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Abstract
The island Cuckoo Search (iCSPM) algorithm is a variation of Cuckoo Search that uses the island model and highly disruptive
polynomialmutation to solve optimization problems. This article introduces an improved iCSPMalgorithmcalled iCSPMwith
elite opposition-based learning and multiple mutation methods (iCSPM2). iCSPM2 has three main characteristics. Firstly,
it separates candidate solutions into several islands (sub-populations) and then divides the islands among four improved
Cuckoo Search algorithms: Cuckoo Search via Lévy flights, Cuckoo Search with highly disruptive polynomial mutation,
Cuckoo Search with Jaya mutation and Cuckoo Search with pitch adjustment mutation. Secondly, it uses elite opposition-
based learning to improve its convergence rate and exploration ability. Finally, it makes continuous candidate solutions discrete
using the smallest position value method. A set of 15 popular benchmark functions indicate iCSPM2 performs better than
iCSPM. However, based on sensitivity analysis of both algorithms, convergence behavior seems sensitive to island model
parameters. Further, the single-objective IEEE-CEC 2014 functions were used to evaluate and compare the performance of
iCSPM2 to four well-known swarm optimization algorithms: distributed grey wolf optimizer, distributed adaptive differential
evolution with linear population size reduction evolution, memory-based hybrid dragonfly algorithm and fireworks algorithm
with differential mutation. Experimental and statistical results suggest iCSPM2 has better performance than the four other
algorithms. iCSPM2’s performancewas also shown to be favorable compared to two powerful discrete optimization algorithms
(generalized accelerations for insertion-based heuristics and memetic algorithm with novel semi-constructive crossover and
mutation operators) using a set of Taillard’s benchmark instances for the permutation flow shop scheduling problem.

Keywords Island model · Diversity · Structured population · Cuckoo Search · Lévy flights · Highly disruptive polynomial
mutation · Pitch adjustment mutation · Jaya mutation · Elite opposition-based learning

1 Introduction

Exact algorithms are usually used to find optimal solutions
for simple optimization problems such as the feature selec-
tion problem (Yusta 2009; Komusiewicz and Kratsch 2020).
However, NP-hard optimization problems, such as the trav-
eling salesman problem and shortest path problem (Zhou
et al. 2019; Abed-alguni and Alawad 2021), typically can-
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not be solved with exact algorithms and require heuristic
or optimization algorithms to solve them. This is because
the search area of an NP-hard optimization problem is either
extremely large or infinite. An optimization algorithm can be
applied iteratively to compare different candidate solutions
for an optimization problem until finding a satisfactory or
optimal solution. In the optimization field, the term single-
solution optimization describes an optimization algorithm
that iteratively optimizes a single candidate solution, while
the term population-based optimization is used to describe
an optimization algorithm that iteratively optimizes multiple
candidate solutions at the same time. A general problemwith
optimization algorithms is that they may converge to unac-
cepted solutions (premature convergence) during an early
stage of their optimization process. Besides, the perfor-
mance and speed of optimization algorithms degrade with
the increase of the dimensionality (i.e., number of decision
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variables) of optimization problems (Abed-alguni and Bar-
housh 2018; Abed-alguni 2019; Mehta and Kaur 2019).

One frequently used option of population-based optimiza-
tion algorithms is the island-based approach, which is based
on the principle of divide and conquer. In island-based opti-
mization algorithms, an island model divides the overall
candidate solution population into smaller, equal-sized inde-
pendent sub-populations (islands) to ensure diversity of can-
didate solutions through a structured, distributed approach.
An optimization algorithm is then independently applied to
each island, though the process of migration is modelled by
the islands regularly communicating with each other (Abed-
alguni 2019; Abed-Alguni et al. 2019; Al-Betar et al. 2019;
Al-Betar and Awadallah 2018).

Island-based optimization algorithms [e.g., island arti-
ficial bee colony (Awadallah et al. 2020), island flower
pollination algorithm (Al-Betar et al. 2019), island bat algo-
rithm (Al-Betar and Awadallah 2018), island-based harmony
search (Al-Betar et al. 2015), island-based genetic algo-
rithm (Mohammed et al. 2016) and island-based Cuckoo
Search with highly disruptive polynomial mutation (iCSPM)
Abed-alguni 2019] have been used with a high degree of
success in both continuous and discrete problems. Accord-
ing to Abed-alguni (2019); Alawad and Abed-alguni (2020),
iCSPM exhibits a superior performance compared to other
island-based optimization algorithms. There are three possi-
ble reasons for this. Firstly, the iCSPM model, especially in
conjunction with its abandon method, helps increase diver-
sity in each island. Secondly, low-fitness solutions are given
the opportunity to evolve to improved solutions. Thirdly,
the included highly disruptive polynomial mutation (HDP)
method allows the exploration of the entire search space
regardless of the decision variable’s current value.

In this research study, we introduce an improved iCSPM
algorithm, iCSPM2, which incorporates three modifications
into iCSPM. Firstly, it partitions its n candidate solutions
between s independent islands and then equally divides
them among four Cuckoo Search (CS) algorithms: CS via
Lévy flights (CS1) (Yang and Deb 2009), CS with HDP
mutation (CS10) (Abed-Alguni and Paul 2018), CS with
Jaya mutation (CSJ) and CS with pitch adjustment muta-
tion (CS11) (Abed-Alguni and Paul 2018). Secondly, it uses
elite opposition-based learning (EOBL) (Zhou et al. 2013)
to explore solutions around the current elite solutions (best
solutions) in each island’s population. Finally, it employs the
smallest position value (SPV) (Ali et al. 2019) with schedul-
ing problems to convert the continuous values of any decision
variables to discrete ones in a candidate solution.

There are five expected benefits for iCSPM2, which are
mainly because of the unique advantages that each CS vari-
ation has to offer. First, CS1 uses the Lévy flight mutation,
which has a better exploration capability than the random
mutation method (Yang and Deb 2009). Second, CS10 uses

the HDP mutation method that can sample the entire search
space between the lower and upper bounds of a decision
variable regardless of its value (Abed-Alguni and Paul 2018;
Abed-alguni 2019; Alawad and Abed-alguni 2020). Third,
CSJ uses the Jaya mutation method that mutates the can-
didate solutions using stochastic moves based on the best
andworst candidate solutions (Rao 2016). Fourth, CS11 uses
the pitch adjustment mutation, which is known for its quick
convergence (Abed-Alguni and Paul 2018; Al-Betar et al.
2015). Finally, we are particularly interested to use EOBL in
iCSPM2because it is capable of speeding up the convergence
speed of optimization algorithms by exploring the opposite
solutions of the best-known candidate solutions (Paiva et al.
2017; Zhang et al. 2017). By combining these techniques, it
is expected that iCSPM2 will be able to realize some of the
advantages of each variation.

The main contributions of this paper are as follows:

1. We propose iCSPM2, which is an improved island-based
CS algorithm with multiple exploration and exploitation
techniques.

2. To the best of the authors’ knowledge, it is the first time
that four variations of CS (CS1, CS10, CSJ and CS11)
are applied synchronously to the islandmodel. Besides, it
is the first time that the EOBLmethod is used to improve
the convergence rate and exploration ability of an island-
based algorithm.

3. We use the SPV method with scheduling problems to
convert continuous candidate solutions into discrete ones.

4. We present results of three sets of experiments to test
and evaluate the efficiency of iCSPM2 compared to other
popular optimization algorithms using popular bench-
mark suites for continuous and discrete problems.

– Firstly, we used 15 popular benchmark functions
to compare iCSPM2 to iCSPM. The experimental
results indicate that iCSPM2 exhibits better perfor-
mance than iCSPM.

– Secondly, we used 30 IEEE-CEC 2014 functions to
compare the performance of iCSPM2 against the per-
formance of four state-of-the-art swarm optimization
algorithms: distributed grey wolf optimizer (DGWO)
(Abed-alguni and Barhoush 2018), distributed adap-
tive differential evolution with linear population size
reduction evolution (L-SHADE) (Tanabe and Fuku-
naga 2014), memory-based hybrid dragonfly algo-
rithm (MHDA) (Ks andMurugan2017) andfireworks
algorithm with differential mutation (FWA-DM) (Yu
et al. 2014). The overall simulation and statistical
results clearly indicate that iCSPM2 outperforms the
other tested swarm optimization algorithms.

– Finally, we used a set of Taillard’s benchmark
instances for the permutation flow shop schedul-
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ing problem (PFSSP) (Taillard 1990) to evaluate
and compare iCSPM2 to two powerful discrete
evolutionary algorithms (generalized accelerations
for insertion-based heuristics (GAIbH) (Fernandez-
Viagas et al. 2020) andmemetic algorithmwith novel
semi-constructive crossover and mutation operators
(MASC) (Kurdi 2020). The simulation results indi-
cate that iCSPM2 produces better schedules than
GAIbH and MASC.

