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Abstract
Due to the complexity of objective world, as well as the ambiguity of human thinking, the practical decision-making issues

become more and more difficult. Pythagorean fuzzy set is an effective tool for depicting uncertainty of the multi-criteria

decision-making problems. This study aims to develop a Pythagorean fuzzy multi-criteria decision-making approach to

deal with decision-making problem under uncertainty circumstance. Firstly, the concept, representation and related

properties of Spearman rank correlation coefficient (SRCC) originated from statistical theory between two PFSs are

introduced, which is used to measure the closeness degree between ideal alternative and each alternative. Then, a multi-

criteria decision-making approach with Pythagorean fuzzy environment is developed based on the proposed SRCC.

Finally, to illustrate the applicability and effectiveness of the proposed method, a real-world infrastructure project decision-

making was demonstrated. The result shows that the main advantage of the proposed decision rule would reduce the

complexity of the decision-making problem both in theory and practice.

Keywords Pythagorean fuzzy set � Multi-criteria decision-making � Decision-making approach � Spearman rank correlation

coefficient

1 Introduction

Multi-criteria decision-making (MCDM) is the process of

determining an ideal alternative among all alternatives

(Chen et al. 2019; Quek et al. 2019; Su et al. 2019; Li et al.

2019). However, due to the complexity of objective world,

as well as the ambiguity of human thinking, the decision-

making problem is becoming increasingly difficult to deal

with. So far, many MCDM issues are dealt with using

fuzzy theory. And a critical restriction is that fuzzy set

theory is valid when the sum of membership degree and

non-membership degree is less than or equal to 1. How-

ever, in reality life, it is not always possible for a decision

maker or an expert to give their preferences under this

restriction. For instance, when a decision maker gives his

decision support for membership of an option is 0.8 and

non-membership is 0.6, and the sum of his support mem-

bership degree and non-membership degree is larger than

1. Obviously, it does not satisfy the condition in fuzzy set

theories. Under such circumstances, Yager and Abbasov

introduced Pythagorean fuzzy set (PFS) theory, which only

satisfies the case that the square sum of membership degree
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and non-membership degree is less than or equal to 1

(Yager and Abbasov 2013).

Recently, many scholars have focused on the investi-

gation into the properties and operations of PFS. Yager and

Abbasov showed that the Pythagorean degrees are the

subclasses of the complex numbers (Yager and Abbasov

2013). Yager developed various aggregation operators,

namely Pythagorean fuzzy weighted average (PFWA)

operator, Pythagorean fuzzy weighted geometric average

(PFWGA) operator, Pythagorean fuzzy weighted power

average (PFWPA) operator and Pythagorean fuzzy

weighted power geometric average (PFWPGA) operator, to

aggregate different Pythagorean fuzzy numbers (Yager

2014). Under PFS information, Peng and Yang defined two

arithmetical operations: division and subtraction, and then

investigated their corresponding properties, such as

boundness, idempotency and monotonicity (Peng and Yang

2015). Garg defined the concepts of correlation and cor-

relation coefficients of PFSs (Garg 2016a). Garg further

presented a generalized averaging aggregation operator

under the Pythagorean fuzzy set environment by utilizing

the Einstein norm operations (Garg 2016c; Garg 2017).

The most popular application field of PFS is to deal with

decision-making issue (Liu et al. 2017; Liang et al. 2018a;

Garg 2018; Wan et al. 2018; Wei et al. 2018). Also, Garg

presented a novel accuracy function under the interval-

valued Pythagorean fuzzy set (IVPFS) for solving the

decision-making problems (Garg 2016b). Zhang and Xu

proposed a score function based comparison method to

identify the Pythagorean fuzzy positive ideal solution and

the Pythagorean fuzzy negative ideal solution (Zhang and

Xu 2014). Then, they developed an extended technique for

order preference by similarity to determinate ideal solution

method. Based on the prospect theory, Ren et al. extended

the TODIM approach to solve the MCDM problems with

Pythagorean fuzzy information (Ren et al. 2016). Wei and

Lu investigated the multiple attribute decision-making

(MADM) problem based on the Hamacher aggregation

operators with dual Pythagorean hesitant fuzzy information

(Wei and Lu 2017). Liang et al. constructed a new model of

Pythagorean fuzzy decision-theoretic rough sets

(PFDTRSs) based on the Bayesian decision procedure and

constructed a three-way decision-making procedure based

on ideal solutions in the Pythagorean fuzzy information

system (Liang et al. 2018b). Rahman and Abdullah pre-

sented a multiple-attribute group decision-making method,

where the attribute values were measured by the interval-

valued Pythagorean fuzzy numbers, based on some gen-

eralized interval-valued Pythagorean fuzzy aggregation

operators, i.e., generalized interval-valued Pythagorean

fuzzy weighted geometric (GIVPFWG) aggregation oper-

ator, generalized interval-valued Pythagorean fuzzy

ordered weighted geometric (GIVPFOWG) aggregation

operator and generalized interval-valued Pythagorean

fuzzy hybrid geometric (GIVPFHG) aggregation operator

(Rahman and Abdullah 2018).

