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Abstract
The present research proposes a new particle swarm optimization-based metaheuristic algorithm entitled ‘‘search in forest

optimizer (SIFO)’’ to solve the global optimization problems. The algorithm is designed based on the organized behavior of

search teams looking for missing persons in a forest. According to SIFO optimizer, a number of teams each including

several experts in the search field spread out across the forest and gradually move in the same direction by finding clues

from the target until they find the missing person. This search structure was designed in a mathematical structure in the

form of intragroup search operators and transferring the expert member to the top team. In addition, the efficiency of the

algorithm was assessed by comparing the results to the standard representations and a problem with the genetic, grey wolf,

salp swarm, and ant lion optimizers. According to the results, the proposed algorithm was efficient for solving many

numerical representations, compared to the other algorithms.

Keywords Search in forest � Swarm intelligence � Metaheuristic � Intragroup search � Global optimization problems �
Transfer of an expert member to the top team

1 Introduction

An optimization process includes finding the best solution

from all feasible solutions for a specific problem. With

regard to their nature, optimization algorithms can be

widely divided into two groups: deterministic algorithms

and stochastic intelligent algorithms (Yang 2008). Deter-

ministic algorithms will produce the same output when the

solutions to a problem have the same initial values. These

methods are classified as gradient restricted methods that

move exactly towards the optimal solution. In contrast,

deterministic algorithms are generally recognized as gra-

dient-free techniques used in random steps to find the best

solution possible. In this method, the optimization process

cannot be repeated in any situation (Brownlee 2011). In

most cases, however, favourable final solutions can be

produced by both techniques. Stochastic intelligent algo-

rithms are divided into two general modes of heuristic and

metaheuristic algorithms (Yang et al. 2012).

As the name implies, heuristic algorithms use trial and

error to find the solution that works and most of them are

applied in various optimization areas such as bat swarm

optimization, hill climbing, and simulation annealing.

Many real-world machine learning and AI problems are

generally continuous, discrete, finite, or infinite (Abbassi

et al. 2019). Given these characteristics, some problems

cannot be easily solved with ordinary mathematical pro-

gramming approaches such as conjugate gradient,

sequential quadratic programming, fast steepest, and quasi-

Newton methods (Faris et al. 2019).

Meanwhile, several studies have confirmed the ineffi-

ciency or low efficiency of the metaheuristic algorithms in

dealing with many large-scale, indirect, and indistinguish-

able polynomial problems in the real world (Wu et al.

2015). Accordingly, metaheuristic algorithms are designed
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as a competitive alternative solvent to solve many prob-

lems owing to their simplicity and easy implementation

process. Moreover, the main operations of these methods

do not rely on mathematical features or gradient informa-

tion. Nevertheless, one of the major drawbacks of meta-

heuristic algorithms is their sensitivity to setting user-

defined parameters. Another problem with these algorithms

is their lack of ability to always reach a global optimal

solution (Dréo et al. 2006).

Metaheuristic methods are used to solve complicated

issues such as scheduling (Wang and Zheng 2018), shape

design (Rizk-Allah et al. 2017), economic load dispatch

(Zou et al. 2016a, b), large-scale data optimization (Yi

et al. 2018, 2020), infinite impulse response (IIR) systems

identification (Zou et al. 2018), malware code detection

(Cui et al. 2018), error detection (Li et al. 2013; Yi et al.

2018), forecasting promotion places (Nan et al. 2017), unit

commitment (Srikanth et al. 2018), classification (Zou

et al. 2016a, b, 2017), path planning (Wang et al.

2012a, b, 2016a, b), vehicle navigation (Chen et al. 2018),

knapsack problems (Feng et al. 2018a, b), and cyber-

physical systems (Cui et al. 2017), neural network (Pandey

et al. 2020), trajectory tracking control of unmanned aerial

vehicle (Selma et al. 2020).

Metaheuristic algorithms designed are properly imple-

mented for most optimization issues and can successfully

provide a suitable and satisfactory situation. In the area of

computer sciences, researchers have proposed a new type

of gradient-free technique known as optimization tech-

niques called ‘‘genetic algorithm (GA)’’ by the conceptu-

alization of evolution (Goldberg and Holland 1998). After

that, several other techniques have been suggested in the

field of optimization, including ant colony optimization

(Dorigo and Birattari 2010), monarch butterfly optimiza-

tion (MBO) (Feng et al. 2018a, b), the ant lion optimizer

(Mirjalili 2018), moth search (Wang et al. 2018a, b, c),

artificial bee colony (Wang et al. 2018a, b, c), evolutionary

strategy (Back 1996), harmony search (Geem et al. 2001),

imperialist competitive algorithm (Talataheri et al. 2012),

earthworm optimization algorithm (Wang et al. 2015),

cuckoo search (Wang et al. 2016a, b), biogeography-based

optimization (Wang et al. 2014), elephant herding opti-

mization (Wang et al. 2016a, b), and differential evolution

(Wang et al. 2012a, b).

