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Abstract
The q-rung orthopair fuzzy set (q-ROFS) is a generalized orthopair fuzzy set which quantifies vague information compre-
hensively. The objective of this paper was to develop some novel Muirhead mean (MM) operators for any orthopair fuzzy
numbers using Hamacher t-norm and t-conorm inspired arithmetic operations. The benefit of using Hamacher t-norm and
t-conorm based arithmetic operations with MM operator is that their combination can consider not only the interrelationship
among the multiple attributes but also provides flexibility in aggregation process due to additional parameters involved. Also,
MM has prominent characteristics of being generalization of some well-known aggregation operators such as arithmetic mean
(AM), geometric mean (GM), Bonferroni mean (BM), and Maclaurin symmetric mean (MSM). So, this paper develops MM
operators based on Hamacher operations under q-rung orthopair fuzzy environment, i.e., q-rung orthopair fuzzy Hamacher
Muirhead mean (q-ROFHMM) and q-rung orthopair fuzzy Hamacher weighted Muirhead mean (q-ROFHWMM) operators
with some of their desirable properties. Paper also provide some special cases of these operators. Further, a multiple attribute
decision making (MADM) method based on the proposed q-ROFHWMM operator has been developed. Finally, by utilizing
this developed approach, a real-world MADM problem related to the selection of enterprise resource planning (ERP) system
is discussed to illustrate the effectiveness of proposed operators

Keywords Multiple attribute decision making · Muirhead mean · Hamacher t-norm and t-conorm · q-rung orthopair fuzzy
set

1 Introduction

Multiple attribute decision making (MADM) is an inevitable
process to select an optimal alternative from a set of feasi-
ble alternatives based on multiple attributes (Chen and Tan
1994; Li 2005). This process is conducted with the help of
experts and decision makers (DMs). Information extraction
and its fusion by considering the interrelationship between
multiple attributes are the major challenges for the experts
and DMs to analyze any real-life decision-making problem.
In most real-life decision problems, it is difficult to extract
the associated information precisely, and thus the issue is
related to imprecision in data, vagueness, or ambiguity. To
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cope up with such problems, the fuzzy set theory was intro-
duced by Zadeh (1965). Informally, the fuzzy set can be
defined as a class of objects having no sharp boundaries.
However, the fuzzy set has limitations because it counts only
the sense of satisfaction called membership of an element
in the set. To address these limitations differently, several
extensions are available in the literature including interval-
valued fuzzy set, type-2 fuzzy set, intuitionistic fuzzy set
(IFS), fuzzy soft set, neutrosophic fuzzy set, complex fuzzy
set, hesitant fuzzy set, Pythagorean fuzzy set (PFS), q-rung
orthopair fuzzy set (q-ROFS), temporal intuitionistic fuzzy
set, etc. (Bustince et al. 2015; Yager 2017; Alcantud et al.
2020). Specifically, IFS, PFS, and q-ROFS are preferably
used to deal with two-dimensional (membership and non-
membership) decision-making problems. More specifically,
Atanassov (1986) introduced the notion of dissatisfaction and
extended the definition of fuzzy sets to IFS in which both
membership (μ) and non-membership (ν) degrees of every
element are considered with conditions 0 ≤ μ, ν ≤ 1; 0 ≤
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μ+ν ≤ 1.Over the decades, a substantial amount ofworkhas
been done by several researchers to investigate intuitionistic
fuzzy MADM problems by utilizing different aggregation
operators (Xu andYager 2006; Xu 2007; Tan and Chen 2010;
Xu and Yager 2011), and information measures (Szmidt and
Kacprzyk 2000; Chen 2007; Guo and Song 2014; Chen and
Chang 2015), etc. Further, it is noticed that for some real-life
MADM problems, IFS is ill-suited because the assessment
values are not satisfying the condition 0 ≤ μ + ν ≤ 1. To
handle such real-life MADM problems, an extended deci-
sion space is required. Yager (2013) noticed this shortcoming
of IFS and proposed the concept of PFS by making use of
the conditions 0 ≤ μ, ν ≤ 1; 0 ≤ μ2 + ν2 ≤ 1. Zhang
and Xu (2014) defined the score function and two funda-
mental operations namely additional and multiplication for
PFS, while Peng and Yang (2015) defined the accuracy func-
tion along with subtraction and division operations for PFS.
Using the definition of PFS and related concepts, several
aggregation operators have been developed including aver-
age mean, geometric mean, Choquet integral (CI), BM, and
MSM (Zhang 2016; Peng and Yang 2016; Liang et al. 2018;
Wei et al. 2018; Garg 2016). It is observed that for some
real-life decision-making problems, PFS does not effectively
provide the required decision space due to its strict condition
0 ≤ μ2 + ν2 ≤ 1.

For providingmoreflexibility to expand the decision space
as per the need of the problem and the requirement of the
DM, Yager (2017) introduced the concept of q-ROFS with
conditions 0 ≤ μ, ν ≤ 1; 0 ≤ μq + νq ≤ 1; q ≥ 1. Uti-
lizing q-ROFS and considering the interrelationship between
multiple attributes, several aggregation operators have been
developed for MADM problems owning their features and
constraints. Some of the popular aggregation operators that
have been developed under q-ROFS are: weighted average
and weighted geometric (Liu et al. 2018), point weighted
averaging, and point weighted geometric operators (Xing
et al. 2019), Bonferroni mean (Liu and Liu 2018), Heronian
mean (Wei et al. 2018), Maclaurin symmetric mean (Wei
et al. 2019), Hamy and dual Hamymean (Wang et al. 2019a),
Muirhead mean (Wang et al. 2019b), weighted continuous
interval-valued q-ROFS ordered weighted averaging (Yang
et al. 2021), etc. It is noticeable that the above-reviewed
aggregation operators rely either on the algebraic or Einstein
norms and conorms based arithmetic operations to analyze
any MADM problem. However, it is a fact that Hamacher
norm and conorm (Hamacher 1978) based arithmetic oper-
ations are a generalized version of algebraic and Einstein
norms and conorms based arithmetic operations. It also pro-
videsflexibility in the aggregationprocess due to the presence
of a parameter γ . Many researchers utilized these charac-
teristics of Hamacher norm and conorm based arithmetic
operations and analyzed many MADM problems under dif-
ferent fuzzy environments including IFS, PFS, and complex

intuitionistic fuzzy set, proportional interval type-2 hesitant
fuzzy set (Huang 2014;Wu andWei 2017; Akram et al. 2021;
Chen et al. 2019). Recently, Darko and Liang (2020) used
Hamacher norm and conorm-based arithmetic operations for
q-ROFS and developed some novel aggregation operators
including weighted average and MSM to solve a MADM
problem.

Motivated by the above-reviewed literature, the objective
of the paper includes the development of some novel aggre-
gation operators for real-life MADM problems which can
handle the need of the extended decision space in two dimen-
sions, provide flexibility in the aggregation process and con-
sider interrelationship between multiple attributes. To fulfill
the requirements of the objective, this paper adopts q-ROFS
to handle the requirement of extended decision space in two
dimensions formed by membership and non-membership
degrees, applies Hamacher norm- and conorm-based arith-
metic operations to provide flexibility in the aggregation
process, while Muirhead mean (MM) aggregation opera-
tor is utilized to consider all the possible interrelationships
between multiple attributes in a given MADM problem. To
the best of our knowledge, no study has been found which
fuses the notion of Hamacher t-norm and t-conorm, andMM
operator in any orthopair fuzzy environments (IFS, PFS, or
q-ROFS), and this will be the main contribution of the paper.

The benefit of using the Muirhead (1902) aggregation
operator is that it considers all the possible interrelation-
ships betweenmultiple attributeswith the help of a parameter
vector P . By taking different values of parameter vector P ,
various popular averaging means like AM, GM, BM, and
MSM can be deducted. Based on these benefits, the MM
operator is used by many researchers for handling MADM
problems in different fuzzy environments, such as IFS, PFS,
hesitant fuzzy linguistic set, q-ROFS, 2-tuple linguistic neu-
trosophic numbers set, etc. (Liu and Li 2017; Zhu and Li
2018; Liu and Liu 2018; Wang et al. 2019,b). The paper
develops two novel aggregation operators including q-rung
orthopair fuzzy Hamacher Muirhead mean (q-ROFHMM),
and q-rung orthopair fuzzy Hamacher weighted Muirhead
mean (q-ROFHWMM) along with their desirable properties
and some special cases. The advantage of the proposed aggre-
gation operators are as follows:

1. The parameter q of the generalized orthopair fuzzy set can
help the DM to extend their assessment decision space as
per the need of the problem.

2. The integration between Hamacher t-norm and t-conorm
based operations with MM operator captures the interre-
lationship among themultiple attributes and also provides
flexibility in decision making due to the use of additional
parameters γ and P .

3. The proposed aggregation operators are more general in
nature and provide a range of aggregation operators by
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substituting some specific values to the parameters q, γ

and P .

The rest of the paper is systematized as follows: Sect. 2
briefly discusses some prerequisite knowledge of q-ROFS,
Hamacher operations, and MM operator. Section 3 proposes
the q-ROFHMM, q-ROFHWMM operators and discusses
some of their desirable properties along with some spe-
cial cases. In Sect. 4, a MADM method based on the
q-ROFHWMM operator has been developed and a practical
MADM problem has been examined by using the developed
approach. The section also conducts sensitivity and compar-
ative analyses. Finally, in Sect. 5, some concluding remarks
are given.

2 Preliminaries

In this section, some fundamental concepts of q-ROFS,
Hamacher operations, and Muirhead mean operators are
reviewed.

2.1 q-rung orthopair fuzzy set

The concept of q-ROFS was introduced by Yager (2017) as
a generalization of IFS and PFS.

Definition 1 (Yager 2017) Let X be a universal set, then a
q-ROFS A on X is defined as follows:

A = {〈x, (μA(x), νA(x))〉| x ∈ X} (1)

where μA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] is the membership
andnon-membership function, respectively,which satisfy the
condition 0 ≤ (μA(x))q + (νA(x))q ≤ 1, q ≥ 1. When
q = 1 and q = 2 it becomes IFS and PFS, respectively.

