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Abstract
Nature-inspired meta-heuristics have demonstrated superior efficiency in the solution of complicated nonlinear opti-

mization problems than conventional techniques. In this article, an enhanced moth flame optimization (EMFO) is designed

using the mutualism phase from the symbiotic organism search (SOS) algorithm. The suggested approach is examined on

36 classical benchmark functions taken from literature. The outputs of EMFO are compared with the latest meta-heuristic

algorithms and variants of the MFO algorithm. The comparison results indicate that our proposed method is competitive

from the compared methods. Also, the Friedman rank test is used to evaluate the new algorithm’s efficiency, and it is found

that the rank of EMFO is superior. Finally, EMFO is being applied to solve seven real-world problems, and the outcomes of

the proposed algorithm were found to be satisfactory.

Keywords Optimization � Moth flame optimization � Mutualism phase � Benchmark functions � Friedman rank test �
Real-world problem � Algorithm � Particle swarm optimization � Genetic algorithm

1 Introduction

Optimization is one of the main factors in both industrial

purposes and the scientific research world. Many numerical

and computational processes have been invented to clear

up optimization issues in the last twenty years. However,

with the aid of numerical methods, it is very complicated to

resolve the problems which are non-convex, highly non-

linear, include a giant quantity of variables and constraints.

To overcome the drawbacks, such as extra mathematical

calculations, initial guess, and convergent problems in

discrete optimization problems, a set of optimization

algorithms known as meta-heuristics algorithms have been

proposed in the latest decades, namely genetic algorithm

(GA) (Holand 1992), particle swarm optimization (PSO)

(Kennedy and Eberhart 1995), differential evolution (DE)

(Storn and Price 1997), artificial bee colony (ABC) (Yi and

He 2014), firefly algorithm (FA) (Yang 2009), cuckoo

search algorithm (CS) (Gandomi et al. 2013), symbiotic

organisms search (SOS) (Cheng and Prayogo 2014), JAYA

algorithm (Arora and Singh 2015), butterfly optimization

algorithm (BOA) (Mirjalili 2015), moth flame optimization

(MFO) (Wang et al. 2015), monarch butterfly optimization

(MBO) (Rao 2016), etc.

Nowadays, meta-heuristic algorithms are extensively

used to solve engineering applications for their accessible

mathematical operators, uncomplicated executions, and

fewer chances to stick at local optimum solutions. Usually,

these algorithms start with a randomly taken set of the

initial solution and then run the process until the globally

optimal solutions of the objective functions are obtained.

Broadly we divide meta-heuristic algorithms into two

classes, viz., single solution-based (SSB) methods and

population-based (PB) methods. The SSB methods perform

the search by single search representatives, and a group of

search representatives is used in PB methods. Depending

on single and social information, each solution’s position is

renovated in PB methods. Moreover, various solutions can
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quickly check the whole search space; hence, better results

are produced than SSB methods. The PB optimization

methods are broadly grouped into four types: evolutionary

algorithms, swarm intelligence (SI) algorithms, physical or

chemical law-based algorithms and human-based algo-

rithms. Apart from these algorithms, several algorithms

have been proposed using mathematics concepts such as

algebra and geometry. Some of such popular algorithms are

sine cosine algorithm (SCA) (Mirjalili 2016), generalized

convex approximation (GCA) (Chickermane and Gea

1996), nonlinear integer and discrete programming (NIDP)

(Sandgren 1990), and the method of moving asymptotes

(MMA) (Svanberg 1987).

The population-based optimization methods have two

essential characteristics: diversification (exploration) and

intensification (exploitation). Diversification refers to

searching the entire space, representing the algorithm’s

capability in its global search competence. Exploitation

refers to the quality of solutions in the course of iterations

and shows the ability of a method in the local search and

finding the best answer around an already seen potential

solution. On the other hand, higher exploration causes a

slow convergence rate for achieving a globally optimum

solution. Higher exploitation causes convergence approa-

ches to local optimum before key reaching global optima.

Thus, a trade-off between these two factors is vital for an

optimization algorithm to become efficient and robust.

In the last few decades, researchers have frequently

modified several meta-heuristics (for example, improving

algorithm formulae, parameters tuning of algorithms,

hybridizing two or more algorithms, etc.). They have

established other meta-heuristic methods to enhance the

efficiency of the basic algorithms for solving complex and

challenging scientific problems. They use commonly

shared information among multiple agents, which is the

main reason behind the popularity of meta-heuristic

algorithms.

In the present article, MFO is considered to be thor-

oughly studied and analyzed. MFO is a swarm intelligence-

based algorithm that was introduced in 2015 by Mirjalili

(2015). MFOs inspiration came from the moth navigation

technique in nature referred to as transverse orientation.

The author of the MFO has proved that it has superior

performance compared to the other popular meta-heuristic

algorithms over twenty-nine benchmark functions. MFO

has a solid ability to solve numerous challenging con-

strained and unknown search space problems, which is the

main advantage of MFO among all other traditional

algorithms.

Due to the advantages of MFO, such as faster conver-

gence toward global solutions and a smaller number of

algorithm-specific parameters, it has been enforced for

several applications. Few of them are image segmentation

(Muangkote et al. 2016), PID parameter optimization

(Bourouba et al. 2018), economic load dispatch (ELD)

problems (Babar et al. 2016), manufacturing industry

optimization (Yidiz and Yidiz 2017), power load fore-

casting (Li et al. 2016a), solar energy devices (Allam and

A, Eteiba MB, 2016), multilayer perceptron (Yamany et al.

2015), medical diagnoses (Wang et al. 2017), feature

selection problem (Zawbaa et al. 2016), robust routing

problem (Khan et al. 2018), unit commitment problem

(Reddy et al. 2018), and optical network unit placement

(Singh and Prakash 2017).

As a new PB optimization algorithm, however, MFO’s

performance is still required to improve in some direction,

such as convergence rate and global optimum solution.

Therefore, a lot of methods were proposed to enhance

MFO’s efficiency. In (Li et al. 2016b), the author devel-

oped a Levy flight operator, which increases population

diversity, disrupts each moth’s role, and enhances MFO

convergence efficiency. Emary and Zawbaa (2016) added

chaos parameter in the spiral equation to change the

location for moths to improve MFO’s efficiency to boost

the basic MFO’s. In (Apinantanakon and Sunat 2017),

Apinantanakon and Sunat have introduced a new strategy

named as opposition-based learning (OBL) to enhance the

convergence speed of MFO. Elaziz et al. (2020) introduced

a new method called OMFODE, by the combination of

opposition-based learning and differential evolution (DE)

which overcome the above limitations of the basic MFO

algorithm. In (Singh and Salgotra 2018), three new tech-

niques such as iteration division, Cauchy distribution

function, and best flame technique have been used by

authors to achieve a good trade-off between intensification

and diversification. In (Li et al. 2018), the authors used two

new techniques; one is flame generation technique by DE,

and the other is dynamic guidance of flame. The obtained

results outperform six modified MFO algorithms on CEC

2013 test suits concerning convergence rate and better

solution. Savsani and Tawhid (2017) have proposed a

multi-objective version of MFO by sorting non-dominated

outcomes and crowding distance approach, which gener-

ates actual Pareto front and helps maintain diversity among

the set of optimal results. Nanda and Multi-objective moth

flame optimization (2016) have proposed multi-objective

moth flame optimization by exploring and exploiting MFO

algorithm, grid techniques, and non-dominated solutions

for generating the Pareto front and finding the solutions of

a multi-objective problem.

In recent times, meta-heuristics and hybrid meta-

heuristics have played a significant role in the research

field. Hybridization is used to solve complex optimization

problems due to the combination of two to three individual

meta-heuristics algorithms. It is also helpful for improving

the meta-heuristics algorithm with additional techniques
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for better improvement in results, run-time, or both. Some

of the hybrid methods of MFO have been developed by

different authors, such as Bhesdadiya et al. (2017) pro-

posed an algorithm by integrating PSO and MFO, which

enhance the diversification search during solving high

complex design problems and showed superiority in solv-

ing unconstrained optimization problems. In (Khalilpour-

azari and Khalilpourazary 2019), the author developed a

modified algorithm of MFO by the mixture of water cycle

algorithm (WCA) and MFO noted as WCMFO. Here MFO

increases the exploitation, and WCA improves the diver-

sification of WCMFO. Also, it has been used in solving

constrained optimization problems. To overcome the pre-

mature convergence problem of MFO, Wu et al. (2018)

proposed a new MFO algorithm which combines chaotic

operator crisscross strategy in MFO. Kamalpathi et al.

(2018) developed a new hybrid algorithm by the mixture of

fuzzy logic control (FLC) and MFO algorithm and have

been used to solve torque tap problem of the BLDC engine.

In this literature, MFO has been used to control the mini-

mum line stream harmonics and voltage in a motor system.

In contrast, FLC has been used to increase the MFO’s

efficiency by improving the MFO update position. Sarma

et al. (2017) combined two algorithms named MFO and

GSA and applied them to determine the degree of food

rottenness problem, minimizing monetary losses due to

food and storage. Also, to disable the shortcomings of the

original MFO algorithm like low-quality solutions and

slow convergence, Sayed and Hassanien (2018) developed

another new algorithm by combining simulated annealing

(SA) MFO algorithm. Recently, Li et al. (2021) developed

a high-quality improvement in the MFO algorithm named

ODSMFO to overcome the demerits of the MFO algorithm.

The author added the OBL mechanism and DE algorithm

to obtain good quality solution and diversity enhancement,

respectively, then used an enhanced local search technique

based on shuffled frog leaping algorithm (SFLA) to

improve global search ability and finally applied death

mechanism to eliminate individuals with low fitness value.

Shan et al. (2021) proposed double adaptive weight

mechanism for stabilization of MFO algorithm (WEMFO).

The main goal of the WEMFO is to enhance the search

capability and maintain a good trade-off between diversi-

fication and intensification of the classic MFO algorithm.

The authors used two weights to adjust the search strategy

adaptively in a different phase of the algorithm. Then, the

efficiency of the proposed WEMFO was measured by

applying it to train kernel extreme learning machines

(KELM) and several engineering problems. Khan et al.

(2021) used the strength of the MFO algorithm in an

integrated power plant system containing a stochastic

window (SW). The authors combined active set algorithm

(ASA), interior point algorithm (IPA), and sequential

quadratic programming (SQP) with MFO algorithm and

developed three hybrid techniques named MFO-ASA,

MFO-IPA, and MFO-SQP to solve economic load dispatch

(ELD) problem and ELD including stochastic wind (ELD-

SW). Pelosi et al. (2020) introduced an enhanced version of

the basic MFO algorithm named improved moth flame

optimization (IMFO) to reduce the shortcomings of the

MFO algorithm, such as convergence speed and global

searchability. They added a weight factor to the proposed

algorithm to maintain equilibrium between local search and

global search. Ma et al. (2021) introduced an improved

version of the MFO algorithm developed to overcome the

basic MFO algorithm’s issues, such as slow convergence

and convergence to a local minimum. The inertia weight of

the diversity feedback control and the small probability

mutation factor (added after the position update phase) is

embedded in the proposed exploration balancing (and

exploitation) and optimization performance algorithm.

