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Abstract
The era of big data has arrived, making it impossible for traditional machine learning algorithms to perform training in a
stand-alone computing environment. In this paper, we propose a method for imbalanced binary classification of large-scale
datasets based on undersampling and ensemble. More specifically, our method first adaptively partitions the majority class
big data into k clusters, followed by undersampling to create k balanced datasets. Subsequently, k base classifiers are trained
on each balanced dataset and are combined to perform the final prediction. Existing undersampling methods randomly select
a subset of the majority class; thus, important instances may be lost during the process. In contrast, our proposed fuzzy
data reduction scheme selects informative instances from each cluster, preventing information loss. Traditional ensemble
methods have negative correlations between the base classifiers, whereas our proposed classifier fusion scheme fuses the
base classifiers using fuzzy integral to facilitate modeling the relations between the base classifiers. The proposed algorithm
is evaluated on six imbalanced large data sets and compared with state-of-the-art undersampling and ensemble methods,
including the synthetic minority oversampling technique bagging (SMOTE-Bagging), SMOTE-Boost, and Binary Ensemble
Classification for Imbalanced big data based on MapReduce and Upper sampling (BECIMU). Quantitative evaluations and
theoretical analysis demonstrate that the proposed method outperforms the three state-of-the-art methods by 1.47%, 2.00%
and 2.03%, and by 3.15%, 2.15% and 2.52%, in terms of the average G-mean and AUC-area, respectively.

Keywords Big data · Big data platform · Imbalanced data classification · Fuzzy data deduction · Fuzzy integral

1 Introduction

Many real-life binary imbalanced big data classification
problems exist, for example, extreme weather prediction
(Wang and Ding 2015), software defect prediction (Zhong
et al. 2016), machinery fault diagnosis (Ding et al. 2017),
spam filtering (Murtaza et al. 2020), and medical image
classification (Murtaza et al. 2020). Since the class imbal-
ance problem was originally proposed by Japkowicz (2000),
different researchers have developed many methods. How-
ever, most of them focus only on small-scale datasets. With
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the emergence of big data, it is impossible for conventional
machine learning algorithms to perform training in a stand-
alone computing environment.

In this paper, we propose an imbalanced binary classifica-
tion method based on undersampling and ensemble method
for large-scale datasets. Specifically, we propose to (1) adap-
tively partition themajority class of the big data into k clusters
using the open-source big data platforms, (2) use under-
sampling to create k balanced datasets and (3) train k base
classifiers on the balanced datasets which are combined to
perform the final prediction.

Undersampling (Japkowicz 2000; Liu et al. 2009; Ofek
et al. 2017; Lin et al. 2017) is a popular method for imbal-
anced binary classification. Let S be an imbalanced data
set, S = S+ ∪ S−, where S+ and S− denote the positive
class (minority class) and the negative class (majority class).
First, a subset S′ from S− is randomly selected to ensure that
|S′| = |S+|. Then, a balanced training set Str is obtained by
combining S′ and S+. Finally, a classifier is trained on Str
to classify the imbalanced test set Ste. Although the under-
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sampling method is straightforward, it has the drawback that
some essential negative class instances may be lost due to
random sampling. The ensemble method fuses the base clas-
sifiers (which are often weaker) to create a stronger classifier.
It should be noted that the base classifiers are not independent
because the k balanced training subsets contain the same pos-
itive class subset. Existing studies (Wang et al. 2009; Chawla
et al. 2003b; Zhai et al. 2018a) failed to consider this, result-
ing in negative correlations between base classifiers.

To address these problems, we propose fuzzy data reduc-
tion and classifier fusion schemes. After the negative big data
set S− has been clustered into k clusters S−

1 , S−
2 , . . . , S−

k
using an adaptive clustering method1, fuzzy data reduc-
tion is adopted to select the informative instances from S−

i
for each obtained cluster S−

i (1 ≤ i ≤ k). As a result, k
undersampled negative class subsets R−

i (1 ≤ i ≤ k) are
obtained. Selecting informative instances instead of random
instances guarantees that less information is lost during the
undersampling process. Given the k balanced training sets
Si = R−

i ∪ S+(1 ≤ i ≤ k), the base classifiers are trained
and fused using fuzzy integral, which can accurately model
the relations between the k base classifiers. The fusion via
fuzzy integral can reduce the negative correlations between
the base classifiers and enhance the classification accuracy
of binary imbalanced data.

To summarize, we propose a binary imbalanced big data
classification approach based on fuzzy data reduction and
classifier fusion. The main contributions of this paper are
threefold. First, we propose an undersampling method for
negative big data based on fuzzy data reduction to minimize
information loss. Second, we present a binary imbalanced
big data classification approach based on classifier fusion to
prevent negative correlations between base classifiers. Third,
extensive experiments are conducted on two big data open-
source platforms (MapReduce and Spark) to compare the
G-mean and AUC-area of the proposed methods and three
state-of-the-art methods on six binary imbalanced big data
sets. In addition, we present a theoretical analysis on the
running time, the number of task synchronizations, and the
number of files of the proposed methods implemented on the
MapReduce and Spark.

2 Related works

Existing binary imbalanced data classification methods can
be classified into three categories: data-level, algorithm-
level, and ensemble methods. Since this paper focuses on
undersampling and ensemble methods, we only review these
two methods.

