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Abstract
Single-valued neutrosophic numbers (SVNNs) are very much useful to express uncertain environments. In real-life problems,
there are many situations where players of a matrix game can not assess their payoffs by using ordinary fuzzy sets or
intuitionistic fuzzy sets. In these situations, single-valued trapezoidal neutrosophic numbers (SVTNNs) play a vital role in
game theory, as it includes indeterminacy in the information besides truth and falsity. The objectives of this paper are to
explore matrix games with SVTNN payoffs and to investigate two different solution methodologies. To solve such games, a
pair of neutrosophic mathematical programming problems have been formulated. In the first approach, the two neutrosophic
mathematical programming models are converted into interval-valued multi-objective programming problems by using a new
ranking order relation of SVTNNs. Finally, the reduced problems are solved using the weighted average approach and utilizing
LINGO 17.0 software. It is worth mentioning that the values of the game for both the players are obtained in SVTNN forms,
which is desirable. In the second approach, each neutrosophic mathematical programming model is transformed into a crisp
one by using the idea of α-weighted possibility mean value for SVTNNs. A market share problem and another numerical
example are illustrated to show the validity and applicability of the proposed approaches.

Keywords Matrix game · Neutrosophic set · Single-valued trapezoidal neutrosophic numbers · Weighted average approach ·
Weighted possibility mean value

1 Introduction

Matrix game theory Owen (1982) gives a mathematical
framework to conceive strategies that help to overcome
real-life conflicting situations. There are various kinds of
mathematical games Roy and Mula (2016); Das and Roy
(2013); Roy and Maiti (2020); Seikh et al. (2021); Bhau-
mik and Roy (2021) which have been extensively studied
and successfully applied in many fields. Many of the real-
life situations are uncertain due to the imprecision of data,
asymmetric information, and conflict of interest between
opponents in the same field of business. The fuzzy set (FS)
was the first to successfully encounter the uncertainty which
is not due to the randomness of an event. FS represents each
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element with a grade of belongingness, called membership
value which lies in between 0 and 1. In the literature, matrix
games with fuzzy pay-offs have been extensively studied and
analyzed bynumerous researchers. Campos et al. (1992) used
a linear programming approach to solve fuzzy matrix games
by defining a ranking function of fuzzy numbers. Bector and
Chandra (2005) used fuzzy linear programming duality to
solve matrix games with fuzzy goals and fuzzy pay-offs. Li
(2012) explored a fast approach to find fuzzy values of fuzzy
matrix games. Li (2013) designed an effective approach
to solving fuzzy matrix games. Li (2016) evolved several
methods to solve matrix games with payoffs as triangular
fuzzy numbers. Xia (2019) presented a solution methodol-
ogy with cross-evaluated payoffs. Verma and Kumar (2020)
proposed the Mehar method for fuzzy matrix games. Seikh
et al. (2015c) implemented an α-cut based approach to solve
fuzzy matrix games. Recently, Jana and Roy (2018) ana-
lyzed the solution approach ofmatrix gameswith generalized
trapezoidal fuzzy payoffs. Very recently, Seikh et al. (2020)
developed a methodology to solve matrix games with hesi-
tant fuzzy payoffs. Some recent references on fuzzy matrix
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games are Bhaumik et al. (2020); Jana andRoy (2019); Seikh
et al. (2021a, c); Karmakar et al. (2021); Xue et al. (2020).

In FS, the degree of membership of the elements cannot
provide any additional information regarding the incom-
plete concept of the elements. Atanassov (1999) generalized
the idea of FS to intuitionistic fuzzy set (IFS). The non-
membership grade νA(a) ∈ [0, 1] is also attached with the
membership gradeμA(a) ∈ [0, 1] for each element a ∈ A in
a universe such that 0 ≤ μA(a) + νA(a) ≤ 1. IFS describes
uncertainty more precisely and descriptively than FS, as IFS
considers both complete and incomplete imprecise data.

Nan et al. (2014) proposed a solution methodology to
study matrix games with payoffs of triangular intuitionis-
tic fuzzy numbers (TIFNs). Li (2014) developed effective
methodologies to solve matrix games with intuitionistic
fuzzy payoffs. Seikh et al. (2015a, b, 2016) proposed dif-
ferent approaches to solve matrix games with intuitionistic
fuzzy payoffs. Applying robust ranking method, Bhau-
mik et al. (2017) analyzed the matrix game with pay-offs
expressed by TIFNs. Xing and Qiu (2019) used the accuracy
function method to solve a matrix game where the payoffs
are considered as TIFN.Roy andBhaumik (2018) considered
matrix games with payoffs as triangular type-2 intuitionistic
fuzzy numbers.

However, in reality, the available information always con-
tains some imprecise data which consists of conflicting,
unpredictable, and indeterminate information. The FS can
not express the false membership information and the IFS
fails to control the indeterminacy of information. Neutro-
sophic sets (NSs) Smarandache (1998) considers the degree
of indeterminacy ωA(a) ∈ [0, 1] together with the degree of
membership and non-membership function. Therefore, the
NSs can capture more realistic data than that of FS and IFS.
The NSs are represented by degree of truth (μ), degree of
indeterminacy (ω), and degree of falsity (ν) which are inde-
pendent and 0 ≤ μ, ω, ν ≤ 1 provided 0 ≤ μ+ω + ν ≤ 3.
NS becomes the classical set when ω = 0, μ, ν either 0 or 1
and μ + ω + ν = 1; the FS when ω = 0, 0 ≤ μ, ω, ν ≤ 1
and μ + ω + ν = 1; the IFS when 0 ≤ μ, ω, ν ≤ 1 and
0 < μ + ω + ν < 1. Therefore, one can conclude that the
NS is a generalization of the classical set, FS and IFS.

For realistic applications, Wang et al. (2010) introduced
the concept of a single-valued neutrosophic set (SVNS)
which is a special form of NS. SVNS depicts the variables
which are entirely appropriate for human speculation because
of the blemish of information that human gets or sees from
the outer world. For instance, for a given proposition, “The
smartphone company X would be the best seller”, in this cir-
cumstance human brain surely can not create an exact answer
as far as yes or no. Indeterminacy is the segment of ignorance
of the value of the proposition between truth and lie. For
that reason, the three components of the NS are very much
suitable to exhibit the indeterminacy and inconsistency in

the information. Hence, the application of SVNS theory has
been growing quickly in many research areas Biswas et al.
(2016); Ye (2014a, b); Sodenkamp et al. (2018); Wei and
Wei (2018). Selvachandran et al. (2018) presented a modi-
fied TOPSIS (Technique for Order Preference by Similarity
to Ideal Solution) with maximizing deviation method based
on the SVNS model. Garg (2020) defined some new dis-
tance measures under the SVNS environment and developed
an algorithm for single-valued neutrosophic decisionmaking
based on TOPSIS method.

Later, Ye (2015) introduced the concept of single-valued
trapezoidal neutrosophic set (SVTNS) by combining the
concept of trapezoidal fuzzy numbers and single-valued neu-
trosophic set. SVTNNs are considered as a special type of
SVTNSs, which have appealing interpretations and can be
easily specified and implemented by the decision-maker. Ye
(2015) also developed some operational rules, score func-
tions, and accuracy functions for SVTNN. Deli and Subas
(2017) was first to define the concept of the cut sets of
SVNSs and applied to SVTNNs. They also explored a rank-
ing method of SVNNs based on the values and ambiguities
of SVNN.