These existing researches have provided abundant the-

ories and practical improvements to study MCDM prob-

lem. One of the key steps is to measure the ‘‘closeness’’

degree between each alternative among all alternatives and

ideal alternative. The correlation coefficient is an important

tool to judge the relation between two objects. The corre-

lation coefficients have been widely employed to data

analysis, classification, decision-making and pattern

recognition (Park et al. 2009; Szmidt and Kacprzyk 2010;

Wei et al. 2011; Kriegel et al. 2008; Ye 2010a; Bonizzoni

et al. 2008). Many researchers have paid attention to cor-

relation coefficients under fuzzy environments (Hanafy

et al. 2012, 2013; Broumi and Smarandache 2013). Hong

proposed fuzzy measures for a correlation coefficient of

fuzzy numbers under the weakest t-norm-based fuzzy

arithmetic operations (Hong 2006). As an extension of

fuzzy correlations, Wang and Li introduced the correlation

and information energy of interval-valued fuzzy numbers

(Wang and Li 1999). Gerstenkorn and Manko developed

the correlation coefficients of intuitionistic fuzzy sets

(IFSs) (Gerstenkorn and Manko 1991). Hung and Wu also

proposed a method to calculate the correlation coefficients

of IFSs by centroid method (Hung and Wu 2009). Ye

studied the fuzzy decision-making method based on the

weighted correlation coefficient under intuitionistic fuzzy

environment (Ye 2010b). Bustince and Burillo (Bustince

and Burillo 1995) and Hong (Hong 1998) further devel-

oped the correlation coefficients for interval-valued intu-

itionistic fuzzy sets (IVIFSs). Ye presented the correlation

coefficient of Single-Valued Neutrosophic Sets (SVNSs)

based on the extension of the correlation coefficient of IFSs

and proved that the cosine similarity measure of SVNSs

was a special case of the correlation coefficient of SVNSs

(Ye 2013). Pramanik et al. developed a correlation coeffi-

cient measure between any two rough neutrosophic sets

and introduced a new multiple attribute group decision-

making method based on it (Pramanik et al. 2017). A

correlation coefficient and a weighted correlation coeffi-

cient between Dynamic Single Valued Neutrosophic Mul-

tiset (DSVNMs) were presented to measure the correlation

degrees between DSVNMs (Ye 2017).

For a practical decision-making problem, according to

the evaluation values for all types of MCDM with respect

to criteria, a suitable alternative for a given MCDM issue is

selected using different MCDM methods. When using

fuzzy set theory, it usually requires that the sum of mem-

bership degree and non-membership degree is smaller than

1. That is to say, a decision maker or an expert always

faces a constraint that the sum of membership and non-

membership degrees cannot larger than 1. However, in
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practical, it is an inevitable reality that the sum of mem-

bership and non-membership degrees is larger than 1 given

by decision makers or experts. Therefore, it is the limita-

tion that fuzzy theory is employed for MCDM. PFS theory

is an extension of IFS, and it only needs to satisfy that the

square sum of membership degree and non-membership

degree smaller than 1. Further, the weight of each evalu-

ation criteria plays an important role in decision-making

process. There are several methods to calculate the

weights, such as Delphi method, AHP and information

entropy. It is difficult to choose an appropriate method to

determinate the weights. To fill the gap on calculation of

weight, this study introduces Spearman rank correlation

coefficient (SRCC) originated from statistic to PFS cir-

cumstance, which is considered as the best known non-

parametric measure of relationship (Dikbas 2018). The

contributions of this paper are as follows: (1) the concept,

representation and related properties of Spearman rank

correlation coefficient (SRCC) originated from statistical

theory between two PFSs are introduced, which is used to

measure the closeness degree between ideal alternative and

each alternative. (2) A multi-criteria decision-making

approach with Pythagorean fuzzy environment is devel-

oped based on the proposed SRCC. (3) A novelty decision

rule is provided from a new perfective using SRCC, which

can reduce the complexity of the practical problem in the

process of decision-making both in theory and practice.

The remainder of this paper is organized as follows. In

Sect. 2, some basic concepts and calculation principles

about PFSs are provided, and the concept, representation

and related properties of SRCC between two PFSs are

introduced. Section 3 develops a Pythagorean fuzzy

MCDM method. A case study is demonstrated to illustrate

the feasibility and effectiveness of the proposed method in

Sect. 4: this section consists of three parts: data collection,

decision-making procedure and comparative analysis. The

conclusions are appeared in Sect. 5.

2 Spearman rank correlation coefficient
between PFSs

The section provides the concept of SRCC, and investi-

gates its properties. For this purpose, two subsections are

designed including preliminaries for PFSs and the concept

of SRCC between PFSs.

2.1 Preliminaries for PFSs

Definition 1 (Yager 2013; Yager 2014) Let X be a uni-

verse of discourse. A PFS P in X denoted by.

P ¼ x; uP xð Þ; vP xð Þh i x 2 Xjf g ð1Þ

where uP xð Þ : X ! ½0; 1� denotes the degree of membership

and vP xð Þ : X ! ½0; 1� denotes the degree of non-mem-

bership of the element x 2 X to P , respectively, with the

condition that 0� u2P xð Þ þ v2P xð Þ� 1. The degree of inde-

terminacy is pP xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2P xð Þ � v2P xð Þ
p

.

For convenience, uP xð Þ; vP xð Þð Þ is called a PFN and

denoted as P ¼ uP; vP
� �

.

From the definitions of IFS and PFS, we can easily see

that the main difference between PFN and IFN is their

corresponding constraint condition. Obviously, an IFN

must be a PFN, but the converse is not true in generally.

For instance, P ¼ 0:5; 0:8ð Þ is a PFN but not an IFN

because 0:5þ 0:8[ 1. Therefore, some concepts of an

IFN must be generalized to the case of a PFN under certain

circumstance.

To make a reasonable comparison between two PFSs,

Peng and Yang (Peng and Yang 2015) presented accuracy

function to modify the comparison rules presented by

Zhang and Xu (Zhang and Xu 2014).