Zhao et al. (2020) proposed improved population-based

techniques named improved MFO algorithm in which

mutation operator and linear search techniques are used for

position updating of original MFO algorithm and OBL

strategy for a flame generation. Kigsirisin and Miyauchi

(2021) proposed a method that is derived from the MFO

algorithm named alternative binary MFO (BAMFO) to

solve unit commitment (UC) problems. The main disad-

vantage of the MFO algorithm is a prefixed flame strategy

responsible for stocking at a local optimum. In this pro-

posed BAMFO, the authors introduced four flame genera-

tion strategies instead of following the predetermined flame

strategy of the basic MFO algorithm. After that, a repair

strategy was submitted to solve the UC problem. Tumar

et al. (2020) developed a modified MFO algorithm named

EBMFO (enhanced binary moth flame optimization algo-

rithm) for the prediction of software faults by using

adaptive synthetic sampling (ADASYN). In this literature,

the original MFO algorithm’s transformation to binary

MFO algorithm has been discussed and then proposed the

upgraded version named EBMFO algorithm. Spare and

Mini (2021a) offered a new version of the MFO algorithm,

namely the Emulous mechanism based multi-objective

MFO algorithm (EMMFO). In this literature, pairwise

competitions between the moths have been used to update

the position of the moth in each iteration. Zhang et al.

(2020) invented a new novel called improved multi-ob-

jective optimization and have been applied to solve the

cascade reservoir model. In short, the proposed method is

called R-IMOMFO, and the formulation has three phases.

In the first phase, the authors of the literature first improved

the basic MFO algorithm by adding three mechanisms

(position update method, flame population update strategy,

and inspiration of the moth linear flight path) to overcome

the local stagnation and enhance the MFO algorithm. In the
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second phase, R-domination (with three reference points)

technique has been used to distinguish the solution in

Pareto domination. Finally, five new algorithms have been

generated by integrating different evolutionary algorithms

and multi-objective mechanisms to verify the performance

of both IMFO and R-domination. Dabba et al. (2021)

developed a modified version of the MFO algorithm named

mutual information maximization-modified moth flame

algorithm (MIM-MFA) and then applied it to solve gene

selection in microarray data classification by the help of

MIM. Kadry et al. (2021) proposed a new technique by

using Kapur’s threshold image segmentation and modified

MFO algorithm and then applied it to remove the tumor

section from the clinical-grade MRI slices recorded with

Flair and T2 modalities. The suggested algorithm has

experimented on benchmark images of BRAINIX and

TCIA-GBM. The experimental results proved the superi-

ority against the T2 modality. Spare and Mini embedded

(Sapre and Mini 2021b) a new algorithm named differen-

tial moth flame optimization algorithm (DMFO) and

applied it to reduce wireless sensor networks’ problems

(WSNs) with mobile sink. Dash et al. (2020) applied Jaya-

based MFO (JMFO) and basic MFO algorithm in IEEE

network to minimize the loss transmission through an

efficient position of FACTS devices. Two compensators

named TCSC and SVC are used in IEE 14 AND IEE 30

bus system as a fitness function for MFO and JMFO

algorithm. Gupta et al. (2020) developed a higher version

of the MFO algorithm named modified MFO (MMFO) and

applied it for suitable feature selection problems. Suja

(2021) developed a modified algorithm to improve the

performance and reduce the power quality issues for smart

grid (SG) systems. The name of the modified MFO algo-

rithm is Leavy flight MFO (LMFO) algorithm. The sug-

gested method helps in getting better optimal solutions

with respect to the objectives of SG systems.

Apart from the above modifications on MFO algorithm,

various researchers have worked on other efficient meta-

heuristic algorithms to enhance their performances. Some

of those works are given below:

Asghari et al. (2021) developed two-hybrid methods

named chaotic-based hybrid whale and PSO by integrating

PSO with WOA (in short CWP) and multiswarm version of

CWP (in short MCWP) which integrate MFO with

improved WOA by using various chaotic maps and roulette

wheel selection operator. Asghari et al. (2021) introduced

another hybrid method named chaotic GWO and WOA

(CGWW) by combining GWO with WOA to overcome the

shortcomings of the both algorithm and developed an

efficient algorithm. At first, the authors modified WOA and

then integrate it with GWO. After that, chaotic maps have

been applied to the hybrid GWO and WOA for enhance-

ment of diversification and intensification. Gharehchopogh

and Gholizadeh (2019) proposed a comprehensive survey

on whale optimization algorithm and its application. The

author provided an updated review version of the recently

proposed whale optimization algorithm. They added vari-

ous variants, improved and hybrid version of WOA with its

application in various paths, including image processing,

networks, engineering, task scheduling, and other engi-

neering applications. Masdar and Zangakani introduced

(Masdari and Zangakani 2020) an extensive survey on

proactive virtual machine placement approaches, they split

it into various categories such as simulation software,

workload data, power management method, evaluation

parameters, and prediction factor according to their applied

forecasting methods. Masdar et al. (2017) developed

another survey paper on PSO-based scheduling algorithms

in cloud computing. They presented a deep analysis of the

task and workflow scheduling scheme on PSO for the cloud

environment and provided the classification based on the

type of PSO algorithms. Masdar et al. (2019) introduced a

new modified version of artificial bee colony algorithm

named chaotic discrete version of an artificial bee colony

(CDABC) with the help of chaotic maps. The author

applied this algorithm to organize the lifetime of wireless

sensor networks (WSNs) by choosing appropriate nodes.

Nama et al. (2020a) proposed a novel hybrid meta-heuristic

algorithm by combining teaching–learning-based opti-

mization (TLBO) algorithm and quadratic approximation

(QA), where the QA technique is applied to improve the

global, as well as local search capability of the proposed

algorithm. Nama et al. (2017a) proposed a new hybrid

algorithm named hybrid symbiosis organisms search

(HSOS) by integrating symbiosis organisms search (SOS)

algorithm with simple quadratic interpolation (SQI), which

helps in enhancing the robustness of the algorithm. Sharma

et al. (2021) introduced a novel hybrid butterfly opti-

mization algorithm named MPBOA, where the BOA is

combined with mutualism and parasitism phases of the

SOS algorithm to enhance the search behavior of BOA,

which ensures a better trade-off between the global and

local search of the proposed MPBOA algorithm. Sharma

and Saha (2021) introduced a powerful hybrid algorithm

named BOSCA by combining SCA with BOA, which helps

stabilize the global exploration and local exploitation

ability of the proposed algorithm. Chakraborty et al.

(2021a) introduced a powerful hybrid meta-heuristic

algorithm named WOAmM. The mutualism phase from the

SOS algorithm is modified and integrated with WOA to

alleviate premature convergence’s inherent drawback.

Chakraborty et al. (2021b) introduced a new hybrid method

named SHADE-WOA by integrating modified WOA with

success history-based adaptive differential evolution

(SHADE). The main goal of this hybrid method is to

reduce the shortcomings of both algorithms and guide both
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algorithms to explore and exploit in the search space and

helps obtain good quality of solutions.

Another standard SI (Swarm Intelligence)-based algo-

rithm is SOS, created in 2014 by Cheng and Prayogo. SOS

comprises three, namely mutualism, commensalism, and

parasitism process. Out of these three stages, the SOS

phase of mutualism and commensalism describes enhanc-

ing the SOS algorithm’s local exploitation potential. In

contrast, the phase of parasitism deals with improving the

algorithm’s exploration capability. The results obtained

from three versions of SOS with some combinations of

benefit factors and adaptive benefit factors showed that it

achieves a better trade-off between intensification and

diversification in search space. From (Gandomi et al.

2013), it can be concluded that SOS is a powerful algo-

rithm in terms of efficiency and solving numerous com-

plicated real-life problems, which makes it a powerful

algorithm as compared to other traditional algorithms. SOS

has some advantages as it mimics common parameters like

maximum number of feature evaluation and population

size, has good capacity for exploitation with commensal-

ism and mutualism processes, and has capacity for dis-

covery by integrating mutation and cloning into the

parasitism system.

Due to the above advantages, SOS has been applied in

solving numerous engineering optimization problems. Few

of them have been found in the literature which are given

in Kavousi-Fard et al. (2015); Nama et al. 2016) and

(Verma et al. 2017). Lots of modifications have been

developed to improve SOS performance for various char-

acteristics and structures of the problem. The details of

these modifications have discussed in Nama et al. (2017b),

Kumar et al. (2019) and Tejani et al. (2019), etc.

Though the MFO versions mentioned above have

proved the most beneficial enhancements in their effi-

ciency, they may also be caught at local optima and fail to

generate excessive-performance flames and low conver-

gence charge when engaged in solving a complex opti-

mization problem. Recently, in m-MBOA (Sharma et al.

2020), the creator utilized the SOS mutualism step in the

exploration section of BOA to decorate the overall per-

formance of the original BOA algorithm. To tackle these

problems and motivated by way of the above works, in this

article, a novel expanded MFO (namely, EMFO) has been

added in order to improve the performance of original

MFO similarly by using adding the mutualism section of

SOS with the simple MFO algorithm. The effectiveness of

the proposed EMFO algorithm has been examined on a set

of 36 benchmark take a look at functions from the litera-

ture, and also, the acquired outcomes have been in contrast

with some ultra-modern optimization algorithms and

determined that EMFO performs higher than the different

meta-heuristic optimization algorithms.

The rest of the present article is designed as follows: A

short summery on MFO algorithm is shown in Sect. 2. The

mutualism phase is proposed in Sect. 3. The proposed

EMFO algorithm and computational complexity of the

proposed method are shown in Sect. 4 and Sect. 5,

respectively. The simulation results and performance are

presented in Sect. 6. Further in Sect. 6, a brief detail on

benchmark functions, statistical test, convergence analysis,

and comparison with variants of MFO algorithm are pre-

sented. The application of real-world problem is shown in

Sect. 7 and at the end, conclusions are discussed in Sect. 8.

2 Moth flame optimization

Moths are insects and belong to the class of Arthropoda.

The navigation techniques of moths are unique, which

attracts researchers to think about it. Moths travel in the

night with the help of the moonlight, and for navigation,

moths utilize a transverse orientation mechanism. Through

crosswise inclination, they fly using moonbeam by keeping

a fixed tendency toward the moon for a long journey in a

straight path. The efficiency of direction depends on the

distance of flame, i.e., when the distance between them

decreases, the moth moves in a helix path around the flame

which connects the moth to the flame. Using these

behaviors of moth and mathematical modeling, the MFO

algorithm was developed by Mirjalili in 2015.

2.1 MFO algorithm

In basic MFO, all moths are expressed as a set of candi-

date’s solutions and their position is expressed as a vector

of decision variables. Let us consider the following matrix

for moths

X ¼

X1

X2

..

