1 ∧ α2) → c2 = (α1 ∧ α2) → (�α1 ∧ �α2 ∧ c2)

and

�α1 ∧ �α2 ∧ �c1
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= �α1 ∧ �α2 ∧ �((α1 ∧ α2) → c1).

Regarding the first components, observe that α1 ∧ α2 ≤
�(α1 ∧ α2) = �α1 ∧ �α2. Thus, using item (iii) of Propo-
sition 2.4, we have (α1 ∧ α2) → (�α1 ∧ �α2 ∧ c2) =
((α1 ∧ α2) → (�α1 ∧ �α2)) ∧ ((α1 ∧ α2) → c2) =
1 ∧ ((α1 ∧ α2) → c2) = (α1 ∧ α2) → c2, which entails the
required result. The second components are straightforward.
Indeed, recalling that x ∧ (x → y) ≈ x ∧ y holds on every
Brouwerian algebra, we have �α1 ∧ �α2 ∧ �((α1 ∧ α2) →
c1) = �(α1 ∧ α2 ∧ (α1 ∧ α2) → c1) = �(α1 ∧ α2 ∧ c1) =
�α1 ∧ �α2 ∧ �c1.

(iv). Let us compute q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉 → 〈d1,
d2〉) = 〈(α1∧α2) → (c1 → d1),�α1∧�α2∧�c1∧d2〉 and
q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉) → q(〈a1, a2〉, 〈b1, b2〉, 〈d1,
d2〉) = 〈(α1)∧α2) → c1,�α1∧�α2∧c1〉 → 〈(α1∧α2) →
d1,�α1∧�α2∧d2〉 = 〈((α1∧α2) → c1) → ((α1∧α2) →
d1),�((α1 ∧ α2) → c1) ∧ �α1 ∧ �α2 ∧ d2〉. Hence,

q(〈a1, a2〉, 〈b1, b2〉, q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉)
→ q(〈a1, a2〉, 〈b1, b2〉, 〈d1, d2〉))

reduces to 〈(α1∧α2) → (((α1∧α2) → c1) → (α1∧α2) →
d1)),�α1∧�α2∧(�((α1∧α2) → c1)∧�α1∧�α2∧d2)〉.
We thus need to check that (α1 ∧ α2) → (c1 → d1) =
(α1 ∧ α2) → (((α1 ∧ α2) → c1) → (α1 ∧ α2) → d1)) and
�α1 ∧ �α2 ∧ �c1 ∧ d2 = �α1 ∧ �α2 ∧ (�((α1 ∧ α2) →
c1)∧�α1∧�α2∧d2). The first equality is a consequence of
the identity x → (y → z) ≈ x → ((x → y) → (x → z)),
which holds on every Brouwerian algebra. Regarding the
second equality, we have �α1 ∧ �α2 ∧ �((α1 ∧ α2) →
c1) ∧ �α1 ∧ �α2 ∧ d2 = �(α1 ∧ α2) ∧ �((α1 ∧ α2) →
c1) ∧ d2 = �(α1 ∧ α2 ∧ ((α1 ∧ α2) → c1)) ∧ d2 = �(α1 ∧
α2 ∧ c1) ∧ d2 = �α1 ∧ �α2 ∧ �c1 ∧ d2.

(v). Let us computeq(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉∧〈d1, d2〉)
= 〈(α1 ∧ α2) → (c1 ∧ d1),�α1 ∧ �α2 ∧ �(c2 ∨
d2)〉 and q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉)∧q(〈a1, a2〉, 〈b1, b2〉,
〈d1, d2〉) = 〈(α1∧α2) → c1,�α1∧�α2∧c2〉∧〈(α1∧α2) →
d1,�α1 ∧ �α2 ∧ d2〉 = 〈((α1 ∧ α2) → c1) ∧ ((α1 ∧ α2) →
d1),�((�α1 ∧ �α2 ∧ c2) ∨ (�α1 ∧ �α2 ∧ d2))〉.