Definition 2 (Zhang and Xu 2014) Let p ¼ up; vp
� �

be a

PFN, then the score function of p can be defined as follows:

S pð Þ ¼ up
� �2� vp

� �2

where S pð Þ 2 �1; 1½ �.

Definition 3 (Zhang and Xu 2014) Let p ¼ up; vp
� �

be a

PFN, then the accuracy function of p can be defined as

follows:

K pð Þ ¼ up
� �2þ vp

� �2

where K pð Þ 2 0; 1½ �.
The modified comparison rules are shown as follows

(Zhang and Xu 2014):

For any two PFNs p1 and p2,

(C1) if S p1ð Þ\S p2ð Þ, then p1 � p2;

(C2) if S p1ð Þ¼ S p2ð Þ, then,
(a) if K p1ð Þ\K p2ð Þ, then p1 � p2;

(b) if K p1ð Þ¼ K p2ð Þ, then p1 � p2.

Definition 4 (Yager 2014) Let pi¼ ui; við Þ i ¼ 1; 2; . . .; nð Þ
be a collection of PFNs and w ¼ w1;w2; . . .;wnð ÞT be the

weight vector of pi i ¼ 1; 2; . . .; nð Þ, with
P

n

i¼1

wi ¼ 1, then a

PFWA operator is a mapping PFWA: Pn ! P, where

PFWA p1; p2; . . .; pnð Þ ¼
P

n

i¼1

wiui;
P

n

i¼1

wivi

� �

.
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2.2 SRCC between PFSs

To introduce the concept of SRCC between two PFNs, we

firstly give some preliminaries in statistics.

Definition 5 (Mafakheri et al. 2007; Aczel 1999) Let

X1; . . .;Xnð Þ be a sample from a population, the corre-

sponding sample observations x1; . . .; xnð Þ are sorted in an

ascending order, that is, x 1ð Þ\ � � �\x nð Þ. If xi ¼ x kð Þ, then k

is called rank of the sample Xi, i.e., Ri ¼ k, i ¼ 1; 2; . . .; n.

In each repeatedly sampling, Ri is a random variable. If

a case occurs that some x is the same, for instance, there

exists xi ¼ xj for i 6¼ j, then their ranks can be calculated by

taking the average of those ranks. For example, if the

sequence of a sample is: 1 1 2 2 2 3, then the

ranks of the two 1 are all 1þ2
2
¼1:5 and the ranks of three 2

are all 3þ4þ5
3

¼4.

In statistics, the Spearman rank correlation coefficient is

the Pearson correlation coefficient applied to the ranks R.

When there are not two values of X or two values of Y with

the same rank (so called ties), there is an easier way to

compute the Spearman correlation coefficient (Mafakheri

et al. 2007; Aczel 1999):

rs ¼ 1�
6
P

n

i¼1

d2i

n n2 � 1ð Þ ð2Þ

where di, i ¼ 1; 2; . . .; n are the differences in the ranks of

xi and yi: di ¼ R xið Þ � R yið Þ. If there are ties (two values of

X or two values of Y with the same rank), the number of

ties is smaller compared with n. And Eq. 2 still holds.

The Spearman correlation coefficient fulfills the

requirements of the correlation measures. Because Eq. 2 is

obtained from the Pearson coefficient for ranks, it fulfills

the same properties as the Pearson coefficient (Myers and

Well 2003), namely:

ðP1Þ rs A;Bð Þ ¼ rs B;Að Þ
ðP2Þ If A ¼ B; then rs A;Bð Þ ¼ 1;

ðP3Þ rs A;Bð Þj j � 1:

When the variables X and Y are perfectly positively

related, i.e., when X increases whenever Y increases, rs is

equal to 1. When X and Y are perfectly negatively related,

i.e., when X increases whenever Y decreases, rs is equal to -

1. rs is equal to zero when there is no relation between X

and Y . Values between -1 and 1 give a relative indication of

the degree of relationship between X and Y . In other words,

�1� rs � 1.

Based on the correlation coefficient between two Ata-

nassov’s intuitionistic fuzzy sets proposed by Szmidt and

Kacprzyk (Szmidt and Kacprzyk 2010), the Spearman rank

correlation coefficient between two PFSs is provided

below.

Definition 6 The Spearman rank correlation coefficient

between two PFSs A and B is defined as:

rs�PFS ¼ 1

3
rsu�PFS þ rsv�PFS þ rsp�PFSð Þ ð3Þ

where rsu�PFS,rsv�PFS and rsp�PFS are the Spearman rank

correlation coefficients between A and B with respect to

their membership function, non-membership function, and

indeterminacy function, respectively. rsu�PFS is given as

rsu�PFS ¼ 1�
6
P

n

i¼1

d2ui

n n2 � 1ð Þ ð4Þ

where dui, i ¼ 1; . . .; n are the differences in the ranks with

respect to the membership functions:

dui ¼ R uA xið Þð Þ � R uB xið Þð Þ. rsv�PFS is given as

rsv�PFS ¼ 1�
6
P

n

i¼1

d2vi

n n2 � 1ð Þ ð5Þ

where dvi, i ¼ 1; . . .; n are the differences in the ranks with

respect to the non-membership functions:

dvi ¼ R vA xið Þð Þ � R vB xið Þð Þ. rsp�PFS is given as

rsp�PFS ¼ 1�
6
P

n

i¼1

d2pi

n n2 � 1ð Þ ð6Þ

where dpi, i ¼ 1; . . .; n are the differences in the ranks with

respect to the indeterminacy functions:

dpi ¼ R pA xið Þð Þ � R pB xið Þð Þ.