The degree of indeterminacy of x in A is defined as
πA(x) = (

(μA(x))q + (νA(x))q − (μA(x))q(νA(x))q
)1/q .

For convenience, a q-rung orthopair fuzzy number (q-
ROFN), i.e., (μA(x), νA(x)) can be written as (μA, νA).

Definition 2 (Liu et al. 2018) For any three q-ROFNs, a =
(μ, ν), a1 = (μ1, ν1), and a2 = (μ2, ν2), the basic opera-
tions can be defined as follows:

1. ā = (ν, μ),
2. a1 ⊕ a2 = (

(μ
q
1 + μ

q
2 − μ

q
1μ

q
2)

1/q , ν1ν2
)
,

3. a1 ⊗ a2 = (
μ1μ2, (ν

q
1 + ν

q
2 − ν

q
1 ν

q
2 )1/q

)
,

4. λa = (
(1 − (1 − μq)λ)1/q , νλ

)
,

5. aλ = (
μλ, (1 − (1 − νq)λ)1/q

)
.

Furthermore, for comparing any two q-ROFNs, score and
accuracy functions are defined as follows:

Definition 3 (Liu et al. 2018) Let A = (μA, νA) be any q-
ROFN, then a score function S(A) is defined as follows:

S(A) = μ
q
A − ν

q
A (2)

where S(A) ∈ [−1, 1], greater score value S(A) ensures
larger q-ROFN A. But in some cases score function itself
is unable to distinguish two q-ROFNs. So to resolve such
problems, the accuracy function is defined as follows:

H(A) = μ
q
A + ν

q
A (3)

where H(A) ∈ [0, 1], higher the accuracy value H(A) bigger
the q-ROFN A. Now, based on the definitions of score and
accuracy functions, a comparison method is formulated as
follows.

Definition 4 Suppose A = (μA, νA) and B = (μB, νB) be
two q-ROFNs and S(A), S(B) are their score values, while
H(A), H(B) are their accuracy values. Then

(1) S(A) > S(B) ⇒ A > B.
(2) If S(A) = S(B), then H(A) > H(B) ⇒ A > B;

H(A) = H(B) ⇒ A = B.

2.2 Hamacher operations

In fuzzy set theory, t-norm and t-conorm are used for fuzzy
intersection and fuzzy union, respectively. There are several
t-norms and t-conorms are available in literature including
algebraic, Einstein, Hamacher, Frank, Dombi, etc. Hamacher
t-norm(T ) and t-conorm(T ∗) are general in nature because
they generate algebraic and Einstein t-norms and t-conorms
by setting certain fixed values to its parameter γ (Hamacher
1978). In particular, Hamacher product(⊗) and Hamacher
sum(⊕) are defined as follows:

T (a, b) = a ⊗ b = ab

γ + (1 − γ )(a + b − ab)
,

T ∗(a, b) = a ⊕ b = a + b − ab − (1 − γ )ab

1 − (1 − γ )(ab)
; γ > 0.

As a special case, when γ = 1 then Hamacher t-norm and
t-conorm will reduce to the algebraic t-norm and t-conorm
as follow:

T (a, b) = a ⊗ b = ab, T ∗(a, b) = a ⊕ b = a + b − ab.

Similarly, when γ = 2, thenHamacher t-norm and t-conorm
will reduce to the Einstein t-norm and t-conorm as follows:

T (a, b) = a ⊗ b = ab

1 + (1 − a)(1 − b)
,

T ∗(a, b) = a ⊕ b = a + b

1 + ab
.
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2.3 Hamacher operations for q-ROFNs

Let a = (μ, ν), a1 = (μ1, ν1) and a2 = (μ2, ν2) be three
q-ROFNs and γ > 0, then some basic Hamacher operations
for q-ROFNs are defined as follows (Liu and Liu 2018):

a1 ⊕ a2=
((

(μ1)
q+(μ2)

q − (μ1)
q (μ2)

q−(1−γ )(μ1)
q (μ2)

q

1 − (1 − γ )(μ1)
q (μ2)

q

)1/q
,

ν1ν2

(γ + (1 − γ ) ((ν1)
q + (ν2)

q − (ν1)
q (ν2)

q ))1/q

)
,

a1 ⊗ a2 =
(

μ1μ2

(γ + (1 − γ ) ((μ1)
q + (μ2)

q − (μ1)
q (μ2)

q ))1/q
,

(
(ν1)

q + (ν2)
q − (ν1)

q (ν2)
q − (1 − γ )(ν1)

q (ν2)
q

1 − (1 − γ )(ν1)
q (ν2)

q

)1/q
)

,

λa =
⎛

⎝

(
(1 + (γ − 1)μq )λ − (1 − μq )λ

(1 + (γ − 1)μq )λ + (γ − 1)(1 − μq )λ

)1/q

,

(γ )1/qνλ

(
(1 + (γ − 1)(1 − νq ))λ + (γ − 1)(νq )λ

)1/q

)

,

aλ =
(

(γ )1/qμλ

(
(1 + (γ − 1)(1 − μq ))λ + (γ − 1)(μq )λ

)1/q ,

(
(1 + (γ − 1)νq )λ − (1 − νq )λ

(1 + (γ − 1)νq )λ + (γ − 1)(1 − νq )λ

)1/q
⎞

⎠ .

when γ = 1 and γ = 2, then Hamacher operations will
reduce to the algebraic operations and Einstein operations,
respectively.

2.4 MM operator

In 1902, Muirhead proposed the concept of Muirhead mean
for crisp numbers, which can dealwith the association among
multiple arguments and provides the interrelationship among
all aggregated arguments.

Definition 5 Let ai (i = 1, 2, ..., n) be a collection of crisp
numbers and P = (p1, p2, ..., pn) ∈ �n be a vector of
parameters. Then, the MM is defined as follows (Muirhead
1902):

MMP (a1, a2, ..., an) =
⎛

⎝ 1

n!
∑

ϑ( j)∈Sn

n∏

j=1

a
p j

ϑ( j)

⎞

⎠

1∑n
j=1 p j

(4)

where ϑ( j)( j = 1, 2, ..., n) is any permutation of (1, 2,
..., n), and Sn is the collection of all permutations of
(1, 2, ..., n). There are several special cases of the MM oper-
ator with respect to different values of parameter vector P .

1. If P = (p, p, ..., p), i.e., all pi are equal to p, then MM
is converted into the geometric mean (GM).

MMP (a1, a2, ..., an) =
(

n∏

i=1

ai

) 1
n

.

2. If P = (1, 0, 0..., 0), thenMM is converted into the arith-
metic mean (AM).

MM(1,0,0,...,0)(a1, a2, ..., an) = 1

n

n∑

i=1

ai .

3. If P = (p1, p2, 0, 0, ..., 0), then MM is converted into
the BMp1,p2 operator.

MM(p1,p2,0,0,...,0)(a1, a2, ..., an)

=

⎛

⎜⎜
⎝

1

n(n − 1)

n∑

i, j=1
i �= j

a p1
i a p2

j

⎞

⎟⎟
⎠

1
p1+p2

.

4. If P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), thenMM is converted into

the MSMk operator.

MM(

k︷ ︸︸ ︷
1, 1, ..., 1,

n−k︷ ︸︸ ︷
0, 0, ..., 0)(a1, a2, ..., an)

=
(∑

1≤i1<...<ik≤n
∏k

j=1 ai j
Ck
n

) 1
k

.

3 q-Rung orthopair fuzzy Hamacher
Muirheadmean operators

In this section, utilizing Hamacher operations andMM oper-
ator, a family of q-rung orthopair fuzzy Hamacher Muirhead
mean operators are proposed. Further, some desirable prop-
erties and special cases for these aggregation operators are
being discussed.

3.1 q-ROFHMMoperator

Definition 6 Suppose {a1, a2, ..., an} be a collection of q-
ROFNs and P = (p1, p2, ..., pn) ∈ �n is a n-dimensional
parameter vector s.t.

∑n
j=1 p j > 0, then the q-rung orthopair

fuzzy Hamacher Muirhead mean (q-ROFHMM) operator is
defined as

q-ROFHMMP (a1, a2, ..., an)

=
⎛

⎝ 1

n!
⊕

ϑ( j)∈Sn

n⊗

j=1

a
p j

ϑ( j)

⎞

⎠

1∑n
j=1 p j

(5)

123



Multiple attribute decision making based on... 2469

where ϑ( j)( j = 1, 2, ..., n) is an any permutation of
(1, 2, ..., n), and Sn be the set of all permutations of
(1, 2, ..., n).

Theorem 1 Let {a1, a2, ..., an} be a set of q-ROFNs, then the
aggregated result by applying q-ROFHMM operator is also
a q-ROFN and is equal to

q-ROFHMMP (a1, a2, ..., an)

=

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

γ

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

1/q

,

×

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

1/q

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

(6)

where

φ1 =
n∏

j=1

(
1 + (γ − 1)(1 − μ

q
ϑ( j))

)p j ,

ϕ1 =
n∏

j=1

(μ
q
ϑ( j))

p j ,

ψ1 =
n∏

j=1

(1 + (γ − 1)νqϑ( j))
p j ,

χ1 =
n∏

j=1

(1 − ν
q
ϑ( j))

p j .