.

XN

2
6664

3
7775 ¼

x1;1 x1;2 � � � x1;n�1 x1;n

x2;1
. .
.

� � � � � � x2;n

..

.
� � � . .

.
� � � ..

.

xN�1;1 � � � � � � . .
.

xN�1;n

xN;1 xN;2 � � � xN;n�1 xN;n

2
66666664

3
77777775

ð1Þ

where Xi ¼ xi;1; xi;2; . . .; xi;n
� �

, i 2 1; 2; . . .;Nf g. N indi-

cates moths’ number at initial population and n as variable

numbers.

Now the fitness vector of moth is shown in below

Fit X½ � ¼

Fit½X1�
Fit½X2�

..

.

Fit½Xn�

2
6664

3
7775 ð2Þ
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The second key point of the MFO is flame matrix. Here

the size of both moth’s matrix (X) and flame matrix (FM)

are same as each moth flies around the corresponding

flame.

FM ¼

FM1

FM2

..

.

FMN

2
6664

3
7775

¼

Fm1;1 Fm1;2 � � � Fm1;n�1 Fm1;n

Fm2;1
. .
.

� � � � � � Fm2;n

..

.
� � � . .

.
� � � ..

.

FmN�1;1 � � � � � � . .
.

FmN�1;n

FmN;1 FmN;2 � � � FmN�1 FmN;n

2
66666664

3
77777775

ð3Þ

Also, the fitness vector of flame matrix is stored in

following matrix, i.e.,

Fit FM½ � ¼

Fit[FM1�
Fit[FM2�

M
Fit[FMn�

2
664

3
775 ð4Þ

Here Fit [�] is a candidate solution’s fitness function. In

fact, MFO has two important component one is moth and

other is flame, where moth moves through the respective

flame to achieve suitable outcomes and the best outcomes

acquired by the moth is known as flame. As the moth

moves in a spiral manner; therefore, the author of MFO has

defined a spiral function called logarithmic spiral function

in order to create a spiral path which is represent in fol-

lowing equation.

xKþ1
i ¼ di � ebt � cos 2ptð Þ þ Fmi; i�N � FM

di � ebt � cos 2ptð Þ þ Fmi; i�N � FM

�
ð5Þ

where di ¼ xKi � Fmi

�� ��, i.e., the distance between the ith

moth Mi and its specific flame Fi; b is a constant to rec-

ognize the shape of the search for helix flight shape; t be

any random number between -1 and 1 referring to how

much closer the moth is to its specific flame. Illustration 1

represents that a moth flies toward its flame in a helix

manner, with a distinct value of t in a one-dimensional

manner. An adjustable course of action has been suggested

to lessen the variable (t) value over the repetition, which

enhance the effectiveness of both exploration and

exploitation in first and last iterations, respectively.

a1 ¼ �1 þ currentiter

�1

maxiter

� �
ð6Þ

t ¼ a1 � 1ð Þ � r þ 1 ð7Þ

where maxiter represents the number of maximum

iterations, a1 be the convergence constant decreases

from - 1 to - 2 linearly proving that both diversification

and intensification occurs in MFO algorithm. Each moth

must renovate its position to just one flame to bypass local

minima. Flames are sorted and modified in each iteration

according to the fitness value. First, moth changes its

location according to the first flame and last moth as per the

last. However, this positioning can harm the exploitation of

best solutions for N-flame positions. To overcome this

issue, the number of flames (N.FM) is reduced over the

iteration can be obtained by the following formula

N � FM ¼ round N � FMLstit � crnt � it
N � FMLstit � 1ð Þ

max it

� �

ð8Þ

where both the flame number and last iteration flame

number are denoted by N.FM and N � FMLstit, respectively.

Figures 1 and 2 represent the moths place corresponding to

the first and last iterations of the method and spiral

movement of moth around the flame, respectively. The

details about MFO are described in Mirjalili (2015).

3 Symbiotic organisms search algorithm

SOS belongs to the SI-based design algorithm that has been

invented by Cheng and Prayogo and can be used for a

number of real problems. It copies the interdependency

between various species to grow in a habitat as an indi-

vidual solution in a community. The efficiency and stur-

diness of SOS are standard and practically reasonable with

respect to both benchmark and real-life problems. It hap-

hazardly produces the first community by initializing N

Next Position

X

Y

Fig. 1 Position of moths
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organisms and then using the three-way techniques like

mutualism, commensalism, and parasitism phases new

solutions are modernized. We have only merged the

mutualism step of SOS in our proposed algorithm which is

summarized in below.

When in nature, two different species get benefit from

their interaction then it is called mutualism. Let us take two

species Xi and Xj from the ecosystem where Xi interacts

with randomly selected species Xj to create new solutions

by using Eqs. (7) and (8):

Xinew ¼ Xi þ r 0; 1½ � � Xb �
Xi þ Xj

2

� �
� BenF1

� �
ð9Þ

Xjnew ¼ Xj þ r 0; 1½ � � Xb �
Xi þ Xj

2

� �
� BenF2

� �
ð10Þ

where r 0; 1½ � be a random number lying in the range 0; 1½ �,Xb

be the best ecosystem organism, BenF1
and BenF2

are the

benefit factors whose value is either 1 or 2. These factors

indicate the level of benefit to each organism, and mutual

vector, i.e., Xi þ Xj

�
2

	 

, implies the characteristics rela-

tionship between Xi and Xj. Xinew and Xjnew will then be

compared toXi andXj to select the best solution for each pair.

In mutualism, new solutions are created on the basis of Xb.

4 Proposed method

The main motto of any meta-heuristic algorithm is to

handle the balance between exploration and exploitation.

We know that excessive exploration is the reason for losing

optimal solutions because it spends more time searching

the uninteresting regions. On the other hand, extreme

exploitation is the main reason for premature convergence

as the population rapidly lacks diversity. So, better per-

formance of any algorithm is achieved when it maintains

stability between diversification and intensification. In

basic MFO, the parameter value t supports diversification

and intensification. The power of the exponent factor ‘t’

gives a better clarification about exploration and exploita-

tion. We know that the next position of the moth is

obtained from the spiral Eq. 5. In this equation, t defines

the next moth’s location relative to the flame. When

t = - 1, the next position moth is nearest, and t = 1 rep-

resents the farthest moth’s position regarding the flame.

Therefore, exploration and exploitation occur when any

moth’s next position belongs to the space to moth and

flame and does not belong to the space, respectively. We

observe that the sorting procedure of the best moth pro-

duces flames, and in other side position of moths are

updated to the flame, leading to an imperfection in MFO

and a reason for losing the promising individuals in the

search space. Due to the more exploitation of basic MFO,

some best solutions are stuck at local optima. To escape

these solutions, we applied a simple step called the mutu-

alism step of SOS in MFO, which is very effective in

maintaining a balance between diversification and inten-

sification in the search space and accelerates the speed of

the solution. In mutualism phase, two candidate solutions

update their position with the help of the best solution and

thus they help themselves to find new solutions as the

second candidate solution is chosen randomly and use of

best solution confirms that the strategy also helps the

solutions to find the nearby solutions of already existed

best solution. For these benefits of mutualism strategy,

Sharma et al. (2020), Chakraborty et al. (2021a), Wang

et al. (2020), Tan et al. (2020), and Nama et al. (2017b)

have applied mutualism scheme to various algorithms to

enhance the performances of those algorithms to produce

efficient algorithms. Our proposed methodology is called

EMFO with the goal of maximizing population diversity

against premature convergence and accelerating conver-

gence speeds, i.e., this framework is useful to create a good

balance between the diversification and intensification

ability of MFO. We start the algorithm in the similar

manner like MFO, and then, we apply mutualism phase

(Eqs. 11 and 12) for position updating, i.e., in mutualism

phase, we take two organisms (here organism means

moths) from the population for updating the position of

each moth in each iteration and share information with

another randomly chosen moth to update their respective

positions in the search space. The formulation of mutual-

ism phase is presented below:

Fig. 2 Spiral movement of moth
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XKþ1
inew ¼ XK

i þ r 0; 1½ � � XK
b �

XK
i þ XK

j

2

 !
� BenF1

 !

ð11Þ

XKþ1
jnew ¼ XK

j þ r 0; 1½ � � XK
b �

XK
i þ XK

j

2

 !
� BenF2

 !

ð12Þ

whereXK
j is randomly chosen another solution and XKþ1

inew ,

XKþ1
jnew are new updated populations. BenF1

and BenF2
are

benefit factor w.r.t XK
i and XK

j whose value is randomly

considered as 1 or 2. Also, we plot a graph between the

values of t with respect to the iterations in Fig. 3 for EMFO

which provides the better value for t as compared to MFO.

Due to the above characteristics, the proposed approach

could provide superior performance over MFO and main-

tains good balance between exploration and exploitation.

The main EMFO steps can simply be shown in Algo-

rithm 1 and summarized in below.

Step 1: Initialize all parameters such as number of

populations, maximum iteration, and function evaluation

randomly.

Step 2: Apply the sorting procedure to the both moth

matrix and flame matrix w.r.t the fitness value and update

number of flames using Eqs. 8.

Step 3: Update r and t using Eqs. 6 and 7.

Step 4: Update moths position w.r.t corresponding flame

using Eq. 5.

Step 5: Update the new solution by using Eqs. 11 and 12

and then find the fitness value of the new solutions. Best

fitness gives the optimum value.

Step 6: If it does not satisfy the stopping criteria then go

to 2nd step until to get the best fitness value.

5 Computational complexity of EMFO

Complexity of any algorithm is a function which provides

the running time or space with respect to input size. This is

of two kinds: One is complexity of space and other is time

complexity. The process of finding a formula for total

space that will be required toward execution of the algo-

rithm is referred as space complexity. Also, process of

finding a formula for total time required for successful

execution of algorithm is known as time complexity. The

complexity of EMFO also depends on initialization of

moth position (T–IMP), evaluation of moth position (T–EMP),

searching of spiral flight (T–SSF), flame generation (T–FG),

and position updating in mutualism phase T– (MP). Let

maximum iterate number, variable number, and moths’

number are denoted by I, D, and N, respectively. Here we

will use time complexity for the comparison of both EMFO

and MFO algorithm. According to the quicksort algorithm,

computational complexity for sorting N-flame and N-moth

are lying between 3Nlog3NI and (3 N)2I toward worst and

best case

Hence, time complexity for EMFO with respect to worst

case is O [NI (D ? N)]. Also, from Mirjalili (2015), the

time complexity of MFO for the worst case is O [NI

(D ? N)]. Therefore, both MFO and EMFO has same

complexity.

Fig. 3 Comparison between EMFO and MFO w.r.t the parameter value t
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6 Results and discussion

This section includes a brief note on the benchmark func-

tions and several discussions on the obtained results of both

unimodal and multimodal benchmark functions. In Sect.