Obviously, for the SRCC in Eq. 3, the same properties

as for the Pearson correlations coefficient are valid,

namely:

1. rs�PFS A;Bð Þ ¼ rs�PFS B;Að Þ
2. If A ¼ B, then rs�PFS A;Bð Þ ¼ 1,

3. rs�PFS A;Bð Þj j � 1.

The separate components of the SRCC in Eq. 3 i.e.,

Eqs. 4–6 fulfill the above properties, too. Obviously, in the

case of crisp sets, rs�PFS in Eq. 3 reduces to rs in Eq. 2.

Example 1 There are two PFSs A and B described below:

A ¼ x1; 0:9; 0:4ð Þ; x2; 0:7; 0:6ð Þ;f
x3; 0:5; 0:8ð Þ; x4; 0:6; 0:3ð Þ g

and

B ¼ x1; 0:4; 0:7ð Þ; x2; 0:9; 0:2ð Þ; x3; 0:8; 0:15ð Þ; x4; 0:5; 0:3ð Þgf

From Eqs. 4–6, we calculate the membership degree,

non-membership degree and indeterminacy degree,
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respectively. Corresponding results are shown in Tables 1,2

and 3. And the SRCC between PFSs A and B is obtained

rs�PFS A;Bð Þ ¼ � 1
3
by Eq. 3.

3 Pythagorean fuzzy multi-criteria decision-
making approach based on Spearman
rank connection coefficient

Let A ¼ A1; . . .;Amf g be a set of alternatives for a given

decision-making problem and C ¼ C1; . . .;Cnf g be the set

of criteria with unknown weight measured by PFNs

Uij¼ uij; vij
� �

i ¼ 1; 2; . . .;mð ,j ¼ 1; 2; . . .; nÞ. Assume that

E ¼ E1;E2; . . .;Ekf g is the set of experts giving the eval-

uating values to Cj with respect to alternative Ai, and

U
lð Þ
m�n ¼ U

lð Þ
ij

� �

m�n
¼ u

lð Þ
ij ; v

lð Þ
ij

� �

m�n
denotes a PFN evalua-

tion matrix from the lth expert.

On the basis of the SRCC between two PFSs, we

develop a new Pythagorean fuzzy multi-criteria decision-

making approach, which starts with the determination of

the Pythagorean fuzzy ideal solution. Here, we utilize the

score function and the accuracy function to identify the

Pythagorean fuzzy ideal solution. Generally speaking,

there is no Pythagorean fuzzy ideal solution in the real

selection process (Wang and Li 1999). In other words, the

Pythagorean fuzzy ideal solution vector A	 is usual not be

the feasible alternative, namely, A	 62 A. Otherwise, the

Pythagorean fuzzy ideal solution vector A	 is the optimal

alternative vector of the selection problem.

From the above analysis, a multi-criteria decision-

making algorithm is proposed, which measure the close-

ness degree between ideal alternative and each alternative

based on the SRCC, The algorithm can be described by the

following steps and the selection processes are shown in

Fig. 1.

Step 1: For a MCDM problem with PFNs, using Defi-

nition 4, the decision matrix Um�n ¼ Uij

� �

m�n
is con-

structed, where

Uij ¼ PFWA U
1ð Þ
ij ;U

1ð Þ
ij ; . . .;U

kð Þ
ij

� �

¼ pij

X

k

l¼1

Wlu
lð Þ
ij ;
X

k

l¼1

Wlv
lð Þ
ij

 !

ð7Þ

and U
lð Þ
ij i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; l ¼ 1; 2; . . .; kð Þ is

the evaluation value of the alternative Ai 2 A with respect

to the criterion Cj 2 C from the lth expert, and Wl is the lth

expert’ weight.

Step 2: Identify the Pythagorean fuzzy ideal solution A	

by the following equation:

for benefit criteria:

A	 ¼ A	
1;A

	
2; . . .;A

	
m

	 


where A	
j

¼ Cj;max
i

Uij

	 


j ¼ 1; 2; . . .; nj
� �

;

and for cost criteria:

where

Table 1 Example 1-calculations of membership function using Eq. 4

uA R uAð Þ uB R uBð Þ d1 d21

0.9 4 0.4 1 3 9

0.7 3 0.9 4 – 1 1

0.5 1 0.8 3 – 2 4

0.6 2 0.5 2 0 0

Table 2 Example 1-calculations of non-membership function using

Eq. 5

vA R vAð Þ vB R vBð Þ d2 d22

0.4 2 0.7 4 – 2 4

0.6 3 0.2 2 1 1

0.8 4 0.15 1 3 9

0.3 1 0.3 3 – 2 4

Table 3 Example 1-calculations of indeterminacy function using

Eq. 6

vA R vAð Þ vB R vBð Þ d2 d22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:92 � 0:42
p

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:42 � 0:72
p

3 – 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:72 � 0:62
p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:92 � 0:22
p

1 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:52 � 0:82
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:82 � 0:152
p

2 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:62 � 0:32
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:52 � 0:32
p

4 0 0

Construct 
Decision 
Matrix

 Iden�ty the 
Pythagorean 
fuzzy ideal 

solu�on

Calculate the 
Spearman rank 

connec�on 
coefficient

Determine the 
op�mal ranking 

order Obtain 
op�mal alterna�ve

Step 1

Step 2

Step 3

Step 4

Fig. 1 The process of decision-making based on Spearman rank

connection coefficient
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A	 ¼ A	
1;A

	
2; . . .;A

	
m

	 


where A	
j

¼ Cj;min
i

Uij

	 


j ¼ 1; 2; . . .; nj
� �

:

Step 3: Calculate the Spearman rank connection coeffi-

cient between ideal alternative and each alternative by

using Eqs. 3–6.