Proof In order to show equation(6), first we will apply
Hamacher operations of q-ROFNs (Sect. 2.3) and get,

a
p j

ϑ( j) =
⎛

⎜
⎝

γ 1/qμ
p j

ϑ( j)
(
(1 + (γ − 1)(1 − μ

q
ϑ( j)))

p j + (γ − 1)(μq
ϑ( j))

p j

)1/q ,

(
(1 + (γ − 1)νqϑ( j))

p j − (1 − ν
q
ϑ( j))

p j

(1 + (γ − 1)νqϑ( j))
p j + (γ − 1)(1 − ν

q
ϑ( j))

p j

)1/q
⎞

⎠

and,

n⊗

j=1

a
p j

ϑ( j)

=

⎛

⎜
⎜⎜⎜⎜
⎜⎜
⎝

γ 1/q
n∏

j=1

μ
p j

ϑ( j)

⎛

⎝
n∏

j=1

(1 + (γ − 1)(1 − μ
q
ϑ( j)))

p j + (γ − 1)
n∏

j=1

(μ
q
ϑ( j))

p j

⎞

⎠

1/q ,

⎛

⎜
⎜⎜⎜⎜
⎝

n∏

j=1

(1 + (γ − 1)νqϑ( j))
p j −

n∏

j=1

(1 − ν
q
ϑ( j))

p j

n∏

j=1

(1 + (γ − 1)νqϑ( j))
p j + (γ − 1)

n∏

j=1

(1 − ν
q
ϑ( j))

p j

⎞

⎟
⎟⎟⎟⎟
⎠

1/q⎞

⎟
⎟⎟⎟⎟
⎠

On adding it for every permutation, we get

⊕

ϑ( j)∈Sn

n⊗

j=1

a
p j

ϑ( j)

=

⎛

⎜
⎜⎜
⎝

⎛

⎜
⎜⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1) −

∏

ϑ∈Sn
(φ1 − ϕ1)

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1) + (γ − 1)

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎟⎟
⎠

1/q

,

⎛

⎜⎜⎜
⎝

γ
∏

ϑ∈Sn
(ψ1 − χ1)

∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1) + (γ − 1)

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟⎟⎟
⎠

1/q⎞

⎟⎟⎟
⎠
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Thus,

1

n!

⎛

⎝
⊕

ϑ( j)∈Sn

n⊗

j=1

a
p j

ϑ( j)

⎞

⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎠

1
n!

⎛

⎝
∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎠

1
n!

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

1/q

,

×

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

γ

⎛

⎝
∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎠

1
n!

⎛

⎝
∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎠

1
n!

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

1/q⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Finally, raising its whole power by 1∑n
j=1 p j

, we have

q-ROFHMMP (a1, a2, ..., an) =
⎛

⎝ 1

n!
⊕

ϑ( j)∈Sn

n⊗

j=1

a
p j

ϑ( j)

⎞

⎠

1∑n
j=1 p j

=

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

γ

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

1/q

,

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1+(γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1+(γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1+(γ 2 − 1)χ1)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1−χ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1+(γ 2−1)χ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

1/q

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

= (μ∗, ν∗). (7)

Now, to show that equation (7) is a q-ROFN, we have to
prove the following conditions:

(a) 0 ≤ μ∗ ≤ 1, and 0 ≤ ν∗ ≤ 1
(b) 0 ≤ (μ∗)q + (ν∗)q ≤ 1
whereμ∗ and ν∗ are themembership andnon-membership

degrees of equation (7), respectively.

Proof (a) For any γ > 0, q ≥ 1 and P ∈ �n s.t.∑n
j=1 p j > 0, we have φ1, ϕ1, ψ1, χ1 ≥ 0 with φ1 ≥ ϕ1,

ψ1 ≥ χ1 and the q-ROFN (μ∗, ν∗) can be written as((
1 − A∗−B∗

A∗−B∗+γ B∗
)1/q

,
(

C∗−D∗
C∗−D∗+γ D∗

)1/q)
. where,

A∗ =
⎛

⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ1+(γ 2−1)ϕ1)

⎞

⎠

1
n!

+(γ 2−1)

⎛

⎝
∏

ϑ∈Sn
(φ1−ϕ1)

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

,

B∗ =
⎛

⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ1 + (γ 2 − 1)ϕ1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(φ1 − ϕ1)

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

,

C∗ =
⎛

⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ1+(γ 2 − 1)χ1)

⎞

⎠

1
n!

+(γ 2 − 1)

⎛

⎝
∏

ϑ∈Sn
(ψ1−χ1)

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

,

D∗ =
⎛

⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ1 + (γ 2 − 1)χ1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(ψ1 − χ1)

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

.

Since A∗, B∗, C∗, D∗ ≥ 0 s.t. A∗ ≥ B∗ and C∗ ≥
D∗, Therefore it is easy to show that μ∗ and ν∗ satisfy the
condition (a).

Proof (b)Condition (a) implies that 0 ≤ (μ∗)q +(ν∗)q . Now
show that (μ∗)q + (ν∗)q ≤ 1.

As we have μ
q
ϑ( j) + ν

q
ϑ( j) ≤ 1, So by utilizing μ

q
ϑ( j) ≤

1−ν
q
ϑ( j) and equation (7) forμ

∗ and ν∗, we can easily obtain

(μ∗)q + (ν∗)q ≤ 1.
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Remark On putting the value of q = 1 and q = 2 in Eq.(7),
we will get intuitionistic fuzzy Hamacher Muirhead mean
(IFHMM) operator and pythagorean fuzzy Hamacher Muir-
head mean (PFHMM) operator, respectively.

In the following, proof of some fundamental properties of
q-ROFHMM operator are given.

Property 1 (Idempotency) Let {a1, a2, ..., an} be a set of q-
ROFNs, if all ai = (μi , νi )(i = 1, 2, ..., n) are equal, i.e.,
ai = a = (μ, ν), the

q-ROFHMMP (a1, a2, ..., an) = a.

Proof Since ai = a = (μ, ν) for all i , then Theorem 1 yields

φ1 =
n∏

j=1

(
1+(γ −1)(1−μ

q
ϑ( j))

)p j =(
1+(γ −1)(1−μq )

)∑n
j=1 p j =φ,

ϕ1 =
n∏

j=1

(μ
q
ϑ( j))

p j = (μq )
∑n

j=1 p j = ϕ,

ψ1 =
n∏

j=1

(1 + (γ − 1)νqϑ( j))
p j = (

1 + (γ − 1)νq
)∑n

j=1 p j = ψ,

χ1 =
n∏

j=1

(1 − ν
q
ϑ( j))

p j = (1 − νq )
∑n

j=1 p j = χ.

and

q-ROFHMMP (a1, a2, ..., an) =
⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

γ

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ+(γ 2−1)ϕ)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ−ϕ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ+(γ 2−1)ϕ)

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

ϑ∈Sn
(φ−ϕ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ+(γ 2−1)ϕ)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ−ϕ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

1/q

,

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ + (γ 2−1)χ)

⎞

⎟
⎠

1
n!

+(γ 2−1)
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ − χ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ + (γ 2−1)χ)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ−χ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ+(γ 2 − 1)χ)

⎞

⎟
⎠

1
n!

+(γ 2−1)
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ−χ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(ψ+(γ 2−1)χ)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(ψ−χ)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

1/q

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

γ

((
(φ+(γ 2−1)ϕ)n!) 1

n! −(
(φ−ϕ)n!) 1

n!
)

1
n∑

j=1

p j

(
((φ+(γ 2−1)ϕ)n!)

1
n! +(γ 2−1)((φ−ϕ)n!)

1
n!

)

1
n∑

j=1

p j

+(γ−1)

(
((φ+(γ 2−1)ϕ)n!)

1
n! −((φ−ϕ)n!)

1
n!

)

1
n∑

j=1

p j

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

1/q

,

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

((
(ψ+(γ 2−1)χ)n!) 1

n! +(γ 2−1)
(
(ψ−χ)n!) 1

n!
)

1
n∑

j=1

p j

−
((

(ψ+(γ 2−1)χ)n!) 1
n! −(

(ψ−χ)n!) 1
n!

)

1
n∑

j=1

p j

(
((ψ+(γ 2−1)χ)n!)

1
n! +(γ 2−1)((ψ−χ)n!)

1
n!

)

1
n∑

j=1

p j

+(γ−1)

(
((ψ+(γ 2−1)χ)n!)

1
n! −((ψ−χ)n!)

1
n!

)

1
n∑

j=1

p j

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

1/q

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

=
⎛

⎜
⎝

⎛

⎜
⎝

γ
(
γ 2ϕ

) 1∑n
j=1 p j

(
γ 2φ

) 1∑n
j=1 p j + (γ − 1)

(
γ 2ϕ

) 1∑n
j=1 p j

⎞

⎟
⎠

1/q

,

⎛

⎜
⎝

(
γ 2ψ

) 1∑n
j=1 p j − (

γ 2χ
) 1∑n

j=1 p j

(
γ 2ψ

) 1∑n
j=1 p j + (γ − 1)

(
γ 2χ

) 1∑n
j=1 p j

⎞

⎟
⎠

1/q⎞

⎟
⎠

=
((

γ (μq )

(1 + (γ − 1)(1 − μq )) + (γ − 1) (μq )

)1/q

,

(
(1 + (γ − 1)νq ) − (1 − νq )

(1 + (γ − 1)νq ) + (γ − 1) (1 − νq )

)1/q
)

= (μ, ν) = a.
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Property 2 (Monotonicity) If ai = (μi , νi ) and a′
i =

(μ′
i , ν

′
i ) (i = 1, 2, ..., n) are two sets of q-ROFNs such that,

μi ≤ μ′
i and νi ≥ ν′

i for all i , then

q-ROFHMMP (a1, a2, ..., an) ≤ q-ROFHMMP (a′
1, a

′
2, ..., a

′
n).

Proof In order to prove this property first we modified the
equation (6) as follow:

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

q-ROFHMMP (a1, a2, ..., an) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 −

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1

1+

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

γ
⎛

⎜
⎜⎜⎜⎜⎜
⎝

1+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

γ 2

⎛

⎜⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟⎟
⎟
⎠

1
n!

−1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

⎞

⎟
⎟⎟⎟⎟⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

1/q

,

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1

1+

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

γ
⎛

⎜⎜
⎜⎜⎜⎜
⎝

1+

⎛

⎜⎜
⎜⎜⎜⎜
⎝

γ 2

⎛

⎜⎜⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
1 +

( γ(
1

ν
q
ϑ( j)

− 1
)
))p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟⎟⎟
⎠

1
n!

−1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⎞

⎟⎟
⎟⎟⎟⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

1/q

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Since, μi ≤ μ′
i for all i then, μ

q
ϑ( j) ≤ (μ′

ϑ( j))
q

⇒
n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1 ≥
n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⇒
⎛

⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
n!

− 1 ≤
⎛

⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

1
n!

− 1

⇒

⎛

⎜
⎜
⎜
⎝
1 +

⎛

⎜
⎜
⎜
⎝

γ 2

⎛

⎜
⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎠

1
n!

−1

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

1∑n
j=1 p j

−1 ≥

⎛

⎜⎜
⎜
⎝
1 +

⎛

⎜⎜
⎜
⎝

γ 2

⎛

⎜
⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎠

1
n!