1 k is automatically determined by the clustering algorithm.

2.1 Undersamplingmethods

Undersampling is a popular method that uses a subset of
the majority class to deal with class imbalance (Liu et al.
2009). Japkowicz and Stephen (2002) provided a theoret-
ically proof that classifiers trained on the sample data set
provided equivalent generalization performance to classifiers
trained on the original data set. Ofek et al. (2017) proposed a
clustering-based undersampling technique that clusters the
minority class instances and selects a similar number of
majority class instances from each cluster. The algorithm
exhibited high predictive performance with linear complex-
ity bound by the size of S+. Bach et al. (2019) proposed
a clustering-based undersampling method that clusters the
majority class instances and removes the instances from the
high-density domains in contrast to the approach in Ofek
et al. (2017), which clusters the minority class instances.
Lin et al. (2017) introduced two clustering-based under-
sampling strategies, in which set the number of clusters in
the majority class is equal to the number of data points in
the minority class. The Tomek-link (T-Link) was proposed
as a data compression and cleaning technique in Tomek
(1976). Given two instances xi and x j belonging to differ-
ent classes, d(xi , x j ) be the distance between xi and x j . A
pair (xi , x j ) is called a T-Link, if there is no instance xl ,
such that d(xi , xl) < d(xi , x j ) or d(x j , xl) < d(xi , x j ). If
a T-Link exists between 2 instances, one of the instances is
noise, or both are borderline instances. Batista et al. (2004)
used the T-Link as an undersampling method; only major-
ity instances were removed. Kang et al. (2017) proposed
an undersampling scheme that incorporates a noise filter for
minority samples before the undersampling step. In under-
sampling, the deleted samples are never used to train the
classifier, which may result in information loss. Therefore,
Fan et al. (2016) presented a one-sided dynamic undersam-
pling (ODU)method that utilizes all samples for training and
dynamically determines whether a majority sample should
be used for classifier learning. The novelty of ODU is the
dynamic undersampling of the majority class to balance the
dataset. Vuttipittayamongkol and Elyan (2020) proposed an
undersampling framework designed to identify and elimi-
nate majority class instances from the overlapping region.
Accurate identification and elimination of these instances
maximizes the visibility of the minority class instances and
prevents excess data reduction, minimizing information loss.
Koziarski (2020) developed an undersampling method based
on radial basis function for imbalanced data classification.
García and Herrera (2009) were among the first researchers
to investigate evolutionary undersampling (EUS). The objec-
tive of EUS is to increase the accuracy of the classifier by
reducing instances mainly belonging to the majority class.
A good trade-off is achieved between data reduction, data
balancing, and classification accuracy by designing a suit-
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able fitness function. The authors (García and Herrera 2009)
proposed eight EUS methods and categorized them depend-
ing on the objective, selection scheme, and performance
metrics. Triguero et al. (2015, 2016, 2017) extended the
EUS approach to big data scenarios and proposed three
EUS approaches for imbalanced big data classification. The
first method (Triguero et al. 2015) is a divide-and-conquer
approach based on the MapReduce paradigm. The drawback
of this approach is the low density of the minority class in the
subsets in extremely imbalanced cases. Reference Triguero
et al. (2016) proposed the second approach to overcome
this drawback; it was implemented on the Spark platform.
The methods in Triguero et al. (2015) and Triguero et al.
(2016) utilized divide-and-conquer strategy to split big data
set into several subsets that are addressed individually. How-
ever, the global view of the data may be lost, reducing the
model accuracy. The third method, a global EUS approach
for imbalanced big data, addresses this problem (Triguero
et al. 2017). Liang et al. (2021) proposed fast and efficient
undersampling method for imbalanced learning. It combines
the classification boundary adjustment and sample selection
to improve the efficiency and effect of imbalanced learning.
Zheng et al. (2021) proposed a three-stage undersampling
method, in which noise removal, clustering and representa-
tive sample selection were carried out in the three stages,
respectively. The method can overcome the shortcomings of
undersampling methods based on clustering.

2.2 Ensemblemethods

Ensemble methods used for the classification of imbalanced
data can be divided into methods combined with undersam-
pling andmethods combined with oversampling approaches.

Regarding the first category, Liu et al. (2009) pro-
posed two undersampling-based ensemble methods called
EasyEnsemble and BalanceCascade for class imbalance
learning. EasyEnsemble randomly samples l subsets from
the majority class as training sets to train l base classi-
fiers, l is a predefined parameter, and combines the outputs
of the l classifiers. BalanceCascade trains the classifiers
sequentially; the majority class instances that are correctly
classified by the trained learners are removed in each step.
Seiffert et al. (2010) proposed a simpler and faster ensemble
method (RUSBoost) that combines random undersampling
and a boosting algorithm. Galar et al. (2013) proposed EUS-
Boost, an improvement of the RUSBoost algorithm, which
combines random undersampling with a boosting algorithm.
EUSBoost has higher performance of the base classifiers
than RUSBoost due to EUS approach. Besides, EUSBoost
is more versatile because it uses different subsets of major-
ity class instances to train each base classifier. Similarly,
Sun et al. (2018) combined EUS with the bagging algorithm
and proposed an EUS-based ensemble method called EUS-