Step 4: From Spearman rank connection coefficients

obtained from Step 3, the larger the SRCC is, the better the

corresponding alternative is. Therefore, the optimal rank-

ing order of the alternatives and the optimal alternative are

determined.

4 Case study

In this section, the proposed model is applied to a real-

world infrastructure project. There are four project delivery

systems (PDSs) including design build (DB), engineering

procurement construction (EPC), construction management

at risk method (CM at-Risk) and design bid build (DBB);

the owner intends to select a most suitable PDS among

them using the proposed method. The criteria for selecting

PDS are shown in Table 4.

To ensure the reliability and availability of data, five

experts including academics, owners and engineers were

invited to set up a selection committee. Firstly, they were

invited to investigate the construction site and discussed

together. Secondly, we provided the preliminary design

document of the project, and the organizational structure

and construction experience documents of the owner to the

experts. Thirdly, the questionnaires documents about the

criteria for selection of PDS were presented to the experts

individually, and ask them to choose the proper opinion.

Finally, we collected the questionnaires and processed the

data. The procedure of decision-making is as follows.

4.1 Data collection

Let A ¼ A1; . . .;A4f g be the set of PDS options for a given

infrastructure project, C ¼ C1; . . .;C10f g be the set of cri-

teria about each PDS, and E ¼ E1;E2; . . .;E5f g be the set

of experts. We assume that u
lð Þ
ij ; v

lð Þ
ij

� �

i ¼ 1; 2; 3; 4ð ,

j ¼ 1; 2; . . .; 10l ¼ 1; . . .; 5Þ is the evaluation value from

the lth expert to Cj with respect to delivery option Ai, and

U
lð Þ
4�10 ¼ U

lð Þ
ij

� �

4�10
¼ u

lð Þ
ij ; v

lð Þ
ij

� �

4�10
denotes a PFN evalu-

ation matrix from the lth expert. Every expert should give

the evaluation value u
lð Þ
ij ; v

lð Þ
ij

� �

i ¼ 1; 2; 3; 4;ð
j ¼ 1; . . .; 10Þ, and the weight of each expert is

W1 ¼ � � � ¼ W5 ¼ 0:2.

Table 4 Criteria for selecting PDS

Objective level Indicators

Criteria for selecting PDSs Cost (C)

Schedule (S)

Quality (Q)

Complexity (Com)

Scope Change (SC)

Experience (E)

Financial Guarantee (FG)

Risk Management (RM)

Uniqueness (U)

Project Size (Size)

Table 5 Pythagorean Fuzzy Evaluation Values from expert E1

C S Q Com SC

DB pð0:7; 0:3Þ pð0:7; 0:5Þ pð0:6; 0:5Þ pð0:6; 0:2Þ pð0:6; 0:2Þ
EPC pð0:8; 0:4Þ pð0:8; 0:4Þ pð0:7; 0:4Þ pð0:7; 0:4Þ pð0:8; 0:4Þ
CM pð0:6; 0:4Þ pð0:5; 0:3Þ pð0:6; 0:3Þ pð0:8; 0:3Þ pð0:5; 0:3Þ
DDB pð0:5; 0:2Þ pð0:7; 0:5Þ pð0:7; 0:3Þ pð0:6; 0:3Þ pð0:7; 0:3Þ

E FG RM U Size

DB pð0:6; 0:3Þ pð0:7; 0:4Þ pð0:6; 0:4Þ pð0:4; 0:4Þ pð0:6; 0:3Þ
EPC pð0:6; 0:2Þ pð0:8; 0:5Þ pð0:8; 0:5Þ pð0:6; 0:3Þ pð0:7; 0:2Þ
CM pð0:8; 0:4Þ pð0:7; 0:3Þ pð0:8; 0:2Þ pð0:7; 0:2Þ pð0:4; 0:5Þ
DDB pð0:7; 0:5Þ pð0:8; 0:4Þ pð0:7; 0:3Þ pð0:4; 0:2Þ pð0:6; 0:4Þ
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We obtain Pythagorean fuzzy evaluation values for four

PDSs from five experts, shown in Tables 5, 6, 7, 8 and 9,

respectively, where El l ¼ 1; . . .; 5ð Þ denotes the lth expert.

4.2 Decision-making procedure

Step 1: From the evaluation values in Tables 5, 6, 7, 8 and 9

and Eq. 7, the evaluation decision matrix aggregated

evaluation matrices of five experts is determined:

Table 6 Pythagorean Fuzzy Evaluation Values from expert E2

C S Q Com SC

DB pð0:5; 0:7Þ pð0:6; 0:7Þ pð0:8; 0:4Þ pð0:8; 0:4Þ pð0:6; 0:7Þ
EPC pð0:8; 0:5Þ pð0:9; 0:2Þ pð0:7; 0:4Þ pð0:7; 0:6Þ pð0:7; 0:5Þ
CM pð0:4; 0:8Þ pð0:3; 0:6Þ pð0:7; 0:5Þ pð0:8; 0:3Þ pð0:5; 0:7Þ
DDB pð0:4; 0:2Þ pð0:8; 0:3Þ pð0:8; 0:5Þ pð0:6; 0:3Þ pð0:4; 0:8Þ

E FG RM U Size

DB pð0:7; 0:3Þ pð0:6; 0:4Þ pð0:8; 0:5Þ pð0:8; 0:3Þ pð0:6; 0:7Þ
EPC pð0:8; 0:3Þ pð0:8; 0:5Þ pð0:8; 0:3Þ pð0:6; 0:7Þ pð0:8; 0:5Þ
CM pð0:6; 0:7Þ pð0:6; 0:5Þ pð0:9; 0:3Þ pð0:6; 0:4Þ pð0:4; 0:6Þ
DDB pð0:8; 0:4Þ pð0:6; 0:7Þ pð0:7; 0:7Þ pð0:8; 0:5Þ pð0:9; 0:2Þ