In general, metaheuristic algorithms are divided into two

main classes (Talbi 2009), single-solution-based (e.g.

simulated annealing) and population-based (e.g. GA). In

the first class, only one solution is processed in the opti-

mization stage, as the name implies. On the other hand, a

set of solutions (i.e. population) evolves with each iteration

of the optimization process in the second class. The pop-

ulation-based techniques can often find an optimal or near-

optimal solution in the neighbourhood. In addition,

population-based metaheuristic techniques are usually

inspired by natural phenomena and start the optimization

process by producing a set (population) of people, where

each person in the population represents a candidate solu-

tion to the optimization problem. The population repeat-

edly evolves with replacing the current population with a

new population using some random operators. The opti-

mization process continues until meeting the stopping cri-

teria (i.e. the maximum number of iterations).

2 Literature review

Particle swarm optimization (PSO) is a spirit-based

stochastic optimization method proposed by Eberhart and

Kennedy (1995) and by Kennedy and Eberhart (1995).

Given the inefficiency of the first version of PSO in opti-

mization issues, another version was quickly proposed by

shi and eberhart (1998). Afterwards, a reproduction oper-

ator was incorporated into the algorithm following pre-

senting the concept of a sub-population GA (SPGA)

(Suganthan 1999). Another local PSO version was sug-

gested based on the k-means clustering approach known as

the social convergence method with hybrid spatial neigh-

bourhood and ring topology by Kennedy and Stereotyping

(2000). Van Den Bergh (2001) analyzed the definitive

version of the PSO algorithm followed by presenting a

version of the PSO algorithm with reduction factor after

analyzing the convergence behavior of PSO algorithm,

which guaranteed convergence and improved its rate (Clerc

and Kennedy 2002). The bare-bones PSO (BBPSO) was

proposed in as a dynamic model of PSO (Kennedy 2003).

In 2004, Emara and Fattah (2004) analyzed the continuous

version of PSO algorithm and theoretical analysis was

performed on the PSO algorithm for symmetric spherical

local neighbourhood functions, and numerical tests con-

firmed the speed characteristics along with reducing vari-

ability in the PSO algorithm (Blackwell 2005).

Kadirkamanathan et al. (2006) analyzed the dynamic sta-

bility of particles using Lyapunov stability analysis and the

concept of passive system (Kadirkamanathan 2006). A

marine model was studied to promote search diversity in

PSO (Poli et al. 2007). In addition, the social and fully

aware particle version of the PSO algorithm was also

introduced by Poli (2008) and the stable stochastic analysis

encompassed higher-ranking moments, proving its suit-

ability for comprehension of dynamics of particle growth

and clarifying the convergence features of PSO (Poli

2009). The modified algorithm presented by Park et al.

(2009) introduced the chaotic inertia weight that suddenly

falls and simultaneously inclines downwards. Zhan et al.

(2010) introduced orthogonal learning, in which an
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orthogonal learning model was applied for efficient

sampling.

Li et al. (2011) presented a self-learning PSO algorithm,

in which the speed update program can change automati-

cally during the evolution process. Approaches such as

search space compression have been proposed dynamically

to determine the search space (Barisal et al. 2013). Garcia-

Gonzalo and Fernandez-Martinez (2014) presented a con-

vergent reliability and stability analysis of a series of PSO

types, and their research was different from the classic PSO

in terms of the statistical distribution of PSO parameters.

Moreover, Peng and Chen (2015) introduced a coexistence

particle optimization algorithm to optimize fuzzy neural

networks. Eddaly et al. (2016) presented a hybrid combi-

natorial particle swarm optimization algorithm (HCPSO)

as a resolution technique. An iterated local search algo-

rithm based on probabilistic perturbation is sequentially

introduced to the particle swarm optimization algorithm for

improving the quality of solution. The computational

results showed that their approach was able to improve

several best known solutions of the literature. Tanweer

et al. (2016) presented a new dynamic particle optimization

algorithm and self-resemblance algorithm. Moreover,

Wang et al. (2018a, b) proposed a Krill herd algorithm,

which is from the category of PSO algorithm. Koyuncu and

Ceylan (2018) added a scout bee phase to standard PSO

and formed the Scout Particle Swarm Optimization

(ScPSO) to design an efficient technique for continuous

function optimization; consequently, a robust optimization

algorithm was obtained.