Bag. The advantage of EUS-Bag is a new fitness function
that considers performance, balance, and diversity. Lu et al.
(2017) proposed a hybrid ensemble method that combines
ensemble learning, undersampling techniques, and an adap-
tive boundary decision strategy. Sun et al. (2015) proposed
a split balancing ensemble (SBE) approach for solving the
class-imbalance problem. The SBE randomly partitions the
set of majority class into several subsets with same sizes
as the set of minority class. Each subset is combined with
the minority class instances to obtain balanced subsets. The
basic classifiers of the ensemble approach are trained on these
balanced subsets, and the outputs of the base classifiers are
integrated using a combination rule. However, underfitting
may occur if a training set with a high imbalance ratio is used
in the SBE method. Chen et al. (2019) proposed a distance-
based balanced ensemble (DBE) method for classifying data
with a high imbalance ratio to handle this issue. The DBE
divides the highly imbalanced data set into multiple imbal-
anced subsets with a much lower imbalance ratio and uses
a modified adaptive semi-unsupervised weighted oversam-
pling method for each subset to obtain balanced subsets to
train base classifiers used in the ensemble approach. Guo
et al. (2020) proposed a two-step ensemble learning method
for classifying imbalanced data. In the first step, a projec-
tion matrix is used to enhance the separability between the
diverse class examples to improve the performance of the
base classifier. In the second step, undersampling is applied
to improve the performance of the base classifiers in the
minority class and further increase the diversity between
the individual base classifiers. Wang et al. (2020c) proposed
an entropy and confidence-based undersampling boosting
framework called ECUBoost for imbalanced data sets. The
entropy and confidence levels are used in ECUBoost to
avoid losing informative samples, and ensure the validity
and adequate structural distribution of the majority sam-
ples during undersampling. Yang et al. (2020) presented a
hybrid classifier ensemblemethod for classifying imbalanced
data. This approach combines density-based undersampling
and cost-effective methods using state-of-the-art solutions
and a multi-objective optimization algorithm. Raghuwanshi
and Shukla (2019) proposed an undersampling-based ensem-
ble method that creates several balanced training subsets by
random undersampling of the majority class samples. The
number of training subsets is determined by the degree of
the class imbalance. The generated balanced training subsets
are used for training the base classifiers, and bagging is used
as the ensemble method. The drawback of this method is that
the number of training subsets is very large if the original data
set has a high imbalance ratio.

Regarding the second category, Chen et al. (2018) pro-
posed an ensemble method for classifying imbalanced data.
The method consists of two steps. First, it generates syn-
thetic samples in a local domain of the training samples
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and trains the base classifiers using the original training
samples and synthetic neighborhood samples. Finally, the
classifiers are fused for classifying imbalanced data. The pro-
posed method addresses the class imbalance problem and
promotes diversity. Chawla et al. (2003a) combined base the
SMOTE algorithm and a boosting and proposed SMOTE-
Boost to improve prediction the accuracy of the minority
class instances during boosting. Lim et al. (2017) devel-
oped an evolutionary cluster-based oversampling ensemble
method (ECO-Ensemble) that combines a cluster-based
synthetic data generation method with an evolutionary algo-
rithm. Zhai et al. (2018b) presented an imbalanced big
data classification algorithm that combines an oversampling
method and an ensemble approach. Oversampling is carried
out in an enemy nearest neighbor hypersphere of a positive
instance, and the ensemble technique is implemented using
fuzzy integral. The enemy nearest neighbor of each posi-
tive instance is obtained by Ren et al. (2017) proposed an
ensemble-based adaptive over-sampling method for imbal-
anced data classification and used it for computer-aided
detection of microaneurysm. Li et al. (2017) utilized the
Wiener process oversampling (WPO) technique for classify-
ing imbalanced data and combined it with ensemble learning
to create theWPOBoost algorithm.Abdi andHashemi (2015)
integrated the Mahalanobis distance-based over-sampling
(MDO) technique with a boosting algorithm and proposed
the MDOBoost algorithm for multi-class imbalanced data.
Galar et al. (2012) conducted a comprehensive review of
ensemble methods for classifying imbalanced data, focus-
ing on bagging and boosting. Huang et al. (2020) proposed
an ensemble method based on conditional image generation
(Zhai et al. 2021, 2019; Zhang et al. 2020) for imbalanced
image classification, which uses the generative adversarial
network for oversampling and uses data cleaning for down-
sampling. Yan et al. (2019) proposed an ensemble method
based on the three-way decision model for imbalanced data
classification. The key point of this method lie in considering
the difference in the cost of selecting key samples selected
by the three-way decision model.

The literature indicates a lack of studies on imbalanced
big data classification, a topic that was only researched by
Triguero et al. (2015, 2016, 2017). In this paper, we present
a classification algorithm for binary imbalanced big data that
combines fuzzy data reduction and classifier fusion. In the
following section,wepresent the details of the proposed algo-
rithm.