The remainder of the paper is organized as follows: We
first review the preliminaries in Sect. 2. In Sect. 3, we
provide a critical review of recently proposed island-based
algorithms. Section 4 then presents our proposed variation
of iCSPM. In Sect. 5, we demonstrate the performance of
iCSPM2 compared to the other island-based algorithms and
discuss these results in Sect. 6. Finally, Sect. 7 concludes the
paper and presents future work.

2 Preliminaries

This section provides a summary of some of the underlying
concepts of the Cuckoo Search algorithm (Sect. 2.1), as well
as some existing improvements to Cuckoo Search, including
Cuckoo Search with pitch adjustment (Sect. 2.2); Cuckoo
Search with Jaya mutation (Sect. 2.3); and island-based
Cuckoo Search with highly disruptive polynomial mutation
(Sect. 2.4). Elite opposition-based learning, which explores
opposite solutions of best-known candidates to help speed up
convergence, is then discussed in Sect. 2.5. Finally, Sect. 2.6
provides a description of the permutation flow shop schedul-
ing problem.

2.1 Cuckoo Search algorithm

The Cuckoo Search (CS) algorithm (Yang and Deb 2009;
Abed-alguni et al. 2021; Alkhateeb et al. 2021) is a nature-
inspired, evolutionary algorithm. It aims to optimize a
population of candidate solutions for a given optimization
problemusing two simulationmodels related to the behaviors
of birds in nature. The first model simulates the parasitic pro-
creation habit of cuckoos, while the second model simulates
the random actions of flying and landing of birds using Lévy
flights (Yang and Deb 2009; Rakhshani and Rahati 2016).

In CS, an egg (current candidate solution) can be mutated
into a cuckoo’s egg. CS generates, at each iteration, amutated
solution using a function that comprises the Lévy-flight oper-
ator. It then attempts to swap the new solution with a lower
quality solution in the population. Two parameters control
the optimization process of CS: the population size (number
of eggs) n and the fraction of the worst candidate solu-
tions that get replaced with randomly generated solutions

(pa ∈ [0, 1]). The simulation models of CS are based on the
following notations and assumptions:

–
−→
X i = 〈xi1, . . . , xim〉 is the i th candidate solution that con-
tains m decision variables, where xij is the j th decision

variable in
−→
X i.

– The value xij is a random value generated using a

uniform-random, generation function xij = LBi
j +

(UBi
j −LBi

j )×U (0, 1), whereU (0, 1) represents a uni-

form random number in the interval (0, 1), LBi
j is the

lower bound and UBi
j is the upper bound of the search

range of xij .

– f (
−→
X i ) is the objective or fitness value of the candidate

solution
−→
X i .

–
−→
X i (i = 1, 2, . . . , n) is a population of n candidate solu-
tions.

– At the last step of each iteration, the CS algorithm
replaces a fraction pa ∈ [0, 1] of the lowest fitted solu-
tions with new randomly generated solutions.

– The new modified population is then moved to the next
iteration of CS.

The CS algorithm initially produces a population of n

candidate solutions
−→
X i(i = 1, 2, . . . , n) from the range of

possible solutions of the fitness function f (
−→
X i). The max-

imum number of iterations (Max I tr ) of the improvement

loop of CS is specified according to of complexity of f (
−→
X i).

CS attempts, at each iteration, to enhance a randomly

selected, candidate solution (
−→
X i(t)) using a Lévy-flight

mutation function and produces a new solution (
−→
X i(t + 1))

as follows:

−→
X i(t + 1) = −→

X i(t) + β ⊕ Lévy(λ), (1)

where β > 0 controls the distance of mutation and ⊕
represents entry-wise multiplication. The Lévy flight is con-
ventionally defined as a special randomwalk with a dynamic
step length. The step length is generated from an infinite,
heavy-tailed, Lévy distribution that follows the power law:

Lévy ∼ u = L−α, (2)

where α ∈ (1, 3] is the parameter of fractal dimension and L
is the step size. This distribution produces a small percentage
of random solutions around the local optimal solutions, while
producing the majority of random solutions away from the
local optimums. Therefore, the Lévy flight-mutation method
has a better exploration capability than a standard random
walk, since the distance value increases gradually during
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the simulation. At the end of each iteration of CS, an aban-
don process takes place, where a fraction (pa) of the worst
candidate solutions in the population are replaced with new
randomly generated candidate solutions.

2.2 Cuckoo Search with pitch adjustment

Cuckoo Search with pitch adjustment (CS11) is an algorithm
that uses the pitch adjustment (PA) method in place of Lévy
flight. PA is a probabilistic method (Geem et al. 2001) that

mutates
−→
X j(t) by mutating each one of its decision variables

with probability PAR∈ (0, 1):

x j
i (t + 1) =

{
x j
i (t) ±U (−1, 1) × BW r ≤ PAR

x j
i (t) r > PAR

(3)

where r is a random number in [0, 1], BW (bandwidth)
determines the mutation distance and U(−1, 1) is a random
number in (−1, 1).

2.3 Cuckoo Search with Jayamutation

The Jaya algorithm (Rao 2016) is an evolutionary algorithm
that was designed according to the concept of victory. In
the improvement loop of Jaya, the candidate solutions are
randomly moved between the best and worst candidate solu-
tions. This behavior aims to explore the search area between
the worst and best candidate solutions (Alawad and Abed-
alguni 2021).

Wepropose anewvariant ofCScalledCuckooSearchwith
Jaya mutation (CSJ), which replaces the Lévy flight operator
of CS with Jaya mutation. In CSJ, the decision variables

of
−→
X j(t) are updated one by one using the corresponding

decision variables of the best candidate solution
−→
X B(t) and

worst candidate solution
−→
X W(t) at iteration t as follows:

x j
i (t + 1) = x j

i (t) + r1 x
B
i (t) + r2 x

W
i (t), (4)

where x j
i (t), x Bi (t) and xWi (t) are the values of i th deci-

sion variables of
−→
X j(t),

−→
X B(t) and

−→
X W(t), respectively at

iteration t . r1 and r2 are random parameters in [0,1]. After

mutating all decision variables of
−→
X j(t), if the fitness value

of
−→
X j(t + 1) is an improvement over the fitness of

−→
X j(t),

the solution
−→
X j(t) is replaced by

−→
X j(t + 1).

2.4 Island-based Cuckoo Search with highly
disruptive polynomial mutation

The island Cuckoo Search (iCSPM) is a parallel variation
that integrates two modifications to CS. Firstly, it uses a

structured population model called the island model (Cor-
coran and Wainwright 1994) to organize candidate solutions
in CS to smaller manageable sub-populations (islands). This
model increases the probability that unfit candidate solutions
are improved into better solutions and improves the diversity
of the candidate solutions (Al-Betar et al. 2019; Al-Betar and
Awadallah 2018). Secondly, it uses CS with HDP mutation
(CS10) (Abed-Alguni and Paul 2018) to optimize the candi-
date solutions on each island. This is because, according to
several experimental studies (Hasan et al. 2014; Alkhateeb
and Abed-Alguni 2017; Abed-alguni and Alkhateeb 2018),
CS10 is a better exploratory algorithm than the CS algo-
rithm. Besides, the HDP mutation used in CS10 can sample
the entire search space between the lower and upper bounds
of a decision variable regardless of its value (Alawad and
Abed-alguni 2020;Abed-alguni 2019;Abed-Alguni andPaul
2018).

CS10 uses the HDPmethod to alter the values of the deci-
sion variables of

−→
X j(t) by mutating each of its decision

variables with probability Pm ∈ [0, 1] as follows (Doush
et al. 2014):

x j
i (t + 1) ← x j

i (t) + δk .(UBi − LBi ),where (5)

δk =
⎧⎨
⎩ (2r) + (1 − 2r) × (1 − δ1)

ηm+1]
1

ηm+1−1
r ≤ Pm

1 − [2(1 − r) + 2(r − 0.5) × (1 − δ2)
ηm+1]

1
ηm+1 r > Pm

(6)

δ1 ← x j
i (t) − LBi

UBi − LBi
(7)

δ2 ← UBi − x j
i (t)

UBi − LBi
(8)

The definitions of the parameters in the above equations
are as follows:

– x j
i (t): the i th decision variable of the jth candidate solu-

tion
−→
X j(t) at iteration t

– r : a uniform random number in [0, 1]
– Pm : the probability of mutation
– LBi : the lower boundary of x j

i (t)

– UBi : the upper boundary of x j
i (t)

– δ1: the distance between x j
i (t) and LBi over the closed

interval [UBi , LBi ]
– δ2: the distance between UBi and x j

i (t) over the closed
interval [UBi , LBi ]

– ηm : the distribution index, which is a non-negative num-
ber

A vital part of the island model is the migration procedure
that periodically allows the islands to exchange candidates
solutions. It enables iCSPM to select and transfer a subset of
candidate solutions among the different islands, depending
on two factors. Firstly, the number of generations that should

123



Island-based Cuckoo Search with elite opposition-based learning and multiple mutation... 3297

evolve in each island before the triggering the migration pro-
cedure (the migration frequency, M f ). Secondly, the fraction
of the candidate solutions on each island that can be moved
between neighboring islands (the migration rate, Mr ). After
each M f iterations of iCSPM, the islands are organized in
a random ring shape, with each island establishing one con-
nection in from a neighboring island, and one connection out
to its other neighbor.