6.1, details of the benchmark functions are discussed. In

Sect. 6.2, the experimental setup of our proposed method

has been discussed. In Sect. 6.3, a comparison of EMFO

with basic MFO and other evolutionary algorithms has

been discussed. Friedmann rank test and convergence

analysis of benchmark functions are presented in Sects. 6.4

and 6.5, respectively. In subsection 6.6, a comparison of

EMFO with six variants of the MFO algorithm is presented

with statistical measurement.

6.1 Benchmark functions

Every new meta-heuristic algorithm’s performance must be

validated and compared with other existing meta-heuristic

algorithms over a good set of test functions. Thus, bench-

mark functions play an essential role in terms of reliability,

verification, and efficiency of the algorithms. These test

functions have been carefully selected from Jamil and

Yang (2013) and are presented in Appendix 1. To validate

our proposed EMFO algorithm, 36 benchmark functions

have been selected and split into two parts, namely uni-

modal benchmark functions and multimodal benchmark

functions.

The selected unimodal functions (from F1 to F15)

include only one local optimum value called the global

minimum value of the corresponding unimodal function.
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Unimodal functions are helped in validating the exploita-

tion capability of the stochastic optimization algorithm.

Therefore, these functions are optimized by those meta-

heuristic algorithms which have better exploitation

capability.

In the chosen multimodal functions (from F16 to F36),

many local minimum values are associated with these

functions and harder to solve than unimodal functions as

sometimes solutions of these functions are stuck at local

optima and are not escaped. Also, the difficulty level of

multimodal functions rises with the number of dimensions,

search area, and local optima value. Due to the ability to

search new places, these functions test the exploration

ability of meta-heuristic algorithms.

6.2 Experimental setup

The code of the proposed algorithm is written and imple-

mented using MATLAB R2015a on a computer with an

Intel i5 processor, 8 GB of RAM with Windows 2010

operating system. At most, 10,000 iterations are in use as a

basis to stop our proposed algorithm. There are different

ways to stop the algorithm, such as maximum number of

iterations achieved, a fixed error tolerance value, maximum

use of CPU time, and maximum number of iterations

having zero improvements. Each function was repeated for

30 runs and rounded up two digits after the decimal to

produce more minor statistical errors and statistically sig-

nificant output.

We put down the mean (M) and standard deviation (SD)

of EMFO with other algorithms for collation. One

Table 1 Comparison of unimodal functions with MFO, SOS, PSO, JAYA, DE, and BOA

Function EMFO MFO SOS PSO JAYA DE BOA

F1 M

SD

0

0

0

0

6.03E - 173

0

1.76E - 51

1.12E - 50

1.39E ? 04

3.54E ? 03

2.61E - 165

0

0

0

F2 M

SD

0

0

0

0

0

0

3.10E - 53

2.10E - 52

1.86E ? 12

2.08E ? 11

1.40E - 172

0

0

0

F3 M

SD

0

0

0

0

0

0

1.31E - 31

6.65E - 31

1.47E ? 04

2.91E ? 03

1.30E - 01

4.85E - 01

0

0

F4 M

SD

2.69E ? 01

1.28

2.89E ? 001

6.44E - 002

- 1

0

2.57E ? 02

3.73E ? 02

2.83E ? 07

1.20E ? 07

2.35E ? 01

4.98

2.88E ? 01

3.12E - 02

F5 M

SD

0

0

0

0

2.27E - 74

2.41E - 74

1.20E ? 03

5.44E ? 02

6.54E ? 04

1.57E ? 04

1.14E - 175

0

0

0

F6 M

SD

2.03E - 197

0

0

0

1.24E - 86

1.26E - 86

1.05E - 01

6.53E - 02

6.56E ? 01

6.69

1.02

4.59E - 01

6.99E - 153

1.47E - 152

F7 M

SD

0

0

0

0

- 4.19E ? 02

0

7.28E ? 01

2.27E ? 01

4.58E ? 02

8.32E ? 02

8.15E - 91

1.23E - 90

0

0

F8 M

SD

1.59E - 05

2.23E - 05

1.04

1.78

3

1.94E - 15

0

0

6.22

6.18

0

0

0

0

F9 M

SD

0

0

0

0

7.51E - 13

3.99E - 12

0

0

2.51E - 01

2.33E - 01

0

0

0

0

F10 M

SD

1.31E - 12

4.94E - 12

0

0

4.62E - 03

6.45E - 03

3.36E ? 03

9.52E ? 02

1.02E ? 02

7.95E ? 01

1.30E ? 02

1.85E ? 02

0

0

F11 M

SD

- 3.79E - 03

1.47E - 12

- 3.18E - 003

8.43E - 004

1.26E - 07

3.29E - 07

7.67E ? 05

4.01E ? 05

1.53E - 01

1.21E - 01

- 4.89E ? 03

2.72E ? 01

- 2.75E ? 07

5.65E ? 07

F12 M

SD

7.05E - 06

6.47E - 06

8.63E - 002

1.02E - 001

9.98E - 01

2.92E - 16

- 3.79E - 03

0

4.51E - 01

4.12E - 01

- 3.79E - 03

4.57E - 19

- 3.79E - 03

0

F13 M

SD

0

0

0

0

0

0

6.19E ? 01

3.44E ? 01

3.57E ? 04

6.22E ? 03

5.11E ? 04

0

1.79E - 08

1.14E - 09

F14 M

SD

0

0

0

0

0

0

8.40E ? 05

3.23E ? 05

1.00E ? 06

8.60E ? 01

1.00E ? 06

1.36E ? 01

2.08E - 08

4.70E - 09

F15 M

SD

8.30

4.46E - 01

8.09

3.68

1.74

2.05E - 01

3.74

1.02

3.74

2.19

2.61E - 03

1.05E - 03

3.89E - 05

2.90E - 05
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particular union of variables was used for EMFO in the

copy of both unimodal and multimodal benchmark func-

tions to fulfill this criterion. The powers exponent constant

b is equal to 1 and t varies from - 1 to 1, and the popu-

lation size is 50.

Table 2 Comparison of multimodal functions with MFO, SOS, PSO, JAYA, DE, and BOA

Function EMFO MFO SOS PSO JAYA DE BOA

F16 M

SD

0

0

0

0

0

0

3.03E - 02

2.61E - 17

3.04E ? 02

2.69E ? 02

0

0

0

0

F17 M

SD

8.88E - 16

0

8.88E - 016

0

1.00E - 15

6.38E - 16

1.81E ? 01

5.48

1.96E ? 01

6.58E - 01

1.71

0

1.71

0

F18 M

SD

0

0

0

0

0

0

4.05E ? 01

4.13E ? 01

1.26E ? 02

3.41E ? 01

9.22E - 17

2.04E - 17

1.84E - 19

2.68E - 20

F19 M

SD

0

0

0

0

0

0

1.44E ? 02

3.79E ? 01

1.19E ? 02

1.26E ? 01

1.24E ? 01

3.30

0

0

F20 M

SD

0

0

0

0

1.82E - 01

1.20E - 01

0

0

3.50E ? 02

1.24E ? 02

0

0

0

0

F21 M

SD

1

2.79E - 05

- 4.11E - 001

3.69E - 001

8.84E ? 01

1.22E - 03

- 1.00E ? 00

0.00E ? 00

- 7.24E - 14

4.03E - 13

- 1.00

0

- 1

0

F22 M

SD

- 4.19E ? 02

1.37E - 07

- 4.05E ? 02

3.58E ? 01

7.04E - 25

9.02E - 25

- 7.57E ? 03

8.88E ? 02

- 4.03E ? 02

3.69E ? 01

- 4.56E ? 12

3.19E ? 12

- 2.26E ? 03

4.56E ? 02

F23 M

SD

1.32E - 02

8.93E - 03

1.53E - 002

1.23E - 002

1.09E - 117

3.94E - 117

1.98E - 04

1.65E - 04

4.50E ? 01

7.40E ? 01

6.27E - 04

1.3E - 03

2.84E - 02

1.31E - 02

F24 M

SD

2.56E - 02

1.16E - 02

7.88E - 01

3.44E - 01

4.71E - 32

2.23E - 47

2.72E - 01

4.71E - 01

6.11E ? 07

3.44E ? 07

1.11E ? 03

1.84E ? 03

2.27E - 01

8.54E - 02

F25 M

SD

1.06E ? 00

3.62E - 01

6.10

3.62

9.98E - 01

2.92E - 16

1.25

5.71E - 01

1.10E ? 02

1.30E ? 02

9.98E - 01

2.50E - 16

2.84

2.55

F26 M

SD

3.09E - 04

6.63E - 07

5.80E - 03

6.72E - 03

3.27E - 04

7.60E - 05

6.05E - 04

4.62E - 04

1.51E - 01

1.64E - 01

1.37E - 03

4.72E - 04

6.66E - 04

7.52E - 04

F27 M

SD

3.98E - 01

1.53E - 05

5.13E - 01

1.36E - 01

3.98E - 01

3.17E - 07

3.98E - 01

5.84E - 09

1.50

1.05

3.98E - 01

4.44E - 16

4.98E - 01

1.47E - 01

F28 M

SD

- 9.61E

3.07E - 01

- 7.72

1.03

- 9.63

1.53

- 6.21

2.17

- 6.11E - 01

2.77E - 01

- 8.02

1.88

- 2.54

2.08

F29 M

SD

- 9.86

2.66E - 01

- 7.59

1.13

- 1.01E ? 01

1.33

- 7.14

2.85

- 8.02E - 01

4.01E - 01

- 9.73

5.68E - 01

- 4.48

1.35E ? 01

F30 M

SD

- 9.92

2.39E - 01

- 7.78

1.20

- 1.05E ? 01

2.83E - 15

- 6.87

2.57

- 8.99E - 01

2.57E - 01

- 1.03E ? 01

3.12E - 01

- 5.93E ? 01

3.75E ? 02

F31 M

SD

0

0

0

0

0

0

6.93E ? 02

1.97E ? 02

7.32E ? 03

1.204E ? 02

7.50E ? 03

0

2.56E - 08

9.87E - 10

F32 M

SD

7.79E - 02

2.37E - 01

2.19E ? 01

1.19E ? 01

0

0

3.24E ? 04

2.91E ? 04

1.95E ? 06

8.82E ? 04

2.30E ? 06

2.14E ? 01

1.02E ? 01

5.33

F33 M

SD

- 2.21E ? 03

3.61E ? 01

- 1.37E ? 03

1.14E ? 02

- 2.35E ? 03

9.59E - 13

- 6.29E ? 02

1.17E ? 02

1.22E ? 03

1.41E ? 02

7.45E ? 03

2.21E ? 01

- 1.38E ? 03

5.33E ? 01

F34 M

SD

0

0

0

0

0

0

1.57E ? 02

1.86E ? 01

6.49E ? 02

3.48E ? 01

2.56E ? 03

9.83E - 02

1.62E - 11

9.74E - 13

F35 M

SD

0

0

0

0

0

0

1.06E ? 01

7.62E - 01

1.9719E ? 01

4.1799E - 01

3.34E ? 01

2.98E - 01

2.92E - 08

1.29E - 09

F36 M

SD

3.66E - 02

4.90E - 02

0

0

9.98E - 02

1.99E - 13

2.81E ? 01 1.35 4.2035E ? 01

5.2080E - 01

5.25E ? 01

4.53E - 01

9.99E - 02

1.37E - 07
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6.3 Experimental results of benchmark functions