In matrix games, due to the lack of information in the
available data, the degree of indeterminacy plays a vital role
while assessing the payoff values. Therefore, the notion of
FS or IFS fails to describe the elements of the pay-off matrix.
For example, suppose a company is going to launch a new
item in the market, and the marketing manager wants to esti-
mate the sales amount of the item. The sales amount of the
new item depends on various uncertain parameters such as
production cost, the demand for the product, the capacity of
supply, selling price, etc. But, the company wants to know
whether ‘the guaranteed sales amount would be $120 per
day or less’ before starting its production. Then some experts
are consulted for their opinions about the guaranteed sales
amount. The existence of this uncertain guaranteed sales
amount always contains some knowledge of ‘neutral’ (inde-
terminate/unknown) thought besides ‘truth/membership’ and
‘falsehood/non-membership’ components that lie in FS/IFS.
This situation can not be revealed by FS or IFS and NS
serves better the purpose. So, there are many uncertain sit-
uations where players can assess pay-offs of the matrix
game problems in SVTNN forms. However, in the literature,
there is a fewer number of investigations in matrix games
with neutrosophic payoffs. Bhaumik et al. (2021) analyzed a
matrix gamewithmultiple objectives and solved the problem
under a single-valued neutrosophic environment in a linguis-
tic approach. Bhaumik et al. (2021) proposed a new ranking
approach based on the (α, β, γ )-cut of single-valued triangu-
lar neutrosophic number and used to solve bi-matrix games.
Deli (2019) used the concept of pure strategies to apply neu-
trosophic sets to two-person matrix games. However, there
is no investigation on matrix games with SVTNNs as pay-

123



Solution of matrix games with payoffs... 923

offs. This useful requirement influences us to investigate the
matrix game with SVTNN payoffs.

In this paper, we have studied matrix games with pay-
offs represented by SVTNNs. Firstly, a pair of neutrosophic
mathematical programming problems have been formulated
to get the optimal value and optimal strategies for the
players.We solve these problems by using two different solu-
tion methodologies. In the first approach, we define a new
ranking order relation between two SVTNNs based on the
(ρ, σ, τ )-cut set of SVTNNs. Using this new ranking order
relation, the two neutrosophic mathematical programming
problems are converted into interval-valued multi-objective
linear programming problems. Then we solve the reduced
problems using theweighted average approach. In the second
approach, each neutrosophic mathematical programming
problem is transformed into a crisp one by using the ranking
method depending on the α-weighted possibility mean value
(WPMV) for SVTNN. The transformed crisp problems are
solved by the simplex method using LINGO 17.0 software.
The key contributions of this paper are augmented as under.

(i) A new ranking order relation on SVTNNs is proposed
by considering the (ρ, σ, τ )-cut set of SVTNNs.

(ii) Based on this proposed ranking order relation, the
matrix game with SVTNN payoffs is solved. The opti-
mal values of the game for both the players are obtained
in the SVTNN forms, which is desirable.

(iii) Since the solution methodology is based on (ρ, σ, τ )-
cut set of SVTNNs, for different values of ρ, σ, τ give
different optimal solutions. However, the most likely
values of gain-floor of Player-I and loss-ceiling of
Player-II are also obtained.

(iv) Based on α-WPMV of SVTNN, another solution
approach is proposed. In this approach, we obtained
the optimal strategies of each player.

(v) A real-lifemarket share problem and another numerical
example are illustrated to check the applicability and
validity of the proposed approaches.

The paper unfolds as follows. Some basic preliminaries
related to SVNS, SVTNSs, and cut sets of SVTNSs are
recalled in Sect. 2. Also, a new ranking order relation
of SVTNNs and the concept of α-WPMV of SVTNN is
described in Sect. 2. The idea of SVTNN matrix games is
conceptualized in Sect. 3. Section 4 is dedicated to the model
formulation and the solution process of the SVTNN matrix
game and the development of the algorithm. In Sect. 5, a
market share problem and another example are illustrated
with two proposed approaches. The results are discussed and
analyzed to verify the validity of the proposed approaches.
Section 6 concludes the paper.

Fig. 1 Rough sketch of a SVTNN M̃ = 〈(t, u, v, w); 
,m, n〉

2 Preliminaries

In this section, some basic definitions and preliminaries are
recalled.

Definition 2.1 (SVNS) Wang et al. (2010) A set S̃ =
{〈ξ, (�S̃(ξ), ϒS̃(ξ),�S̃(ξ))〉|ξ ∈ �,�S̃(ξ), ϒS̃(ξ),�S̃(ξ)

∈ [0, 1]} is said to be a SVNS over a universe �, where
�S̃ : � → [0, 1], ϒS̃ : � → [0, 1] and �S̃ :
� → [0, 1] are called respectively truth- membership
function, indeterminacy-membership function and falsity-
membership function such that 0 ≤ �S̃(ξ) + ϒS̃(ξ)+
�S̃(ξ)

≤ 3.

Definition 2.2 (SVTNN) Subas (2015) A SVTNN M̃ =
〈(t, u, v, w); 
,m, n〉 is a unique SVNS on � (depicted
in Fig. 1), whose truth-membership (�M̃ ), indeterminacy-
membership (ϒM̃ ) and falsity-membership function (�M̃ )
are respectively defined as

�M̃ (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ξ−t)

(u−t) , t ≤ ξ ≤ u;

, u ≤ ξ ≤ v;
(w−ξ)t
(w−v)

, v ≤ ξ ≤ w;
0, otherwise

ϒM̃ (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u−ξ+m(ξ−t))
(u−t) , t ≤ ξ ≤ u;

m, u ≤ ξ ≤ v;
(ξ−v+m(w−ξ)

(w−v)
, v ≤ ξ ≤ w;

1, otherwise

�M̃ (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u−ξ+n(ξ−t))
(u−t) , t ≤ ξ ≤ u;

n, u ≤ ξ ≤ v;
(ξ−v+n(w−ξ)

(w−v)
, v ≤ ξ ≤ w;

1, otherwise

where 
,m, n represents the degree of truth, the degree of
indeterminacy and the degree of falsity, respectively and 0 ≤

,m, n ≤ 1, 0 ≤ 
 + m + n ≤ 3.
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Definition 2.3 (Operations on SVTNNs) Subas (2015) Let
M̃ = 〈(t1, u1, v1, w1); 
1,m1, n1〉 and M̃∗ = 〈(t2, u2, v2,
w2); 
2,m2, n2〉 be two SVTNNs and λ is a scalar. The basic
arithmetic operations between M̃ and M̃∗ are described as

1. M̃ + M̃∗ = 〈(t1 + t2, u1 + u2, v1 + v2, w1 +
w2);min{
1, 
2},max{m1,m2},max{n1, n2}〉;

2. M̃ − M̃∗ = 〈(t1 − w2, u1 − v2, v1 − u2, w1 −
t2);min{
1, 
2},max{m1,m2},max{n1, n2}〉;

3. M̃ × M̃∗ = 〈(t1t2, u1u2, v1v2, w1w2);min{
1, 
2},
max{m1,m2},max{n1, n2}〉;

4. λM̃ =
{ 〈(λt1, λu1, λv1, λw1); 
1,m1, n1〉, if λ ≥ 0;

〈(λw1, λv1, λu1, λt1); 
1,m1, n1〉, if λ ≤ 0.

2.1 Concepts of cut sets of SVTNNs

Definition 2.4 Deli andSubas (2017)Let M̃= 〈(t, u, v, w); 
,

m, n〉 be a SVTNN. Then, ρ-cut set, σ -cut set and τ -cut set
of M̃ are denoted by M̂ρ , M̂σ and M̂τ respectively, where

M̂ρ = {ξ : �M̃ (ξ) ≥ ρ} ⊆ �, 0 ≤ ρ ≤ 
;
M̂σ = {ξ : ϒM̃ (ξ) ≤ σ } ⊆ �, m ≤ σ ≤ 1;
M̂τ = {ξ : �M̃ (ξ) ≤ τ } ⊆ �, n ≤ τ ≤ 1.

Definition 2.5 Deli and Subas (2017) A (ρ, σ, τ )-cut set of
a SVTNN M̃= 〈(t, u, v, w); 
,m, n〉 is defined by M̂ρ,σ,τ =
{ξ : �M̃ (ξ) ≥ ρ,ϒM̃ (ξ) ≤ σ,�M̃ (ξ) ≤ τ } ⊆ �, where
0 ≤ ρ ≤ 
, m ≤ σ ≤ 1, n ≤ τ ≤ 1 and 0 ≤ ρ + σ + τ ≤ 3.