The iCSPM algorithm uses a “best-worst migration pol-
icy”, which determines the best candidate solutions on one
island to be swapped with the worst candidate solutions on
a neighboring island. The algorithmic details and the source
code of iCSPM are available in Abed-alguni and Alkhateeb
(2018).

2.5 Elite opposition-based learning

Sihwail et al. (2020) proposed a special type of opposition-
based learning by the name EOBL (short for elite opposition-
based learning). EOBL was inspired from the intuition that
opposite solutions of elite (best) solutions are more likely
to be close to the global optima than any other solutions.
EOBL was used with optimization methods such as the Bat
algorithm (Paiva et al. 2017) andHarris–Hawks optimization
algorithm (Zhang et al. 2017) to improve their efficiency.

We can apply EOBL to decision variables of candidate

solutions. Let
−→
X = 〈x1, x2 . . . , xm〉 be an elite candidate

solution with m decision variables. The elite opposite-based

solution
−→
X o can be calculated using Equation 9:

−→
X o = 〈xo1 , xo2 . . . , xom〉,where xoi = δ(dai + dbi ) − xi (9)

In the above equation, δ ∈ (0, 1) is a parameter used to
control the opposition magnitude, and dai and dbi are the
dynamic boundaries which are calculated as follows:

dai = min(xi ), dbi = max(xi ) (10)

The value of an opposite decision variable xoi may be
outside [LBi , UBi ]. This can be solved using the following
equation:

xoi = rand(LBi ,UBi ), if xoi < LBi or x
o
i > UBi (11)

where rand(LBi ,UBi ) is a random number between LBi and
UBi .

2.6 Permutation flow shop scheduling problem

The permutation flow shop scheduling problem (PFSSP) is
a popular NP-hard combinatorial optimization problem. It
is a discrete optimization problem that is commonly used

as a benchmark for investigating the efficiency of discrete
optimization algorithms (Alawad and Abed-alguni 2021).
Several heuristic- and optimization-based scheduling algo-
rithms have been evaluated using the PFSSP (Alawad and
Abed-alguni 2020; Abed-alguni and Alawad 2021; Kurdi
2016; Wang et al. 2017). The mathematical model of the
PFSSP is built around two lists. Firstly, a list of n jobs
( j1, j2, . . . , jn),where each job comprisesm sequential oper-
ations (Oi,1, Oi,2, . . . , Oi,m). Secondly, a list ofm machines
(M1, M2, . . . , Mm), where each machine can execute only
the corresponding operation in a job. In PFSSP, ti, j denotes
the processing time required for machine j to complete job
i and Oi, j is the processing operation of job i on machine
j . There is a strict order of jobs that have to be processed
by each machine, and each machine can only process one
job at a time. A candidate schedule is a permutation of jobs
π = {π1, π2, . . . , πn} for which completion times of all
operations can be calculated. The completion time C j of job
j is defined to be the completion of job j’s last operation
Oj,m (C j =C j,m). The optimal solution in PFSSP is the can-
didate schedule that has the lowest total completion time of
all jobs. The equations of the PFSSP are as follows (Wang
et al. 2017; Alawad and Abed-alguni 2021):

C1,1 = t1,1 (12)

C j,1 = C j−1,1 + t j,1, j = 2, . . . , n, (13)

C1,k = C1,k−1 + t1,k, k = 2, . . . ,m, (14)

C j,k = max{C j−1,k,C j,k−1},
j = 2, . . . , n, k = 2, . . . ,m, (15)

Cmax = max{Cn,m}, (16)

f = max{Cmax}. (17)

We used the above equations in Sect. 5.7 to test the perfor-
manceof iCSPM2using12 instances ofTaillard’s benchmark
for the PFSSP (Taillard 1990).

3 RelatedWork

The island model is a structured-population strategy that
has been incorporated into many evolutionary algorithms to
improve their population diversity and convergence speed
(Abed-alguni and Barhoush 2018; Abed-Alguni et al. 2019;
Al-Betar et al. 2019; Al-Betar and Awadallah 2018; Awadal-
lah et al. 2020; Al-Betar et al. 2015; Alawad andAbed-alguni
2020; Abed-alguni and Alawad 2021; Kurdi 2016; Lardeux
and Goëffon 2010; Kushida et al. 2013; Abadlia et al. 2017;
Michel and Middendorf 1998). This section provides a crit-
ical review of recently proposed island-based optimization
algorithms.
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The island-based differential evolution algorithm (island-
based DE) is a variation of differential evolution (DE) that
is based on the multi-size island model (Skakovski and
Jedrzejowicz 2019). This model can be applied to the popu-
lation of candidate solutions using two different approaches.
In the first approach, the population of candidate solutions
can be divided to islands with different sizes. In the sec-
ond approach, the algorithm starts its optimization process
with one population and then changes its size over the course
of optimization process. In both approaches, a copy of DE
is applied to each island, where communication between
islands, or migration of candidate solutions, is not permitted.
Island-based DEwas compared in Skakovski and Jedrzejow-
icz (2019) to DE and IBDEAmd (island-based DE algorithm
with islands of equal sizes) using complex scheduling prob-
lems. The results showed that island-based DE is the best
performing algorithm. However, island-based DE requires
more computational resources than the other algorithms in
the beginning of its optimization process. In addition, if it
is executed sequentially, it may require longer running time
than the other algorithms.

The parallel multi-population chaotic bat algorithm
(CBAS) (Guo et al. 2019) is an island-based algorithm that
incorporates four modifications into the bat algorithm (BA):
the islandmodel (Al-Betar et al. 2019), chaotic maps (Muge-
manyi et al. 2020), Lévy flight search (Liu et al. 2020) and
contraction factor. The islandmodel is used to divide the pop-
ulation of CBAS into islands. The chaotic maps are evolution
functionswith chaotic behaviors usually used to generate ran-
dom numbers in BA. The contraction factor is a parameter
that controls the direction of optimization in BA. The Lévy
flight search is based on the Lévy flight operator, which is a
special random walk with a dynamic step length. The exper-
imental results in Guo et al. (2019), using a few general
benchmark functions, suggest that CBAS outperforms some
variations of BA (suggested also by the same authors) such as
shrink factor BA, chaotic BA and Lévy-flight BA. However,
the performance of CBAS should be compared to the per-
formance of state-of-the-art swarm optimization algorithms
such as DGWOand L-SHADE using strong benchmark suite
such as the CEC 2015 test suite. This will allow us to fairly
evaluate the performance of CBSA.

The HS algorithm is a widely used optimization algo-
rithm inspired by the improvisation of music players (Geem
et al. 2001). The island-basedHS (iHS) (Al-Betar et al. 2015)
is a variation of HS that integrates the concepts of island
model into with HS. The optimization loop of HS is applied
to each island independently. The quality of each island’s
solutions is periodically improved by exchanging candidate
solutions among island through a migration process. The
experimental study in Al-Betar et al. (2015) suggests that
iHS provides more accurate fitness values than the original
HS algorithm for a large number of continuous numerical

problems. The iHS was utilized in Al-Betar (2021) to solve
the economic load dispatch problem (i.e., the scheduling for
an electrical generation system to provide the load demand
in addition to the transmission loss with the objective of min-
imizing generation fuel cost). According to the experimental
results in Al-Betar (2021), iHS outperformed the original HS
algorithm and other algorithms (e.g., island bat algorithmAl-
Betar and Awadallah 2018) by providing the best results for
three out of five real-world economic load dispatch test cases.

Chen et al., proposed the chaotic multi-population hybrid
DE and Harris–Hawks optimization (CMDHHO) algorithm
for solving the single-objective optimization problems (Chen
et al. 2020). CMDHHO integrates the chaos maps, island
model and optimization operators of DE into the Harris–
Hawks optimization (HHO) algorithm.The experimental and
statistical results in Chen et al. (2020) using CEC 2011 and
CEC 2107 suggest that CDHHO is faster and provides bet-
ter performance than HHO and DE. However, CMDHHO
requires more computational resources than DE and HHO
in the beginning of its optimization process. Besides, the
chaotic maps in CMDHHO are more suitable to continuous
optimization problems than discrete problems.