−1

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎠

1∑n
j=1 p j

− 1

⇒ γ

⎛

⎜
⎜⎜
⎝
1 +

⎛

⎜
⎜⎜
⎝

γ 2

⎛

⎜
⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎠

1
n!

−1

⎞

⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎠

1∑n
j=1 p j

− 1

≤ γ

⎛

⎜
⎜
⎜
⎝
1 +

⎛

⎜
⎜
⎜
⎝

γ 2

⎛

⎜
⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎠

1
n!

−1

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

1∑n
j=1 p j

− 1
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⇒ 1

1 +

⎛

⎜⎜⎜⎜⎜
⎝

γ
⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

1+

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

γ 2

⎛

⎜⎜
⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟⎟
⎟
⎠

1
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−1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟⎟⎟⎟⎟
⎠

≥ 1

1 +

⎛

⎜⎜⎜⎜
⎜
⎝

γ
⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1+

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

γ 2

⎛

⎜
⎜⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟⎟
⎠

1
n!

−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟⎟⎟⎟
⎟
⎠

⇒

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 −

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1

1+

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

γ
⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1+

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

γ 2

⎛

⎜
⎜⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

μ
q
ϑ( j)

− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟⎟
⎠

1
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−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟
⎠

1/q

≤

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 −

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1

1+

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

γ
⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1+

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

γ 2

⎛

⎜
⎜⎜
⎝

∏

ϑ∈Sn

⎛

⎜
⎝1 +

⎛

⎜
⎝

γ 2

n∏

j=1

(
γ

(μ′
ϑ( j))

q
− (γ − 1)

)p j

− 1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎟⎟
⎠

1
n!

−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

1∑n
j=1 p j

−1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟
⎠

1/q

that is,μ∗ ≤ (μ′)∗. Similarly, we also get ν∗ ≥ (ν′)∗. Hence,
(
μ∗, ν∗) ≤ (

(μ′)∗, (ν′)∗
)

that is,

q-ROFHMMP (a1, a2, ..., an)

≤ q-ROFHMMP (a′
1, a

′
2, ..., a

′
n).

Property 3 (Boundedness) Let {a1, a2, ..., an} be a set of q-
ROFNs. If

a−=
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
anda+=

(
n

max
i=1

(μi ),
n

min
i=1

(νi )

)
,

then

a− ≤ q-ROFHMMP (a1, a2, ..., an) ≤ a+.

Proof On the basis of Property 1 and 2, we have
a− = q-ROFHMMP (a−, a−, ..., a−) ≤ q-ROFHMMP

(a1, a2, ..., an) and
q-ROFHMMP (a1, a2, ..., an) ≤ q-ROFHMMP (a+, a+,

..., a+) = a+

⇒ a− ≤ q-ROFHMMP (a1, a2, ..., an) ≤ a+.

Property 4 (Commutativity) If a′
i is an any permutation of

ai (i = 1, 2, ..., n), then

q-ROFHMMP (a1, a2, ..., an)

= q-ROFHMMP (a′
1, a

′
2, ..., a

′
n).

Proof Since we have a′
i is any permutation of ai (i =

1, 2, ..., n) then by definition (6), we have

q-ROFHMMP (a1, a2, ..., an) =
⎛

⎝ 1

n!
⊕

ϑ( j)∈Sn

n⊗

j=1

a
p j

ϑ( j)

⎞

⎠

1∑n
j=1 p j

=
⎛

⎝ 1

n!
⊕

ϑ( j)∈Sn

n⊗

j=1

a
′p j

ϑ( j)

⎞

⎠

1∑n
j=1 p j

= q-ROFHMMP (a′
1, a

′
2, ..., a

′
n).

Now, to show the generality of purposed operator, some
special cases of q-ROFHMM operator with respect to the
parameter γ and parameter vector P are discussed as fol-
lows:

1. If γ = 1, then q-ROFHMM operator is converted into
the q-rung orthopair fuzzy Muirhead mean (q-ROFMM)
operator:
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q-ROFMMP (a1, a2, ..., an) =
⎛

⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝1 −

⎛

⎝
∏

ϑ∈Sn

⎛

⎝1 −
n∏

j=1

(μ
q
ϑ( j))

p j

⎞

⎠

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

⎞

⎟
⎟
⎠

1/q

,

⎛

⎜
⎜
⎝1 −

⎛

⎜
⎝1 −

⎛

⎝
∏

ϑ∈Sn

⎛

⎝1 −
n∏

j=1

(1 − ν
q
ϑ( j))

p j

⎞

⎠

⎞

⎠

1
n!

⎞

⎟
⎠

1∑n
j=1 p j

⎞

⎟
⎟
⎠

1/q⎞

⎟⎟
⎟
⎠

.

This form of the operator can be applied for thoseMADM
problems in which the interrelationship among any num-
ber of attributes with all its possible permutations needs
to consider, also the flexibility in decision space is essen-
tially required.

2. If γ = 2, then q-ROFHMM operator is converted into
the q-rung orthopair fuzzy Einstein Muirhead mean (q-
ROFEMM) operator:

q-ROFEMMP (a1, a2, ..., an)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(α1 + 3β1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(α1 − β1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(α1 + 3β1)

⎞

⎟
⎠

1
n!
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⎛

⎜
⎝

∏

ϑ∈Sn
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⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏
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(α1 + 3β1)

⎞

⎟
⎠

1
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−
⎛

⎜
⎝

∏
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⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1/q

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
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⎞

⎟
⎠

1
n!
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⎛

⎜
⎝

∏

ϑ∈Sn
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⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 + 3δ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 − δ1)

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 + 3δ1)

⎞

⎟
⎠

1
n!

+3

⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 − δ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 + 3δ1)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(γ1 − δ1)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1/q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where

α1 =
n∏

j=1

(2 − μ
q
ϑ( j))

p j , β1 =
n∏

j=1

(μ
q
ϑ( j))

p j ,

γ1 =
n∏

j=1

(1 + ν
q
ϑ( j))

p j , δ1 =
n∏

j=1

(1 − ν
q
ϑ( j))

p j .

This operator is a good alternative for getting smooth
approximations (due to the Einstein operations). The
operator also considers multiple attributes’ interrelation-
ships for all possible permutations.

3. If P = (p, p, ..., p), i.e., all pi are equal to p, then q-
ROFHMMoperator is converted into the q-rung orthopair

fuzzy Hamacher geometric averaging (q-ROFHG) oper-
ator :

q-ROFHMM(p,p,...,p)(a1, a2, ..., an) =
(

n⊗

i=1

ai

) 1
n

=

⎛

⎜⎜
⎜⎜
⎜
⎝

γ 1/q
n∏

i=1

(μi )
1
n

(
n∏

i=1

(1 + (γ − 1)(1 − μ
q
i ))

1
n + (γ − 1)

n∏

i=1

(μ
q
i )

1
n

)1/q ,

⎛

⎜
⎜⎜
⎜
⎝

n∏

i=1

(
1 + (γ − 1)νqi

) 1
n −

n∏

i=1

(1 − ν
q
i )

1
n

n∏

i=1

(
1 + (γ − 1)νqi

) 1
n + (γ − 1)

n∏

i=1

(1 − ν
q
i )

1
n

⎞

⎟
⎟⎟
⎟
⎠

1/q⎞

⎟⎟
⎟⎟
⎟
⎠

.

This operator can be utilized for those MADM problems
in which no attributes are not correlated with each other,
and flexibility in decision space and aggregation process
are required.
Note: By taking γ = 2, the q-ROFHG operator will
reduce to q-rung orthopair fuzzy Einstein geometric aver-
aging (q-ROFEG) operator.

4. If P = (1, 0, 0, ..., 0), then q-ROFHMM operator is
converted into the q-rung orthopair fuzzyHamacher arith-
metic averaging (q-ROFHA) operator:
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q-ROFHMM(1,0,0,...,0)(a1, a2, ..., an) = 1

n

n⊕

i=1

ai

=
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i

) 1
n + (γ − 1)

n∏

i=1

(1 − μ
q
i )

1
n

⎞

⎟⎟
⎟⎟
⎠

1/q

,

γ 1/q
n∏

i=1

(νi )
1
n

(
n∏

i=1

(1 + (γ − 1)(1 − ν
q
i ))

1
n + (γ − 1)

n∏

i=1

(ν
q
i )

1
n

)1/q

⎞

⎟⎟
⎟⎟
⎟
⎠

.

This form of the operator can be used in situations where
the attributes are not interrelated with each other, whereas
flexibility in both the decision space and aggregation pro-
cess is needed.
Note: By taking γ = 2, the q-ROFHA operator will
reduce to the q-rung orthopair fuzzy Einstein arithmetic
averaging (q-ROFEA) operator.

5. If P = (p1, p2, 0, 0, ..., 0), then q-ROFHMM operator
is converted into the q-rung orthopair fuzzy Hamacher
Bonferroni mean (q-ROFHBM) operator :

q-ROFHMM(p1,p2,0,0,...,0)(a1, a2, ..., an) =

⎛

⎜
⎜
⎝

1

n(n − 1)

n⊕

i, j=1
i �= j

a p1
i ⊗ a p2

j

⎞

⎟
⎟
⎠

1
p1+p2

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

γ

⎛

⎜
⎜⎜
⎜
⎝

n∏

i, j=1
i �= j

(
ρiρ j + (γ 2 − 1)σiσ j

) 1
n(n−1) −

n∏

i, j=1
i �= j

(
ρiρ j − σiσ j

) 1
n(n−1)

⎞

⎟
⎟⎟
⎟
⎠

1
2

⎛

⎜
⎜
⎜⎜
⎝

n∏

i, j=1
i �= j

(
ρiρ j + (γ 2 − 1)σiσ j

) 1
n(n−1) + (γ 2 − 1)

n∏

i, j=1
i �= j

(
ρiρ j − σiσ j

) 1
n(n−1)

⎞

⎟
⎟
⎟⎟
⎠

1
2

+(γ−1)

⎛

⎜
⎜
⎜⎜
⎝

n∏

i, j=1
i �= j

(
ρiρ j + (γ 2 − 1)σiσ j

) 1
n(n−1) −

n∏

i, j=1
i �= j

(
ρiρ j − σiσ j

) 1
n(n−1)