Definition 2.6 (Interval number)Moore (1979) An interval
Î ⊆ � is defined by Î = [Il , Ir ] = {x ∈ � : Il ≤ x ≤ Ir },
where Il and Ir are two endpoints of Î . Here Îc = Il+Ir

2 is

defined to be the center of Î = [Il , Ir ].
From Definitions 2.1, 2.4, it follows that M̂ρ , M̂σ and M̂τ

are closed intervals as follows:
M̂ρ = [Mlρ, Mrρ] = [t +ρ(u− t)/
, w −ρ(w −v)/
],
M̂σ = [Mlσ , Mrσ ] = [{(1 − σ)u + (σ − m)t}/(1 −

m), {(1 − σ)v + (σ − m)w}/(1 − m)], and
M̂τ = [Mlτ , Mrτ ] = [{(1−τ)u+(τ−n)t}/(1−n), {(1−

τ)v + (τ − n)w}/(1 − n)].
Theorem 2.1 Assume that M̃ = 〈(t, u, v, w); 
,m, n〉 is any
SVTNN. For any values ρ ∈ [0, 
], σ ∈ [m, 1] and τ ∈ [n, 1]
such that 0 ≤ ρ + σ + τ ≤ 3, then M̂ρ,σ,τ=M̂ρ ∩ M̂σ ∩ M̂τ

is valid.

Proof The proof can be easily derived fromDefinitions (2.4),
(2.5). �

2.2 Ranking order relation of SVTNNs

In this section, we develop a new ranking order relation
between two SVTNNs

Definition 2.7 Let M̃ = 〈(t1, u1, v1, w1); 
1,m1, n1〉 and
M̃∗ = 〈(t2, u2, v2, w2); 
2,m2, n2〉 be two SVTNNs and
M̂ρ (or M̂∗

ρ ), M̂σ (or M̂∗
σ ) and M̂τ (or M̂∗

τ ) are respectively

the ρ- cut set, σ - cut set and τ - cut set of M̃ (or M̃∗). Then

(i) M̃ � M̃∗ i.e., M̃ is approximately smaller than M̃∗ if
and only if M̂ρ ≤I M̂∗

ρ , M̂σ ≤I M̂∗
σ and M̂τ ≤I M̂∗

τ

for any ρ ∈ [0,min{
1, 
2}], σ ∈ [max{m1,m2}, 1],
τ ∈ [max{n1, n2}, 1], where 0 ≤ ρ + σ + τ ≤ 3.

(ii) M̃ � M̃∗ i.e., M̃ is approximately bigger than M̃∗ if
and only if M̂ρ ≥I M̂∗

ρ , M̂σ ≥I M̂∗
σ and M̂τ ≥I M̂∗

τ

for any ρ ∈ [0,min{
1, 
2}], σ ∈ [max{m1,m2}, 1],
τ ∈ [max{n1, n2}, 1], where 0 ≤ ρ + σ + τ ≤ 3.

The symbols“�” and “�” are the neutrosophic version of
the order relations “≤” and “≥”, which express the linguis-
tic interpretation “Approximately less than or equal to” and
“Approximately greater than or equal to”, respectively.

2.3 Weighted possibility mean value of SVTNNs

Definition 2.8 Garai et al. (2020) Let M̃ = 〈(t, u, v, w); 
,

m, n〉 be a SVTNN. Then

(i) ��(M̃) = (t+2u+2v+w)
6 
2 is the possibility mean value

(PMV) of the truth-membership function (�M̃ ),

(ii) �ϒ(M̃)= (t+2u+2v+w)
6 (1 − m)2 is the PMV of the

indeterminacy- membership function ϒM̃ ,

(iii) ��(M̃)= (t+2u+2v+w)
6 (1 − n)2 is the PMV of the

falsity-membership function �M̃ .

Then, the α-weighted possibility mean value (WPMV) of
SVTNN M̃ is defined as

�α(M̃) = α ��(M̃) + (1 − α) �ϒ(M̃) + (1 − α) ��(M̃)

= (t + 2u + 2v + w)

6
[
α 
2 + (1 − α) (1 − m)2 + (1 − α) (1 − n)2

]
,

where α ∈ [0, 1] is a weight, which indicates the decision
maker’s viewpoint or desire information.

For particular value of α = 0, the α-WPMV of M̃ is
obtained as

�0(M̃) = �ϒ(M̃) + ��(M̃)

= (t + 2u + 2v + w)

6

[
(1 − m)2 + (1 − n)2

]
,

and for α = 1, the α-WPMV of M̃ is reduced to

�1(M̃) = ��(M̃)

= (t + 2u + 2v + w)

6

2.
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Based on α-WPMV of SVTNN, the ranking order relation
between SVTNN is given below.

Let M̃ and M̃∗ be two SVTNNs and�α(M̃) and�α(M̃∗)
are the α-WPMV of M̃ and M̃∗, respectively. Then,

1. if �α(M̃) > �α(M̃∗), then M̃ is bigger than M̃∗,
denoted by M̃ � M̃∗;

2. if �α(M̃) < �α(M̃∗), then M̃ is smaller than M̃∗,
denoted by M̃ ≺ M̃∗;

3. if �α(M̃) = �α(M̃∗) then
(a) if ��(M̃) > ��(M̃∗) then M̃ � M̃∗;
(b) when ��(M̃) = ��(M̃∗), if �ϒ(M̃) > �ϒ(M̃∗), then

M̃ � M̃∗;
(c) when ��(M̃) = ��(M̃∗) and �ϒ(M̃) = �ϒ(M̃∗), if

��(M̃) > ��(M̃∗),then M̃ � M̃∗;
4. if �α(M̃) = �α(M̃∗), ��(M̃) = ��(M̃∗), �ϒ(M̃) =

�ϒ(M̃∗), ��(M̃) = ��(M̃∗),then M̃ ≈ M̃∗, i.e., two
SVTNNs are neutrosophically equal.

3 Matrix Games with Pay-offs of SVTNNs

Let the pure strategies δh and γk are chosen by Player-I and
II with probabilities uh and vk respectively, for h ∈ �1 and
k ∈ �2 where �1 = {1, 2, . . . , p} and �2 = {1, 2, . . . , q}.
If

∑p
h=1 uh = 1 and

∑q
k=1 vk = 1 for (u, v) ∈ �p

+ × �q
+

where u = (u1, u2, . . . , u p) and v = (v1, v2, . . . , vq), then
u and v are called the mixed strategies for Player-I and II,
respectively.

Let the sets of all mixed strategies for Player-I and II are
denoted by U and V respectively, where

U =
{
u = (u1, u2, . . . , u p) ∈ �p

+ :
p∑

h=1

uh = 1
}
,

V =
{
v = (v1, v2, . . . , vq) ∈ �q

+ :
q∑

k=1

vk = 1
}
.

Let us consider the payoff matrix Ñ = (ñhk)p×q for
Player-I, where ñhk = 〈(thk, uhk, vhk, whk) ; 
hk,mhk, nhk〉
is a SVTNN. Here, ñhk represents the payoff for Player-I.
Then, the matrix game with SVTNN payoffs is repre-
sented by {U , V , Ñ }. From this, the two-person matrix game
{U , V , Ñ } with payoffs of SVTNNs is supposed to call as a
SVTNN matrix game Ñ .

For the choice ofmixed strategy (u, v) ∈ U×V byPlayer-
I and II, the expected payoff Ẽ(u, v) for Player- I will be
calculated as

Ẽ(u, v) = uT Ñv =
p∑

h=1

q∑

k=1

ñhkuhvk

=
p∑

h=1

q∑

k=1

〈(thk, uhk, vhk, whk); 
hk,mhk, nhk〉uhvk

=
〈( p∑

h=1

q∑

k=1

thk uhvk,
p∑

h=1

q∑

k=1

uhk uhvk,
p∑

h=1

q∑

k=1

vhk uhvk,
p∑

h=1

q∑

k=1

whk uhvk
)
;

min
h,k


hk,max
h,k

mhk,max
h,k

nhk
〉

and similarly, the expected pay-off for Player-II is given by
−Ẽ(u, v) = uT (−Ñ )v. Both Ẽ(u, v) and −Ẽ(u, v) are
SVTNNs.