Table 7 Pythagorean Fuzzy Evaluation Values from expert E3

C S Q Com SC

DB pð0:7; 0:7Þ pð0:7; 0:6Þ pð0:7; 0:6Þ pð0:6; 0:7Þ pð0:6; 0:6Þ
EPC pð0:7; 0:5Þ pð0:7; 0:6Þ pð0:6; 0:6Þ pð0:5; 0:7Þ pð0:5; 0:6Þ
CM pð0:6; 0:7Þ pð0:4; 0:8Þ pð0:8; 0:5Þ pð0:3; 0:8Þ pð0:3; 0:8Þ
DDB pð0:6; 0:7Þ pð0:6; 0:7Þ pð0:7; 0:5Þ pð0:6; 0:7Þ pð0:5; 0:6Þ

E FG RM U Size

DB pð0:8; 0:5Þ pð0:5; 0:8Þ pð0:7; 0:7Þ pð0:7; 0:7Þ pð0:7; 0:6Þ
EPC pð0:5; 0:5Þ pð0:5; 0:5Þ pð0:7; 0:6Þ pð0:6; 0:7Þ pð0:6; 0:6Þ
CM pð0:6; 0:7Þ pð0:5; 0:7Þ pð0:5; 0:7Þ pð0:4; 0:8Þ pð0:3; 0:8Þ
DDB pð0:6; 0:7Þ pð0:6; 0:8Þ pð0:7; 0:7Þ pð0:4; 0:8Þ pð0:6; 0:6Þ

Table 8 Pythagorean Fuzzy Evaluation Values from expert E4

C S Q Com SC

DB pð0:4; 0:5Þ pð0:4; 0:5Þ pð0:4; 0:4Þ pð0:6; 0:5Þ pð0:6; 0:5Þ
EPC pð0:9; 0:4Þ pð0:8; 0:3Þ pð0:8; 0:7Þ pð0:6; 0:4Þ pð0:4; 0:4Þ
CM pð0:6; 0:7Þ pð0:6; 0:6Þ pð0:6; 0:6Þ pð0:4; 0:3Þ pð0:2; 0:3Þ
DDB pð0:1; 0:3Þ pð0:2; 0:7Þ pð0:2; 0:3Þ pð0:8; 0:4Þ pð0:8; 0:3Þ

E FG RM U Size

DB pð0:4; 0:5Þ pð0:6; 0:3Þ pð0:6; 0:3Þ pð0:6; 0:3Þ pð0:4; 0:4Þ
EPC pð0:8; 0:5Þ pð0:2; 0:3Þ pð0:4; 0:4Þ pð0:5; 0:4Þ pð0:8; 0:3Þ
CM pð0:6; 0:5Þ pð0:4; 0:3Þ pð0:8; 0:5Þ pð0:8; 0:3Þ pð0:6; 0:5Þ
DDB pð0:2; 0:3Þ pð0:8; 0:2Þ pð0:2; 0:3Þ pð0:7; 0:5Þ pð0:2; 0:5Þ
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Step 2: Using comparison rule C1 and C2, we can obtain

the ideal solution vector:

A	 ¼ p 0:56; 0:58ð Þ; p 0:76; 0:38ð Þ; p 0:60; 0:44ð Þ;f
p 0:58; 0:46ð Þ; p 0:64; 0:46ð Þ; p 0:68; 0:38ð Þ;
p 0:66; 0:46ð Þ; p 0:66; 0:48ð Þ; p 0:58; 0:44ð Þ; p 0:70; 0:40ð Þg

Step 3: Calculate the Spearman rank connection coeffi-

cient between ideal alternative and each alternative.

The results in Table 10, 11 and 12 represent the dif-

ferences in the ranks with the membership degree, non-

membership degree and indeterminacy degree for DB.

From Eqs. 4–6, we can obtain that.

ruEPC ¼ 1� 6� 117:5

990

 0:2879; rvEPC ¼ 1� 6� 104

990


 0:3697; rpEPC ¼ 1� 6� 116:5

990

 0:2939;

ruDB ¼ 1� 6� 225

990

 �0:3636; rvDB ¼ 1� 6� 112:5

990


 0:3182; rpDB ¼ 1� 6� 32:5

990

 0:8030 :

thus, by Eq. 3, rDB 
 0:2525:

In the same way, from Eqs. 4–6, we can obtain that.

ruEPC ¼ 1� 6� 117:5

990

 0:2879; rvEPC ¼ 1� 6� 104

990


 0:3697; rpEPC ¼ 1� 6� 116:5

990

 0:2939;

ruCM ¼ 1� 6� 201:5

990

 �0:2212; rvCM ¼ 1� 6� 186

990


 �0:1273; rpCM ¼ 1� 6� 138:5

990

 0:1606;

Table 9 Pythagorean Fuzzy Evaluation Values from expert E5

C S Q Com SC

DB pð0:7; 0:5Þ pð0:4; 0:6Þ pð0:5; 0:3Þ pð0:3; 0:5Þ pð0:8; 0:3Þ
EPC pð0:5; 0:2Þ pð0:6; 0:4Þ pð0:6; 0:4Þ pð0:6; 0:3Þ pð0:5; 0:4Þ
CM pð0:6; 0:3Þ pð0:5; 0:2Þ pð0:6; 0:3Þ pð0:5; 0:4Þ pð0:6; 0:3Þ
DDB pð0:6; 0:4Þ pð0:7; 0:2Þ pð0:7; 0:3Þ pð0:7; 0:4Þ pð0:4; 0:2Þ