⎞

⎟
⎟
⎟⎟
⎠

1
2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

1/q

,

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎝

n∏

i, j=1
i �= j

(
τi τ j + (γ 2 − 1)ωiω j

) 1
n(n−1) + (γ 2 − 1)

n∏

i, j=1
i �= j

(
τi τ j − ωiω j

) 1
n(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

1
2

−

⎛

⎜
⎜
⎜
⎜
⎝

n∏

i, j=1
i �= j

(
τi τ j + (γ 2 − 1)ωiω j

) 1
n(n−1) −

n∏

i, j=1
i �= j

(
τi τ j − ωiω j

) 1
n(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

1
2

⎛

⎜
⎜
⎜
⎜
⎝

n∏

i, j=1
i �= j

(
τi τ j + (γ 2 − 1)ωiω j

) 1
n(n−1) + (γ 2 − 1)

n∏

i, j=1
i �= j

(
τi τ j − ωiω j

) 1
n(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

1
2

+(γ−1)

⎛

⎜
⎜
⎜
⎜
⎝

n∏

i, j=1
i �= j

(
τi τ j + (γ 2 − 1)ωiω j

) 1
n(n−1) −

n∏

i, j=1
i �= j

(
τi τ j − ωiω j

) 1
n(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

1
2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

1/q

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

where

ρi = (
1 + (γ − 1)(1 − μ

q
i )

)p1
,

σi = (
μ
q
i

)p1
,

τi = (
1 + (γ − 1)νqi

)p1
,

ωi = (
1 − ν

q
i

)p1
,

ρ j =
(
1 + (γ − 1)(1 − μ

q
j )

)p2
,

σ j =
(
μ
q
j

)p2
,

τ j =
(
1 + (γ − 1)νqj

)p2
,

ω j =
(
1 − ν

q
j

)p2
.

This operator reflects the correlation between any two
attributes of a MADM problem and provides a flexible
decision making and aggregation process.
Note: By taking γ = 2, the q-ROFHBM operator will
reduce to the q-rung orthopair fuzzy Einstein Bonferroni
mean (q-ROFEG) operator.

6. If P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), then q-ROFHMM opera-

tor is converted into the q-rung orthopair fuzzy Hamacher
Maclaurin symmetric mean (q-ROFHMSM) operator:
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q-ROFHMM(

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0)(a1, a2, ..., an ) =

⎛

⎝

⊕
1≤i1<...<ik≤n

⊗k
j=1 ai j

Ck
n

⎞

⎠

1
k

=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

γ

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
ρ + (γ 2 − 1)σ

) 1
Ck
n −

n∏

1≤i1<...<ik≤n

(ρ − σ)

1
Ck
n

⎞

⎟
⎠

1
k

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
ρ + (γ 2 − 1)σ

) 1
Ck
n + (γ 2 − 1)

∏

1≤i1<...<ik≤n

(ρ − σ)

1
Ck
n

⎞

⎟
⎠

1
k

+(γ−1)

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
ρ + (γ 2 − 1)σ

) 1
Ck
n −

∏

1≤i1<...<ik≤n

(ρ − σ)

1
Ck
n

⎞

⎟
⎠

1
k

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

1/q

,

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
τ + (γ 2 − 1)ω

) 1
Ck
n + (γ 2 − 1)

∏

1≤i1<...<ik≤n

(τ − ω)

1
Ck
n

⎞

⎟
⎠

1
k

−
⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
τ + (γ 2 − 1)ω

) 1
Ck
n −

∏

1≤i1<...<ik≤n

(τ − ω)

1
Ck
n

⎞

⎟
⎠

1
k

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
τ + (γ 2 − 1)ω

) 1
Ck
n + (γ 2 − 1)

∏

1≤i1<...<ik≤n

(τ − ω)

1
Ck
n

⎞

⎟
⎠

1
k

+(γ−1)

⎛

⎜
⎝

∏

1≤i1<...<ik≤n

(
τ + (γ 2 − 1)ω

) 1
Ck
n −

∏

1≤i1<...<ik≤n

(τ − ω)

1
Ck
n

⎞

⎟
⎠

1
k

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

1/q

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

where

ρ =
k∏

j=1

(
1 + (γ − 1)(1 − μ

q
i j
)
)
, σ =

k∏

j=1

μ
q
i j
,

τ =
k∏

j=1

(
1 + (γ − 1)νqi j

)
, ω =

k∏

j=1

(
1 − ν

q
i j

)
.

This operator can be applied for those MADM problems
in which the interrelationship among multiple attributes
for all combinations is possible and when the flexibility
in the decision making is essentially required.
Note: By taking γ = 2, q-ROFHMSM operator will
reduce to the q-rung orthopair fuzzy Einstein Maclaurin
symmetric mean (q-ROFEMSM) operator.

3.2 q-ROFHWMMoperator

Since the purposed q-ROFHMM operator does not count
the importance of attributes for aggregating the informa-
tion, therefore this subsection introduces the q-ROFHWMM
operator which considers the corresponding importance of
attributes in terms of weights to aggregate the q-ROFNs.

Definition 7 Suppose {a1, a2, ..., an} be a collection of q-
ROFNs, P = (p1, p2, ..., pn) ∈ �n is a n-dimensional
parameter vector s.t.

∑n
j=1 p j > 0 and wi ∈ [0, 1] be the

weight vector of ai (i = 1, 2, ..., n) s.t.
∑n

i=1 wi = 1, then
the q-rung orthopair fuzzy Hamacher weighted Muirhead
mean (q-ROFHWMM) operator is defined as

q-ROFHWMMP (a1, a2, ..., an)

=
⎛

⎝ 1

n!
⊕

ϑ( j)∈Sn

n⊗

j=1

(nwϑ( j)aϑ( j))
p j

⎞

⎠

1∑n
j=1 p j

(8)

where ϑ( j)( j = 1, 2, ..., n) is an any permutation of
(1, 2, ..., n), and Sn be the set of all permutations of
(1, 2, ..., n).

Theorem 2 Let {a1, a2, ..., an} be a set of q-ROFNs, then
the aggregated result by applying q-ROFHWMM operator is
also a q-ROFN and is equal to

q-ROFHWMMP (a1, a2, ..., an )

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

γ

⎛

⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ′
1 + (γ 2 − 1)ϕ′

1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(φ′
1 − ϕ′

1)

⎞

⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ′
1 + (γ 2 − 1)ϕ′

1)

⎞

⎠

1
n!

+(γ 2−1)

⎛

⎝
∏

ϑ∈Sn
(φ′
1 − ϕ′

1)

⎞

⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(φ′
1 + (γ 2 − 1)ϕ′

1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(φ′
1 − ϕ′

1)

⎞

⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

1/q

,

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

⎛

⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 + (γ 2 − 1)χ ′
1)

⎞

⎠

1
n!

+(γ 2−1)

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 − χ ′
1)

⎞

⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 + (γ 2 − 1)χ ′
1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 − χ ′
1)

⎞

⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 + (γ 2 − 1)χ ′
1)

⎞

⎠

1
n!

+(γ 2−1)

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 − χ ′
1)

⎞

⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 + (γ 2 − 1)χ ′
1)

⎞

⎠

1
n!

−
⎛

⎝
∏

ϑ∈Sn
(ψ ′

1 − χ ′
1)

⎞

⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

1/q

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(9)
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where

φ′
1 =

n∏

j=1

( (
1+(γ −1)μq

ϑ( j)

)nwϑ( j) +(γ 2−1)
(
1−μ

q
ϑ( j)

)nwϑ( j)
)p j

,

ϕ′
1 =

n∏

j=1

((
1 + (γ − 1)μq

ϑ( j)

)nwϑ( j) −
(
1 − μ

q
ϑ( j)

)nwϑ( j)
)p j

,

ψ ′
1 =

n∏

j=1

( (
1+(γ − 1)(1−ν

q
ϑ( j))

)nwϑ( j) +(γ 2−1)
(
ν
q
ϑ( j)

)nwϑ( j)
)p j

,

χ ′
1 =

n∏

j=1

( (
1 + (γ − 1)(1 − ν

q
ϑ( j))

)nwϑ( j) −
(
ν
q
v( j)

)nwϑ( j)
)p j

.

Proof Based on the Hamacher operations discussed in sec-
tion 2.3, we have

nwϑ( j)aϑ( j)

=
⎛

⎜
⎝

⎛

⎜
⎝

(
1 + (γ − 1)μq

ϑ( j)

)nwϑ( j) −
(
1 − μ

q
ϑ( j)

)nwϑ( j)

(
1 + (γ − 1)μq

ϑ( j)

)nwϑ( j) + (γ − 1)
(
1 − μ

q
ϑ( j)

)nwϑ( j)

⎞

⎟
⎠

1/q

,

γ 1/qν
nwϑ( j)

ϑ( j)
((

1 + (γ − 1)(1 − ν
q
ϑ( j))

)nwϑ( j) + (γ − 1)
(
ν
q
ϑ( j)

)nwϑ( j)
)1/q

⎞

⎟
⎠

Therefore, according to the proof of Theorem 1, the
required results can be proved easily.

Monotonicity and Boundedness are the essential proper-
ties of an aggregation operator. For the q-ROFHWMMoper-
ator, monotonicity and boundedness are discussed below.
Since it is easy to prove them therefore, their proofs are omit-
ted here.

Property 5 (Monotonicity) If ai = (μi , νi ) and a′
i =

(μ′
i , ν

′
i ) (i = 1, 2, ..., n) are two sets of q-ROFNs such that,

μi ≤ μ′
i and νi ≥ ν′

i for all i , then

q-ROFHWMMP (a1, a2, ..., an)

≤ q − ROFHWMMP (a′
1, a

′
2, ..., a

′
n).

Property 6 (Boundedness) Let {a1, a2, ..., an} be a set of q-
ROFNs. If

a− =
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
and

a+ =
(

n
max
i=1

(μi ),
n

min
i=1

(νi )

)

then,

a− ≤ q-ROFHWMMP (a1, a2, ..., an)

≤ q-ROFHWMMP (a′
1, a

′
2, ..., a

′
n) ≤ a+.

Corollary The q-ROFHMM operator is a special case of
the q-ROFHWMM operator.