Irrespective of the use of best strategies of the players, the
maximum guaranteed gain (or the minimum possible loss) is
the value of the game for Player-I (or Player-II). Following
Owen (1982), if for some (u0, v0) ∈ U × V , such that

u0
T
Ñv0 = max

u∈U min
v∈V {uT Ñv} = min

v∈V max
u∈U {uT Ñv},

then u0 and v0 are called optimal strategies for Player-I and

II, respectively and u0
T
Ñv0 is the value of SVTNN matrix

game Ñ .

Definition 3.1 (Reasonable solution of a SVTNN matrix
game) Let θ̃ and φ̃ be two SVTNNs. If for some (ū, v̄) ∈
U × V , the relation ūÑv � θ̃ and uÑ v̄ � φ̃ hold for any
u ∈ U and v ∈ V , then (ū, v̄, θ̃ , φ̃) is said to be a reason-
able solution of Ñ ; θ̃ and φ̃ are called reasonable values and
ū ∈ U and v̄ ∈ V are called reasonable strategies for Player-I
and Player-II, respectively.

It is to be noted that the reasonable solution, which is defined
in the above definition, is not the solution of the SVTNN
matrix game. The concept of the solution of the SVTNN
matrix game is given in the following definition.

Definition 3.2 (Solution of a SVTNN matrix game) Let �

and � are the sets of reasonable values θ̃ and φ̃ for Player-I
and II respectively. If for some θ̃∗ ∈ � and φ̃∗ ∈ �, there
do not exist θ̃ ′ ∈ �(θ̃ ′ �= θ̃∗) and φ̃′ ∈ �(φ̃′ �= φ̃∗) such
that θ̃∗ � θ̃ ′ and φ̃∗ � φ̃′, then (u∗, v∗, θ̃∗, φ̃∗) is said to
be a optimal solution of Ñ ; u∗(or v∗) is called a maximin
(or minimax) strategy for Player-I (or Player-II) ; θ̃∗ and φ̃∗
are represented as Player-I’s gain floor and Player-II’s loss
ceiling respectively.
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4 Model formulation and solution procedure

Following Definitions (3.1) and (3.2), the maximin strategy
(u∗ ∈ U ) for Player-I and minimax strategy (v∗ ∈ V ) for
Player-II can be obtained by solving the neutrosophic math-
ematical programming models (1) and (2), respectively as
follows:

max θ̃ = 〈(tθ̃ , u θ̃ , vθ̃ , wθ̃ ); 
θ̃ ,m θ̃ , nθ̃ 〉

subject to
p∑

h=1

ñhk uh � θ̃ , k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (1)

and

min φ̃ = 〈(tφ̃ , uφ̃ , vφ̃, wφ̃); 
φ̃,mφ̃ , nφ̃〉

subject to
q∑

k=1

ñhk vk � φ̃, h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2. (2)

It can be easily proved by the following theorem that Player-
I’s gain floor can not exceed Player-II’s loss ceiling.

Theorem 4.1 Suppose θ̃∗ and φ̃∗ are Player-I’s gain floor
and Player-II’s loss ceiling, respectively, then θ̃∗ � φ̃∗ is
valid.

Proof It follows from problems (1) and (2) that

θ̃∗ =
q∑

k=1

θ̃∗vk �
q∑

k=1

( p∑

h=1

ñhk uh

)

vk

=
p∑

h=1

( q∑

k=1

ñhk vk

)

uh �
p∑

h=1

φ̃∗uh = φ̃∗

i.e., θ̃∗ � φ̃∗. �
The proposed mathematical models (1) and (2) are solved by
two different approaches. In Approach-I, the game problem
is solved using the new ranking method defined in Sect. 2.2.
In Approach-II, the ranking method based on the weighted
possibility mean value of SVTNN is used to solve the game
problem, which is discussed in Sect. 2.3. Two approaches are
considered to compare the obtained results. The utilization
of these two approaches is as follows.

4.1 Proposed approach-I

Using Definition 2.5, Problem (1) is converted into the
interval-valued multi-objective linear programming problem
as follows:

max
{
θ̂ρ, θ̂σ , θ̂τ

}

subject to
p∑

h=1

(ñhk uh)ρ ≥I θ̂ρ, k ∈ �2

p∑

h=1

(ñhk uh)σ ≥I θ̂σ , k ∈ �2

p∑

h=1

(ñhk uh)τ ≥I θ̂τ , k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (3)

According to Definition (2.4), Problem (3) can be rewritten
as follows:

max
{[

θlρ, θrρ

]
,
[
θlσ , θrσ

]
,
[
θlτ , θrτ

]}

subject to
p∑

h=1

(ñhk uh)lρ ≥ θlρ,

p∑

h=1

(ñhk uh)rρ ≥ θrρ, k ∈ �2

p∑

h=1

(ñhk uh)lσ ≥ θlσ ,

p∑

h=1

(ñhk uh)rσ ≥ θrσ , k ∈ �2

p∑

h=1

(ñhk uh)lτ ≥ θlτ ,

p∑

h=1

(ñhk uh)rτ ≥ θrτ , k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (4)

The three objective functions of Problem (4) may be con-
sidered with equal weights i.e., their importance are same.
Therefore, the three objective functions of Problem (4) are
aggregated. Then objective function of Problem (4) may be
written as

max
{[θlρ + θlσ + θlτ

3
,

θrρ + θrσ + θrτ

3

]}
,

which is an interval-valued objective function.
Now, according to Ishibuchi and Tanaka (1990), the max-

imization problem max{ Î = [Il , Ir ]| Î ∈ �̂1} is equivalent
to max{{Il , Ic}| Î ∈ �̂1}, where Ic is the center of Î and Î
should satisfy the set of constraints �̂1.

123



Solution of matrix games with payoffs... 927

Then, the transformed maximization problem with
interval-valued objective function is converted into the bi-
objective programming problem as

max
{θlρ +θlσ +θlτ

3
,

θlρ +θrρ +θlσ +θrσ +θlτ +θrτ

6

}
.

There are severalmethods to solve bi-objective programming
problem. In this paper, we use the weighted average method.
Then, the above bi-objective programming problem can be
written as

max
{
χ

(θlρ + θlσ + θlτ

3

)
+ (1 − χ)

(θlρ + θrρ + θlσ + θrσ + θlτ + θrτ

6

)}
,

where χ ∈ [0, 1]. For simplicity, we choose χ = 0.5
throughout the paper.

Therefore, Problem (4) is transformed to the following
Problem (5) as follows.

max

{
1

2

(
θlρ + θlσ + θlτ

3

+θlρ + θrρ + θlσ + θrσ + θlτ + θrτ

6

)}

subject to
p∑

h=1

(ñhk uh)lρ ≥ θlρ,

p∑

h=1

(ñhk uh)rρ ≥ θrρ, k ∈ �2

p∑

h=1

(ñhk uh)lσ ≥ θlσ ,

p∑

h=1

(ñhk uh)rσ ≥ θrσ , k ∈ �2

p∑

h=1

(ñhk uh)lτ ≥ θlτ ,

p∑

h=1

(ñhk uh)rτ ≥ θrτ , k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (5)

For given values of ρ ∈ [0,min
h,k


hk], σ ∈ [max
h,k

mhk, 1],
and τ ∈ [max

h,k
nhk, 1] and applying the simplex method,

the optimal solution of Problem (5) will be obtained as
(u∗, θlρ, θrρ, θlσ , θrσ , θlτ , θrτ ). Here u∗ is the maximin
strategy and θlρ, θrρ, θlσ , θrσ , θlτ , θrτ are the correspond-
ing upper and lower bounds ofρ-cut sets,σ -cut sets and τ -cut
sets of the Player-I’s gain floor (θ̃∗). In the sense of Theorem

(2.1), a (ρ, σ, τ )-cut set (θ̂∗
ρ,σ,τ ) of θ̃∗ can be obtained where

θ̂∗
ρ,σ,τ=θ̂ρ ∩ θ̂σ ∩ θ̂τ=[θlρ, θrρ] ∩ [θlσ , θrσ ] ∩ [θlτ , θrτ ] =

[max{θlρ, θlσ , θlτ },min{θrρ, θrσ , θrτ }].
By using θ̂∗

ρ,σ,τ , we can approximate the value of θ̃∗ for

different values of ρ, σ, τ . The interval θ̂∗
ρ,σ,τ becomes the

most likely value of θ̃∗, for the value ρ = min
h,k


hk , σ =
max
h,k

mhk and τ = max
h,k

nhk .