Hence,

q(〈a1, a2〉, 〈b1, b2〉, q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉)
∧q(〈a1, a2〉, 〈b1, b2〉, 〈d1, d2〉))

reduces to 〈(α1 ∧α2) → (((α1 ∧α2) → c1)∧ ((α1 ∧α2) →
d1)),�α1∧�α2∧�((�α1∧�α2∧c2)∨(�α1∧�α2∧d2))〉,
and we need to check that

(α1 ∧ α2) → (c1 ∧ d1) = (α1 ∧ α2)

→ (((α1 ∧ α2) → c1) ∧ ((α1 ∧ α2) → d1))

and

�α1 ∧ �α2 ∧ �(c2 ∨ d2) = �α1 ∧ �α2 ∧
�((�α1 ∧ �α2 ∧ c2) ∨ (�α1 ∧ �α2 ∧ d2)).

The former equality follows from the identity x → (y ∧
z) ≈ x → ((x → y) ∧ (x → z)), which is valid on every
Brouwerian algebra. As to the latter, recalling that �c2 = c2
and�d2 = d2, we have�α1∧�α2∧�((�α1∧�α2∧c2)∨
(�α1∧�α2∧d2)) = �α1∧�α2∧�(�(α1∧α2∧c2)∨�(α1∧
α2∧d2)) = �α1∧�α2∧�((α1∧α2∧c2)∨(α1∧α2∧d2)) =
�α1∧�α2∧�(α1∧α2∧(c2∨d2)) = �(α1∧α2∧α1∧α2∧
(c2∨d2)) = �(α1∧α2∧(c2∨d2)) = �α1∧�α2∧�(c2∨d2),
as required.

(vi). Let us computeq(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉∨〈d1, d2〉)
= 〈(α1 ∧ α2) → (c1 ∨ d1),�α1 ∧ �α2 ∧ (c2 ∧ d2)〉 and
q(〈a1, a2〉, 〈b1, b2〉, 〈c1, c2〉) ∨ q(〈a1, a2〉, 〈b1, b2〉,
〈d1, d2〉) = 〈(α1 ∧ α2) → c1,�α1 ∧ �α2 ∧ c2〉 ∨
〈(α1 ∧ α2) → d1,�α1 ∧ �α2 ∧ d2〉 = 〈((α1 ∧ α2) →
c1) ∨ ((α1 ∧ α2) → d1), (�α1 ∧ �α2 ∧ c2) ∧ (�α1 ∧
�α2∧d2)〉. Hence, q(〈a1, a2〉, 〈b1, b2〉, q(〈a1, a2〉, 〈b1, b2〉,
〈c1, c2〉) ∨ q(〈a1, a2〉, 〈b1, b2〉, 〈d1, d2〉)) = 〈(α1 ∧ α2) →
(((α1 ∧ α2) → c1) ∨ ((α1 ∧ α2) → d1)),�α1 ∧ �α2 ∧
(�α1 ∧ �α2 ∧ c2) ∧ (�α1 ∧ �α2 ∧ d2)〉. We thus need to
check that

(α1 ∧ α2) → (c1 ∨ d1) = (α1 ∧ α2)

→ (((α1 ∧ α2) → c1) ∨ ((α1 ∧ α2) → d1))

and�α1 ∧�α2 ∧c2 ∧d2 = �α1 ∧�α2 ∧�α1 ∧�α2 ∧c2 ∧
�α1∧�α2∧d2. The latter equality is clear; as to the former,
observe that c1∨d1 ≤ ((α1∧α2) → c1)∨ ((α1∧α2) → d1)
entails (α1∧α2) → (c1∨d1) ≤ (α1∧α2) → (((α1∧α2) →
c1)∨((α1∧α2) → d1)). The converse inequality (α1∧α2) →
(((α1∧α2) → c1)∨((α1∧α2) → d1)) ≤ (α1∧α2) → (c1∨
d1) is equivalent, by residuation, to (α1∧α2)∧((α1∧α2) →
(((α1∧α2) → c1)∨((α1∧α2) → d1))) ≤ c1∨d1. Note that
(α1∧α2)∧((α1∧α2) → (((α1∧α2) → c1)∨((α1∧α2) →
d1))) = α1∧α2∧(((α1∧α2) → c1)∨((α1∧α2) → d1)) =
(α1∧α2∧((α1∧α2) → c1))∨(α1∧α2∧((α1∧α2) → d1)) =
(α1∧α2∧c1)∨(α1∧α2∧d1) = (α1∧α2)∧(c1∨d2) ≤ c1∨d1.
Hence, the required result follows.