3 Search in forest theory

Every year, thousands of people lose their way in forests

and mountain areas, and search-and-rescue operations are

carried out to find them and bring them to their destination.

To this end, some ‘‘search agents’’ are assigned to find the

missing people in the forest after passing special education

courses in this regard. These individuals are often grouped

in ‘‘search teams’’ during operations and attempt to find the

target in the depth of forests. It should be noted that in

order to perform search operations, different methods can

be implemented according to the opinion of the comman-

der. However, given the standard content presented in

educational courses held for police and fire brigade, who

are among the main forces searching in the forest, multi-

member teams are formed at first to search different parts

of the forest. Afterwards, each team that finds a clue of the

target informs other teams to adjust their direction. Ulti-

mately, all teams search the direction in which most clues

are found. Figure 1 graphically shows how to search the

forest in accordance with the above-mentioned issues.

Two techniques are applied to organize teams to conduct

effective search operations in all forest areas. The first

technique is a local search inside each team, in which the

commander of each team allocates parts to each member

and gives them the responsibility of searching that part.

The commander is informed of any clue found by team

members, and they will send another team member to that

area for more effective search in order to deepen the

search. Therefore, all team members attempt to conduct an

effective search in the parts allocated to them. In the sec-

ond technique, the team that finds most clues is enforced by

other teams. In fact, commanders of teams send one of their

team members to the team with the most clues in order to

help conduct an effective search in the forest. Meanwhile,

some members remain in the teams that find the least clues

in order to continue the search in the forest in case of any

mistake made by the top team. In fact, a team may find

several clues that are false and cannot lead to finding the

target. In this case, other teams continue the search in the

forest. However, their search path is in line with the search

path of the top team since most clues have been found on

this route. The mathematical structure inspired by this

behavior will be explained in the next section to solve

global optimization problems.

4 Mathematical model of search in forest
optimizer

In this section, the steps related to the implementation of

the mathematical model of the forest search (SIFO) opti-

mizer are described separately.

5 Research team production

First, M teams were determined, each with N members, in

order to establish initial order in the formation of search

teams. In fact, Pnð Þm population is created, in which m

shows the number of search teams and n shows the number

of team members. Since team members search the forest

space in a stochastic manner and they might find a clue at

any time, their movement structure is designed in two

sections based on a mathematical model. In the first sec-

tion, a stochastic step is designed for each m search team in

the form of Model 1.
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Xt
m ¼

XMax Itr

i¼1

Xi

j¼1

Signj � aj;

s:t:

aj ¼
0; r1\0

1; r1� 0

�
; 8j 2 1; . . .;Max Itrf g

signj ¼
1 0� r2\0:33

0 0:33� r2\0:66

�1 r2� 0:66

;

8
><

>:
8j 2 1; . . .;Max Itrf g

ð1Þ

where r1 and r2 are random numbers in the [0, 1] range.

Therefore, each search group (population) can search for

the missing person stochastic in the forest space. Model 1

produces various stochastic search structures, which are

shown in Fig. 2.

5.1 Search space division scheme

Given the fact that each search team searches a specific

area of the solution space, a specific movement structure

must be determined for each member of each team to

ensure a thorough search of the entire solution space. In

other words, members of each team must cover the entire

solution space based on the angle assigned to them to

search using stochastic movements. The search area is

assumed to be enclosed in a circle in order to formulate this

structure. In addition, it is assumed that all search teams are

in the centre of the circle at a zero moment. As such, a

proper angle of the circle is allocated to each team n based

on the number of search teams (M).

In Fig. 3, the solution space is divided into eight equal

parts based on the enclosed circle and space is allocated to

each of the eight teams based on h angle. Therefore, the

entire solution space will be inspected by the search team

members. According to Model 1, all search teams make

stochastic movements in the allocated space. In addition,

the surrounding space is inspected by the research team

while searching the main route of their team’s direction.

Since the opposite view of h angle is the sine of the angle,

sine function, as shown in Model 2, can be used to math-

ematically define the movement structure of each search

member.