As previous, Problem (2) can be converted into the follow-
ing interval-valued programming problem (6) as follows.

min
{
φ̂ρ, φ̂σ , φ̂τ

}

subject to
q∑

k=1

(ñhk vk)ρ ≤I φ̂ρ, h ∈ �1

q∑

k=1

(ñhk vk)σ ≤I φ̂σ , h ∈ �1

q∑

k=1

(ñhk vk)τ ≤I φ̂τ , h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2 (6)

According to Definition 2.4, Problem (6) can be written
as

min
{[

φlρ, φrρ

]
,
[
φlσ , φrσ

]
,
[
φlτ , φrτ

]}

subject to
q∑

k=1

(ñhk vk)lρ ≤ φlρ,

q∑

k=1

(ñhk vk)rρ ≤ φrρ, h ∈ �1

q∑

k=1

(ñhk vk)lσ ≤ φlσ ,

q∑

k=1

(ñhk vk)rσ ≤ φrσ , h ∈ �1

q∑

k=1

(ñhk vk)lτ ≤ φlτ ,

q∑

k=1

(ñhk vk)rτ ≤ φrτ , h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2 (7)

The three objective functions of the above equation may be
regarded with equal weight, i.e., they have the same impor-
tance. Therefore, the objective functions of Problem (7) are
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aggregated and reduce to the interval-valued objective func-
tion as

min
{[φlρ + φlσ + φlτ

3
,

φrρ + φrσ + φrτ

3

]}
.

Now, according to Ishibuchi and Tanaka (1990), the min-
imization problem with the objective functions as interval
numbers,

min{ Î = [Il , Ir ] | Î ∈ �̂2}

is equivalent to the problem

min{{Ir , Ic}| Î ∈ �̂2},

where Ic is the center of Î and Î should satisfy the set of
constraints �̂2.

Then, following Ishibuchi and Tanaka (1990), the above
reduced interval-valued objective function is converted to the
bi-objective function as

min
{φlρ + φlσ + φlτ + φrρ + φrσ + φrτ

6
,

φrρ + φrσ + φrτ

3

}
.

Now, in a similar fashion as previous, Problem (7) can be
transformed to the following Problem (8) as follows.

min
{1

2

(φlρ + φlσ + φlτ + φrρ + φrσ + φrτ

6

+φrρ + φrσ + φrτ

3

)}

subject to
q∑

k=1

(ñhk vk)lρ ≤ φlρ,

q∑

k=1

(ñhk vk)rρ ≤ φrρ, h ∈ �1

q∑

k=1

(ñhk vk)lσ ≤ φlσ ,

q∑

k=1

(ñhk vk)rσ ≤ φrσ , h ∈ �1

q∑

k=1

(ñhk vk)lτ ≤ φlτ ,

q∑

k=1

(ñhk vk)rτ ≤ φrτ , h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2 (8)

By solving Problem (8) for specific values of ρ ∈ [0,
min
h,k


hk], σ ∈ [max
h,k

mhk, 1], and τ ∈ [max
h,k

nhk, 1], the
optimal solution (v∗, φlρ, φrρ, φlσ , φrσ , φlτ , φrτ )

will be obtained. Here v∗ is the minimax strategy and
φlρ, φrρ, φlσ , φrσ , φlτ , φrτ are the corresponding
upper and lower bounds of ρ-cut sets, σ -cut sets and
τ -cut sets of the Player-II’s loss ceiling (φ̃∗). Accord-
ing to Theorem (2.1), φ̂∗

ρ,σ,τ=[φlρ, φrρ] ∩ [φlσ , φrσ ]
∩ [φlτ , φrτ ] = [max{φlρ, φlσ , φlτ },min{φrρ, φrσ , φrτ }].
For the value ρ = min

h,k

hk , σ = max

h,k
mhk and τ = max

h,k
nhk ,

the interval φ̂∗
ρ,σ,τ is the most likely value of φ̃∗.

4.2 Proposed approach-II

The definition of α-WPMV of SVTNN was given by Garai
et al. (2020), which is discussed in Sect. 2.3. We use this
concept of α-WPMV of SVTNN to develop this second
approach. Using α-WPMV of SVTNNs, Problem (1) and
Problem (2) reduce to the corresponding Problem (9) and
Problem (10), respectively as follows.

max {�α(θ̃)},

subject to �α

( p∑

h=1

ñhk uh

)

≥ �α(θ̃), k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (9)

and

min {�α(φ̃)},

subject to �α

( q∑

k=1

ñhk

)

vk ≤ �α(φ̃), h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2. (10)

Assuming P1 = �α(θ̃) and P2 = �α(φ̃), Problem (9)
and Problem (10) transform to the corresponding Problem
(11) and Problem (12) as follows.

max {P1}

subject to �α

( p∑

h=1

ñhk uh

)

≥ P1, k ∈ �2

p∑

h=1

uh = 1, uh ≥ 0, h ∈ �1 (11)

min {P2}
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subject to �α

( q∑

k=1

ñhk

)

vk ≤ P2, h ∈ �1

q∑

k=1

vk = 1, vk ≥ 0, k ∈ �2 (12)

Now solving Problem (11) and Problem (12) for given value
of α ∈ [0, 1], we can obtain the crisp values of the opti-
mal gain and optimal loss for Player-I and Player-II and the
optimal strategies for each player.

4.2.1 Algorithm

The algorithm for solving SVTNN matrix games by the two
proposed approaches is abstracted as follows.

Algorithm for Approach-I:

Step-1: Consider a matrix game with payoffs of SVTNNs.
Step-2: To solve the game, two neutrosophic mathematical

programming models are formulated.
Step-3: Using (ρ, σ, τ )-cut set based ranking order relation of

SVTNNs as described in Sect. 2.2, the formulated
models are converted to corresponding interval-valued
multi-objective programming problems.

Step-4: The objective functions of the multi-objective
programming problems are aggregated by considering
equal weights of the objective functions and reduced to
the corresponding interval-valued objective function.

Step-5: Following Ishibuchi and Tanaka (1990), interval-valued
objective function is transformed into bi-objective
problem.

Step-6: Using the weighted average method, bi-objective
problems are reduced into corresponding crisp LPP.

Step-7: Taking weight value 0.5, the reduced crisp LPP are
solved to obtain optimal strategies u∗ and v∗ for
Player-I and II respectively and the cut sets of gain
floor and loss ceiling.

Algorithm for Approach-II:

Step-1: Consider a matrix game with payoffs of SVTNNs.
Step-2: To solve the game, two neutrosophic mathematical

programming models are formulated.
Step-3: Using α-WPMV as described in Sect. 2.3, the

formulated problems are transformed into
corresponding crisp problems.

Step-4: Solving the reduced crisp problems using simplex
method, the optimal strategies and the α- WPMV of
the Player-I’s gain floor and Player-II’s loss ceiling are
obtained.

The corresponding algorithmic flowchart of the proposed
Approach-I and Approach-II is presented in Fig. 2.

5 Numerical examples

In this section, we consider a market share problem and
another numerical example. The problems are solved with
proposed solution approaches (Approach-I and Approach-
II). The obtained results are discussed and analyzed.