3 The proposed algorithm

In this section, we present the proposed algorithm in detail.
Let S = S− ∪ S+ be an imbalanced big data set, where S−
is an imbalanced big data set, and S+ is a small or medium-

Fig. 1 The idea of the proposed algorithm

size data set. The proposed algorithm is illustrated in Fig. 1.
It consists of four stages: (1) Adaptively clustering negative
big data; (2) calculating the reduction in each cluster; (3)
constructing balanced training sets and training base classi-
fiers; (4) integrating the trained base classifiers using fuzzy
integral. We present the details of each stage below.

3.1 Adaptively clustering negative big data

The K-means algorithm is a very popular clustering algo-
rithm; however, its major drawback is that the parameter
K must be determined by the user. The X-means algo-
rithm (Pelleg and Moore 2000) proposed by Pelleg and
Moore overcomes this drawback. It is a hierarchical clus-
tering approach that can efficiently estimate the parameter
K by optimizing the Bayes information criterion (BIC). The
X-means algorithm assumes a minimum number of clusters
and dynamically increases them. It uses the BIC to guide
splitting of clusters. If a single cluster (parent) is split into
two clusters (children), and the BIC increases, two clusters
are preferred to one cluster. LetCi (i = 1, 2) be the two child
clusters; it is assumed that the data x contained in Ci follow
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a d-dimensional normal distribution:

f (θ i ; x)=(2π)−
p
2 |�i |− 1

2 exp

[
−1

2
(x−μi )

T�−1
i (x − μi )

]

(1)

The calculation of BIC is given by equation (2).

BIC = −2 log L(θ̂ i ; x) + q log ni (2)

where θ̂ i = (μ̂i , �̂i ) is the maximum likelihood esti-
mate of the d-dimensional normal distribution; μi is the
d-dimensional means vector, and �i is the d × d dimen-
sional variance-covariance matrix; q is the number of the
parameters. x is the d-dimensional data point in Ci ; ni is the
number of elements in Ci . L is the likelihood function.

In this paper, we extend the X-means algorithm to the big
data scenario and use it to cluster negative big data adaptively.
The pseudocode of the extended X-means algorithm for big
data is given in Algorithm 1.

Algorithm 1: Big data X-means algorithm
Input: The negative big data S−; the minimum number of

clusters Kmin ; the maximum number of clusters Kmax .
Output: The adaptive clustering results: S−

1 , S−
2 , . . . , S−

k , the k
is the optimal number of clusters.

1 Let K = Kmin , use the big data K-means algorithm to S−, and
obtain Kmin clusters;

2 for (each cluster in parentClusters) do
3 if (K < Kmax ) then
4 Calculate the parentBIC of each parent cluster by (2);
5 Use the big data K-means algorithm to each parent

cluster, and obtain two children clusters;
6 Calculate the childBIC of each child cluster by (2);
7 if (childBIC > parentBIC) then
8 Add two children clusters to parentClusters;
9 end

10 else
11 Output parentClusters to HDFS;
12 Update K ;
13 end
14 end
15 else
16 The remaining instances of the parent cluster form a

cluster;
17 Output parentClusters to HDFS;
18 end
19 end
20 Output the adaptive clustering results: S−

1 , S−
2 , . . . , S−

k .

The main operation of the X-means algorithm is the big
data K -means clustering, and the main computation is the
calculation of the BIC. It is straightforward to compute a
cluster’s BIC due to the simplicity of estimating its mean
vector μ̂i and the covariancematrix �̂i . Accordingly, the bot-
tleneck of Algorithm 1 is the clustering of big data, which is

performed using the big data computing framework MapRe-
duce, as illustrated in Fig. 2.

Specifically, the process of big data K -means clustering
based on MapReduce includes the following three stages:

(1) map: at each map node i(1 ≤ i ≤ m), the distance
between each sample xi j ∈ S−

i (1 ≤ i ≤ m; 1 ≤ j ≤
|S−

i |) and each local cluster center cik ∈ Cik(1 ≤ i ≤
m; 1 ≤ j ≤ K ) is calculated in parallel, and xi j is
assigned to the nearest cluster.

(2) combiner: the local cluster center cik ∈ Cik is updated
in parallel by the formula (3),

cik = 1

|Cik |
∑

xi j∈Cik

xik (3)

(3) At a reduce node, the global cluster center ck ∈ C(1 ≤
k ≤ K ) is updated by formula (4).

ck = 1

m

m∑
i=1

cik (4)

3.2 Calculating the reduction in each cluster

After performing adaptively clustering, the negative big data
set S− is clustered into k subsets: S−

1 , S−
2 , . . . , S−

k . The neg-
ative class big data set is regarded as a k-class data set. We
can use a data reduction approach (Wang et al. 2020a, 2019;
Sun et al. 2019a; Ni et al. 2020, 2019) to eliminate unimpor-
tant data points from each cluster or use the instance selection
method (Zhai et al. 2016;Wang et al. 2020b; Sun et al. 2019b)
to select informative data points from each cluster. Since the
cluster (or class) of a sample x in the local data subset S−

i is
known, data reduction or instance selection can be performed
on a local data subset in parallel at each computing node.