Proof Let w = (1/n, 1/n, ..., 1/n)T , then

φ′
1 =

n∏

j=1

((
1 + (γ − 1)μq

ϑ( j)

)nwϑ( j)

+(γ 2 − 1)
(
1 − μ

q
ϑ( j)

)nwϑ( j)
)p j

=
n∏

j=1

γ p j
(
1 + (γ − 1)(1 − μ

q
ϑ( j))

)p j = φ′,

ϕ′
1 =

n∏

j=1

((
1 + (γ − 1)μq

ϑ( j)

)nwϑ( j) −
(
1 − μ

q
ϑ( j)

)nwϑ( j)
)p j

=
n∏

j=1

γ p j (μ
q
ϑ( j))

p j = ϕ′,

ψ ′
1 =

n∏

j=1

((
1 + (γ − 1)(1 − ν

q
ϑ( j))

)nwϑ( j)

+(γ 2 − 1)
(
ν
q
ϑ( j)

)nwϑ( j)
)p j

=
n∏

j=1

γ p j
(
1 + (γ − 1)νqϑ( j)

)p j = ψ ′,

χ ′
1 =

n∏

j=1

((
1 + (γ − 1)(1 − ν

q
ϑ( j))

)nwϑ( j) −
(
ν
q
v( j)

)nwϑ( j)
)p j

=
n∏

j=1

γ p j (1 − ν
q
ϑ( j))

p j = χ ′.

and
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q-ROFHWMMP (a1, a2, ..., an) =
⎛

⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

γ

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

ϑ∈Sn
(φ′ + (γ 2 − 1)ϕ′)

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

ϑ∈Sn
(φ′ − ϕ′)

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛
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= q-ROFHMMP (a1, a2, ..., an).

Now, special cases with respect to parameter γ are discussed
here for q-ROFHWMM operator.

1. If γ = 1, then q-ROFHWMM operator is converted into
the q-rung orthopair fuzzy weighted Muirhead mean (q-
ROFWMM) operator:

q-ROFWMMP (a1, a2, ..., an )
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.

2. If γ = 2, then q-ROFHWMM operator is converted into
the q-rung orthopair fuzzy Einstein weighted Muirhead
mean (q-ROFEWMM) operator:
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q-ROFEWMMP (a1, a2, ..., an)

=
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4 Application of developed aggregation
operator onMADM

4.1 MADMmethod based on the proposed
q-ROFHWMMoperator

In this section, we are going to develop a MADM method
for q-rung orthopair fuzzy numbers by utilizing the proposed
q-ROFHWMMoperator. Let A = {A1, A2, ..., Am} be a dis-
crete set of available alternatives, each alternative is being
evaluated based on all n-attributes {G1,G2, ...,Gn} having
weight vector w = {w1, w2, ..., wn} that is, every attribute
is associated with some weight w j ∈ [0, 1] ( j = 1, 2, ..., n)

and
∑n

j=1 w j = 1. Let R = (ri j )m×n be the q-rung orthopair
fuzzy numbers decision matrix, where ri j = (μi j , νi j )

represent the evaluated information of an alternative Ai cor-

responding to the attribute G j . The detailed approach of our
MADMmethod which is based on the proposed aggregation
operator with q-rung orthopair fuzzy information is given
hereafter.

Step 1. Normalize the decision matrix
The attributes involved in the decision matrix can be clas-
sified into two types namely cost type and benefit type. In
order to consider both types of attributes at the same time,
we need to normalize the decision matrix by using following
formula.

ri j = (μi j , νi j ) =
{
ri j , for benefit attributes A j

r̄i j , for cost attributes A j

If all the attributes are of benefit type, then there is no need
to normalize the decision matrix.

Step 2. Comprehensive value evaluation
Utilizing the proposed q-ROFHWMM operator, obtain a
comprehensivevalue ri for each alternative Ai byconsidering
the all n-attributes in the decision matrix. The corresponding
values of these n-attributes are ri j ( j = 1, 2, ..., n).

ri = q − ROFHWMM(ri1, ri2, ..., rin)

Step 3. Calculation of score and accuracy values
Calculate the score value S(ri ) and accuracy value H(ri ) for
each comprehensive value ri (i = 1, 2, ...,m). The formula
for S(ri ) and H(ri ) are given in Eqs. (2) and (3) respectively.
If all the score values S(ri )(i = 1, 2, ...,m) are different,
then there is no need to calculate accuracy values H(ri )(i =
1, 2, ...,m).

Step 4. Ranking of alternatives
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Table 1 q-Rung orthopair fuzzy decision matrix R

Alternative Attributes
G1 G2 G3 G4

A1 (0.5,0.8) (0.6,0.3) (0.3,0.6) (0.5,0.7)

A2 (0.7,0.5) (0.7,0.2) (0.7,0.2) (0.4,0.5)

A3 (0.6,0.4) (0.5,0.7) (0.5,0.3) (0.6,0.3)

A4 (0.8,0.1) (0.6,0.3) (0.3,0.4) (0.5,0.6)

A5 (0.6,0.4) (0.4,0.8) (0.7,0.6) (0.5,0.8)

Now rank the alternatives on the basis of their score value
S(ri )(i = 1, 2, ...,m) and accuracy value H(ri )(i =
1, 2, ...,m) based on the methodology discussed in defini-
tion 4, finally choose the most suitable alternative.

4.2 An illustrative example

In this section, to investigate the applicability of the proposed
aggregation operator based MADM approach, a practical
MADM problem is being analyzed. The selected MADM
problem is related to the implementation of an ERP system
in an organization, that is adopted fromWei et al. (2018). The
available information regarding vendors and systems is con-
figured and based on experts’ suggestions, the project team
chooses five potential ERP systems Ai (i = 1, 2, 3, 4, 5) as
alternatives and four attributes G j ( j = 1, 2, 3, 4) to evalu-
ate these five alternatives. Here G1 represents function and
technology, G2 means strategic fitness, G3 shows vendor’s
ability, and G4 reflects vendor’s reputation. The importance
of these four attributes are provided as a weight vector

Table 2 Comprehensive values,
score values, and ranking results
of alternatives

Alternative Comprehensive value (ri ) Score value (S(ri )) Rank

A1 (0.4438, 0.6814) −0.2290 4

A2 (0.5893, 0.4588) 0.1081 1

A3 (0.5251, 0.6359) −0.1123 3

A4 (0.5013, 0.4568) 0.0307 2

A5 (0.5155, 0.7471) −0.2801 5

Table 3 Ranking results for different values of q

q Score values Ranking results

2 S(r1) = −0.2625 S(r2) = 0.1460 S(r3) = −0.0878 S(r4) = 0.0555 S(r5) = −0.2850 A2 > A4 > A3 > A1 > A5

3 S(r1) = −0.2290 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0307 S(r5) = −0.2801 A2 > A4 > A3 > A1 > A5

4 S(r1) = −0.1865 S(r2) = 0.0733 S(r3) = −0.1203 S(r4) = 0.0139 S(r5) = −0.2594 A2 > A4 > A3 > A1 > A5

5 S(r1) = −0.1481 S(r2) = 0.0479 S(r3) = −0.1170 S(r4) = 0.0050 S(r5) = −0.2338 A2 > A4 > A3 > A1 > A5

6 S(r1) = −0.1168 S(r2) = 0.0307 S(r3) = −0.1080 S(r4) = 0.0009 S(r5) = −0.2081 A2 > A4 > A3 > A1 > A5

7 S(r1) = −0.0924 S(r2) = 0.0195 S(r3) = −0.0968 S(r4) = −0.0007 S(r5) = −0.1843 A2 > A4 > A1 > A3 > A5

8 S(r1) = −0.0736 S(r2) = 0.0123 S(r3) = −0.0852 S(r4) = −0.0011 S(r5) = −0.1631 A2 > A4 > A1 > A3 > A5

9 S(r1) = −0.0590 S(r2) = 0.0077 S(r3) = −0.0742 S(r4) = −0.0011 S(r5) = −0.1446 A2 > A4 > A1 > A3 > A5

10 S(r1) = −0.0477 S(r2) = 0.0048 S(r3) = −0.0643 S(r4) = −0.0009 S(r5) = −0.1285 A2 > A4 > A1 > A3 > A5

Table 4 Ranking results for different values of γ

γ Score values Ranking results

1 S(r1) = −0.2290 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0307 S(r5) = −0.2801 A2 > A4 > A3 > A1 > A5

2 S(r1) = −0.2270 S(r2) = 0.0955 S(r3) = −0.0961 S(r4) = 0.0245 S(r5) = −0.2503 A2 > A4 > A3 > A1 > A5

3 S(r1) = −0.2269 S(r2) = 0.0871 S(r3) = −0.0839 S(r4) = 0.0216 S(r5) = −0.2331 A2 > A4 > A3 > A1 > A5

4 S(r1) = −0.2269 S(r2) = 0.0815 S(r3) = −0.0745 S(r4) = 0.0207 S(r5) = −0.2214 A2 > A4 > A3 > A5 > A1

5 S(r1) = −0.2268 S(r2) = 0.0777 S(r3) = −0.0668 S(r4) = 0.0209 S(r5) = −0.2128 A2 > A4 > A3 > A5 > A1

6 S(r1) = −0.2266 S(r2) = 0.0750 S(r3) = −0.0605 S(r4) = 0.0216 S(r5) = −0.2061 A2 > A4 > A3 > A5 > A1

7 S(r1) = −0.2263 S(r2) = 0.0731 S(r3) = −0.0550 S(r4) = 0.0226 S(r5) = −0.2007 A2 > A4 > A3 > A5 > A1

8 S(r1) = −0.2260 S(r2) = 0.0718 S(r3) = −0.0503 S(r4) = 0.0236 S(r5) = −0.1963 A2 > A4 > A3 > A5 > A1

9 S(r1) = −0.2256 S(r2) = 0.0709 S(r3) = −0.0462 S(r4) = 0.0248 S(r5) = −0.1925 A2 > A4 > A3 > A5 > A1

10 S(r1) = −0.2252 S(r2) = 0.0703 S(r3) = −0.0424 S(r4) = 0.0259 S(r5) = −0.1893 A2 > A4 > A3 > A5 > A1
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Table 5 Ranking results by assigning different values to P