5.1 Example 1: a market share problem

Suppose that two online merchants M1 and M2 sell smart-
phones in a selected market area where the demand for
smartphones is fixed, i.e. when the total selling amount of
M1 increases then the total selling amount of M2 decreases
and same for the alternate case also. Merchants M1 and M2

consider two strategies to increase their total selling amount
in the targeted market: Strategy I is ‘to reduce the price rate’
of the smartphone and strategy II is ‘to extend the storage
capacity’ of the smartphone. This situation of extending the
sales amount of eachmerchantmay be considered as amatrix
game where M1 and M2 may be assumed respectively as
Player-I and Player-II. As there always exists uncertainty in
the marketing industry, the sales amount of smartphones can
not be predicted precisely by the marketing research depart-
ment (MRD) of the merchants. MRD can roughly calculate
the sales amount with an indeterminacy degree, along with
the membership and non-membership degree of the sales
amount. To come out from this unsettled situation, SVTNNs
are applied to express the sales amount of smartphones. The
pay-off matrix Ñ for merchant M1 is given as follows:

I II

Ñ = I
II

( 〈(175, 177, 180, 190); 0.6, 0.3, 0.4〉 〈(150, 153, 156, 158); 0.5, 0.2, 0.3〉
〈(125, 128, 132, 140); 0.9, 0.1, 0.5〉 〈(175, 185, 195, 200); 0.5, 0.4, 0.5〉

)

.

Here 〈(175, 177, 180, 190); 0.6, 0.3, 0.4〉 from Ñ repre-
sents the sales amount of the Merchant M1, when both of
the merchants use the strategy I simultaneously. Accord-
ing to the MRD, it is approximately equal to the interval
[177,180] positively by 60%and unable to say by 40%.MRD
has indeterminacy to say that the sales amount would fall in
the interval by 30%. Other SVTNNs in Ñ have also similar
explanations.

5.1.1 The solution procedure

(i) Computational results obtained by Approach-I
According to Problem (5) and Problem (8), two linear

programming models (13) and (14) are obtained as follows:

max
{1

2

( θlρ + θlσ + θlτ

3

+ θlρ + θrρ + θlσ + θrσ + θlτ + θrτ

6

)}

subject to (0.6 − ρ)(175u1 + 125u2) + ρ(177u1 + 128u2)
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Fig. 2 Algorithmic flowchart of
Approach-I and Approach-II

≥ 0.6 θlρ,

(0.6 − ρ)(190u1 + 140u2) + ρ(180u1 + 132u2)

≥ 0.6 θrρ,

(0.5 − ρ)(150u1 + 175u2) + ρ(153u1 + 185u2)

≥ 0.5 θlρ,

(0.5 − ρ)(158u1 + 200u2) + ρ(156u1 + 195u2)

≥ 0.5 θrρ, ;
(1 − σ)(177u1 + 128u2) + (σ − 0.3)(175u1 + 125u2)

≥ 0.7 θlσ ,

(1 − σ)(180u1 + 132u2) + (σ − 0.3)(190u1 + 140u2)

≥ 0.7 θrσ ,

(1 − σ)(153u1 + 185u2) + (σ − 0.4)(150u1 + 175u2)

≥ 0.6 θlσ ,

(1 − σ)(156u1 + 195u2) + (σ − 0.4)(158u1 + 200u2)

≥ 0.6 θrσ ,

(1 − τ)(177u1 + 128u2) + (τ − 0.5)(175u1 + 125u2)

≥ 0.5 θlτ ,

(1 − τ)(180u1 + 132u2) + (τ − 0.5)(190u1 + 140u2)

≥ 0.5 θrτ ,

(1 − τ)(153u1 + 185u2) + (τ − 0.5)(150u1 + 175u2)

≥ 0.5 θlτ ,

(1 − τ)(153u1 + 195u2) + (τ − 0.5)(158u1 + 200u2)

≥ 0.5 θrτ ,

u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0. (13)

and

min
{1

2

(φlρ + φlσ + φlτ + φrρ + φrσ + φrτ

6

+φrρ + φrσ + φrτ

3

)}

subject to (0.5 − ρ)(175v1 + 150v2) + ρ(177v1 + 153v2)

≤ 0.5 φlρ,

(0.5 − ρ)(190v1 + 158v2) + ρ(180v1 + 156v2)

≤ 0.5 φrρ,

(0.5 − ρ)(125v1 + 175v2) + ρ(128v1 + 185v2)

≤ 0.5 φlρ,
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Table 1 Maximin strategies and the (ρ, σ, τ )-cut sets of the gain-floor for Player-I

(ρ, σ, τ ) u∗ θ̂∗
ρ θ̂∗

σ θ̂∗
τ θ̂∗

ρ,σ,τ

(0,1,1) (0.6667,0.3333) [158.3333,172] [158.3333,172] [158.3333,172] [158.3333,172]

(0,0.8,1) (0.6667,0.3333) [158.3333,172] [159,170.6667] [158.3333,172] [159,170.6667]

(0,0.6,1) (0.6667,0.3333) [158.3333,172] [160.3333,165.3333] [158.3333,172] [160.3333,165.3333]

(0,1,0.8) (0.6667,0.3333) [158.3333,172] [158.3333,172] [159.2667,169.6] [159.2667,169.6]

(0,1,0.6) (0.6667,0.3333) [158.3333,172] [158.3333,172] [160.2,165.8667] [160.2,165.8667]

(0.2,1,1) (0.6667,0.3333) [159.1111,170.2222] [158.3333,172] [158.3333,172] [159.1111,170.2222]

(0.4,1,1) (0.6667,0.3333) [159.8889,167.1111] [158.3333,172] [158.3333,172] [159.8889,167.1111]

(0.3,0.4,0.5) (0.7077,0.2922) [160.3338,168.5486] [162.3521,167.3169] [162.3521,165.9718] [160.3338,165.9718]

(0.5,0.4,0.5) (0.7084,0.2916) [162.3306,167.3717] [162.3306,167.3494] [162.3306,166.0041] [162.3306,166.0041]

Table 2 Minimax strategies and the (ρ, σ, τ )-cut set of the loss-ceiling for Player-II

(ρ, σ, τ ) v∗ φ̂∗
ρ φ̂∗

σ φ̂∗
τ φ̂∗

ρ,σ,τ

(0,1,1) (0.4565,0.5435) [161.413,172.6087] [161.413,172.6087] [161.413,172.6087] [161.413,172.6087]

(0,0.8,1) (0.4565,0.5435) [161.413,172.6087] [162.1398,170.9938] [161.413,172.6087] [162.1398,170.9938]

(0,0.6,1) (0.4565,0.5435) [161.413,172.6087] [162.8665,169.3789] [161.413,172.6087] [162.8665,169.3789]

(0,0.4,1) (0.4565,0.5435) [161.413,172.6087] [163.5932,167.764] [161.413,172.6087] [163.5932,167.764]

(0,1,0.8) (0.4565,0.5435) [161.413,172.6087] [161.413,172.6087] [162.2609,170.7246] [162.2609,170.7246]

(0,1,0.6) (0.4565,0.5435) [161.413,172.6087] [161.413,172.6087] [163.1087,168.8406] [163.1087,168.8406]

(0.3,0.4,0.5) (0.4517,0.5483) [162.8211,169.0858] [163.4764,167.6424] [163.4157,167.776] [162.8211,167.6424]

(0.5,0.4,0.5) (0.4483,0.5517) [163.7586,166.7586] [163.3941,167.5567] [163.3333,167.6897] [163.7586,166.7586]

(0.5 − ρ)(140v1 + 200v2) + ρ(132v1 + 195v2)

≤ 0.5 φrρ,

(1 − σ)(177v1 + 153v2) + (σ − 0.3)(175v1 + 150v2)

≤ 0.7 φlσ ,

(1 − σ)(180v1 + 156v2) + (σ − 0.3)(190v1 + 158v2)

≤ 0.7 φrσ ,

(1 − σ)(128v1 + 185v2) + (σ − 0.4)(125v1 + 175v2)