E FG RM U Size

DB pð0:4; 0:3Þ pð0:7; 0:6Þ pð0:3; 0:8Þ pð0:4; 0:5Þ pð0:3; 0:6Þ
EPC pð0:7; 0:4Þ pð0:5; 0:3Þ pð0:5; 0:4Þ pð0:7; 0:3Þ pð0:6; 0:4Þ
CM pð0:5; 0:3Þ pð0:6; 0:5Þ pð0:3; 0:7Þ pð0:4; 0:3Þ pð0:4; 0:5Þ
DDB pð0:7; 0:2Þ pð0:5; 0:2Þ pð0:7; 0:3Þ pð0:8; 0:2Þ pð0:7; 0:2Þ

U4�10 ¼ pij

X

5

l¼1

Wlu
lð Þ
ij ;
X

5

l¼1

Wlv
lð Þ
ij

 ! !

4�10

¼

pð0:60; 0:54Þpð0:56; 0:58Þpð0:60; 0:44Þ
pð0:74; 0:40Þpð0:76; 0:38Þpð0:68; 0:50Þ
pð0:56; 0:58Þpð0:46; 0:50Þpð0:66; 0:44Þ
pð0:44; 0:36Þpð0:60; 048Þpð0:62; 0:38Þ

0

B

B

B

@

pð0:58; 0:46Þpð0:64; 0:46Þpð0:58; 0:38Þ
pð0:62; 0:48Þpð0:58; 0:46Þpð0:68; 0:38Þ
pð0:56; 0:42Þpð0:42; 0:48Þpð0:62; 0:52Þ
pð0:66; 0:42Þpð0:56; 044Þpð0:60; 0:42Þ

:

pð0:58; 0:46Þpð0:64; 0:46Þpð0:58; 0:38Þ
pð0:62; 0:48Þpð0:58; 0:46Þpð0:68; 0:38Þ
pð0:56; 0:42Þpð0:42; 0:48Þpð0:62; 0:52Þ
pð0:66; 0:42Þpð0:56; 044Þpð0:60; 0:42Þ

p 0:62; 0:50ð Þp 0:60; 0:54ð Þp 0:58; 0:44ð Þp 0:52; 0:52ð Þ
p 0:56; 0:42ð Þp 0:64; 0:44ð Þp 0:60; 0:48ð Þp 0:70; 0:40ð Þ
p 0:56; 0:46ð Þp 0:66; 0:48ð Þp 0:58; 0:40ð Þp 0:42; 0:58ð Þ
p 0:66; 0:46ð Þp 0:60; 0:46ð Þp 0:62; 0:44ð Þp 0:60; 0:38ð Þ

1

C

C

C

A
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ruDBB ¼ 1� 6� 171

990

 �0:0364; rvDBB ¼ 1� 6� 181:5

990


 �0:1; rpDBB ¼ 1� 6� 192:5

990

 �0:1667 :

thus, by Eq. 3, rEPC 
 0:3172; rCM 
 �0:0626; rDBB

 �0:1010:

Step 4: From the results in Step 3

rEPCj j[ rDBj j[ rDBBj j[ rCMj j; we can rank the four PDSs

as follows: EPC, DB, DBB and CM. That is, EPC is the

most suitable PDS for this project followed by DB. CM is

the least suitable PDS. From the results, we can see that the

ranking order is acceptable for the practical application.

4.3 Comparative analysis

The purpose of this subsection is to state the advantage of

the proposed model through comparing with two existing

methods.

The first comparative method is extended TOPSIS pro-

posed by Zhang and Xu (Zhang and Xu 2014), in which the

criteria are characterized by PFS. According to the pro-

posal decision method, the ranking result of the four PDSs

is DB�EPC�DBB�CM. That is, DB and CM are the best

and the worst PDSs, respectively. The second method is

fuzzy VIKOR, according to the steps of the decision-

Table 11 Calculations of differences in the ranks with respect to non-

membership about DB

vDB RðvDBÞ vA	 RðvA	 Þ dvDB�A	 d2vDB�A	

0.54 8.5 0.58 10 – 1.5 2.25

0.58 10 0.38 1.5 8.5 72.25

0.44 2.5 0.44 4.5 - 2 4

0.46 4.5 0.46 7 – 2.5 6.25

0.46 4.5 0.46 7 – 2.5 6.25

0.38 1 0.38 1.5 – 0.5 0.25

0.5 6 0.46 7 – 1 1

0.54 8.5 0.48 9 – 0.5 0.25

0.44 2.5 0.44 4.5 – 2 4

0.52 7 0.40 3 4 16

Table 10 Calculations of differences in the ranks with respect to

membership about DB

uDB RðuDBÞ uA	 RðuA	 Þ duDB�A	 d2uDB�A	

0.6 7 0.56 1 6 36

0.56 2 0.76 10 – 8 64

0.6 7 0.60 4 3 9

0.58 4 0.58 2.5 1.5 2.25

0.64 10 0.64 5 5 25

0.58 4 0.68 8 – 4 16

0.62 9 0.66 6.5 2.5 6.25

0.6 7 0.66 6.5 0.5 0.25

0.58 4 0.58 2.5 1.5 2.25

0.52 1 0.70 9 – 8 64

Table 12 Calculations of

differences in the ranks with

respect to indeterminacy about

DB

pDB RðpDBÞ pA	 RðpA	 Þ dpDB�A	 d2pDB�A	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:602 � 0:542
p