In this paper, we use the fuzzy set method to calculate the
reduction in S−

i (1 ≤ i ≤ k). Specifically, we calculate the
reduction R−

i of each S−
i using the condensed fuzzy k-nearest

neighbor (CFKNN) method. Why use this data reduction
method because the k clusters are subsets of the negative big
data set S−, and they might overlap. CFKNN is an instance
reduction or instance selection approach for fuzzy k-nearest
neighbors (FKNN) (Keller et al. 2009) that overcomes the
following three drawbacks of the k-nearest neighbor (KNN)
method (Cover and Hart 1967).

(1) Given a test instance x, the KNN method does not con-
sider the difference in the contribution between the k
nearest neighbors of x to classify x.

(2) The KNN method does not consider the probability of
x belonging to different classes.

(3) The KNN method is sensitive to noise.
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Fig. 2 The technical route of
big data K -means clustering
based on MapReduce

The FKNN method uses the fuzzy membership degree to
describe the probability of x belonging to a class. The fuzzy
membership degree of x is determined by its k nearest neigh-
bors using Eq. (5).

μ j (x) =
∑k

i=1 μi j

(
1

‖x−xi‖
2

m−1

)

∑k
i=1

(
1

‖x−xi‖
2

m−1

) (5)

where j is the index of classes, μi j is given by equation (6).

μi j = μ j (xi ) =
1

‖xi−c j‖
2

m−1

∑k
j=1

(
1

‖xi−c j‖
2

m−1

) (6)

where xi is the i th nearest neighbor of x, c j is the center
of the j th class. In Eq. (5) and (6), m is a parameter that
determines how the weight of the distance when calculating
the neighbors’ contributions to themembership value (Keller
et al. 2009). In our experiments, we set m = 2, as suggested
byKeller et al. (2009), i.e., the contribution of each neighbor-
ing point is weighted by the reciprocal of its distance from
the point being classified.

In the CFKNN method, given an instance x in a subset
S−
i (1 ≤ i ≤ k), we use the fuzzy membership degree μ j (x)

to calculate the information entropy E(x) using Eq. (7).

E(x) = −
k∑

i=1

μ j (x) log2 μ j (x) (7)

The entropy is a measure of class uncertainty of the
instances; the larger the entropy of an instance, the more
difficult it is to determine its class. Accordingly, instances
with larger information entropy are more informative. In the

CKKNNmethod,we use entropy as a criterion to select infor-
mative instances. The pseudo-code of the CFKNN algorithm
is given in Algorithm 2, where we omit the subscript of sub-
set S−

i for convenience; thus, S denotes the negative subset
S−
i .

Algorithm 2: The CFKNN algorithm
Input: An local negative subset S−, and a threshold λ.
Output: A reduction R− of S−.

1 Randomly select k instances from each cluster to initialize R−,
and move the k instances from S− to R−;

2 for (each x ∈ S−) do
3 Find its k nearest neighbors in R−;
4 for (each nearest neighbor of x) do
5 Calculate its fuzzy membership degrees by Eq. (6);
6 end
7 Calculate the fuzzy membership degree of x by Eq. (5);
8 Calculate the entropy of x by Eq. (7);
9 if (E(x) > λ) then

10 R− = R− ∪ {x};
11 end
12 return R−.
13 end

3.3 Constructing balanced training sets and training
classifiers

In previous section, we obtained k reduction subsets, R1, R2,

. . . , Rk . Next, we construct k balanced training sets, S1, S2,

. . . , Sk , by unionizing each reduction subset Si and the posi-
tive class subset S+, i.e., Si = R−

i ∪S+(1 ≤ i ≤ k). Next, we
train k extreme learning machine (ELM) (Huang et al. 2006)
classifiers L1, L2, . . . , Lk , and their outputs are transformed
into posterior probability by softmax function.

An ELM classifier is a Single hidden Layer Feed-forward
neural Network (SLFN). A SLFN with m hidden nodes can
be modeled with the following equation:
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f (x) =
m∑
i=1

G(x,wi , bi )β i (8)

where G denotes the hidden node activation function, wi is
the input weight vector connecting the i th hidden node with
the input nodes. bi is the bias of the i th hidden node. β i is
the output weight vector connecting the i th hidden node with
the output nodes. In ELM, wi and bi are randomly assigned,
while β i are analytically determined.

Given a training set, S = {(xi , yi )|xi ∈ Rd , yi ∈ Y }ni=1,
where xi is an input vector and yi is a class label in Y , Y =
{ω1, ω2, . . . , ωl} be a set of class labels. Substitute xi and yi
for x and f (x) in (8), respectively, we obtain Eq. (9).

yi =
m∑
j=1

G(xi ,w j , b j )β j (9)

Eq. (9) can be written in a more compact format as

Hβ = Y (10)

where

H =
⎡
⎢⎣
G(x1,w1, b1) . . . G(x1,wm, bm)

... · · · ...

G(xn,w1, b1) · · · G(xn,wm, bm)

⎤
⎥⎦ (11)

β = (βT
1 , . . . ,βT

m)T (12)

and

Y = ( yT1 , . . . , yTn )T (13)

Because usually the number of hidden nodes is much
less than the number of training samples, H is a non-square
matrix and one cannot expect an exact solution of the system
(10). Yet, we can find its smallest norm least square solution
by solving the optimization problem (14).

min
β

‖Hβ − Y‖ (14)

The smallest norm least-squares solution of (14) can be easily
obtained using Eq. (15).