≤ 0.6 φlσ ,

(1 − σ)(132v1 + 195v2) + (σ − 0.4)(140v1 + 200v2)

≤ 0.6 φrσ ,

(1 − τ)(177v1 + 153v2) + (τ − 0.4)(175v1 + 150v2)

≤ 0.6 φlτ ,

(1 − τ)(180v1 + 156v2) + (τ − 0.4)(190v1 + 158v2)

≤ 0.6 φrτ ,

(1 − τ)(128v1 + 185v2) + (τ − 0.5)(125v1 + 175v2)

≤ 0.5 φlτ ,

(1 − τ)(132v1 + 195v2) + (τ − 0.5)(140v1 + 200v2)

≤ 0.5 φrτ ,

v1 + v2 = 1, v1 ≥ 0, v2 ≥ 0. (14)

Solving Problem (13) and Problem (14) for ρ ∈ [0, 0.5],
σ ∈ [0.4, 1] and τ ∈ [0.5, 1], the upper and lower bounds
of ρ-cut sets, σ -cut sets, and τ -cut sets of the Player-I’s gain

floor (θ̃∗) and Player-II’s loss ceiling (φ̃∗) can be obtained
respectively. According to Theorem 2.1, the (ρ, σ, τ )-cut
sets, θ̂∗

ρ,σ,τ and φ̂∗
ρ,σ,τ for θ̃∗ and φ̃∗ respectively, can be

obtained. The correspondingmaximin strategies u∗ andmin-
imax strategies v∗ for the players are obtained as shown in
Tables 1 and 2.

(ii) Computational results obtained by Approach-II
According to Problem (11) and Problem (12), the follow-

ing Problem (15) and Problem (16) are obtained respectively.

max {P1}
subject to (1079u1 + 785u2)(0.74 − 0.38α)/6 ≥ P1,

(926 u1 + 1135 u2)(0.61 − 0.36 α)/6 ≥ P1,

u1 + u2 = 1, u1 ≥ 0, u2 ≥ 0. (15)

and

min {P2}
subject to (1079v1 + 926v2)(0.98 − 0.73α)/6 ≤ P2,

(785v1 + 1135v2)(0.61 − 0.36α)/6 ≤ P2,

v1 + v2 = 1, v1 ≥ 0, v2 ≥ 0. (16)
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Table 3 Optimal strategies and
α-WPMV of gain floor and loss
ceiling

Value of α For Player-I For Player-II
P∗
1 (α) u∗(α) P∗

2 (α) v∗(α)

0 108.5285 (0.3230,0.6770) 151.2467 (0,1)

0.1 102.4294 (0.3077,0.69230) 139.9803 (0,1)

0.2 96.3267 (0.2905,0.7094) 128.7140 (0,1)

0.3 90.2198 (0.2712,0.7288) 117.4477 (0,1)

0.4 84.1078 (0.2491,0.7509) 106.1813 (0,1)

0.5 77.9896 (0.2238,0.7762) 94.9150 (0,1)

0.6 71.8637 (0.1944,0.8056) 83.6487 (0,1)

0.7 65.7280 (0.1599,0.8401) 72.3823 (0,1)

0.8 59.5799 (0.1187,0.8813) 61.1160 (0,1)

0.9 53.4153 (0.0689,0.9311) 51.2550 (0.1706,0.8294)

1 47.2283 (0.0073,0.9927) 41.2322 (0.4155,0.5845)

Fig. 3 Picture representation of
gain f loor and loss ceiling
for the game problem Ñ

The above reduced problems (15) and (16) are solved for
given weight α ∈ [0, 1] by simplex method using LINGO
17.0 software and we can obtain the maximin strategy u∗(α),
the PMV P∗

1 (α) of the gain floor for the merchant M1 as well
as the minimax strategy v∗(α), the possibility mean value
P∗
2 (α) of the merchant M2, depicted in following Table 3.

5.1.2 Discussion on the results

From Tables 1 and 2, the following observations are enlisted.

(i) θ̂∗
ρ,σ,τ = [162.3306, 166.0041] is the smallest interval

ranges for the (ρ, σ, τ )−cut-set of the gain-floor θ̃∗ of
Player-I for ρ = 0.5, σ = 0.4, and τ = 0.5.

(ii) φ̂∗
ρ,σ,τ = [163.7586, 166.7586] is the smallest interval

ranges for the (ρ, σ, τ )−cut-set of the loss-ceiling φ̃∗
of Player-II for ρ = 0.5, σ = 0.4, and τ = 0.5.

(iii) It is clear that the larger the ρ(∈ [0, 0.5]) values and
the smaller the σ(∈ [0.4, 1]), and τ(∈ [0.5, 1]) values,
θ̂∗
ρ,σ,τ (or φ̂∗

ρ,σ,τ ) are becoming smaller. Specifically,
when ρ = 0, σ = 1 and τ = 1, the (ρ, σ, τ )-cut sets

of the gain floor and the loss ceiling are the intervals
[158.3333,172] and [161.413,172.6087], respectively,
These are the largest interval in range i.e., the value
of the gain floor (or loss ceiling) never falls outside of
the interval [158.3333,172] (or [161.413,172.6087]).
These are the most likely value of the gain-floor and
loss ceiling.

(iv) The approximate values of the gain floor and the loss
ceiling are as follows: θ̃∗ = 〈(158.3333, 162.3306,
166.0041, 172); 0.5, 0.4, 0.5〉 and φ̃∗ = 〈(161.413,
163.7586, 166.7586, 172.6087); 0.5, 0.4, 0.5〉, which
are depicted as in Fig. 3a and b, respectively.

(v) θ̃∗ represents that the sales amount of smartphones for
the merchant M1 is not less than 158.3333 units and is
positively in the interval [162.3306,166.0041] by 50%.
It is unable to convince about the sales amount lie in the
interval [162.3306,166.0041] by 50%. It is indetermi-
nate to assume that the sales amount is in the interval
[162.3306,166.0041] by 40%. In this case, strategies
I and II are chosen with probability 0.7084189 and
0.2715811, respectively.
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Table 4 α-WPMV of θ̃∗ and φ̃∗ obtained by Approach-I for various α ∈ [0, 1]
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�α(θ̃∗) 100.345 94.423 88.501 82.579 76.657 70.735 64.813 58.891 52.969 47.047 41.125

�α(φ̃∗) 101.164 95.194 89.223 83.253 77.283 71.312 67.332 60.035 56.055 48.758 41.461

Table 5 Maximin strategies and the (ρ, σ, τ )-cut sets of the gain-floor for Player-I

(ρ, σ, τ ) u∗ θ̂∗
ρ θ̂∗

σ θ̂∗
τ θ̂∗

ρ,σ,τ

(0,1,1) (0.4444,0.5556) [43.8889,57.2222] [43.8889,57.2222] [43.8889,57.2222] [43.8889,57.2222]

(0.6,0.5,0.4) (0.5294,0.4706) [47.7059,52.6219] [46.2605,53.7143] [48.0588,51.5294] [48.0588,51.5294]

(0.6,0.5,0.5) (0.5167,0.4833) [47.4619,52.3832] [46.6429,53.4667] [47.4028,52.5639] [47.4619,52.3833]

(0.1,0.8,0.9) (0.4615,0.5386) [44.5918,56.5697] [44.9545,55.5258] [44.5918,56.3957] [44.9545,56.3957]

(0.5,0.7,0.5) (0.5167,0.4833) [47.1071,53.4667] [44.8191,55.6333] [47.4028,52.5639] [47.4028,52.5639]

Table 6 Minimax strategies and the (ρ, σ, τ )-cut set of the loss-ceiling for Player-II

(ρ, σ, τ ) v∗ φ̂∗
ρ φ̂∗

σ φ̂∗
τ φ̂∗

ρ,σ,τ

(0,1,1) (0.6462,0.3538) [46.1539,58.6769] [46.1539,58.6769] [46.1539,58.6769] [46.1539,58.6769]

(0.6,0.5,0.4) (0.6842,0.3158) [49.421,52.421] [48.7594,54.5564] [49.421,52.421] [49.421,54.5564]

(0.6,0.5,0.5) (0.6771,0.3229) [49.2514,52.6543] [48.5878,54.3706] [48.8643,53.4876] [49.2514,52.6543]

(0.1,0.8,0.9) (0.6518,0.3482) [46.6872,57.6562] [46.9667,56.7973] [46.6872,57.6562] [46.9667,56.7973]

(0.5,0.7,0.5) (0.6771,0.3229) [48.8643,53.4876] [47.924,56.4898] [48.8643,53.4876] [48.8643,53.4876]

(vi) φ̃∗ represents the sales amount of smartphones for the
merchant M2 and confirms that the sales amount is
not greater than 172.6087 units and it is positively in
the interval [163.7586,166.7586] by 50% and unable
to convince about the sales amount lie in the inter-
val [163.7586,166.7586] by 50%. It is indeterminate
to assume that the sales amount is in the interval
[163.7586,166.7586] by 40%. In this case, strategies
I and II are chosen with probability 0.4482759 and
0.5517241 respectively.