In this subsection, the obtained simulation result of our

proposed EMFO has been compared with other six meta-

heuristics MFO, SOS, PSO, DE, JAYA, and BOA, on 36

benchmark functions including both unimodal and multi-

modal functions and are presented in subsection 6.3.1 and

Table 3 Performance assessment of EMFO compared to MFO, SOS,

PSO, DE, BOA, and JAYA on 36 benchmark functions

Proposed algorithm MFO SOS PSO DE BOA JAYA

Superior to 16 20 27 26 21 33

Similar to 15 10 2 3 9 0

Inferior to 5 6 7 7 6 3

Table 4 Comparison of EMFO with ABC, GA, FA, MBO, and CS

Function EMFO ABC GA FA MBO CS

F1 M

SD

0

0

2.58E - 01

5.13E - 01

2.20E - 02

9.67E - 03

7.86E - 04

1.36E - 04

2.21E - 01

1.41E - 01

6.49E - 61

9.77E - 61

F2 M

SD

0

0

8.43E - 03

2.30E - 02

2.19E - 04

1.09E - 04

1.08E - 05

1.45E - 06

3.40E - 04

4.78E - 04

5.53E - 63

8.92E - 63

F3 M

SD

0

0

2.23E - 01

4.82E - 01

2.30E - 02

1.05E - 02

0

0

3.17E ? 04

2.57E ? 04

1.21

1.48

F4 M

SD

2.69E ? 01

1.28

1.25E ? 02

8.77E ? 01

3.78E ? 01

2.52E ? 01

1.83E ? 01

4.24

7.14

1.42E 1 01

3.95E ? 01

3.33E ? 01

F5 M

SD

0

0

2.36E - 02

4.18E - 02

2.42E - 03

1.07E - 03

5.24E - 02

6.70E - 02

1.11E ? 05

1.98E ? 04

4.05E - 02

6.06E - 02

F6 M

SD

2.03E - 197

0

1.00E - 01

6.60E - 01

4.66E - 02

1.08E - 02

1.43E - 04

1.48E - 05

3.54

3.99

3.67E - 03

1.59E - 03

F7 M

SD

0

0

1.42E - 01

6.83E - 02

5.43E - 02

1.61E - 02

1.50E - 03

1.13E - 04

7.02E - 03

2.96E - 03

1.12E ? 01

2.49E ? 01

F8 M

SD

1.59E - 05

2.23E - 05

1.32E - 11

2.42E - 11

0

0

0

0

8.88E - 03

1.51E - 02

1.81E - 05

1.40E - 05

F9 M

SD

0

0

1.19E - 04

1.30E - 04

8.38E - 104

2.51E - 103

0

0

0

0

1.33E - 06

2.16E - 06

F10 M

SD

1.31E - 12

4.94E - 12

1.51E ? 01

1.10E ? 01

3.27E - 02

1.11E - 02

2.39E - 04

4.76E - 05

3.43E ? 03

2.63E ? 03

6.63

6.99

F11 M

SD

- 3.79E - 03

1.47E - 12

- 3.79E - 03

5.71E - 18

- 3.79E - 03

4.57E - 19

- 3.79E - 03

4.57E - 19

2.01E - 01

2.23E - 01

- 3.79E - 03

4.45E - 07

F12 M

SD

0

0

0

0

0

0

0

0

0

0

4.92E - 04

8.66E - 04

F13 M

SD

8.88E - 16

0.00E 1 00

3.65E

6.93E - 01

4.66E - 02

1.68E - 02

7.73E - 04

4.80E - 05

1.31E ? 01

9.41

1.70E ? 01

5.46

F14 M

SD

0

0

5.48E - 01

2.72E - 01

5.55E - 02

2.94E - 02

1.07E - 07

1.31E - 08

4.30E ? 02

1.65E ? 02

2.01E ? 01

4.30E - 02

F15 M

SD

0

0

2.36E ? 01

5.48

1.64E ? 01

4 .10

3.47E ? 01

9.54

6.37E ? 01

4.29E ? 01

1.08E ? 02

4.99E ? 01

F16 M

SD

0

0

8.62E - 16

8.54E - 16

1.69E - 17

1.68E - 16

1.43E - 02

5.35E - 03

6.68E - 04

8.09E - 04

9.81E - 01

7.87E - 01

F17 M

SD

1

2.79E - 05

- 9.00E - 01

2.73E - 01

- 1

0

- 8.50E - 01

3.58E - 01

- 1.00

0

- 1.00

0

F18 M

SD

- 4.19E ? 02

1.37E - 07

1.05E ? 04

2.93E ? 02

- 1.18E ? 04

2.95E ? 02

- 7.14E ? 03

9.09E ? 02

- 3.94E ? 04

5.70E ? 04

- 1.08E ? 02

1.08E ? 01

F19 M

SD

1.32E - 02

8.93E - 03

7.13E - 02

5.13E - 02

1.29E - 04

1.13E - 04

1.29E - 04

1.56E - 04

5.02E ? 01

4.07E ? 01

1.40E - 02

1.45E - 02

F20 M

SD

7.05E - 06

6.47E - 06

8.01E - 03

9.61E - 03

9.56E - 06

3.02E - 05

4.82E - 05

6.47E - 05

3.26E - 01

1.40E - 01

1.77E - 04

1.55E - 04
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6.3.2, respectively. Also, in subsection 5.3.3, it has been

compared with other five popular and latest algorithm

namely ABC, GA, FA, MBO, and CS.

6.3.1 Discussion on unimodal functions

The means and the standard deviations for optimized uni-

modal functions along with EMFO and other six algorithms

are provided in Table 1. It is evident from the table that

EMFO offered the least values compared to different

algorithms. EMFO algorithm provides the best results for

F1, F2, F3, F5, F7, F8, F9, F11, F13, and F14. It provides

the second best results for functions F6 and F10 and

inferior results for F4, F12, and F15. Therefore, our pro-

posed approach can be assumed to be a superior algorithm

to others.

6.3.2 Discussion on multimodal functions

In Table 2, functions F16 to F36 have been investigated

under multimodal function optimization. It can be clear

that for functions F16, F17, F18, F19, F20, F26, F27, F29,

F30, F31, F32, F34, and F35, EMFO possess superior result

than other algorithms. For functions F23, F28, and F36,

EMFO offers the second highest results and for rest five

functions it is inferior than other algorithms. Hence, it can

be concluded that EMFO is a superior algorithm as

Table 5 Statistical analysis

(Friedman rank test)
Algorithm Mean rank Rank

EMFO 2.57 1

SOS 3.15 2

MFO 3.35 3

BOA 3.40 4

DE 4.43 5

PSO 4.57 6

JAYA 6.53 7

Fig. 4 Convergence graph of benchmark functions for DE, PSO, JAYA, BOA, WOA, SOS, MFO, and EMFO
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compared to the six other algorithms in respect of the

optimization of multimodal functions.

The number of cases where EMFO’s mean performance

is better than, similar to, and worse than the other six

algorithms is shown in Table 3. From Table 3, we noticed

that EMFO works better than MFO, SOS, PSO, DE, BOA,

and JAYA in 16, 20, 27, 26, 21, and 33 benchmark func-

tions, respectively, similar results can be seen in 15, 10, 2,

3, 9, and 0 occasions, respectively, and worse values are

achieved in 5, 6, 7, 7, 6, and 3 benchmark functions,

Table 6 Comparison of EMFO with other variants of MFO algorithm

Sl.