(vii). We need to show (a ⇔ b) → ((c ⇔ d) → e) =
(c ⇔ d) → ((a ⇔ b) → e), which is an easy consequence
of item (ii) of Proposition 2.4. ��

Lemma 4.8 allows us to apply (Blok and Pigozzi 1994,
Thm. 2.3, Cor. 2.4) to obtain the following result, which gen-
eralizes the one established about N4-lattices in Spinks and
Veroff (2018, Thm. 4.26).

Theorem 4.9 q(x, y, z) is a commutative ternary deduction
term in the sense of Blok and Pigozzi (1994). Therefore,
the variety of quasi-N4-lattices has equationally definable
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principal congruences and the strong congruence extension
property (Blok and Pigozzi 1994, Thm. 2.12).

By Theorem 4.9, for every quasi-N4-lattice A, the princi-
pal congruence generated by elements a, b ∈ A is given by
θ(a, b) = {〈c, d〉 : (a ⇔ b) → c = (a ⇔ b) → d}.
Theorem 4.10 The variety of quasi-N4-lattices is congrue-
nce-permutable with Maltsev term:

p(x, y, z) := (((x ⇒ y) ∧ |z|) ⇒ z) ∧
(((z ⇒ y) ∧ |x |) ⇒ x).

Proof Weneed to show that every quasi-N4-latticeA satisfies
p(x, x, y) ≈ y and p(x, y, y) ≈ x . To see this, let A ≤
B�� and a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ A. We claim that
(a ⇒ a) ∧ |b|) ⇒ b = b and b ≤ (b ⇒ a) ∧ |a|) ⇒ a,
which entails p(a, a, b) = ((a ⇒ a) ∧ |b|) ⇒ b) ∧ ((b ⇒
a) ∧ |a|) ⇒ a) = b ∧ ((b ⇒ a) ∧ |a|) ⇒ a) = b and, by
the same token, p(a, b, b) = a.

Let us compute: ((〈a1, a2〉 ⇒ 〈a1, a2〉) ∧ |〈b1, b2〉|) ⇒
〈b1, b2〉 = 〈1,�(�a1 ∧ a2〉) ∨ (�b1 ∧ b2)〉 ⇒ 〈b1, b2〉 =
〈(1 → b1) ∧ (b2 → �((�a1 ∧ a2〉) ∨ (�b1 ∧ b2))),�1 ∧
b2〉 = 〈b1 ∧ (b2 → �((�a1 ∧ a2〉) ∨ (�b1 ∧ b2))), b2〉 =
〈b1, b2〉. The last equality holds because of the following
(in)equalities:b1 ≤ �b1 ≤ b2 → �b1 = (b2 → �b1)∧1 =
(b2 → �b1) ∧ (b2 → b2) = b2 → (�b1 ∧ b2) ≤ b2 →
((�a1∧a2〉)∨(�b1∧b2)) ≤ b2 → �((�a1∧a2〉)∨(�b1∧
b2))

Nowlet us compute: ((〈b1, b2〉 ⇒ 〈a1, a2〉)∧|〈a1, a2〉|) ⇒
〈a1, a2〉 = 〈(b1 → a1) ∧ (a2 → b2) ∧ 1,�((�b1 ∧ a2) ∨
(�a1 ∧ a2))〉 ⇒ 〈a1, a2〉 = 〈(((b1 → a1) ∧ (a2 → b2)) →
a1) ∧ (a2 → �((�b1 ∧ a2) ∨ (�a1 ∧ a2)),�((b1 →
a1) ∧ (a2 → b2)) ∧ �a2〉. Observe that b1 ≤ (((b1 →
a1)∧(a2 → b2)) → a1)∧(a2 → �((�b1∧a2)∨(�a1∧a2))
because of the following (in)equalities: b1 ≤ (b1 → a1) →
a1 ≤ (a2 → b2) → ((b1 → a1) → a1) = ((b1 →
a1) ∧ (a2 → b2)) → a1 and b1 ≤ �b1 ≤ a2 → �b1 =
(a2 → �b1) ∧ 1 = (a2 → �b1) ∧ (a2 → a2) =
a2 → (�b1 ∧ a2) ≤ a2 → �(�b1 ∧ a2) ≤ a2 →
�((�b1 ∧ a2) ∨ (�a1 ∧ a2)). Furthermore, recalling that
�b2 = b2, we have �((b1 → a1)∧ (a2 → b2))∧�a2 ≤ b2
because �((b1 → a1) ∧ (a2 → b2)) ∧ �a2 = �((b1 →
a1) ∧ (a2 → b2) ∧ a2) = �((b1 → a1) ∧ a2 ∧ b2) ≤
�(a2 ∧ b2) ≤ �b2 = b2. Thus, p(a, a, b) = b, as claimed.
��

As a variety of enriched lattices, quasi-N4-lattices are
obviously congruence-distributive. Thus, the preceding theo-
rem extends the result of Spinks and Veroff (2018, Cor. 4.25)
to the non-involutive setting.

Corollary 4.11 The variety of quasi-N4-lattices is arithmeti-
cal.

It is known (Spinks and Veroff 2018, Lemma 4.28) that a
variety having a ternary deduction term and a Maltsev term
must also possess a quaternary deductive term in the sense
of Blok et al. (1984, Def. 1.1). Thus, Theorems 4.9 and 4.10
give us the following result, extending (Spinks and Veroff
2018, Thm. 4.29).

Corollary 4.12 The variety of quasi-N4-lattices has a quater-
nary deductive term

t(x, y, z, w) := p(q(x, y, z), q(x, y, w),w),

where, as before, p(x, y, z) = (((x ⇒ y) ∧ |z|) ⇒ z) ∧
(((z ⇒ y) ∧ |x |) ⇒ x) and q(x, y, z) = (x ⇔ y) → z.

Corollary 4.13 Let A ≤ B�� be a quasi-N4-lattice, where
B = 〈B,∧,∨,→,�〉. The following are equivalent:

(i) A is directly indecomposable (resp., subdirectly irre-
ducible, simple).

(ii) 〈B,∧,∨,→〉 is a directly indecomposable (resp., sub-
directly irreducible, simple) Brouwerian algebra.

Proof For subdirectly irreducible and simple algebras, the
result is an immediate consequence of Corollary 4.6. For
directly indecomposable algebras, it suffices to further
observe that both Brouwerian algebras (see, e.g., (Galatos
et al. 2007, p. 94)) and quasi-N4-lattices (by Theorem 4.10)
are congruence-permutable. ��

Recall that, according to Spinks et al. (2019), an algebra
A having constants 0 and 1 is (0, 1)-congruence orderable if
and only if, for all a, b ∈ A, it holds that

θ(0, a) = θ(0, b) and θ(1, a) = θ(1, b) implies a = b,

where θ(a, b) denotes the principal congruence generated
by {a, b} in A. As mentioned earlier, it was shown in Spinks
et al. (2019) and Rivieccio and Spinks (2020) that Nelson
and quasi-Nelson algebras coincide with, respectively, the
class of (0, 1)-congruence orderable involutive residuated
lattices and the class of (0, 1)-congruence orderable residu-
ated lattices. Although an arbitrary (quasi-)N4-latticeA need
not have any definable algebraic constant, it can be shown
that A satisfies a property that reminds one closely of (0, 1)-
congruence orderability, and could lead to a generalization
of the latter that might be applicable outside the setting of
pointed algebras (cf. Problem 8.1 in Spinks et al. (2019)).
We prove this in item (iii) of the next proposition.

Proposition 4.14 Let A be a quasi-N4-lattice and a, b, c ∈
A.

(i) a ⇔ |a| = a.
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(ii) θ(a, |a|) = {〈b, c〉 ∈ A × A : a → b = a → c}.
(iii) a = b iff (θ(a, |a|) = θ(b, |b|) and θ(∼ a, | ∼ a|) =

θ(∼ b, | ∼ b|)).

Proof (i). Let A ≤ B�� and a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ A.
Let us compute 〈a1, a2〉 ⇔ |〈a1, a2〉| = 〈(a1 ↔ 1) ∧ (a2 ↔
(�a1∧a2)),�(�a1∧�a1∧a2)∨(�1∧a2))〉 = 〈a1∧(a2 →
(�a1 ∧ a2)) ∧ ((�a1 ∧ a2) → a2),�((�a1 ∧ a2) ∨ a2)〉 =
〈a1∧(a2 → �a1)∧(a2 → a2)∧1,�a2〉 = 〈a1∧1,�a2〉 =
〈a1, a2〉.