Parameter vector(P) Score values Ranking results

P = (1, 0, 0, 0) S(r1) = −0.1443 S(r2) = 0.2015 S(r3) = 0.1394 S(r4) = 0.1635 S(r5) = −0.0515 A2 > A4 > A3 > A5 > A1

P = (2, 0, 0, 0) S(r1) = −0.1231 S(r2) = 0.2239 S(r3) = 0.1643 S(r4) = 0.2099 S(r5) = −0.0006 A2 > A4 > A3 > A5 > A1

P = (1, 1, 0, 0) S(r1) = −0.1792 S(r2) = 0.1458 S(r3) = 0.0599 S(r4) = 0.0935 S(r5) = −0.1388 A2 > A4 > A3 > A5 > A1

P = (1, 1, 1, 0) S(r1) = −0.2044 S(r2) = 0.1222 S(r3) = −0.0224 S(r4) = 0.0587 S(r5) = −0.2033 A2 > A4 > A3 > A5 > A1

P = (1, 1, 1, 1) S(r1) = −0.2290 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0307 S(r5) = −0.2801 A2 > A4 > A3 > A1 > A5

P = (2, 2, 2, 2) S(r1) = −0.2290 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0307 S(r5) = −0.2801 A2 > A4 > A3 > A1 > A5

P = (3, 3, 3, 3) S(r1) = −0.2290 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0307 S(r5) = −0.2801 A2 > A4 > A3 > A1 > A5

P = (4, 4, 4, 4) S(r1) = −0.3164 S(r2) = 0.1081 S(r3) = −0.1123 S(r4) = 0.0306 S(r5) = −0.2801 A2 > A4 > A3 > A5 > A1

P = (1, 2, 3, 4) S(r1) = −0.1998 S(r2) = 0.1290 S(r3) = −0.0471 S(r4) = 0.0660 S(r5) = −0.1957 A2 > A4 > A3 > A5 > A1
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w = (0.2, 0.1, 0.3, 0.4). Considering the five alternatives
Ai (i = 1, 2, 3, 4, 5) and four attributes G j ( j = 1, 2, 3, 4),
the associated information of these alternative is presented
in the form of a q-ROFNs decision matrix R = (ri j )5×4 as
shown in Table 1.

To select the most desirable ERP system, we shall uti-
lize the developed approach as discussed in Sect. 4.1, which
includes the following steps:

Step 1. Normalize the decision matrix

As all the attributes are of benefit types, so there is no need to
normalize the decision matrix R. Hence, the decision matrix
R as given in Table 1 is considered for the further analysis.

Step 2. Comprehensive value evaluation
By using the given decision data of matrix R and taking
parameters’ values as q = 3, γ = 1, and P = (1, 1, 1, 1), the
proposed q-ROFHWMM operator is applied which provides
the comprehensive value ri (i = 1, 2, 3, 4, 5) for each ERP
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Fig. 3 Score function values for
alternative A3
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system Ai (i = 1, 2, 3, 4, 5), respectively. The aggregated
results are provided in column 2 of Table 2.

Step 3. Calculation of score and accuracy values
Now, calculate the score value S(ri )(i = 1, 2, 3, 4, 5) for
each ri as discussed in step 3 of Sect. 4.1. The calculated score
values are given in column 3 of Table 2. Since the score value
for each alternative is distinct, therefore the corresponding
accuracy values of any ri is not computed.

Step 4. Ranking of alternatives
Finally, rank the alternatives Ai (i = 1, 2, 3, 4, 5) on the basis
of their score values S(ri ) by utilizing the methodology as
discussed in step 4 of Sect. 4.2. The ranking results are pro-
vided in column 4 of Table 2. It is clear from Table 2 that
ERP system A2 is the best choice among the five poten-
tial ERP systems. Selection of the best alternative depends
upon the values of parameters q, γ, P . Similarly different
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aggregation operators may provide different ranking results
as per their aggregation characteristics. It is essential to inves-
tigate the efficiency of the method on the basis of sensitivity
of parameters’ values selection and aggregation operator
applied. So in the following Sects. 4.3 and 4.4, sensitivity
and comparative analyses have been conducted.

4.3 Sensitivity analysis

To demonstrate the efficiency of the developed MADM
approach based on q-ROFHWMM operator, a sensitivity
analysis has been conducted in multiple phases by varying
parameters’ valuesq, γ , and taking different values of param-
eter vector P . The effects of these variations on the result are
analyzed and discussed hereafter.

In the first phase, parameter q is varied by taking integer
values in the range 2 to 10. Herein, q = 1 is not considered
because data is not IFS. At the same time, values of the other
two parameters are fixed as γ = 1 and P = (1, 1, 1, 1).
The computed results are summarized in Table 3. The results
reveal that as the parameter q varies, the scores and ranking
order of all the alternatives change accordingly. However, the
best(A2) and worst(A5) alternatives are always same for all
the considered variations of parameter q. This infer that the
parameter q is not only provide the expanded decision space
but also influence the final decision. In the second phase,
the parameter γ varies in the range [1, 10] by taking inte-
ger values, however parameters q = 3 and P = (1, 1, 1, 1)
are fixed. The computed results are given in Table 4. From
Table 4, the results show that as the parameter γ varies,
the scores and ranking order of different alternatives change
accordingly. In this case, the best alternative is still same as
A2 for all the considered variations of parameter γ while
the worst alternative changes. This infer that the parame-
ter γ provides flexibility in aggregation process and also
affect the final decision. In third phase, the effect of interre-
lationship among multiple attributes are examined by taking
different values of parameter vector P with fixed values of
parameters q = 3 and γ = 1. The computed results are
shown in Table 5 and infer that the interrelationship between
multiple attributes somehow influences the final decision.
Since, the proposed aggregation operators consider interre-
lationship betweenmultiple attributes, hence results aremore
realistic. In this case, the best alternative is again A2 for all
the considered variations of parameter vector P while the
worst alternative changes.

In the above discussion, the effect on the final decision
is analyzed by taking variation in the value of an individual
parameter q, γ , or P , and fixing the values of rest of the other
parameters at the same time. To provide the depth in the anal-
ysis, the combined effect of variation in the values of these
parameters on the final decision is carried out. Herein, the
parameters q and γ can take any value in the closed intervals Ta
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Fig. 6 Radar graph of score
values for different MADM
methods

[2, 10], and [1, 10] respectively, while parameter vector P
has been fixed as (1, 1, 1, 1), i.e., interrelationship between
all the attributes has been considered. The score of each alter-
native has been computed for these values of parameters, and
results in the form of surface plots are shown in Figs. 1–5 for
all the five alternatives, respectively. From these figures, it
can be observed that the Figs. 2, 3 and 4 have some flat areas
while other two Figs. 1 and 5, are not showing such type of
areas. This infers that the variational tendency of scores of
alternatives A1 and A5 is rapidly changing with change in
parameter values while the scores of alternatives A2, A3 and
A4 are not showing such tendency. Thus, based on the score
values associated with these figures, we can say that the alter-
natives A2, A3, and A4 are more stable than A1 and A5. But,
the overall score value of alternative A2 is relatively high in
comparison to other alternatives, due to the flat area of its
score function around the score value 0.02. These graphical
results also concluded that alternative A2 is the best choice
of an ERP system among all other possible alternatives under
consideration. Hence, we can conclude that combination of
q and γ has a positive effect on decision making and provide
a range of solutions to the decision maker.

4.4 Comparative analysis

To investigate the effectiveness of the proposed aggre-
gation operators, this section provides a quantitative and
qualitative comparison between some existing aggregation
operators such as q-ROFWA, q-ROFWG, q-ROFWBM,q-
ROFGWHM,q-ROFWGHM, q-ROFWMSM, and the pro-
posed aggregation operator q-ROFHWMM under same
working environment.

To apply these aggregation operators under same q-
ROFS working environment, the value of parameter q is
taken as 3. The classical q-ROFWA operator proposed by
Liu et al. (2018) does not consider any interrelationship
between attributes, while their q-ROFWG operator consid-
ers interrelationship between all the attributes at the same
time. However, both these operators do not have any addi-
tional parameter. The other existing aggregation operators
such as q-ROFWBM, q-ROFGWHM, q-ROFWGHM, and
q-ROFWMSM have different types of interrelationships
between attributes, and there are some additional parameters
involved in these operators as per their basic definitions(Liu
and Liu 2018;Wei et al. 2018, 2019). The q-ROFWBMoper-
ator considers interrelationship between any two attributes,
and the selected values of its additional parameters are s =
1, t = 1. For applying q-ROFGWHM and q-ROFWGHM
aggregation operators, the selected values of their additional
parameters are φ = 1, ϕ = 1, and they consider interre-
lationship between any two attributes(Wei et al. 2018. The
q-ROFWMSM operator proposed by Wei et al. (2019) con-
siders interrelationship between multiple attributes, and its
granularity parameter is taken as k = 2, so that it can cap-
ture interrelationship between any two attributes for creating
same interactional environment. To keep the same working
and interactional environment, the values of the additional
parameters in the proposed q-ROFHWMM operators are
taken as γ = 1, P = (1, 1, 0, 0). After creating same
working and interactional environment, a quantitative com-
parative analysis for these aggregation operators is conducted
and results are summarized in Table 6. From the table, it
is observed that the best alternative obtained from all the
operators under investigation are almost same, except the
best alternative obtained fromq-ROFWGandq-ROFWGHM
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operators which is due to the structural difference of these
operators. The score values for all the five alternatives com-
puted by all these aggregation operators are also plotted as a
radar graph shown in Fig. 6. The figure reflects that the alter-
natives A2 (red color) is unanimously the best and acceptable
alternative.

To further show the superiority of the proposed aggre-
gating operator over other considered existing operators, a
qualitative comparison has been provided in Table 7. In this
comparison, the aggregation operators are compared on the
basis of their characteristics, such as capability to quan-
tify uncertainty in extended space, the power of considering
interrelationships between different attributes, flexibility to
consider different degrees of granularity between attributes.
The findings suggested that the proposed q-ROFHWMM
operator is superior to the other existing operators consid-
ered in this study.