Lardeux and Goëffon (2010) proposed a dynamic island
model for the genetic algorithm (GA). This model uses com-
plete graph modeling that allows the implementation of any
type of migration topologies from edgeless graphs to popu-
lar island topologies such as uni-directional or bi-directional,
rings and lattices. This model is called dynamic because the
topology in it continues to evolve during the search process
following the rewards and penalties received during previous
migration waves. The experimental results in Lardeux and
Goëffon (2010) using 0/1 Knapsack and MAX-SAT prob-
lems suggest that the dynamic island model helps GA to
achieve good results. However, a problem with this model is
that it uses a GA that is sensitive to its internal parameters
and methods such as the rate of mutation, rate of crossover,
population size and selection method.

Kurdi (2016) suggested the island model genetic algo-
rithm (IMGA) for solving the PFSSP. In IMGA, islands use
different variations of the GA (GA with insertion operator,
GA with swap operator and GA with inversion operator).
Results in Kurdi (2016) suggest that IMGA offers improved
performance than the variations of GA that depend on a sin-
gle evolutionary method.

AlawadandAbed-alguni (2020) proposeddiscrete iCSPM
with opposition-based learning strategy (DiCSPM), a dis-
crete variation of iCSPM. This algorithm provides efficient
schedules for workflow applications in distributed envi-
ronments. It uses random generation and opposition-based
learning approaches to generate diverse initial population
candidate solutions. It also optimizes decision variable values
in candidate solutions using the SPV method. The sim-
ulation results in Alawad and Abed-alguni (2020) using
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WorkflowSim (Casanova et al. 2014) suggest that DiCSPM
provides efficient schedules in cloud computing environ-
ments.

Particle swarm optimization (PSO) is a well-known algo-
rithm that was inspired from the movement behavior of
birds in a group (Kennedy and Eberhart 1995). The island
model was integrated into PSO in a new algorithm called the
dynamic island model PSO (DIMPSO) algorithm (Abadlia
et al. 2017). The goal of DIMPSO is to increase the diver-
sity of the population and the convergence speed of PSO.
DIMPSO was evaluated using the CEC 2005 test suite, and
the results suggest it is more efficient and accurate than PSO.

The island bat algorithm (iBA) (Al-Betar and Awadallah
2018) incorporates the island model into BA. Similar to iHS,
the population in iBA is divided into smaller sub-populations,
where the improvement loop of BA is applied indepen-
dently to each sub-population. A migration process and the
ring topology are used in iBA to improve the diversity of
the candidate solutions in each sub-population and improve
the convergence speed. iBA was evaluated in Al-Betar and
Awadallah (2018) using25 IEEE-CEC2005benchmark func-
tions. Results indicate that iBA improves the performance of
BA.

The ant colony algorithm has also been modified to an
island model in the ant colony optimization with looka-
head (ACO) algorithm (Michel and Middendorf 1998). It
was proposed to help solve the problem of finding the short-
est supersequence str of two sequences str1 and str2 such
that both sequences are part of str. AOC incorporates the
same principles of the island model as iHS and iBA, but it
additionally uses a lookahead function to mutate the candi-
date solutions taking into account the influence of the current
mutation on the mutation in the next iteration.

The distributed grey wolf optimizer (DGWO) algorithm
(Abed-alguni and Barhoush 2018) is a distributed variation
of the grey wolf optimizer (GWO) algorithm (Mirjalili et al.
2014). DGWO attempts to increase the convergence speed
of GWO by improving diversity through the incorporation
of the principles of the island model into GWO. DGWO
was compared to four optimization algorithms (GWO, dis-
tributed adaptive differential evolutionwith linear population
size reduction evolution (L-SHADE) (Tanabe and Fukunaga
2014), memory-based hybrid dragonfly algorithm (MHDA)
(Ks and Murugan 2017) and fireworks algorithm with dif-
ferential mutation (FWA-DM) Yu et al. 2014) using 30 CEC
2014 functions. DGWO performs significantly better than
the other tested algorithms.

Abed-alguni and Alawad (2021) proposed a discrete vari-
ation of DGWO for scheduling of dependent tasks to virtual
machines in distributed environments. It uses the largest order
value (LOV) method to produce discrete job permutations
from continuous candidate solutions. The simulation results
using WorkflowSim Casanova et al. (2014) indicate that the

discrete variation of DGWO is efficient for solving schedul-
ing problems.

The flower pollination algorithm (FPA) is an evolutionary
algorithm based on the biological evolution of pollination
of flowers (Yang 2012). In Al-Betar et al. (2019), the island
model was applied to FPA to control its diversity and solve
its premature convergence problem. The proposed algorithm
was called IsFPA. 23 test functions were used to evaluate the
performance of IsFPA compared to GA, PSO, gravitational
search algorithm (GSA), multi-verse optimizer (MVO), iBA
and iHS. IsFPA was found to perform better than each of the
other algorithms.

The artificial bee colony (ABC) algorithm (Karaboga and
Basturk2007) simulates honeybee foragingbehavior to solve
various optimization problems. It is an efficient algorithm,
but may very quickly converge to sub-optimal solutions at
the beginning of its optimization process. The island artifi-
cial bee colony (iABC) algorithm (Awadallah et al. 2020)
helps overcome this problem by distributing ABC’s opti-
mization process over multiple islands. Evaluation of the
performance of iABC using the IEEE-CEC 2015 indicated
that iABC indeed improved diversity and performance of
ABC and also provided interesting performance compared
to 18 other tested algorithms.

The island-based differential evolution (iDE) algorithm
(Kushida et al. 2013) modifies the DE algorithm to use an
island model. iDE divides the population of candidate solu-
tions to islands with varying population size and parameters.
Therefore, each island has different convergence behavior
compared to the other islands. iDEwas evaluated in Kushida
et al. (2013) using a set of basic test functions and found to
be more efficient than DE.

The whale optimization algorithm (WOA) simulates
humpback whale bubble-net hunting mechanisms to solve
optimization problems (Mirjalili and Lewis 2016). How-
ever, WOA may suffer from the premature convergence,
degrading the performance of the evolutionary algorithm
(Abed-alguni and Klaib 2018). To mitigate this issue, Abed-
Alguni et al. (2019) modified WOA to incorporate the island
model. Results show the iWOA has improved accuracy over
WOA for 18 test functions.

In conclusion, island-based optimization algorithms have
been used extensively in the literature (Abed-alguni and
Barhoush 2018; Abed-Alguni et al. 2019; Al-Betar et al.
2019; Al-Betar and Awadallah 2018; Awadallah et al. 2020;
Al-Betar et al. 2015; Alawad and Abed-alguni 2020; Abed-
alguni and Alawad 2021; Kurdi 2016; Lardeux and Goëffon
2010; Kushida et al. 2013; Abadlia et al. 2017; Michel
and Middendorf 1998) to improve the diversity of the pop-
ulation in population-based optimization algorithms and
improve their convergence rate to optimality. However, typi-
cal island-based optimization algorithms apply only a single
optimization algorithm to all islands. Therefore, in this paper,
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we investigate the simultaneous use of several variations of
CS on different islands. Such an algorithm should benefit
from some of the unique advantages each CS variation has
to offer.

4 Proposed algorithm: iCSPMwith elite
opposition-based learning andmultiple
mutationmethods

In this section, we present iCSPM2 which is a variation
of iCSPM with EOBL and four mutation methods. Fig. 1
illustrates the flowchart of iCSPM2. The main steps of the
flowchart are as follows:

1. The first step is to randomly generate a population of n
candidate solutions using a generating function. The n
candidate solutions are then randomly divided among s
islands.

2. The s islands are then divided equally among four varia-
tions of CS: CS1, CS10, CSJ and CS11.

3. Each variation is then independently executed for M f

iterations on the islands assigned to it, with EBOL exe-
cuted at the end of each generation to replace any elite
candidate solution with its opposite if the opposite is
determined to be a better candidate (as described in Sect.
2.5). This step can be performed in parallel because each
variation of CS is applied to an independent set of islands.
Even the optimization loop in each variation of CS can be
executed in parallel. This issue is explained in Algorithm
1, which shows the algorithmic details of iCSPM2.

4. The n islands are arranged based on a random ring topol-
ogy. Some example random ring topologies are presented
in Fig 2. The direction ofmigration between an island and
its neighboring island is represented in the figure as a uni-
directional edge between the two islands. An important
constraint in the topology is that each island has exactly
one incoming and one outgoing edge.

5. The migration process takes place among the islands fol-
lowing the chosen ring topology.

6. If the maximum number of iterations has not been
reached the algorithm repeats from step 3. Otherwise,
the algorithm ends.

Algorithm 1 has two differences compared to iCSPM.
Firstly, it divides the islands among four variations of CS:
CS1, CS10, CSJ and CS11 (Line 7). The optimization loop
(Lines 12–25) is applied to each island according to the CS
variation assigned to it (Line 13). This allows the optimiza-
tion loops to be performed in parallel because the islands
only communicate with each other during the migration pro-
cess. Secondly, it applies EOBL to a fraction (pb) of the
elite solutions in each island (Line 20). The elite-opposite

solutions are generated using the procedure and equations
discussed in Sect. 2.5. An opposite-elite solution replaces its
corresponding elite solution if it has a better fitness than the
elite solution.