β̂ = H†Y (15)

where H† = (
HHT

)−1
H is the Moore–Penrose general-

ized inverse of matrix H .
Given a test instance x, the predicted posterior probability

by softmax transformation is given using Eq. (16).

p(ωi |x) = eyi∑l
j=1 e

y j
(16)

3.4 Integrating the trained classifiers by fuzzy
integral

Let L = {L1, L2, . . . , Lk} be the set of k ELM classi-
fiers trained on the k constructed balanced training sets,
Y = {ω1, ω2, . . . , ωl} be the set of class labels of the training
instances. For test instance x, the output of classifier Li is a
l-dimensional vector denoted by

Li (x) = (pi1(x), pi2(x), . . . , pil(x)) (17)

where pi j (x) ∈ [0, 1](1 ≤ i ≤ k; 1 ≤ j ≤ l) denotes the
support degree given by classifier Li to the hypothesis that x
comes from class ω j ,

∑l
j=1 pi j (x) = 1, pi j (x) is estimated

by Eq. (16).
The following matrix is called decision matrix Abdallah

et al. (2012) with respect to x.

DM(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

p11(x) · · · p1 j (x) · · · p1l(x)
...

...
...

pi1(x) · · · pi j (x) · · · pil(x)
...

...
...

pk1(x) · · · pkj (x) · · · pkl(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

where the i th row of the matrix are the support degrees that
classifier Li classify x into classes ω1, ω2, . . . , ωl , the j th
column of the matrix are the support degrees from classifiers
L1, L2, . . . , Lk for class ω j .

Let P(L) be the power set of L , the fuzzy measure on
L is a set function g : P(L) → [0, 1], which satisfies the
following two conditions:

(1) g(∅) = 1, g(L) = 1;
(2) For ∀A, B ⊆ L , if A ⊂ B, then g(A) ≤ g(B).

For ∀A, B ⊆ L and A∩B = ∅, g is called λ-fuzzy measure,
if it satisfies the following condition:

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) (19)

where λ > −1 and λ �= 0.
The value of λ can be obtained by solving the equation

(20).

λ + 1 =
k∏

i=1

(1 + λgi ) (20)

where gi = g({Li }), which is called fuzzy density of classi-
fier Li . It is noted that the equation (20) has only one solution
which meets the conditions λ > −1 and λ �= 0. Usually, gi

123



2788 J. Zhai et al.

can be determined using Eq. (21).

gi = pi∑k
j=1 p j

δ. (21)

where δ ∈ [0, 1] and pi is testing accuracy or verification
accuracy of classifier Li (1 ≤ i ≤ l).

Let h : L → [0, 1] be a function defined on L . The
Choquet fuzzy integral (Abdallah et al. 2012) of function h
with respect to g is defined using Eq. (22).

(C)

∫
hdμ =

l+1∑
i=2

[
h(Li−1) − h(Li )

]
g(Ai−1) (22)

where h(L1) ≥ h(L2) ≥ · · · ≥ h(Lk), h(Ll+1) = 0,
Ai−1 = {L1, L2, . . . , Li−1}.

Given a test instance x, when we use fuzzy integral to
integrate the k trained classifiers L1, L2, . . . , Lk for classi-
fying x, we first compute decision matrix DM(x), and then
sort j th(1 ≤ j ≤ k) column of DM(x) in descending order
and obtain (pi1 j , pi2 j , . . . , pik j ). The support degree p j (x)

is calculated using Eq. (23).

p j (x) =
k+1∑
t=2

[
pit−1 j (x) − pit j (x)

]
g(At−1) (23)

The pseudo-code of integrating the trained classifiers by
fuzzy integral is given in Algorithm 3.

Algorithm3:The pseudo-code of integrating the trained
classifiers by fuzzy integral
Input: L = {L1, L2, · · · , Lk} be a set of k base classifiers; x be

a test instance.
Output: j∗, the class of x.

1 for (i = 1; i ≤ k; i = i + 1) do
2 Calculate the fuzzy densities gi of classifier SLFNi using Eq.

(21);
3 end
4 Calculate parameter λ using Eq. (20);
5 Calculate DM(x) using Eq. (18);
6 for ( j = 1; j ≤ l; j = j + 1) do
7 Sort j th column of DM(x) in descending order and obtain

(pi1 j , pi2 j , · · · , pik j );
8 Set g(A1) = gi1 ;
9 for (t = 2; t ≤ k; t = t + 1) do

10 Calculate g(At ) = git + g(At-1) + λgit g(At-1);
11 end
12 Calculate p j (x) = ∑k+1

t=2 [pit−1 j (x) − pit j (x)]g(At−1);
13 end
14 Calculate p j∗ (x) = argmax1≤ j≤l {p j (x)};
15 Output j∗.