1.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:562 � 0:582
p

3.5 – 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:562 � 0:582
p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:762 � 0:382
p

1 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:602 � 0:442
p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:602 � 0:442
p

8 – 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:582 � 0:462
p

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:582 � 0:462
p

9 – 2 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:642 � 0:462
p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:642 � 0:462
p

6 – 1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:582 � 0:382
p

10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:682 � 0:382
p

7 3 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:622 � 0:502
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:662 � 0:462
p

5 – 1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:602 � 0:542
p

1.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:662 � 0:482
p

2 – 0.5 0.25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:582 � 0:442
p

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:582 � 0:442
p

10 – 1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:522 � 0:522
p

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:702 � 0:402
p

3.5 2 4

Table 13 The ranking results of three methods

Method The ranking result

Proposed method EPC�DB�DBB�CM

TOPSIS CM�DB�DBB�EPC

VIKOR EPC�DB�DBB�CM
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making process in (Chen 2018): the order of four PDSs is

EPC�DB�DBB�CM. It is shown that EPC is the best

option for this project followed by DB. From the result in

this study, the order of the four PDSs using the proposed

method is: EPC�DB�DBB�CM. It is given the same

result as fuzzy VIKOR method. It should be noted that the

procedure of the proposed method is more concise than

fuzzy VIKOR method. Specifically, the best suitable alter-

native can be chosen according to the Spearman rank

connection coefficient in the proposed method, which

avoids the calculation of weights in the practical decision-

making problem and then simplifies solution procedures.

The ranking results of the three methods are shown in

Table 13, and the ranking trends are also given in Fig. 2.

The above ordering results appear a slight difference in

ranking orders. In practice, the construction project was

implemented under high level of complexity and uncer-

tainty. The owner just has few staff and rarely experience

to management the proposed project. Therefore, the coor-

dination work between design and construction is a tough

task for the owner. So the owner needs a single responsi-

bility delivery method for the design and construction.

Both EPC and DB are suitable for this project. And the

final choice depends on the preference of owner.

5 Conclusions

Multi-criteria decision-making issue is a difficult task due

to the complexity of objective world. And Pythagorean

fuzzy set (PFS) is an effective tool for depicting uncer-

tainty of the MCDM problems. This study aims to develop

a Pythagorean fuzzy multi-criteria decision-making

approach to deal with decision-making problem under

uncertainty circumstance. For our purposes, firstly, the

concept of SRCC between two PFSs is introduced, which

originate from statistical theory, and it is used to measure

the degree of closeness between ideal alternative and each

alternative. Then, using the proposed SRCC, a Pythagorean

fuzzy multi-criteria decision-making approach is con-

structed. Finally, a real-world infrastructure project is

demonstrated to state the feasibility and effectiveness of

the proposed method.

This study aims to develop a Pythagorean fuzzy multi-

criteria decision-making approach to deal with decision-

making problem under uncertainty circumstance. The

contributions of this paper are as follows: (1) the concept,

representation and related properties of SRCC originated

from statistical theory between two PFSs are introduced,

which is used to measure the closeness degree between

ideal alternative and each alternative. (2) A multi-criteria

decision-making approach with Pythagorean fuzzy envi-

ronment is developed based on the proposed SRCC. (3) A

novelty decision rule is provided from a new perfective

using SRCC, which can reduce the complexity of the

practical problem in the process of decision-making both in

theory and practice. Finally, to illustrate the applicability

and effectiveness of the proposed method, a real-world

infrastructure project was demonstrated.

On the one hand, this research is discussed under

Pythagorean fuzzy information. Due to the complexity of

decision making and the fuzziness of human perceive, the

evaluation information of experts for evaluation factors

affecting decision-making problem is usually characterized

by fuzzy theories, i.e., fuzzy set, intuitionistic fuzzy set

(IFS), etc. However, fuzzy theory, taking IFS, for example,

is characterized by a membership degree and a non-mem-

bership degree, and therefore can depict the fuzzy character

of data in a comprehensive way. The prominent charac-

teristic of IFS is that it assigns to each element a mem-

bership degree and a non-membership degree with their

sum equal to or less than 1. However, in some practical

decision-making process, the sum of the membership

degree and the non-membership degree may be bigger than

1, which satisfies the case in this study of the sum of bigger

than 1. In other words, existing results using fuzzy theory

are limited, and Pythagorean fuzzy theory is an extension

of IFS.

On the other hand, weighting the importance of each

evaluation criteria plays an important role in decision-

making process. There are several methods to calculate the

weight, such as Delphi method, AHP, and information

entropy. Different kinds of weights have different mecha-

nisms, and different weighting methods meet different

decision making environment. Therefore, it is difficult to

choose an appropriate method to determinate the weights.

This study introduces the concept of Spearman rank con-

nection coefficient, and the best suitable alternative can be

chosen according to the Spearman rank connection coef-

ficient. In the practical decision-making problem, the

DBB DB CM EPC
0

1

2

3

4
R

an
k

Alternatives

 The proposed method Fuzzy VIKOR
 Extended TOPSIS

Fig. 2 The ranking comparison of three methods
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calculation of weights is avoided, which simplifies solution

procedures and promotes computational efficiency.

In summary, the statistics of SRCC was introduced to

establish MCDM method. It can avoid the calculation of

the criteria weights. In a sense, the difficulty in determining

the weight of criteria in the selection process is solved. And

the proposed model based on SRCC makes the problem

with the PFN form more simplification, intuitive thinking,

operating simply, and avoiding the complexity of PFN in

calculation and application.
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