No

OMFO LMFO MMFO3 WCMFO ODSMFO WEMFO EMFO

F1 M

SD

1.39e - 77

7.62e - 77

8.93e - 03

2.01e - 03

5.64e - 66

3.09e - 65

1.29e - 40

2.27e - 40

1.09e ? 04

2.88e ? 03

1.51e - 142

8.27e - 142

0

0

F2 M

SD

2.85e - 45

1.56e - 44

2.59e ? 05

7.17e ? 04

3.47e - 72

1.87e - - 71

5.72e - 33

5.10e - 33

1.69e ? 12

1.46e ? 11

6.18e - 146

2.93e - 145

0

0

F3 M

SD

0

0

0

0

0

0

3.05e - 01

0

5.79e ? 04

5.67e ? 03

0

0

0

0

F4 M

SD

3.31e ? 02

3.54e ? 02

8.68e ? 01

1.15e ? 02

2.40e ? 02

1.83e ? 02

0

0

3.33e ? 02

4.53e ? 02

2.53e - 14

1.16e - 13

2.69E ? 01 1.28

F5 M

SD

8.88e - 16

0

8.62e - 02

1.00e - 02

8.88e - 16

0

6.90

2.93e - 14

2.04e ? 01

1.87e - 01

8.88e - 16

0

8.88E - 16

0

F6 M

SD

0

0

4.40e - 04

9.64e - 05

0

0

1.4930e - 02

0

5.25e ? 02

5.47e ? 01

0

0

2.03E - 197

0

F7 M

SD

0

0

1.91e ? 00

4.21e - 01

0

0

3.9235e ? 00

1.70e - 13

4.08e ? 02

2.28e ? 01

0

0

0

0

F8 M

SD

2.63e ? 02

9.70e ? 01

1.78e ? 02

7.62e ? 01

2.25e ? 02

1.03e ? 02

3.30e - 10

5.57e - 10

2.39e ? 02

8.42e ? 01

1.04e - 04

2.47e - 04

1.59E - 05 2.23E - 05

F9 M

SD

2.89e ? 01

6.56e - 02

2.97e ? 01

1.98e - 01

2.89e ? 01

5.25e - 02

3.67e ? 00

1.47e ? 01

1.94e ? 08

3.69e ? 07

2.88e ? 01

3.68e - 02

0

0

F10 M

SD

- 2.94e - 01

3.64e - 01

- 2.44e - 02

9.83e - 02

- 3.09e - 04

1.69e - 03

- 1.36e - 03

7.29e - 02

- 1.33e - 02

7.29e - 02

- 6.91e - 01

2.73e - 01

- 3.79E - 03

1.47E - 12

F11 M

SD

6.48e - 47

3.39e - 46

1.25e - 01

2.37e - 02

1.49e - 83

8.17e - 83

1.11e - 20

1.58e - 22

8.36e ? 03

9.92e ? 02

2.52e - 149

1.36e - 148

1.31E - 12

4.94E - 12

F12 M

SD

5.14e - 28

2.82e - 27

4.20e - 02

5.81e - 03

9.11e - 34

4.99e - 33

7.77e - 01

5.48e ? 00

8.19e ? 00

5.34e - 01

1.07e - 78

4.21e - 78

0

0

F13 M

SD

1.24e - 35

6.56e - 35

4.04e - 01

3.51e - 02

3.47e - 42

1.90e - 41

2.12e - 10

5.80e - 12

4.27e ? 11

1.65e ? 12

2.62e - 75

1.43e - 74

0

0

F14 M

SD

- 3.91e ? 02

6.19e ? 01

- 4.17e ? 02

8.99e ? 00

- 3.88e ? 02

6.56e ? 01

4.55e - 10

4.18e ? 02

- 1.77e ? 02

1.93e ? 02

- 4.19e ? 02

1.51e ? 00

- 4.19E ? 02

1.37E - 07

F15 M

SD

1.05e ? 01

1.01e ? 01

8.77e - 01

1.23e ? 00

3.70e ? 00

4.75e ? 00

4.12e - 05

2.36e - 07

3.25e ? 00

3.16e ? 00

3.06e - 01

3.08e - 01

0

0

F16 M

SD

2.26e - 64

1.24e - 63

2.72e - 02

3.27e - 02

1.56e - 01

1.54e - 01

1.11e - 25

1.55e - 29

1.45e - 01

1.64e - 01

4.65e - 20

1.38e - 19

0

0

F17 M

SD

6.70e - 78

3.67e - 77

2.80e - 05

2.31e - 05

2.58e - 78

1.41e - 77

3.98e - 07

2.56e - 10

6.89e ? 01

5.10e ? 01

2.90e - 161

1.59e - 160

1

2.79E - 05

F18 M

SD

9.68e - 02

6.56e - 02

9.73e - 02

7.63e - 02

1.22e ? 01

1.66e ? 01

7.47e ? 00

1.35e - 02

1.60e ? 01

2.69e ? 01

5.23e - 01

3.71e - 01

0

0

F19 M

SD

1.24e - 01

1.25e - 01

6.55e - 03

1.74e - 02

1.18e - 01

1.59e - 01

3.48e - 10

3.79e - 03

8.79e - 02

1.03e - 01

3.79e - 01

5.29e - 06

1.32E - 02

8.93E - 03

F20 M

SD

1.09e - 01

1.31e - 01

8.15e - 03

1.55e - 02

3.65e - 01

3.63e - 01

6.47e - 07

3.17e - 10

1.95e - 01

2.04e - 01

7.59e - 02

8.32e - 02

7.05E - 06

6.47E - 06
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respectively. The mathematical formulation of the 36

benchmark functions with dimension, range of the vari-

ables, and optimum value are shown in Appendix 1.

6.3.3 Discussion on other evolutionary algorithms

The simulation results including mean and standard devi-

ations of EMFO, ABC, GA, FA, MBO, and CS

are presented in Table 4 for validating the performance

of EMFO algorithm over 20 benchmark functions con-

taining both unimodal (F1 to F12) and multimodal func-

tions (F16 to F23). These benchmark functions are taken

from Appendix 1. Except EMFO all results of other algo-

rithms are taken from the reference (Kigsirisin and

Miyauchi 2021). From Table 4, it is clear that for functions

F1, F2, F3, F5, F6, F7, F9, F10, F12, F13, F14, F16, F17,

and F21, EMFO has the best results as compared to other

algorithms and for rest six functions EMFO offers second,

third, and fourth best results. Therefore, it can be con-

cluded that EMFO is a competitive algorithm as compared

to other meta-heuristic algorithms.

6.4 Friedman rank test

Milton (1937) developed a variable (non-parametric) sta-

tistical test called the Friedman test. It is used for the

treatment of differences across numerous trials of the test.

It ranks each row (or block) together and considers the

value by columns. In this paper, for each benchmark

function, the Friedman test is used from the average per-

formance of algorithms. We use IBM-SPSS software for

finding the middle rank. From Table 5, it is concluded that

rank of EMFO can be seen that the rank of EMFO is least

which indicates it is best among the rest methods.

6.5 Convergence analysis

To collate the convergence rate of EMFO with other

algorithms, some of the convergence graphs compared with

DE, PSO, JAYA, BOA, WOA, SOS, and MFO for few

benchmark functions such as F1 (Sphere), F2 (Cigar

function), F4 (Rosenbrock function), F5 (Schwefel1.2

function), F6 (Schwefel2.21 function), F7 (Schwefel2.22

function), F16 (Bohachevsky function), F17 (Ackley

function), and F18 (Griewank Function) are presented in

Fig. 4. In these figures, both the number of iterations and

fitness evaluations are presented in horizontal and vertical

axis, respectively, and the curves were plotted with

dimensional size 100. EMFO has rapid convergence as

compared to the other methods concerning the worldwide

optima. On the other hand, the convergence rate of other

compared optimization algorithms is moderate due to being

stuck in neighborhood optima. For F4, converging to the

global optima is tough for optimization problems as it is

placed in a small canyon. However, the proposed EMFO

achieves this global optimum within hundred dimensions.

Therefore, the proposed EMFO reveals its high conver-

gence rate equipped with other optimization methods.

6.6 Comparison with some of the variants
of MFO algorithm

In this subsection, comparison evaluation has been done in

with six MFO variants such as LMFO (Li et al. 2016b),

Table 7 Performance

assessment of EMFO compared

to MFO, SOS, PSO, DE, BOA,

and JAYA on 20 benchmark

functions

Proposed algorithm OMFO LMFO MMFO3 WCMFO ODSMFO WEMFO

Superior to 15 17 14 14 20 12

Similar to 3 1 3 0 0 3

Inferior to 2 2 3 6 0 5

Table 8 Friedman rank test on variants of MFO algorithm

Algorithm Mean rank Rank P-value

OMFO 3.93 3 P-value (0.000\ 0.01) indicates that Ho is rejected at 1%

level of significance, i.e., there is a significant difference

between the performance of different methods

at a 1% level of significance

LMFO 4.55 6

MMFO3 4.18 5

WCMFO 4.13 4

ODSMFO 6.10 7

WEMFO 2.83 2

EMFO 2.30 1
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OMFO (Apinantanakon and Sunat 2017), MFO3 (Soliman

et al. 2016), WCMFO (Khalilpourazari and Khalilpour-

azary 2019), ODSMFO (Li et al. 2021), and WEMFO

(Shan et al. 2021). The simulation outcomes of EMFO

together with six MFO variants for 20 benchmark functions

including both unimodal (F1 to F12) and multimodal

functions (F16 to F23) are presented in Table 6. These

benchmark functions are taken from Appendix 1. All the

results are evaluated using Matlab 2015(a). The mean

(M) and standard deviation of EMFO with other variants of

the MFO algorithm are presented in Table 6.

From Table 6, it can be observed that our proposed

EMFO algorithm achieved more than 85% best results for

all groups of benchmark problems as compared to the

Fig. 5 Convergence graph of benchmark functions for variants of MFO and proposed EMFO

Table 9 Comparison performance of EMFO with MFO, DE, gravi-

tation search algorithm (GSA), and DE-GSA for gas production

problem

Item DE GSA DE-GSA MFO EMFO

x1 17.5 17.5 17.5 17.5 17.5

x2 600 600 600 600 600

f xð Þ 169.844 169.844 169.844 71.4495 71.4468

Fig. 6 Gear train design problem
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variants of MFO algorithms but it provides seventy percent

best results when compared with WCMFO and WEMFO

algorithm. Also, the number of occasions of superiority,

similarity, and inferiority is presented in Table 7. From

Table 7, we noticed that EMFO works better than OMFO,

LMFO, MMFO3, WCMFO, ODSMFO, and WEMFO in

15, 17, 14, 14, 20, and 12 benchmark functions, respec-

tively, similar results can be seen in 3, 1, 3, 0, 0, and 3

occasions, respectively, and worse values are achieved in 2,

2, 3, 6, 0, and 5 benchmark functions, respectively.

6.6.1 Statistical analysis

Friedman is used to analyze the performance of proposed

EMFO algorithm. In this paper, for each benchmark

function Friedman test is used from the average perfor-

mance of algorithms. We use IBM-SPSS software for

finding the average rank. The outcomes of the Friedman

rank test between EMFO with OMFO, LMFO, MMFO3,

WCMFO, ODSMFO, and WEMFO for 20 benchmark

functions is shown in Table 8. From Table 8, it is clearly

visible that EMFO obtains least rank among other algo-

rithms at 1% relevant.

6.6.2 Convergence analysis

To collate the convergence rate of EMFO with other

algorithms, some of the convergence graphs compared with

OMFO, LMFO, MMFO3, WCMFO, ODSMFO, and

WEMFO for few benchmark functions such as F1 (Sphere),

F2 (Cigar function), F6 (Schwefel 2.21 function), F7

(Schwefel2.22 function), F9 (Matyasa function), F16 (Bo-

hachevsky function), F17 (Ackley function), F18 (Grie-

wank Function), and F20 (Schaffer function) are presented

in Fig. 5. In these figures, both the iteration and objective

function value are presented in horizontal and vertical axes,

respectively, and the curves were plotted with dimensional

size 100. EMFO has rapid convergence as compared to the

other methods concerning the worldwide optima. On the

Table 10 Comparison results of

EMFO with different algorithms

on gear train design problem

Algorithm x1 x2 x3 x4 f x~ð Þ

EMFO 49 19 16 43 2.7008E - 1 2

BA 57.4517 19.48176 18.58749 43.68715 1.5310E - 11

DA 52.44017 17.00267 22.99426 51.67159 3.0210e - 11

FPA 51.15054 22.45769 17.97921 55.90958 4.8310e - 11

ACO 51.41824 21.35921 15.83209 47.34128 2.8710e - 05

PSO 51.32931 21.02347 14.79391 47.82131 3.0810e - 04

SA 51.34512 21.32743 14.98321 47.43271 1.7110e - 04

GA 52.57125 23.19834 16.93254 48.24512 1.1310e - 04

SA 51.34512 21.32743 14.98321 47.43271 1.7110e - 04

WWO 55.27473 24.3159 15.03104 45.82914 5.6710e - 12

Fig. 7 Cantilever beam design

Table 11 Comparison results of

EMFO with different algorithms

on cantilever beam design

problem

Algorithm x1 x2 x3 x4 x5 f x~ð Þ

EMFO 6.33214 4.91592 4.65422 3.03527 1.81594 1.29169

GCA-II 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA-I 6.0100 5.30400 4.4900 3.4980 2.1500 1.3400

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995
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other hand, the convergence rate of other compared opti-

mization algorithms is moderate due to being stuck in

neighborhood optima. However, the proposed EMFO

achieves this global optimum within hundred dimensions.

Therefore, the proposed EMFO reveals its high conver-

gence rate as compared to other variants of MFO.