Algorithm 1 iCSPM with elite opposition-based learning
and multiple mutation methods (iCSPM2).
1: Determine n, the total population size of each island and Max I tr ,

the maximum number of iterations.
2: Initialize s (the number of islands), M f (migration frequency) and

Mr (migration rate).
3: Determine k = n/s, each island’s population size
4: Determine Mw = Max I tr/M f , the number of migration waves
5: Determine nr = n

s × Mr , the number of migrant solutions
6: For each island (j=1,2,…,s), initialize the k candidate solutions−→

X j
i (i = 1, 2, . . . , k)

7: Divide the s islands among four variations of CS: CS1, CS10, CSJ
and CS11

8: for c = 1 to Mw do
9: for j = 1 to s do
10: t = 0
11: Determine f (

−→
X j

i ), the fitness value of each candidate solu-
tion

12: while t < M f do

13: Select a random solution (say,
−→
X j

a) from island j’s cur-
rent population and replace it by applying the CS variation
assigned to island j

14: Calculate f (
−→
X j

a), the quality/fitness value of
−→
X j

a

15: Select a random solution (say,
−→
X j

b) from island j’s current
population

16: if f (
−→
X j

a) is better than f (
−→
X j

b) then

17: Replace
−→
X j

b by
−→
X j

a
18: end if
19: Replace a fraction pa of island j’s worst solutions with

new ones
20: Apply EOBL:

• Select a fraction pb of island j’s elite candidate solu-
tions

• Generate each elite solution’s opposite solution using
EOBL (Section 2.5)

• If any elite solution has a lower fitness than its
opposite-elite solution, replace the elite solution with
its corresponding opposite-elite solution

21: Keep the best quality solutions

22: Rank the solutions and find the current best (
−→
X j

Best )
23: Replace island j’s nr best candidate solutions with island

(( j + 1) mod s)’s nr worst candidate solutions
24: t = t + 1
25: end while
26: end for
27: end for
28: Determine

−→
X Best (

−→
X j

Best with the best fitness)

29: Return
−→
X Best

The generated candidate solutions at lines 6, 13 and 20 in
Algorithm 1 are composed of continuous values that can be
used directly with continuous optimization problems. How-
ever, in order to solve discrete optimization problems such as
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Fig. 1 General framework of
iCSPM2

Fig. 2 Random ring topologies (Abed-alguni 2019)
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Table 1 A candidate solution using the SPV method

Dimension ( j) 1 2 3 4

xij 7.86 12.11 10.46 5.66

Dimension ( j) 4 1 3 2

xij in ascending order 5.66 7.86 10.46 12.11

π i
j 4 1 3 2

the PFSSP, these values should be converted to meaningful
discrete values. In this paper, we also show how iCSPM2 can
be used with the PFSSP. To this end, the SPV method (Ali
et al. 2019) can be used with iCSPM2 to convert candidate
solutions’ continuous decision variables into discrete ones
(job numbers).

SPV is applied as follows. Let
−→
X i =< xi1, x

i
2, . . . , x

i
m >

be a candidate solution that contains m real values. The
position values in

−→
X i are sorted in ascending order and the

ordered positions are used to generate a job permutation π .
An example of the SPV method is shown in Table 1, where−→
X i =< x1, x2, x3, x4 >=< 7.86, 12.11, 10.46, 5.66 > and
the calculated job permutation is ßi =< 4, 1, 3, 2 >, since
x4 > x1 > x3 > x2.

5 Experiments

This section describes the experiments conducted to com-
pare iCSPM2 to existing algorithms. Section 5.1 summarizes
the experimental setup for all the algorithms and Sect. 5.2
describes the benchmark functions used in the experiments.
The experimental design of the paper is described in Sect. 5.3.
Section 5.4 then compares the sensitivity of iCSPM2 to
its island model parameters to that of iCSPM. After this,
Sect. 5.5 provides a comparison of the simulation results
of iCSPM2 to the reported simulation results in Abed-alguni
andBarhoush (2018) of four popular optimization algorithms
(DGWO, L-SHADE, FWA-DM and MHDA), with statisti-
cal analysis provided in Sect. 5.6. Finally, Sect. 5.7 provides
a comparison of the performance of iCSPM2 to the perfor-
mance of GAIbH andMASC using 12 instances of Taillard’s
benchmark.

5.1 Setup

The experiments were executed using a 3.5GHz 8-core Intel
XeonW processor, Turbo Boost up to 4.0GHz with 32GB of
DDR4 ECC memory running macOS 11.0.1, Big Sur. The
algorithms were all programmed in Java.

5.2 Benchmarking

The 15 benchmark functions described in Table 2 are well-
recognized functions that have frequently been used to
evaluate the efficiency of optimization algorithms (Hasan
et al. 2014; Doush et al. 2014). These functions were used in
Sect. 5.4 to test the sensitivity of iCSPM and iCSPM2 to the
island model parameters.

The 30 single-objective real-parameter optimization func-
tions of CEC2014 are various complex functions: F1 - F3
are unimodal functions, F4 - F16 are multimodal functions,
F17 - F22 are hybrid functions, and F23 - F30 are com-
posite functions (Liang et al. 2013). The search range of
each function is [-100, 100]D . We have previously used
the single-objective functions of CEC2014 to compare the
convergence speeds and the reliability of six popular opti-
mization algorithms: CS, GWO, DGWO (Abed-alguni and
Barhoush 2018), L-SHADE (Tanabe and Fukunaga 2014),
MHDA (Ks and Murugan 2017) and FWA-DM (Yu et al.
2014). In Sect. 5.5, we compared the simulation results of
iCSPM2 using the single-objective functions of CEC2014 to
the four best performing algorithms in Abed-alguni and Bar-
housh (2018) (DGWO, L-SHADE, MHDA and FWA-DM).

Taillard’s benchmark (Taillard 1990) is a benchmark
for evaluating discrete optimization problems. In Sect.
5.7, we compared iCSPM2 to two powerful optimization-
based scheduling algorithms (generalized accelerations for
insertion-based heuristics (GAIbH) (Fernandez-Viagas et al.
2020) and memetic algorithm with novel semi-constructive
crossover andmutation operators (MASC)Kurdi 2020) using
12 instances of Taillard’s benchmark for the PFSSP.

5.3 Experimental design

In order to determine how sensitive the performance of
iCSPM and iCSPM2 are to the island model parameters (s,
M f , Mr ), the experiments in Sect. 5.4 were run over nine
scenarios (presented in Table 3). The main goal of Scenarios
1–3 is to understand the relationships between the number of
islands s and the performance of iCSPM and iCSPM2. The
purpose of Scenarios 4-6 is tomeasure the effect ofmigration
frequency M f on the performance of iCSPM and iCSPM2.
The goal of Scenarios 7–9 is to investigate the migration rate
Mr ’s influence on the performance of iCSPM and iCSPM2.
Fig. 3 shows the graphical representation of the values in
Table 3.

In all the experiments, the size of the population, n,
and the fraction of abandon solutions, pa , in iCSPM and
iCSPM2 were dynamically tuned over multiple simulations
as recommended in Abed-alguni and Alkhateeb (2017). The
maximum number of iterations of each algorithm was lim-
ited to 10,000. The control parameters of iCSPM2 were as
follows: L = 1 in the Lévy flight method, PAR=0.3 in the
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Table 2 Details of popular 15 benchmark functions

Function name Search boundaries Global optimum Function type

f1: Sphere [−100, 100] 0 Unimodal

f2: Schwefel’s problem 2.22 [−10, 10] 0 Unimodal

f3: Step [−100, 100] 0 Unimodal

f4: Rosenbrock [−2.048, 2.048] 0 Multimodal

f5: Rotated hyper-ellipsoid [−100, 100] 0 Unimodal

f6: Schwefel’s problem 2.26 [−500, 500] −418.98 ∗ d Multimodal

f7: Rastrigin [−5.12, 5.12] 0 Multimodal

f8: Ackley [−32, 32] 0 Multimodal

f9: Griewank [−600, 600] 0 Multimodal

f10: Six-Hump Camel-Back [−5, 5] −1.031628 Multimodal

f11: Shifted sphere [−100, 100] −450 Unimodal

f12: Shifted Schwefel’s problem 1.2 [−100, 100] −450 Unimodal

f13: Shifted Rosenbrock [−100, 100] 390 Multimodal

f14: Shifted Rastrigin [−5, 5] −330 Multimodal

f15: Shifted expanded Griewanks plus Rosenbrock’s function [−5, 5] −130 multimodal

Table 3 Nine experimental scenarios to evaluate the sensitivity of
iCSPM and iCSPM2 to the parameters of island model

Experimental Scenario s M f Mr (%)

Scenario1 4 100 20

Scenario2 8 100 20

Scenario3 12 100 20

Scenario4 12 50 20

Scenario5 12 100 20

Scenario6 12 500 20

Scenario7 12 100 10

Scenario8 12 100 20

Scenario9 12 100 30

Fig. 3 Boxplot of the experimental scenarios

PA method and the fraction of elite solutions pb was set to a
value equal to the value of pa .