Table 1 Confusion matrix of binary imbalanced classification problem

True labels Prediction labels

Yes No

Positive TP (True positive) FN (False negative)

Negative FP (False positive) TN (True negative)

Table 2 The mean vectors and
covariance matrices of Gaussian
1

i μi �i

1 (1.0, 1.0)T
[
0.6 −0.2

−0.2 0.6

]

2 (2.5, 2.5)T
[
0.2 −0.1

−0.1 0.2

]

4 Experimental results and analysis

Wecompared the proposedmethodwith three state-of-the-art
approaches on a big data platform with 8 computing nodes.
The three approaches are SMOTE-Bagging (Wang et al.
2009), SMOTE-Boost (Chawla et al. 2003b), and BECIMU
(Zhai et al. 2018a). The assessment metrics are G-mean and
AUC-area which are commonly used for evaluating the per-
formance of imbalanced data classification algorithms (Bach
et al. 2019). The G-mean is defined in Eq. (24); it is obtained
from the confusion matrix (contingency table) (Table 1). The
AUC refers to theAreaUnder the Curve of receiver operating
characteristics (ROC) (Liu et al. 2009).

G-mean =
√

TP

TP+FN
× TN

TN+FP
(24)

The data sets used in the experiments include 2 artifi-
cial data sets and 4 UCI data sets (Dua and Graff 2019).
The first artificial data set (Gaussian 1) is a two-dimensional
data set with two classes followed two Gaussian distribu-
tions whose mean vectors and covariance matrices are listed
in Table 2. The second artificial data set (Gaussian 2) is a
three-dimensional data set with four classes followed four
Gaussian distributions whose the mean vectors and covari-
ance matrices are listed in Table 3. The basic information
of the 6 data sets is provided in Table 4, where #Negative
and #Positive denote the number of negative and positive
samples, respectively, and #Attribute denotes the number of
attributes.

All experiments were conducted on a big data platform
with 8 computing nodes; the configuration of the computing
nodes is given in Table 5. It should be noted that the config-
uration of the master node and the slave node are the same
in this platform.

We implemented the proposed algorithm using Hadoop
and Spark on the big data platform. The G-means and AUC-
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Table 3 The mean vectors and covariance matrices of Gaussian 2

i μi �i

1 (0.0, 0.0, 0.0)T

⎡
⎣1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦

2 (0.0, 1.0, 0.0)T

⎡
⎣1.0 0.0 1.0
0.0 2.0 2.0
1.0 2.0 5.0

⎤
⎦

3 (−1.0, 0.0, 1.0)T

⎡
⎣2.0 0.0 0.0
0.0 6.0 0.0
0.0 0.0 1.0

⎤
⎦

3 (0.0, 0.5, 1.0)T

⎡
⎣2.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 3.0

⎤
⎦

Table 4 The basic information of the 6 data sets

Data sets #Negative #Positive #Attribute

Gaussian 1 499,950 13,000 2

Gaussian 2 749,950 19,000 3

MiniBooNE 93,507 2200 50

Skin 194,148 4800 4

Healthy 70,216 1800 9

Hepmass 800,000 20,000 28

Table 5 The configuration of the nodes in the cloud computing platform

Items Configuration

CPU Inter Xeon
E5-4603
with two
cores,
2.0GZ

Memory 16GB

Network card Broadcom
5720 QP
1Gb

Hard disk 1TB

Operating system CentOS 6.4

Hadoop Hadoop 2.7.1

Sprk Spark 2.3.1

JDK JDK 1.8

area of the proposed algorithm and the three state-of-the-art
methods are listed in Tables 6 and 7, and Tables 8 and 9,
respectively.

The results indicate that the proposed method achieved
5 maximum of G-mean (bold values in column 5 of Tables
6 and 7), SMOTE-Boost achieved another maximum of G-
mean (bold values in column 3 of Tables 6 and 7). The
experiment results of AUC-area are similar to those of G-
mean (bold values in Tables 8 and 9). Overall, the proposed

Table 6 The experimental results of G-mean compared with the three
state-of-the-art methods with Hadoop

Data sets SMOTE-
Bagging

SMOTE-Boost BECIMU Proposed
method

Gaussian 1 0.9011 0.9106 0.9039 0.9357

Gaussian 2 0.8369 0.8600 0.8209 0.8216

MiniBooNE 0.8888 0.8907 0.8497 0.8934

Skin 0.8944 0.8606 0.8939 0.9218

Healthy 0.8850 0.8700 0.8764 0.8999

Hepmass 0.8755 0.8709 0.8915 0.9015

Table 7 The experimental results of G-mean compared with the three
state-of-the-art methods with Spark

Data sets SMOTE-
bagging

SMOTE-boost BECIMU Proposed
method

Gaussian 1 0.9034 0.9103 0.9017 0.9413

Gaussian 2 0.8436 0.8574 0.8436 0.8237

MiniBooNE 0.8897 0.8915 0.9027 0.9055

Skin 0.8894 0.8637 0.8946 0.9227

Healthy 0.8943 0.8658 0.8834 0.9013

Hepmass 0.8865 0.8738 0.8947 0.8963

Table 8 The experimental results of AUC-area comparedwith the three
state-of-the-art methods with Hadoop

Data sets SMOTE-
bagging

SMOTE-boost BECIMU Proposed
method

Gaussian 1 0.8834 0.9057 0.8933 0.9254

Gaussian 2 0.7999 0.8618 0.8017 0.8313

MiniBooNE 0.8739 0.8825 0.8604 0.9010

Skin 0.8891 0.8713 0.9008 0.9175

Healthy 0.8901 0.8890 0.8644 0.9004

Hepmass 0.8816 0.8734 0.8894 0.9109

Table 9 The experimental results of AUC-area comparedwith the three
state-of-the-art methods with Spark