5 Conclusions

The paper provides some novel MM aggregation opera-
tors based on Hamacher t-norm and t-conorm inspired
arithmetic operations under q-rung orthopair fuzzy envi-
ronment. Namely, this article introduced q-ROFHMM and
q-ROFHWMM aggregation operators. The advantage of
employing Hamacher t-norm and t-conorm inspired oper-
ations in these aggregation operators is that, they provide
flexibility in the aggregation process due to the parameter
(γ ) involved. While the use of MM aggregation operator
provides the flexibility in capturing the interaction between
any number of attributes with every possible permutation.
Some desirable properties and special cases of these novel
aggregation operators have been investigated. To show the
effectiveness of the proposed q-ROFHWMM aggregation
operator, a MADM problem to select an efficient ERP
system for an organization has been analyzed. Sensitivity
and comparative analyses with some well-known existing
aggregation operators have also been done to elaborate the
applicability of the developed MADM approach. Results
suggested that the proposed MADM approach based on q-
ROFHWMMoperator is more flexible and general in nature,
which can be used to solve a variety of real-life MADM
problems. The limitation of the method is its complexity in
computation. The future research work will be conducted in
the following directions to enhance the capabilities of the
method and reduce its limitations:

(a) The proposed aggregation operators can be extended fur-
ther for other fuzzy environments like Hesitant fuzzy
sets, Complex fuzzy sets, Neutrosophic fuzzy sets, Tem-
poral intuitionistic fuzzy sets and Interval type-2 fuzzy
sets, etc., and for continuous fuzzy information too.
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(b) The proposed aggregation operators can be investigated
with heterogeneous relationship between attributes to
rectify the limitations of the method.

(c) The method may be further extended by determining a
reasonable value of attitude parameter (γ ) through an
optimization model.

Funding No funding is provided for the preparation of manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

AkramM, PengX, Sattar A (2021)A newdecision-makingmodel using
complex intuitionistic fuzzyHamacher aggregation operators. Soft
Comput 25:7059–7086

Alcantud JCR, Khameneh AZ, Kilicman A (2020) Aggregation of infi-
nite chains of intuitionistic fuzzy sets and their application to
choices with temporal intuitionistic fuzzy information. Inf Sci
514:106–117

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–
96

Bustince H, Barrenechea E, Pagola M, Fernandez J, Xu Z, Bedregal
B, Montero J, Hagras H, Herrera F, Baets BD (2015) A historical
account of types of fuzzy sets and their relationships. IEEE Trans
Fuzzy Syst 24(1):179–194

Chen TY (2007) A note on distances between intuitionistic fuzzy sets
and/or interval-valued fuzzy sets based on the Hausdorff metric.
Fuzzy Set Syst 158(22):2523–2525

Chen SM, Chang CH (2015) A novel similarity measure between
Atanassov’s intuitionistic fuzzy sets based on transformation tech-
niqueswith applications to pattern recognition. Inf Sci 291:96–114

Chen SM, Tan JM (1994) Handling multi-criteria fuzzy decision-
making problems based on vague set theory. Fuzzy Sets and Syst
67(2):163–172

Chen ZS, Yang Y, Wang XJ, Chin KS, Tsui KL (2019) Fostering
linguistic decision-making under uncertainty: a proportional inter-
val type-2 hesitant fuzzy TOPSIS approach based on Hamacher
aggregation operators and andness optimization models. Inf Sci
500:229–258

Darko AP, Liang D (2020) Some q-rung orthopair fuzzy Hamacher
aggregation operators and their application to multiple attribute
group decision making with modified EDAS method. Eng Appl
Artif Intell 87:103259

GargH (2016)AnewgeneralizedPythagorean fuzzy information aggre-
gation using Einstein operations and its application to decision
making. Intl J Intell Syst 31(9):886–920

Guo KH, Song Q (2014) On the entropy for Atanassov’s intuitionistic
fuzzy sets: An interpretation from the perspective of amount of
knowledge. Appl Soft Comput 24:328–340

Hamacher H (1978) Uber logische verknunpfungenn unssharfer Aus-
sagen und deren Zugenhorige Bewertungsfunktione Trappl, Klir,
Riccardi (Eds.), Progress in Cybernatics and Systems Research
3:276–288

Huang JY (2014) Intuitionistic fuzzy Hamacher aggregation operators
and their application to multiple attribute decision making. J Intell
Fuzzy Syst 27:505–513

LiDF (2005)Multiattribute decisionmakingmodels andmethods using
intuitionistic fuzzy sets. Comput Syst Sci 70:73–85

Liang D, Zhang Y, Xu Z, Darko AP (2018) Pythagorean fuzzy Bon-
ferroni mean aggregation operator and its accelerative calculating
algorithm with the multithreading. Int J Intell Syst 33(3):615–633

Liu P, Li D (2017) Some Muirhead mean operators for intuitionistic
fuzzy numbers and their applications to group decision making.
Plos one 12:423–431

LiuP, Liu J (2018) Someq-rung orthopair fuzzyBonferronimean opera-
tors and their application tomulti-attribute group decisionmaking.
Int J Intell Syst 33(2):315–347

Liu P, Li Y, Zhang M, Zhang L, Zhao J (2018) Multiple-attribute
decision-making method based on hesitant fuzzy linguistic Muir-
head mean aggregation operators. Soft Comput 22:5513–5524

Liu P, Wang P (2018) Multiple-attribute decision-making based on
Archimedean Bonferroni operators of q-Rung orthopair fuzzy
numbers. IEEE Trans Fuzzy Syst 27(5):834–848

Liu P, Wang P (2018a) Some q-rung orthopair fuzzy aggregation Oper-
ators and their applications to multiple-attribute decision making.
Int J Intell Syst 32(2):259–280

MuirheadRF (1902) Somemethods applicable to identities and inequal-
ities of symmetric algebraic functions of n letters. Proc Edinburgh
Math Soc 21(3):144–162

Peng X, Yang Y (2015) Some results for Pythagorean fuzzy sets. Int J
Intell Syst 30(11):1133–1160

Peng XD, Yang Y (2016) Pythagorean fuzzy Choquet integral based
MABACmethod for multiple attribute group decision making. Int
J Intell Syst 31(10):989–1020

Szmidt E, Kacprzyk J (2000) Distances between intuitionistic fuzzy
sets. Fuzzy Set Syst 114(3):505–518

Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for
multi-criteria decision making. Expert Syst Appl 37(1):149–157

Wang J, Gao H, Wei G (2019) Some 2-tuple linguistic neutro-
sophic number Muirhead mean operators and their applications
to multiple attribute decision making. J Exp Theor Artif Intell
31(3):409–439

Wang J, Wei G, Lu J, Alsaadi FE, Hayat T, Wei C, Zhang Y (2019a)
Some q-rung orthopair fuzzy Hamy mean operators in multi-
ple attribute decision-making and their application to enterprise
resource planning systems selection. Int J Intell Syst 34(10):2429–
2458

Wang J, Zhang R, Zhu X, Zhou Z, Shang X, LiW (2019b) Some q-rung
orthopair fuzzy Muirhead means with their application to multiat-
tribute groupdecisionmaking. J of Intell FuzzySyst 36:1599–1614

Wei G, Gao H, Wei Y (2018) Some q-rung orthopair fuzzy Heronian
mean operators in multiple attribute decision making. Int J Intell
Syst 33(7):1426–1458

Wei G, Lu M (2018) Pythagorean fuzzy Maclaurin symmetric mean
operators in multiple attribute decision making. Int J Intell Syst
33(5):1043–1070

Wei G, Wei C, Wang J, Gao H, Wei Y (2019) Some q-rung orthopair
fuzzy Maclaurin symmetric mean operators and their applications
to potential evaluation of emerging technology commercialization.
Int J Intell Syst 34(1):50–81

WuSJ,WeiGW (2017) Pythagorean fuzzyHamacher aggregation oper-
ators and their application to multiple attribute decision making.
Int J Inf Technol Decis Making 21(3):189–201

Xing Y, Zhang R, Zhou Z, Wang J (2019) Some q-rung orthopair fuzzy
point weighted aggregation operators for multi-attribute decision
making. Soft Comput 23:11627–11649

Xu Z (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans
Fuzzy Syst. 15(6):1179–1187

123



Multiple attribute decision making based on... 2487

Xu Z, Yager RR (2006) Some geometric aggregation operators based
on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

Xu ZS, Yager RR (2011) Intuitionistic fuzzy Bonferroni means. IEEE
Trans Syst Man Cybernet B Cybernet 41(2):568–578

Yager RR (2013) Pythagorean fuzzy subsets. In: Proceeding of the joint
IFSA world congress and NAFIPS annual meeting. Edmonton,
Canada, pp 57–61

Yager RR (2017) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy
Syst 25(5):1222–1230

Yang Y, Chen ZS, Rodriguez RM, Pedrycz W, Chin KS (2021) Novel
fusion strategies for continuous interval-valued q-rung orthopair
fuzzy information: a case study in quality assessment of Smart-
Watch appearance design. Int J Mach Learn Cybern. https://doi.
org/10.1007/s13042-020-01269-2

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–356

Zhang XL (2016) A novel approach based on similarity measure for
Pythagorean fuzzy multiple criteria group decision making. Int J
Intell Syst 31(6):593–611

ZhangX,XuZ (2014)Extension ofTOPSIS tomultiple criteria decision
making with Pythagorean fuzzy sets. Intl J Intell Syst 29:1061-
1078

Zhu J, Li Y (2018) Pythagorean fuzzy Muirhead mean operators and
their application inmultiple-criteria group decision-making. Infor-
mation 9(6):142

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s13042-020-01269-2
https://doi.org/10.1007/s13042-020-01269-2

	Multiple attribute decision making based on q-rung orthopair fuzzy Hamacher Muirhead mean operators
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 q-rung orthopair fuzzy set
	2.2 Hamacher operations
	2.3 Hamacher operations for q-ROFNs
	2.4 MM operator

	3 q-Rung orthopair fuzzy Hamacher Muirhead mean operators
	3.1 q-ROFHMM operator
	3.2 q-ROFHWMM operator

	4 Application of developed aggregation operator on MADM
	4.1 MADM method based on the proposed q-ROFHWMM operator
	4.2 An illustrative example
	4.3 Sensitivity analysis
	4.4 Comparative analysis

	5 Conclusions
	References