Section 5.5 presents a comparison of iCSPM2 to the
reported simulation results in Abed-alguni and Barhoush

(2018) for four popular optimization algorithms (DGWO
Abed-alguni and Barhoush 2018, L-SHADE Tanabe and
Fukunaga 2014, FWA-DM Yu et al. 2014 and MHDA Ks
and Murugan 2017). In Sect. 5.6, a nonparametric statistical
test (Friedman’s test Derrac et al. 2011; Friedman 1940) is
applied to the FEV for each of the 30 CEC 2014 functions in
Table 7.

5.4 Sensitivity analysis of iCSPM2 to the parameters
of Islandmodel

Tables 4, 5 and 6 show the average over 50 runs of the best
objective values of the experimental scenarios in Table 3 for
the 15 benchmark functions in Table 2. The best objective
value for a benchmark function is its lowest value that is
achieved after applying the tested optimization algorithms to
it for a specified number of iterations (MaxItr). The num-
ber of decision variables (dimension) of each benchmark
function was 10 except for the two-dimensional six-hump
camel-back function ( f10). In each table, two rows corre-
spond to each function. The first row contains the simulation
results of iCSPM, while the second row contains the results
of iCSPM2. Each row’s best results are marked with bold
font.

Table 4 shows the experimental results of the first three
scenarios in Table 3. The results clearly indicate that both
iCSPM and iCSPM2 performance are sensitive to the value
of s. Their performance becomes better with every increase
in the value of s. This is expected because any increase in
the value of s means that more search regions with smaller
sizes are explored simultaneously. Besides, larger islands
have better diffusion than smaller islands (Abed-alguni 2019;
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Table 4 The effect of various values of s on the performance of iCSPM
and iCSPM2. D = 10, runs = 50 and number of iterations = 10,000

Function Scenario1 Scenario2 Scenario3
s = 4 s = 8 s = 12

f1 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f2 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f3 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f4 8.29E+02 8.29E+02 8.29E+02

2.14E–03 2.55E–03 7.10E–04

f5 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f6 2.09E+05 8.38E+04 4.15E+04

– 2.453E+03 – 2.614E+03 – 4.001+03

f7 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f8 4.44E–16 4.44E–16 4.44E–16

4.44E–16 4.44E–16 4.44E–16

f9 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f10 – 1.0307 – 1.0310 – 1.0301

– 1.0310 – 1.0315 – 1.0312

f11 – 4.42E+02 – 4.43E+02 – 4.47E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f12 – 3.42E+02 – 3.38E+02 – 3.47E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f13 4.85E+02 3.92E+02 3.92E+02

3.90E+02 3.90E+02 3.90E+02

f14 – 3.283E+02 – 3.295E+02 – 3.298E+02

– 3.30E+02 – 3.30E+02 – 3.30E+02

f15 – 9.69E+02 – 1.04E+02 – 1.12E+02

– 1.10E+01 – 1.13E+02 – 1.15E+02

Abed-Alguni et al. 2019; Al-Betar et al. 2019; Al-Betar and
Awadallah 2018). Therefore, s = 12 was selected for the
next six scenarios.

Table 5 shows the simulation results of the next three
experimental scenarios (Scenario4, Scenario5 and Sce-
nario6), which were designed to show the effect of different
values of M f on the convergence behavior of iCSPM and
iCSPM2. The rank of the scenarios in Table 5 were: Sce-
nario4 (M f = 100), Scenario5 (M f = 50) and finally
Scenario6 (M f = 500). This means that low and medium
migration frequencies generate better results than large-
migration frequencies. This may be because large-scale
migrations have more effects on the diversity of populations
in the islands compared to low-scale migrations. The value

Table 5 The effect of various values of M f on the performance of
iCSPM and iCSPM2. D = 10, runs = 50 and number of iterations =
10,000

Function Scenario4 Scenario5 Scenario6
M f = 50 M f = 100 M f = 500

f1 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f2 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f3 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f4 8.29E+02 8.29E+02 8.29E+02

1.02E–03 7.10E–04 1.23E–03

f5 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f6 4.124E+04 4.15E+04 4.1867E+04

– 2.636E+03 – 4.001+03 – 2.863E+03

f7 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f8 4.44E–16 4.44E–16 4.44E–16

4.44E–16 4.44E–16 4.44E–16

f9 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f10 – 1.0310 – 1.0301 – 1.0276

– 1.0313 – 1.0310 – 1.0311

f11 – 4.45E+02 – 4.47E+02 – 4.39E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f12 – 3.69E+02 – 3.47E+02 – 2.80E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f13 3.93E+02 3.92E+02 8.92E+02

3.90E+02 3.90E+02 3.90E+02

f14 – 3.30E+02 – 3.299E+02 – 3.281E+02

– 3.30E+02 – 3.30E+02 – 3.30E+02

f15 – 9.46E+02 – 1.12E+02 – 1.11E+02

– 1.11E+01 – 1.15E+02 – 1.12E+02

of M f = 100, which achieved the best results in Table 5,
was used in the last three experimental scenarios.

Table 6 shows the simulation results for the last three
experimental scenarios (Scenario7, Scenario8 and Sce-
nario9). There is no clear indication in Table 6 on the effects
of low and high values of Mr on the performance of iCSPM
and iCSPM2. This is maybe because of the small dimension
of the benchmark functions.

The results in Tables 4, 5 and 6 show that iCSPM and
iCSPM2 achieved similar results for 7 benchmark functions
( f1, f2, f3, f5, f7, f8, f9). However, iCSPM2 outperformed
iCSPM for 8 out of 15 functions. These observations suggest
that iCSPM2 has better performance than iCSPM.
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Table 6 The effect of various values of Mr on the performance of
iCSPM and iCSPM2. D = 10, runs = 50 and number of iterations =
10,000 and number of runs is 50

Function Scenario7 Scenario8 Scenario9
Mr = 10% Mr = 20% Mr = 30%

f1 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f2 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f3 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f4 8.29E+02 8.29E+02 8.29E+02

1.12E–02 2.055E–03 9.10E–03

f5 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f6 4.124E+04 4.1566E+04 4.1867E+04

– 2.690E+03 – 2.690E+03 – 2.541+03

f7 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f8 4.44E–16 4.44E–16 4.44E–16

4.44E–16 4.44E–16 4.44E–16

f9 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

f10 – 1.0301 – 1.0302 – 1.0266

– 1.0290 – 1.0310 – 1.0330

f11 – 4.46E+02 – 4.47E+02 – 4.42E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f12 – 3.68E+02 – 3.69E+02 – 2.79E+02

– 4.50E+02 – 4.50E+02 – 4.50E+02

f13 3.94E+02 3.9E+02 8.96E+02

3.90E+02 3.90E+02 3.90E+02

f14 – 3.30E+02 – 3.299E+02 – 3.281E+02

– 3.30E+02 – 3.30E+02 – 3.30E+02

f15 – 9.49E+01 – 1.04E+02 – 1.12E+02

– 1.12E+01 – 1.15E+02 – 1.15E+02

5.5 Comparison between iCSPM2 and other
well-known optimization algorithms

We used the 30 single-objective, real-parameter, optimiza-
tion, functions of CEC2014, described in Sect. 5.2, to
compare the simulation results of iCSPM2 (Scenario 8) to
the reported simulation results in Abed-alguni and Barhoush
(2018) for four popular optimization algorithms (DGWO
Abed-alguni and Barhoush 2018, L-SHADE Tanabe and
Fukunaga 2014, FWA-DM Yu et al. 2014 and MHDA Ks
and Murugan 2017).

Table 7 shows the function error values (FEV) for the 30
CEC 2014 functions. FEV is the distance between the best
objective value calculated over multiple runs by an optimiza-

tion algorithm and the actual optimal value. In the table, the
best FEV for each function is highlighted in Bold. It is obvi-
ous that iCSPM2 outperforms all the algorithms in Table 7
by achieving the lowest FEV values for 14 out of the 30
functions. We suggest three possible reasons for the superior
performance of iCSPM2. Firstly, it partitions the population
of n candidate solutions for a given optimization between s
independent islands and then it equally divides them among
4 efficient variations of CS: CS1, CS10, CSJ and CS11. Sec-
ondly, the island model and its migration process provide a
suitable environment for unfitted solutions to evolve to better
solutions. Thirdly, it uses EOBL to explore the neighborhood
of the elite solutions in the population of each island.