7 Description of real-world problems

Seven real-world problems (RWP) such as optimal

capacity of gas production problem, gear train design

problem, cantilever beam design problem, minimize

I-beam vertical deflection problem, welded beam design

problem, three-bar truss design problem, and car-side crash

design problem have been considered and solved by our

proposed EMFO algorithm and discussed in following

section. Appendix 2 shows the mathematical formulation

of all the above problem.

7.1 RWP-1: optimal capacity of gas production
problem

This problem is taken from Gandomi (2014). To measure the

efficiency, EMFO has been tested by solving gas production

problem. The experimental result of this problem is pre-

sented in Table 9 and compared with other algorithms,

namely DE, GSA, and hybrid DE-GSA. It is clear that, the

Fig. 8 I-beam deflection

Table 12 Comparison of EMFO with ARSM, Improved ARSM, SOS, MFO, SSA, and SAISOS on I-beam vertical deflection problem

Algorithms h (cm) b (cm) tw (cm) tf (cm) g1 g2 Opt. value Max. eval

ARSM 80 37.05 1.71 2.31 N/A N/A 0.0157

Improved ARSM 79.99 48.72 0.90 2.40 N/A N/A 0.0131

CS 80 50 0.90 0.013 N/A N/A 0.0130747

SOS 80 50 0.90 2.3217 N/A N/A 0.0130741

MFO 80 50 1.7647 5.0000 N/A N/A 0.0066259

SSA 80 50 1.7647058 5.0000

SaISOS 15.860770 49.999542 2.7882569 4.9995440 193.65761 15.89813 0.00197 10,000

EMFO 14.159935 36.035722 4.9347589 3.193023750 N/A N/A 0.00196 10,000
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efficiency of our proposed work superior than other algo-

rithms which is indicated by bold face in Table 9.

7.2 RWP-2: gear train design problem

It belongs to the branch of mechanical engineering and its

target is to minimize the gear ratio for a set of four train

gears (Połap 2017). It has four variables and has no con-

straint. The variables range are taken as constraints. The

layout of the above problem is presented in Fig. 6.

The efficiency of EMFO has been tested by solving the

above problem and the obtained result compared with other

eight meta-heuristic algorithms which is taken from Nama

et al. 2020b and presented in Table 10. Table 10 confirms

that EMFO algorithm produces superior results compared

to the other algorithms.

7.3 RWP-3: cantilever beam design problem

It comprises five hollow elements with square-shaped cross

section. The beam is constant in thickness and each ele-

ment has a single variable, so that five structural parame-

ters are linked to it, as shown in Fig. 7. Figure 7 usually

requires a vertical load on the free end of a beam (node 6)

and a stable beam side (node 1) support. There is also one

constraint of vertical displacement that does not violate the

Table 13 Comparison results of EMFO with different algorithms

Researchers Algorithm h l t b Cost Function evaluation

Bernardino et al AIS-GA 0.2444 6.2183 8.2912 0.2444 2.3812 320,000

Lemonge and Barbosa GA 0.2443 6.2117 8.3015 0.2443 2.3816 320,000

Deb GA 0.2489 6.1730 8.1789 0.2533 2.4331 320,080

Parsopoulos and Vrahatis PSO NA NA NA NA 1.9220 100,000

Hedar and Fukushima SA-DS 0.2444 6.2158 8.2939 0.2444 2.3811 56,243

Liu SA 0.2444 6.2175 8.2915 0.2444 2.3810 NA

Atiqullah and Rao SA 0.2471 6.1451 8.2721 0.2495 2.4148 NA

Zhang et al. DE 0.2444 6.2175 8.2915 0.2444 2.3810 24,000

Lee and Geem HS 0.2442 6.2231 8.2915 0.2443 2.381 110,000

Coello EA NA NA NA NA 1.8245 NA

Leite and Topping GA 0.2489 6.1097 8.2484 0.2485 2.4000 6273

Hwang and He SA-GA 0.2231 1.5815 12.8468 0.2245 2.2500 26,466

Present study EMFO 0.1623 4.6717 9.0893 0.2039 1.8011 50,000

Fig. 9 Welded beam design

problem

An enhanced moth flame optimization with mutualism scheme for function optimization 2873

123



final optimal setup. The efficiency of EMFO has been

tested by EMFO and compared with the other methods

found in the literature (Kigsirisin and Miyauchi 2021),

namely GCA-II, MMA, GCA-I, SOS, CS, and ALO. In

Table 11, the bold face indicates that EMFO shows better

performance for this problem.

7.4 RWP-4: minimize I-beam vertical deflection
problem:

Out of the various structural problems, one of the important

problems is I-beam vertical deflection. To minimize the

vertical deflection of an I-beam is the main objective of this

problem also stress constraints and cross-sectional area

simultaneously satisfied under given loads. The figure of

the problem is shown in Fig. 8.

In Table 12, the optimum value obtained by MFO, SOS,

SSA, ARSM, improved ARSM, SaISOS, CS, and EMFO

for I-beam vertical deflection problem are presented and

except EMFO, all the results are taken from Gandomi et al.

(2011). It can be seen that EMFO outperforms than other

algorithms. Therefore, we can conclude that EMFO has

better efficiency, searching capability, and robustness in

terms of solving real-world problems.

7.5 RWP-5: welded beam design problem

The problem of WB design is an important problem among

all structural design issues, and it has been solved by dif-

ferent researchers. Fig. 9 shows the WB’s schematic figure.

From Fig. 9 and Appendix 2, it is clear that the beam has

seven constraints and four variables. The slogan of this

issue is to maximize WB’s total cost with respect to the

constraints of bending stress, shear stress, end deflection,

and overhang load, respectively (P).

The optimization results of EMFO with other algorithms

found in the literature are shown in Table 13. Our proposed

EMFO algorithm found global optimum of 1.8011 within

50,000 function evaluations, i.e., it requires 1000 iterations.

In Table 13 except EMFO all the other results are taken

from Sapre and Mini 2021b and from Table 13, the bold

face indicates that the obtained result of EMFO is superior

to other algorithms found by the researchers.

7.6 RWP-6: three-bar truss design problem

Three-bar truss design problem is a structural optimization

problem in civil engineering field. This problem is used

due to its complex constrained search space (Gandomi

et al. 2013; Sadollah et al. 2013). In addition to achieve

minimum weight, two parameters of this design problem

have been manipulated with respect to the constraints,

namely buckling, stress, and deflection. The mathematical

formulation and various components of the three-bar truss

design problem are presented in Appendix 2 and Fig. 10,

respectively.

This design problem is solved by using our proposed

EMFO algorithm and compared with DEDS, MBA, Tsa,

PSO-DE and CS algorithms in the literature (Mirjalili

2015) and the compared results including optimal variable

and optimal weights are shown in Table 14. From Table 14,

it can be concluded that our proposed EMFO algorithm is

superior as compared to other three algorithms.

Table 14 Comparison

performance of EMFO with

other algorithms for three-bar

truss problem

Algorithm Optimal variables Optimal weight

x1 x2

EMFO 0.398482921061734 0.311902386277691 174.2786484250945

MFO 0.788244770931922 0.788244770931922 263.895979682

DEDS 0.78867513 0.40824828 263.8958434

MBA

Tsa

PSO-DE

CS

0.7885650 0.4085597 263.8958522

0.788 0.408 263.68

0.7886751 0.4082482 263.8958433

0.78867 0.40902 263.9716

Fig. 10 Three-bar truss design problem
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7.7 RWP-7: car-side impact design problem

This problem was initially proposed by Gu and Wang

(2016). The car is exposed to a side impact on the foun-

dation of the European Enhanced Vehicle Safety Com-

mittee (EEVC) procedures. The objective is to minimize

the car’s total weight using eleven mixed variables while

maintaining safety performance according to the standard.

These variables represent the thickness and material of

critical parts of the vehicle. The 8th and 9th variables are

discrete, and these are material design variables, while the

rest are continuous and represent thickness design

variables.

The symbols are used here to represent the variables

thickness of B-pillar inner, the thickness of B-pillar rein-

forcement, the thickness of floor side inner, the thickness of

cross members, the thickness of door beam, the thickness

of door beltline reinforcement, consistency of roof rail, the

material of B-pillar inner, the material of floor side inner,

barrier height, and barrier hitting position, respectively.

The problem is subjected to ten inequality constraints. The

car-side impact design is considered a real case of a

mechanical optimization problem with mixed discrete and

continuous design variables.

This problem is solved by the proposed EMFO algo-

rithm and compared with the other algorithms such as

ABC, PSO, MFO, ALO, ER-WCA, GWO, WCA, MBA,

SSA, and WOA found in the literature (Yildiz et al. 2020).

The compared results are presented in Table 15. From

Table 15, it can be concluded that the proposed EMFO has

achieved the superior best solution compared to the other

algorithms. The mathematical formulation and schematic

diagram are presented in Appendix 2 and Fig. 11,

respectively.
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8 Conclusion

In order to the above discussions, we can conclude that the

intensification ability of EMFO is remarkable as can be

observed from the results of unimodal functions opti-

mization. It provides the satisfactory results for 90% of the

benchmark functions. The diversification ability of EMFO

is also impressive as can be observed from its better per-

formance than other meta-heuristic algorithms. The EMFO

can handle better trade-offs between global search and

local search. Thus, it has vast scope for modification and

future work.

This paper acquaints with the upgraded version of MFO

called EMFO, which improves the MFO algorithm by the

help of the interdependency step. To examine the perfor-

mance of EMFO, several demonstrations have applied to

the benchmark functions. The obtained results have been

compared with the basic algorithms such as MFO, SOS,

PSO, DE, BOA, JAYA, and with variants of the MFO

algorithm. Also, validating the proposed EMFO was used

to solve seven engineering design problems, which yield

superior results than other popular algorithms. The results

proved that the EMFO algorithm could use the better

global optimum in the optimization phase, leading to rapid

convergence. Further, the mutualism phase also allows the

EMFO to avoid premature convergence and local optimum.

Hence, we conclude that the proposed EMFO has con-

vinced itself to be an encouraging method for solving

engineering applications and real-life problems.

Appendix 1

See Tables 16, 17 and 18.