Fig. 1 Convergence of search teams to find targets in the forest

-25
-20
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-10

-5
0
5

10
15
20

Descending Ascending No trend

Fig. 2 Movement structure of search teams in the solution space
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Yt
mn ¼

XMax Itr

i¼1

Xi

j¼1

Signj � bj;

s:t:

bj ¼
sin h 0\h� 90

1 þ sin h 90\h\180

1 h ¼ 180; 360f g

8
<

: ; 8j 2 1; . . .;Max Itrf g

h ¼ 360

M
; 8j 2 1; . . .;Max Itrf g

signj ¼
1; r\0:5

�1; r� 0:5

�
; 8j 2 1; . . .;Max Itrf g

ð2Þ

where r is a random number in (0, 1) range. Similar to

Fig. 2, the movement structure produced in Model 2 can

create various procedures, which ensures the stochastic

movement of the entire members of all search teams. The

position of each search team in the solution space is

determined in a random matrix, in which columns are

indicative of the number of search teams, while rows

demonstrate the number of members in each team in the

form of matrix (3).

PositionTeam ¼
T11 � � � T1n

..

. . .
. ..

.

Tm1 � � � Tmn

2
64

3
75 ð3Þ

where Tmn indicates the nth member of the mth team.

Clearly, each team member has a set of decision-making

variables, which is shown in a matrix in the form of

Eq. (4).

Tmn ¼ M1;M2; . . .;Mv½ � ð4Þ

where Mv is the amount of the vth variable in the nth

member of the mth population. The fitness of each team

member can be estimated based on the problem’s objective

function and be considered as Eq. (5).

FitnessTeam ¼
f T11ð Þ � � � f T1nð Þ

..

. . .
. ..

.

f Tm1ð Þ � � � f Tmnð Þ

2

64

3

75 ð5Þ

Obviously, f Tmnð Þ ¼ f Tmn M1;M2; . . .;Mvð Þð Þ. Accord-

ing to the structure created, it could be expressed that team

members have the same role as particles in the PSO

algorithm, and the created demographic structure is based

on GA.

5.2 Integration of search teams

In algorithm iterations, a number of search teams are dis-

solved due to failure to find proper clues of the target, and

their members are added to other teams. In this regard, each

team can attract the members of the dissolved team based

on their performance. In fact, the allocation of the members

of the dissolved team to other teams depends on the teams’

fitness. However, the teams’ performance must be assessed

and the improper teams must be dissolved at the right time.

It is best not to eliminate any team at the beginning of the

search due to the need for several teams to inspect the

entire solution space. As search operations expand, the

search teams can be assessed and dissolved in case of poor

performance. In this algorithm, it is assumed that the teams

have more time to show their performance in primary

iterations in order to formulate this behavior mathemati-

cally. In final iterations, however, assessments are carried

out in shorter periods. This mathematical structure is

shown in Model 6.

If
Bestt � Worst

m
Fitnesstm
� �

Bestt

 !

� 0:4 ! remove team with the worst fitness

Bestt ¼
Best
m

Fitnesstm
� �

þ Average Fitnesstð Þ
2

Average Fitnesstð Þ ¼
P

m¼1 Fitnesstm
M

ð6Þ

When the measure of the best fitness increases from the

worst fitness related to the best fitness for all teams lower

than the empirical value of 0.4 for a team, that team is

recognized as the weaker team. It means that the search in

the heuristic path would not be productive. Accordingly,

before starting the next iteration, the elite members of that

group will be transferred to stronger groups. Bestt indicates

the fitness of the best member in the tth iteration, Worst is

indicative of the fitness of the weakest population, and

Average function is the mean fitness of the existing

Fig. 3 Division of solution space based on the number of search

teams
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populations in that iteration. Following dissolving the team

with the weakest performance, its members are transferred

to other teams. However, the number of members allocated

to each of the remaining teams depends on their fitness

based on Eq. 7. In order to improve the stronger teams by

transferring the determined elite members to the weaker

teams, we should also transfer the elite of these individuals,

meaning their ability to discover the best optimal answer. It

is obtained via calculating the measure of the best optimal

answer of each team related to the sum of all teams’

answers and multiplying the result by the number of

determined individuals.

Itm ¼ FitnesstmP
m Fitnesstm

� Nt
r ð7Þ

where Nt
r the number of members and r is the index of the

dissolved team. The elite members of the weaker teams are

determined so far. Thereby, the stronger team would have

n ? Itm members. Accordingly, transferring the elite

member of the weaker teams to the stronger teams was

performed until the final iteration of the algorithm.