In addition, L-SHADE is the algorithm with the second
best performance in Table 7. It achieved the lowest FEV for
almost a third of the 30 CEC2014 functions, which may be
because L-SHADE dynamically adjusts its internal parame-
ters and population size during its optimization process.

Figure 5 shows the convergence charts of iCSPM2,
DGWO and L-SHADE over the first 1000 iterations for
selected functions from CEC2014 (F2, F5, F11, F15, F20,
F27). The charts clearly show that iCSPM2 converges to good
solutions faster than DGWO and L-SHADE. This is because
iCSPM2 is based on the island model and obtains the advan-
tages of the multiple mutation methods it uses with CS. The
charts also show that L-SHADE is the second fastest algo-
rithm followed by DGWO.

5.6 Results of statistical tests

The results of Friedman’s test (Table 8 and Fig. 4) are sta-
tistical information about the ranks of iCSPM2, DGWO,
L-SHADE,MHDAand FWA-DM. In this table, the best rank
ismarkedwith bold font. The order of ranks of the algorithms
was as follows: iCSPM2, L-SHADE, DGWO, MHDA and
FWA-DM, respectively. This means that iCSPM2 performed
best amongst the tested algorithms (Fig. 5).

5.7 Performance analysis of iCSPM2 in comparison
to GAIbH andMASC using Taillard’s benchmark
for PFSSP

We compared the performance of iCSPM2 to the perfor-
mance of GAIbH andMASC using 12 instances of Taillard’s
benchmark (described in Sect. 5.2). Table 9 shows the mean
makespans over 50 runs and the ARD (average relative dif-
ference) values. An ARD value shows the relative difference
between the obtained mean value using an optimization
algorithm to the best-known value for a given benchmark
function. The ARD values were computed using the follow-

123



3306 B. H. Abed-alguni , D. Paul

Table 7 Simulation results for
iCSPM2, DGWO, L-SHADE,
FWA-DM and MHDA

Function iCSPM2 DGWO L-SHADE FWA-DM MHDA

F1 19.20E–16 4.36E+00 9.00E–15 4.91E+05 3.59E+03

F2 1.45E–20 2.36E+00 8.50E–11 2.50E–16 3.82E+03

F3 1.88E–17 2.54E–04 5.83E–10 1.88E–16 5.80E–07

F4 1.73E–10 1.63E–09 2.58E–09 2.23E+01 1.42E–08

F5 4.67E+00 2.00E+02 2.00E+01 2.11E+01 2.36E+00

F6 7.15E–16 1.21E+00 1.25E–06 1.82E+01 8.52E–14

F7 2.26E–10 8.53E–10 7.25E–09 2.53E–03 2.25E–11

F8 8.55E–17 1.51E–19 1.25E–09 9.53E–15 2.20E–19

F9 1.03E+00 1.03E+00 8.96E+00 6.54E+01 5.30E+00

F10 1.08E–03 3.20E–03 2.36E–02 1.13E+01 1.22E+03

F11 1.20E+02 2.95E+03 2.30E+03 2.19E+03 1.52E+02

F12 6.29E–02 6.30E–02 9.00E–01 3.25E–01 1.42E–01

F13 3.14E–01 4.59E–01 6.50E–01 3.11E–01 4.78E–01

F14 2.01E–01 1.99E–01 8.60E–01 2.99E–01 5.43E–01

F15 1.69E+00 7.23E+01 1.60E+00 8.36E+00 3.25E+00

F16 9.20E+00 9.53E+00 1.02E+01 1.10E+01 1.06E+01

F17 3.55E+00 4.55E+03 2.20E+00 6.59E+03 4.53E+02

F18 3.96E+00 3.94E+01 1.90E+00 7.24E+01 3.69E+00

F19 5.61E+00 1.22E+02 5.30E+00 1.04E+01 3.78E+02

F20 4.19E+00 4.73E+02 4.30E+00 4.37E+01 7.09E+02

F21 2.82E+02 7.09E+02 3.69E+02 8.75E+02 2.57E+02

F22 1.32E+02 2.73E+02 1.32E+02 1.62E+02 2.73E+02

F23 3.68E+01 3.69E+0 3.26E+02 3.16E+02 3.10E+03

F24 1.94E+02 2.25E+02 1.93E+02 2.96E+02 2.26E+02

F25 2.01E+02 2.11E+02 2.00E+02 2.09E+02 2.11E+02

F26 0.89E+02 2.10E+02 2.69E+02 9.93E+01 1.00E+02

F27 1.26E+02 4.09E+02 1.26E+02 4.10E+02 4.05E+02

F28 3.71E+02 1.65E+03 3.62E+02 4.22E+02 1.54E+03

F29 2.30E+02 2.29E+02 7.33E+02 2.78E+02 7.86E+02

F30 2.91E+00 2.83E+00 6.99E+02 4.69E+02 2.63E+03

D = 30, runs = 30 and number of iterations = 10,000

ing equation Wang et al. (2017):

ARD = 100 × (Copt − CA)

Copt (18)

where CA is the makespan achieved by the tested algorithm
and Copt is the upper bound with the minimum value for the
tested instance of Taillard’s benchmark.

The simulation results in Table 9 suggest that iCSPM2
outperforms GAIbH and MASC. iCSPM2 achieved the best
known results (lowest Mean and ARD) for 10 instances out
of the 12 instances of Taillard’s benchmark and it also scored
the lowest total average ARD (0.23%). This may be because
iCSPM2 incorporates four powerful variations of CS into the
island model, which increases the diversity of its candidates
solutions and improves its convergence behavior.

6 Discussion

The simulation results in Table 7 showed that iCSPM2 out-
performs all the algorithms by achieving the lowest FEV
values for 14 out of the 30 CEC 2014 functions (F1-F4,
F6, F9-F12, F16, F20, F23, F27). iCSPM2 also achieved the
second lowest FEV values for 12 out of the 30 CEC 2014
functions (F5, F7, F13, F14, F17, F19, F21, F25, F26, F28-
F30). L-SHADE provides competitive results (second best
performing algorithm with the lowest FEV values for 9 out
of the 30 CEC 2014 functions) compared to iCSPM2. This is
mainly because it follows a dynamic adjustment procedure
for its internal parameters and population size during its opti-
mization process. Besides, it is based on the DE algorithm,
which is one of the most efficient basic evolutionary algo-
rithms (Tanabe and Fukunaga 2014). According to Table 7,
DGWO is the third best performing algorithm and it provides
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Table 8 Results of Friedman’s
test

Ranks of the algorithms
vskip
Function iCSPM2 DGWO L-SHADE MHDA FWA-DM

F1 1 3 2 4 5

F2 1 4 3 5 2

F3 1 5 3 4 2

F4 1 2 3 4 5

F5 2 5 3 1 4

F6 1 4 3 2 5

F7 2 3 4 1 5

F8 3 1 5 2 4

F9 1.5 1.5 4 3 5

F10 1 2 3 5 4

F11 1 5 4 2 3

F12 1 2 5 3 4

F13 2 3 5 4 1

F14 2 1 5 4 3

F15 2 5 1 3 4

F16 1 2 3 4 5

F17 2 4 1 3 5

F18 3 4 1 2 5

F19 2 4 1 5 3

F20 1 4 2 5 3

F21 2 4 3 1 5

F22 1.5 4.5 1.5 4.5 3

F23 2 1 4 5 3

F24 2 3 1 4 5

F25 2 4.5 1 4.5 3

F26 1 4 5 3 2

F27 1.5 4 1.5 3 5

F28 2 5 1 4 3

F29 2 1 4 5 3

F30 2 1 4 5 3

Sum of ranks 49.5 96.5 87 105 112

Sum of ranks squared 2450.25 9312.25 7569 11,025 12,544

Average of ranks 1.65 3.2166 2.9 3.5 3.733

competitive results to the results of iCSPM2 and L-SHADE.
This is becauseDGWO is a variation ofGWO that is based on
the islandmodel that improves the diversity and performance
of GWO. The performance of FWA-DM and MHDA are the
worst among all the algorithms in Table 7. This is maybe
because the exploration operators of these algorithms are not
efficient as the ones of iCSPM2, L-SHADE and DGWO.
Further, the results of Friedman’s test in Table 8 showed that
iCSPM2 achieved the highest rank among all tested algo-
rithms, which means that the simulation results of iCSPM2
are significant and provide sufficient evidence that iCSPM2
is the best performing algorithm. The results of Friedman’s

test also confirm that DGWO is the third best performing
algorithms and strongly competitive to L-SHADE.