Table 16 Mathematical formulation of unimodal functions

Sl. no Functions Formulation of objective functions d Fmin Search space

F1 Sphere
f xð Þ ¼

Pd
j¼1

x2
j

30 0 [- 100, 100]

F2 Cigar
f xð Þ ¼ 106

Pd
j¼1

x2
j

30 0 [- 100, 100]

F3 Step
f xð Þ ¼

Pd
j¼1

xj þ 0:5
	 
2 30 0 [- 100, 100]

F4 Rosenbrock
f xð Þ ¼

Pd
j¼1

½100 xjþ1 � x2
j

� �2

þ xj � 1
	 
2�

30 0 [- 2.048,2.048]

F5 Schwefel 1.2
f xð Þ ¼

Pd
j¼1

Pj
k¼1

x2
j

30 0 [- 100, 100]

F6 Schwefel 2.21 f xð Þ ¼ max xj
�� ��; 1� j� d

 �

30 0 [- 100, 100]

F7 Schwefel 2.22
f xð Þ ¼

Pd
i¼1

xj
�� ��þ Q

d

i¼1

xj
�� �� 30 0 [- 10, 10]

F8 Booth f xð Þ ¼ 2x1 þ x2 � 5ð Þ2þ x1 þ 2x2 � 7ð Þ2 2 0 [- 10, 10]

F9 Matyas f xð Þ ¼ 0:26 x2
1 þ x2

2

	 

� 0:48x1x2 2 0 [- 10, 10]

F10 Powell
f xð Þ ¼

Xd=4

j¼1

x4j�3 þ 10x4j�2

	 
2þ5 x4j�3 þ 10x4j�2

	 
2

þ x4j�2 þ 2x4j�1

	 
4þ10 x4j�3 � x4j

	 
4

32 0 [- 4, 5]

F11 Zettl f xð Þ ¼ x� 12 þ x� 22 � 2x1ð Þ2þ0:25x1
2 - 0.00379 [- 1, 5]

F12 Leon f xð Þ ¼ 100 x2 � x3
1

	 
2þ 1 � x1ð Þ2 2 0 [- 1.2, 1.2]

F13 Zakhrov

f xð Þ ¼
Pd
j¼1

x2
i þ 0:5

Pd
j¼1

jxj

 !2

þ 0:5
Pd
j¼1

jxj

 !4 2 0 [- 5, 10]

F14 Tablet
f xð Þ ¼ 106 � x2

1 þ
Pd
j¼1

x6
j

30 0 [- 1, 1]

F15 Quartic
f xð Þ ¼

Pd
j¼1

jx4
j þ random 0; 1ð Þ

30 0 [- 1.28, 1.28]
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Appendix 2

a. Optimal capacity of gas production problem

Min f xð Þ ¼ 61:8 þ 5:72 � x1 � 0:2623

� 40 � x1ð Þ � ln
x2

200

h i�0:85

þ0:087

� 40 � x1ð Þ � ln
x2

200
þ 700:23 � x�0:75

2

s.t: x1 � 17:5; x2 � 200; 17:5� x1 � 40; 300� x2 � 600;

b. Gear train design problem

Minimize f x~ð Þ ¼ 1

6:931
� x3x2

x1x4

� �2

;

Subjected to 12 � x1; x2; x3; x4 � 60;

Where x~¼ x1x2x3x4½ � ¼ na nb nc nd½ �:

c. Cantilever beam design problem

Minimize f x~ð Þ ¼ 0:06224 x1 þ x2 þ x3 þ x4 þ x5ð Þ;

Subjected to : hðx~Þ ¼ 61

x3
1

þ 37

x3
2

þ 19

x3
3

þ 7

x3
4

þ 1

x3
5

� 1;

Where 0:01� x1; x2; x3; x4; x5 � 100:

d. I- beam vertical deflection problem

Minimize f x~ð Þ ¼ 5000

2tf h�tfð Þ2

2
þ tw� h�2tfð Þ

12
þ bt3

f

6

Subjected to the cross-sectional area (\ 300 cm2).

x1 ¼ tw � h� 2tf
	 


þ 2 � b � tw � 300;

The stress constraint (where allowable bending

stress of the beam is 56 KN/CM2)

x2 ¼ 15 � b � 103

h� 2tf
	 


� t3w þ 2tw � b3

þ 18 � h � 104

h� tf
	 
3�tw þ 2b 4t2f þ 3h h� 2tf

	 
� �
tw � b3

� 56

Provided 0:9� tf ; tw � 5; 10� b� 50 and 10� h� 80

e. Welded beam design problem

Minimize f x~ð Þ ¼ f h; l; t; bð Þ ¼ f x1; x2; x3; x4ð Þ
¼ Ax2x

2
1 þ Bx4x3 C þ x2ð Þ:

Subjected to h1 xð Þ ¼ smax � s xð Þ� 0

h2 xð Þ ¼ rmax � r xð Þ� 0

h3 xð Þ ¼ dmax � d xð Þ� 0

h4 xð Þ ¼ x4 � x1 � 0

Table 18 Mathematical formulation of multimodal functions

Sl. No. Functions Formulation of objective functions D SEARCH SPACE FMIN

F27 Branin f xð Þ ¼ x2
2 � 5:1

4p2 x
2
1 þ 5

p x1 � 6ð Þ2þ10 1 � 1
8p

	 

cos x1

� �
2 0 [- 5, 5]

F28 Shekel 5
f xð Þ ¼ �

P5
j¼1

x� aið Þ x� aið ÞTþcj
� ��1 4 - 10.1499 [0, 10]

F29 Shekel- 7
f xð Þ ¼ �

P7
j¼1

x� aið Þ x� aið ÞTþcj
� ��1 4 [0, 10] - 10.3999

F30 Shekel- 10
f xð Þ ¼ �

P10

j¼1

x� aið Þ x� aið ÞTþcj
� ��1 4 [0, 10] - 10.5319

F31 Bohachevsy 3 f xð Þ ¼ x2
1 þ 2x2

2 � 0:3 cos 3px1ð Þ � 0:3 2 [- 50, 50] 0

F32 Colville f xð Þ ¼ 100 x1 � x2
2

	 
2þ 1 � x1ð Þ2þ90 x4 � x2
3

	 
2

þ 1 � x3ð Þ2þ10:1 x2 � 1ð Þ2
� �

þ x4 � 1ð Þ2þ19:8 x2 � 1ð Þ x4 � 1ð Þ

4 [- 10, 10] 0

F33 Himmelblau
f xð Þ ¼ 1=30

Pd
j¼1

x4
j � 16x2

j þ 5xj

" #
30 [- 5, 5] - 78.33236

F34 Csendes
f xð Þ ¼

Pd
j¼1

x6
i 2 þ sin 1=xj
	 
 30 [- 1, 1] 0

F35 Inverted cosine mixture
f xð Þ ¼ 0:1 � 30 � 0:1 �

Pd
j¼1

5pxj �
Pd
j¼1

x2
j

" #
30 [- 1, 1] 0

F36 Salomon
f xð Þ ¼ 1 � cos 2p

ffiffiffiffiffiffiffiffiffiffiffi
Pd
j¼1

x2
j

s !
þ 0:1

ffiffiffiffiffiffiffiffiffiffiffi
Pd
j¼1

x2
j

s
30 [- 100, 100] 0
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h5 xð Þ ¼ Pc xð Þ � P� 0

where A = 1.10471; B = 0.04811; C = 14.0

smax ¼ 13600 psi; rmax ¼ 30000psi; dmax = 0.25in;

s xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 xð Þð Þ2þ ls00 xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 x2

2 þ x1 þ x3ð Þ2
� �r þ s00 xð Þð Þ2

0
BB@

1
CCA

vuuuuut

r xð Þ ¼ 50400

x4x
2
3

Pc xð Þ ¼ 64746x3 1 � 0:0282346x3ð Þx3
4

d xð Þ ¼ 2:1952

x4x
3
3

s0 xð Þ ¼ 6000ffiffiffi
2

p
x2x1

s00 xð Þ ¼
6000 0:5x2 þ 14ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 x2

2 þ x1 þ x3ð Þ2
� �r

2 0:707x1x2
x2

2

12
þ 0:25 x1 þ x3ð Þ2

� �n o

Range of variables 0:125� x1 � 5

0:1� x2; x3 � 10

0:1� x4 � 5

Parameters A = 1.10471; B = 0.04811; C = 14.0

smax ¼ 13600 psi; rmax ¼ 30000psi; dmax = 0.25in;

E = 30 �106 psi G = 12 �106 psi.

P = 6000 lb.

L = 14in.

f. Three-bar truss problem

k~¼ k1; k2;f g

Objective function

Min � f kð Þ ¼ L k2 þ 2
ffiffiffi
2

p
k1

n o

Subject to

h1 kð Þ ¼ k2

2k2k1 þ
ffiffiffi
2

p
k2

1

P� r� 0;

h2 kð Þ ¼ k2 þ
ffiffiffi
2

p
k1

2k2k1 þ
ffiffiffi
2

p
k2

1

P� r� 0;

h3 kð Þ ¼ 1

k1 þ
ffiffiffi
2

p
k2

P� r� 0;

where

0� k1; k2 � 1; and

P ¼ 2; L ¼ 100&r ¼ 2

g. Car-side crash design problem

a~¼ a1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11f g

Objective function

Min f að Þ ¼ 1:98 þ 4:90a1 þ 6:67a2 þ 6:98a3 þ 4:01a4

þ 1:78a5 þ 2:73a7;

Subject to

h1 að Þ ¼ 1:16 � 0:3717a2a4 � 0:00931a2a10 � 0:484a3a9

þ 0:01343a6a10 � 1;

h2 að Þ ¼ 0:261 � 0:0159a1a2 � 0:188a1a8 � 0:019a2a7

þ 0:0144a3a5 þ 0:0008757a5a10

þ 0:080405a6a9 þ 0:00139a8a11

þ 0:00001575a10a11 � 0:32;

h3 að Þ ¼ 0:214 þ 0:00817a5 � 0:131a1a8 � 0:0704a1a9

þ 0:03099a2a6 � 0:018a2a7 þ 0:0208a3a8

þ 0:121a3a9 � 0:00364a5a6 þ 0:0007715a5a10

� 0:0005354a6a10 þ 0:00121a8a11 � 0:32;

h4 að Þ ¼ 0:074 � 0:061a2 � 0:163a3a8 þ 0:001232a3a10

� 0:166a7a9 þ 0:227a2
2 � 0:32;

h5 að Þ ¼ 28:98 þ 3:818a3 � 4:2a1a2 þ 0:0207a5a10

þ 6:63a6a9

� 7:7a7a8 þ 0:32a9a10 � 32;

h6 að Þ ¼ 33:86 þ 2:95a3 þ 0:1792a10 � 5:05a1a2

� 11:0a2a8 � 0:0215a5a10 � 9:98a7a8

þ 22:0a8a9 � 32;

h7 að Þ ¼ 46:36 � 9:9a2 � 12:9a1a8 þ 0:1107a3a10 � 32;

h8 að Þ ¼ 4:72 � 0:5a4 � 0:19a2a3 � 0:0122a4a10

þ 0:009325a6a10

þ 0:000191a2
11 � 4;

h9 að Þ ¼ 10:58 � 0:674a1a2 � 1:95a2a8 þ 0:02054a3a10�
0:0198a4a10 þ 0:028a 6ð Þa 10ð Þ� 9:9;

h10 að Þ ¼ 16:45 � 0:489a3a7 � 0:843a5a6 þ 0:0432a9a10

� 0:0556a9a11 � 0:000786a2
11 � 15:7;

where

0:5� ai � 1:5; i ¼ 1; 2; 3; 4; 5; 6; 7

a8; a9 2 0:192; 0:345ð Þ;
�30� a10; a11 � 30:
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