Table 3 shows theα-WPMV P∗
1 (α) (or P∗

2 (α)) for various
values ofα ∈ [0, 1] and the corresponding optimal strategies.
From Table 3, it follows that P∗

1 (α) (or P∗
2 (α)) is a non-

increasing function of the parameter α ∈ [0, 1]. To compare
the results obtained by the two proposed approaches, Table
4 is framed. Table 4 presents the α−WPMV of θ̃∗ and φ̃∗
obtained by Approach-I for various α ∈ [0, 1]. From Tables
3 and 4, it is clear that the PMV of the gain floor (or loss ceil-
ing) obtained by Approach-I is lower than the PMV obtained
by the Approach-II for various values of α ∈ [0, 1]. This
implies the fact that the gain floor (or loss ceiling) repre-
sented bySVTNNobtained byApproach-I is smaller than the
same obtained by the Approach-II. Again, by the Approach-
I, the gain-floor (or loss-ceiling) of the matrix game Ñ can
be framed in SVTNN form, which is desirable, whereas the

Approach-II provides the gain-floor (or loss-ceiling) of the
matrix game Ñ in crisp values. So, Approach-I is more reli-
able than Approach-II.

5.2 Example 2

Let us consider a simple numerical example where each
player has two pure strategies and the SVTNNpay-offmatrix
R̃ for Player-I is given as follows:

R̃ = I
II

⎛

⎝
I II

〈(55, 57, 60, 70); 0.7, 0.3, 0.4〉 〈(30, 33, 36, 38); 0.6, 0.3, 0.4〉
〈(35, 38, 42, 47); 0.8, 0.2, 0.4〉 〈(55, 65, 75, 80); 0.6, 0.5, 0.4〉

⎞

⎠ .

As previous, thematrix game R̃ is solved byApproach-I. The
upper and lower bounds of ρ-cut sets, σ -cut sets, and τ -cut
sets of θ̃∗ and φ̃∗ are obtained respectively, for ρ ∈ [0, 0.6],
σ ∈ [0.5, 1] and τ ∈ [0.4, 1]. θ̂∗

ρ,σ,τ and φ̂∗
ρ,σ,τ and the

correspondingmaximin strategies u∗ andminimax strategies
v∗ for the players are obtained and gathered in Tables 5 and
6.

From Tables 5 and 6, it follows that θ̂∗
ρ,σ,τ = [48.0588,

51.5294] and φ̂∗
ρ,σ,τ = [46.1539, 58.6769] are the smallest

interval range for the (ρ, σ, τ )−cut-set of θ̃∗ and φ̃∗ respec-
tively, for ρ = 0.6, σ = 0.5, and τ = 0.4. Also it is clear that
for ρ = 0, σ = 1 and τ = 1, the (ρ, σ, τ )-cut sets of the gain
floor and the loss ceiling are the intervals [43.8889,57.2222]
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Table 7 Optimal strategies and
α-WPMV of gain floor and loss
ceiling

Value of α For Player-I For Player-II
P∗
1 (α) u∗(α) P∗

2 (α) v∗(α)

0 43.0793 (0.5307,0.4693) 36.3645 (0.3313,0.6687)

0.1 41.0158 (0.5156,0.4844) 34.60 (0.3476,0.6524)

0.2 38.9469 (0.4988,0.5012) 32.8298 (0.3656,0.6344)

0.3 36.8715 (0.4799,0.5201) 31.0527 (0.3858,0.6142)

0.4 34.7884 (0.4586,0.5414) 29.2673 (0.4085,0.5915)

0.5 32.6959 (0.4342,0.5658) 27.4722 (0.4343,0.5657)

0.6 30.5918 (0.4061,0.5939) 25.6651 (0.4638,0.5362)

0.7 28.4734 (0.3734,0.6266) 23.8433 (0.4978,0.5022)

0.8 26.3367 (0.3348,0.6652) 22.0032 (0.5376,0.4624)

0.9 24.1764 (0.2887,0.7113) 20.1395 (0.5846,0.4154)

1 21.9847 (0.2325,0.7675) 18.2453 (0.6411,0.3589)

and [46.1539,58.6769], respectively. These are the largest
interval in range i.e., the value of the gain floor (or loss ceil-
ing) never falls outside of the interval [43.8889,57.2222](or
[46.1539,58.6769]). These are the most likely value of
the gain-floor and loss ceiling. The approximate values
of the gain floor and the loss ceiling are respectively
θ̃∗ = 〈(43.8889, 48.0588, 51.5294, 57.2222); 0.6, 0.5, 0.4〉
and φ̃∗ = 〈(46.1539, 49.421, 54.5564, 58.6769); 0.6, 0.5,
0.4〉. The proposed Approach-II is also applied for the
SVTNN matrix game R̃ as described in Sect. 4.2. The
α-WPMV of the optimal values for the players and the cor-
responding optimal strategies are obtained for various values
of the parameter α. Obtained results are shown in Table 7 for
different values of α ∈ [0, 1].

6 Conclusion

The SVTNN is a very useful tool to tackle uncertainty in
decision-making problems. This paper uses SVTNNs to rep-
resent the imprecise payoffs so that players can consider the
neutrality of the elements better. In this paper, two different
solution procedures are established to solve a new matrix
game where the payoffs are represented by SVTNNs. Two
neutrosophic mathematical programming models are formu-
lated to obtain the optimal values and optimal strategies for
the players. First, in Approach-I, (ρ, σ, τ )-cut set based rank-
ing order relations of the SVTNNs is used to transform the
defined problems into multi-objective interval-valued linear
programming problems. These problems are solved to obtain
the (ρ, σ, τ )-cut set of the gain floor (θ̃∗) and loss ceiling
(φ̃∗). Second, in Approach-II, we have used the concept of
α-WPMV of SVTNNs, and each neutrosophic mathematical
programming model is transformed into crisp problems with
the parameter α. The proposed approaches are illustrated
by solving a market share problem and another example,

which implies the validity and effectiveness of the proposed
approaches.

The limitation of the proposed Approach-I is that it does
not find the solution to the game problem directly, as it con-
siders the construction of different cut sets and considers
a large number of in-equations. Also, Approach-I gives a
wide range of the optimal values which is difficult for the
decision-maker to take the appropriate decision for optimum
value. But the obtained results are obtained in SVTNN form,
which is desirable. Though Approach-II gives the solution of
the SVTNNmatrix game problem directly, it depends on the
value of the parameter α, which is difficult for the decision-
maker to choose the best solution.

The proposed methods are indeed able to solve SVTNN
matrix games. Moreover, the concept of this work is readily
applicable to other games such as two-person non-zero-
sum games, multi-objective matrix game problems, and so
on. Although the discussed approaches are applied to solve
a market share problem, the proposed approaches may be
applied in solving many problems in management science,
war science, economics, advertising, and so on.
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