Data sets SMOTE-
bagging

SMOTE-boost BECIMU Proposed
method

Gaussian 1 0.9088 0.9008 0.9205 0.9510

Gaussian 2 0.8390 0.8666 0.8325 0.8515

MiniBooNE 0.8739 0.8801 0.8966 0.9138

Skin 0.8916 0.8874 0.9017 0.9300

Healthy 0.8745 0.8900 0.8984 0.9127

Hepmass 0.8698 0.8877 0.8915 0.9084
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Fig. 3 The relationship between testing accuracy and number of itera-
tion on Hadoop and Spark

method outperformed the 3 state-of-the-art methods. We
believe that the proposed method is superior to the 3 state-
of-the-art methods for the following three reasons:

(1) Adaptive clustering of the negative class big data par-
titions the data into several groups and maintains the
intrinsic distribution.

(2) As a heuristic undersampling method, the instance selec-
tion prevents the loss of useful samples by random
undersampling and selects informative samples from
each cluster.

(3) Since the training sets used for training the base classi-
fiers are not independent, they include the same positive
subset. In other words, there are correlations between the
base classifiers. The correlations can be positive, the base
classifiers enhance each other in this case. The correla-
tions can also be negative, the base classifiers restrain
each other in this situation. The fuzzy integral can accu-
rately model the two types of correlations between the
base classifiers, increasing the classification performance
of the ensemble learning system.

If an algorithm is implemented on different big data plat-
forms, there should be no statistical difference in the testing
accuracy. Figure 3 shows the experimental results on the
Gaussian 1 data set on Hadoop and Spark. However, the
number of files, number of task synchronizations, and run-
ning times may be significantly different for the two big data
platforms. Therefore, we conducted a theoretical analysis
regarding these three aspects.

The number of files refers to the number of intermediate
files produced when the algorithm runs on the two big data
platforms Hadoop and Spark. The number of intermediate
files not only affect occupy thememory space but also affects
the input/output (I/O) performance, potentially increasing
the running time of the algorithm. On the Hadoop platform,
the shuffle operation of MapReduce sorts and merges the
intermediate results produced by the map task. MapReduce
reduces the amount of data transferred between the comput-
ing nodes bymerging and sorting the intermediate results. As
a result, each map task produces only one intermediate data
file. In contrast, the Spark platform does not have a merge
and sort operation for intermediate data files, and data from
different partitions are saved in a single file, i.e., the number
of partitions is the number of intermediate files.

Regarding the number of task task synchronization, the
reduce operation cannot be performed until all map opera-
tions are completed because MapReduce is a synchronous
model. Spark is an asynchronous model, the number of syn-
chronizations is larger on Hadoop than on Spark. The fewer
synchronizations, the faster the algorithm is executed.

The running time T of the algorithm is determined by
the sorting time Tsort and the transfer time Ttrans of the
intermediate data. When MapReduce sorts and merges the
intermediate results, we assume that each map task requires
m splits of the data, and each reduce task requires r splits
of the data; thus, the sorting time of the intermediate data
is TMR-sort = m logm + r . Since r ≤ m in most cases,
TMR-sort = O(m logm). In contrast, Spark has no shuffling
process; therefore, TSport-sort = 0. Ttrans is determined by the
size of the intermediate data |D| and the speed of network
transmissionCr . If we ignore the difference between network
transmission speeds, Ttrans ∝ |D|. The difference in trans-

Table 10 The comparison of
file number, synchronous
number and running time on
Hadoop and Spark

Data sets File number Synchronous number Running time/s

Hadoop Spark Hadoop Spark Hadoop Spark

Gaussian 1 168 1400 29 19 6883 1101

Gaussian 2 168 1400 29 19 40391 6660

MiniBooNE 168 1400 29 19 8267 1759

Skin 168 1400 29 19 237 169

Healthy 252 3080 109 37 468 353

Hepmass 210 1600 47 28 1,018,871 18,189
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mission time between Hadoop and Spark depends largely
on the number of synchronizations. Spark uses pipeline
technique to reduce the number of synchronizations, as the
number of iterations increases, Spark has more advantages
over MapReduce on Ttrans. We summarize the results of the
number of files, number of task synchronizations, and run-
ning time of the proposed method in Table 10. The results
are consistent with the results of the above analysis.

5 Conclusion

Abinary imbalanced classificationmethod for big data based
on fuzzy data reduction and classifier fusion via a fuzzy inte-
gral was proposed in this paper. The proposed method has
three advantages: (1) It uses MapReduce to cluster negative
big data adaptively into subsets to maintain the intrinsic dis-
tribution of the data. (2) Heuristic undersampling (i.e., the
instance selection) prevents the loss of useful samples, espe-
cially for imbalanced big data sets. Furthermore, the heuristic
undersampling method can select informative samples from
negative subset. (3) The ensemble method that uses a fuzzy
integral improves the classification accuracy. Future studies
will investigate (1) extending the proposed method to classi-
fying multi-class imbalanced big data classification set and
(2) conducting experimental comparisons with additional
methods using more imbalanced big data sets and various
evaluation indices.
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