(ii). By Theorem 4.9, we have 〈b, c〉 ∈ θ(a, |a|) iff (a ⇔
|a|) → b = (a ⇔ |a|) → c, and by item (i) above we have
(a ⇔ |a|) → b = a → b and (a ⇔ |a|) → c = a → c.

(iii). To verify the only non-trivial implication, assume we
have θ(a, |a|)= θ(b, |b|) and θ(∼ a, | ∼ a|)= θ(∼ b, | ∼ b|).
Thus, 〈b, |b|〉 ∈ θ(a, |a|), which by item (ii) above means
a → b = a → |b|. By item (xiii) of Proposition 2.4, we
have a → |b| = a → (b → b) = |a → b|. Hence, a  b,
and a similar reasoning gives us b a. Thus, a ≡ b. Apply-
ing the same reasoning to the assumption θ(∼ a, | ∼ a|) =
θ(∼ b, | ∼ b|), from 〈∼ b, | ∼ b|〉 ∈ θ(∼ a, | ∼ a|) we obtain
∼ a → ∼ b = ∼ a → | ∼ b|, so ∼ a  ∼ b, and similarly
we have∼ b ∼ a. Then∼ a≡∼ b, and we can invoke item
(QN4d) of Definition 3.2 to conclude a = b. ��

5 Future work

The aim of the present work has been to initiate the study of a
potentially interesting new class of algebras related to well-
known non-classical logics. Future research may explore
several directions, and time will tell to which extent such a
research will turn out to be fruitful. We mention below a few
topics on quasi-N4-lattices that, from our current standpoint,
appear to deserve further investigation.

In the first place, given the connection of the algebraic
structures considered here with Nelson logics, there is the
question of introducing a logical calculus corresponding to
quasi-N4-lattices.Webelieve that quasi-N4-lattices are likely
to turn out to be the equivalent algebraic semantics of an
algebraizable logic (in Blok and Pigozzi’s (1989) sense),
and we conjecture that the same translations that witness
the algebraizability of paraconsistent Nelson logic (see, e.g.,
(Rivieccio 2011, Thm. 2.6)) will work for the logic of quasi-
N4-lattices as well. A related question is whether one might
be able to present an alternative view of quasi-N4-lattices
as algebras of relevance logics and introduce a correspond-
ing logical calculus accordingly, generalizing the result of
Spinks and Veroff (2018) on N4-lattices and paraconsistent
Nelson logic; Remark 3.5 suggests that this may indeed be a
feasible project.

From a structural point of view the representation stated
in Theorem 3.3, though quite useful in practice, appears less

satisfactory than the corresponding known results on Nelson
algebras and N4-lattices. This is because Theorem 3.3 does
not tell us how a given quasi-N4-lattice sits inside the full
product algebra into which it is embedded. In the case of
Nelson algebras and N4-lattices, the missing information is
provided by what Odintsov called invariants, which in our
casewould be the sets∇ and�mentioned in Proposition 2.5.
The latter, however, only tells us that every triple 〈B,∇,�〉
uniquely determines a quasi-N4-lattice: it is an open question
whether every quasi-N4-lattice may be obtained in this way
as a twist-structure from a triple 〈B,∇,�〉.

A last topic that deserves to be mentioned is the investiga-
tion of sub(quasi)varieties of quasi-N4-lattices, an enterprise
in which the twist-structure representation may prove to
be a very helpful tool (especially in its improved version,
which includes the above-mentioned invariants); see, e.g., the
analogous case of subvarieties of quasi-Nelson algebras in
Rivieccio and Jansana (2021, Sect. 3.1). In particular, a recent
paper Rivieccio et al. (2020) has drawn attention to the role
played by the so-called prelinearity identity in the context
of quasi-Nelson algebras, and to the connection of the latter
with well-known algebras of fuzzy logics (on the role of pre-
linearity within the theory of N4-lattices we refer the reader
to Aguzzoli et al. (2017)). Preliminary results indicate that
a similar investigation may prove to be equally fruitful, and
perhaps even more insightful, in the wider setting of quasi-
N4-lattices.
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