The results in Table 9 also showed that iCSPM2 is the
best performing algorithm by achieving the lowest ARD val-
ues for 10 out of the 12 Taillard’s benchmark instances for
the PFSSP. Note that iCSPM2 provided the lowest ARD val-
ues for the most complex instances of Taillard’s benchmark
(Ta110 andTa120). The results also showed that iCSPM2has
the lowest average ARD value (0.23) for the 12 instances of
Taillard’s benchmark over 50 independent runs. This means
that iCSPM2, in general, provides better schedules for the
12 instances of Taillard’s benchmark than other tested algo-
rithms. On the other hand, MASC in Table 9 is the second
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Fig. 4 The average ranks of the algorithms according to Friedman’s
Test

best performing algorithm and also provides competitive
results compared to the results of iCSPM2. This may be
because it combines the strengths of the simulated annealing
andNawaz–Enscore–Hamalgorithms into theGAalgorithm.
Note that GAIbH is the worst performing algorithm in Table
9. This may be because GAIbH is only based on a heuristic
procedure that calculates the completion times of all jobs in
a job permutation based on the job position in other existing
partial job permutations.

There are three main explanations for the superior per-
formance of iCSPM2 in solving the CEC 2014 suit and 12
instances of Taillard’s benchmark for the PFSSP.

Firstly, iCSPM2 is based on the island model, while the
other tested algorithms (DGWO, L-SHADE, MHDA, FWA-
DM, GAIbH and MASC) are not based on the island model.
The island model provides several advantages when inte-
grated with an evolutionary algorithm (Abed-alguni and
Barhoush 2018; Al-Betar et al. 2019; Al-Betar and Awadal-
lah 2018; Awadallah et al. 2020). It increases the chances of
candidate solutions with low objective values evolving into
better ones. It can also be run in parallel on several process-
ing devices or a device that supports parallel processing. The
migration mechanism in the island model regulates popula-
tion diversity and lowers the possibility of early convergence.

Secondly, the four variations of CS used in iCSPM2 have
unique advantages. CS1 utilizes the Lévy flight mutation,
which has a better exploration capability than the random
mutation method (Yang and Deb 2009). CS10 uses the HDP
mutation method that can sample the entire search space
between the lower and upper bounds of a decision variable
regardless of its value (Abed-Alguni and Paul 2018; Abed-
alguni 2019; Alawad and Abed-alguni 2020). CSJ uses the
Jaya mutation method that mutates the candidate solutions
using stochastic moves based on the best and worst candi-
date solutions (Rao 2016). CS11 uses the pitch adjustment
mutation, which is known for its quick convergence (Abed-
Alguni and Paul 2018; Al-Betar et al. 2015). In summary, we
conclude that the mutation methods in iCSPM2 collectively

provide it with strong exploration and exploitation capabili-
ties.

Finally, iCSPM2 utilizes two well-known opposition
learning approaches (OBL andEOBL), while the other tested
algorithms in Sect. 5 do not utilize any opposition learning
approach. TheOBL approach is used in the initialization step
of iCSPM2 to widen the search are by considering the oppo-
site solutions of randomly generated solutions. This helps
in increasing the diversity of initial population. The EOBL
approach speeds up the convergence of iCSPM2by exploring
the opposite solutions of the best-known candidate solutions
(Paiva et al. 2017; Zhang et al. 2017).

7 Conclusions and future work

This paper introduced an improved variation of the island-
based Cuckoo Search algorithm by the name island-based
Cuckoo Search with elite opposition-based learning and
multiple mutation methods (iCSPM2). The source code
of iCSPM2 is publicly available at https://github.com/
bilalh2021/iCSPM2. The new algorithm distributes the pop-
ulation of candidate solutions for a given optimization among
s independent islands and then it evenly divides the islands
among 4 variations of Cuckoo Search (Cuckoo search via
Lévy flights, Cuckoo Search with polynomial mutation,
Cuckoo Search with Jaya mutation, Cuckoo Search with
pitch adjustmentmutation). Thismeans that each variation of
Cuckoo Search is applied to n/4 islands. Besides, iCSPM2
uses elite opposition-based learning to explore the neigh-
borhood of elite solutions in the population of each island.
iCSPM2 is capable of solving complex, scheduling prob-
lems as well as continuous optimization problems. This is
because it uses the smallest position value method with com-
plex scheduling problems, such as the permutation flow shop
scheduling problem, to convert the continuous candidate
solutions into discrete ones.

iCSPM2 has been shown to perform better than a num-
ber of other well-known optimization algorithms through
several experiments conducted in order to test its perfor-
manceusingpopular benchmark suites. Firstly, the sensitivity
of iCSPM and iCSPM2 to the number of islands, s, the
migration frequency, M f , and the migration rate, Mr , were
studied and analyzed based on different experimental sce-
narios. Overall results indicate that higher values of s and
lower values of M f give better performance for both iCSPM
and iCSPM2. However, it remains unclear whether high
or low values of Mr improve either algorithm’s perfor-
mance. In any case, the experimental results indicate that
iCSPM2 outperforms iCSPM. Secondly, performance of
iCSPM2was compared against fourwell-known swarmopti-
mization algorithms: DGWO (Abed-alguni and Barhoush
2018), L-SHADE (Tanabe and Fukunaga 2014), MHDA (Ks
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Fig. 5 The convergence charts of iCSPM2, DGWO and L-SHADE over the first 1000 iterations for selected functions from CEC2014 (F2, F5, F11,
F15, F20, F27)

and Murugan 2017) and FWA-DM (Yu et al. 2014) using
the single-objective IEEE-CEC 2014 functions. The over-
all results show that iCSPM2 performs better than the other
well-known swarm optimization algorithms on these func-
tions. Finally, we conducted experiments using 12 instances
of Taillard’s benchmark for the PFSSP to show that iCSPM2
is an efficient algorithm for scheduling problems. In these

experiments, iCSPM2was compared to two efficient discrete
evolutionary algorithms (GAIbH Fernandez-Viagas et al.
2020 and MASC Kurdi 2020). The results indicate that
iCSPM2 is a better scheduling algorithm than GAIbH and
MASC.

However, iCSPM2 has two main limitations. Firstly, the
computational complexity of iCSPM2 is O(Mw.s.M f .k),
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Table 9 Results of iCSPM2,
GAIbH and MASC

Problems Size iCSPM2 GAIbH MASC Copt

vskip
Mean ARD Mean ARD Mean ARD

Ta010 20 × 5 1108 0.00 1108 0.00 1108 0.00 1108

Ta020 20 × 10 1378 0.00 1378 0.00 1378 0.00 1378

Ta030 20 × 20 2100 0.00 2123.6 0.05 2100 0.00 2100

Ta040 50 × 5 2552 0.00 2552 0.00 2552 0.00 2552

Ta050 50 × 10 3006 0.00 3024 0.03 3006 0.00 3006

Ta060 50 × 20 3694.1 0.738 3721.5 1.82 3696 0.74 3635

Ta070 100 × 5 5014 0.00 5018.7 0.02 5015.35 0.00 5014

Ta080 100 × 10 5306 0.00 5633 0.51 5306.75 0.02 5303

Ta090 100 × 20 6350 0.662 6482.7 1.94 6241 0.65 6241

Ta100 200 × 10 10,335.2 0.065 10,648 0.35 10,331.7 0.04 10,331

Ta110 200 × 20 11,266.3 0.015 11,347.9 1.89 11,292.35 0.66 11,294

Ta120 500 × 20 25,931.7 0.906 26,869.3 1.39 26,322.15 1.22 26,083

Total average 0.23 0.67 0.28

which is more than the computational complexity of the
basic CS algorithm (O(Max I tr .n)). Hence, we recom-
mend iCSPM2 be executed over s parallel devices, which
will reduce its computational complexity to O(Mw.M f .k).
Secondly, iCSPM2 can only be directly applied to single-
objective optimization problems. Therefore, one of our future
goals is to develop a variation of iCSPM2 that can solve some
multi-objective optimization problems.

In the future, the following would be interesting research
studies:

– Incorporating the mutation methods from Equilibrium
optimizer (Faramarzi et al. 2020), Jaya (Rao 2016),
Grasshopper (Saremi et al. 2017), L-SHADE andMHDA
into iCSPM2.

– Applying iCSPM2 to multi-agent cooperative reinforce-
ment learning (Abed-alguni et al. 2015a, b; Abed-alguni
and Ottom 2018; Abed-Alguni et al. 2016) based on the
models described in Abed-alguni (2018, 2017); Abed-
Alguni (2014).

– Incorporating iCSPM into an intelligent distributed rec-
ommender system based on the problemmodel discussed
in Alawad et al. (2016).

– Incorporating the island model with the arithmetic opti-
mization algorithm (Abualigah et al. 2021) and Aquila
optimizer (Abualigah et al. 2021) to solve the feature-
section problem described in Abualigah et al. (2019).

– Finally, it could be possible to improve other heuris-
tics and metaheurisics by enhancing them with different
mutation methods and elite opposition-based learning in
a similarmanner to how island-basedCuckoo Searchwas
improved in this paper.
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