Therefore, the teams with a weak performance can be

eliminated in various algorithm iterations and the remain-

ing teams’ ability to search can be strengthened through

increasing their members.

5.3 Intragroup search

In this section, we describe the local search structure

conducted inside each group to improve each of its mem-

bers and ultimately enhance the group’s ability to search.

As explained, an intragroup search occurs when one of the

members of the group finds a clue. For a more detailed

search, the commander of the group sends other members

to the direction of the mentioned member to reinforce the

local search to a certain extent. To this end, Sm tð Þ is defined

as a set of neighbours on the tth variable in Xm tð Þ solution.

Sm tð Þ ¼ Wþ
m tð Þ;Wþ

m tð Þ
� �

ð8Þ

Wþ
m tð Þ ¼ Xt

m þ c� um tð Þ � vm tð Þð Þ ð9Þ

W�
m tð Þ ¼ Xt

m þ c� um tð Þ � vm tð Þð Þ ð10Þ

where Wþ
m tð Þ and W�

m tð Þ indicate two neighbours of Xt
m

solution, and um tð Þ ¼ u1 tð Þ; u2 tð Þ; . . .; uM tð Þð Þ; m 2
1; . . .;Mf g and vm tð Þ ¼ v1 tð Þ; v2 tð Þ; . . .; vM tð Þð Þ, m 2
1; . . .;Mf g refer to two random solutions selected from Pm

population. Moreover, c shows the cluttered factor

obtained based on the normal distribution of N l;r2ð Þ.
While the application of the cluttered factor in the local

search algorithm is not considered as a decision-making

criterion, it has a slight impact on the improvement process

of algorithm implementation. Meanwhile, careful adjust-

ments must be made for u and v factors. However, it is easily

justified that u factor must be greater than zero (u[0). The

value of the factor must be determined accurately since very

large amounts lead to extremely large values for

um tð Þ � vm tð Þð Þ, which intensifies the cluttered br in the

algorithm. On the other hand, the value of the mentioned

equation will be very small if very low amounts of the factor

are used. This leads to very small values obtained from

multiplying the c factor into the factor’s value, very low

cluttered factor, and low algorithm convergence. As such, the

parameter should be set with great care. In addition, r
parameter’s value should be greater than zero. Notably, very

large or very low r values affect the c parameter, and con-

sequently, the convergence of the algorithm. It is suggested

that the values of r and l be in the (0, 1) range.

The stochastic step created in models 1 and 2 cannot be

used directly since the solutions produced by algorithm

iterations for each member of the population should be in

the permissible range of problem variables. Therefore,

necessary numerical conversions should be made using

standardization functions.

Xt
m ¼ ZXt

m
ð11Þ

Yt
m ¼ ZYt

m
ð12Þ

5.4 Transfer of elite members to the top team

The elite members are the individuals of each team pro-

viding the best optimal answer in each search. The superior

teams are the ones providing more optimal answers in each

search compared to the other teams. Indeed, the teams with

more fitness are in the right heuristic path of the total

optimal answer compared to the other teams. Transferring

the elite individuals to the superior teams leads to their

strength in accurately searching the neighbourhood through

the heuristic path to find the best fitness, and it is one of the

tools for exiting the local optimizations, preventing the

algorithm from getting fall in them.

In this research, the final solution was improved using

the random walk method (Levy flight) based on the equa-

tion below:

Xtþ1
m ¼ Xt

m þ Levy dð Þ � Xt
m ð13Þ

where t is the number of algorithm iteration and d is the

dimension of the team members’ position vector. The Levy

flight value is estimated using the equation below:

Levy Xt
m

� �
¼ 0:01 � r1 � r

r2j j
1
b

ð14Þ

2330 A. Ahwazian et al.

123



where r1 and r2 are random values in the (0, 1) range. In

addition, b is a constant number (e.g. 1.5). Finally, r is

calculated based on the equation below:

r ¼
C 1 þ bð Þ � sin pb

2

� �

C 1þb
2

� �
� b� 2

b�1
2ð Þ

0

@

1

A ð15Þ

where C Xt
m

� �
¼ Xt

m � 1
� �

! Therefore, the solutions gener-

ated are improved with each algorithm iteration, and the

best algorithm solution is considered as the final solution.

5.5 Flowchart and the pseudo-code of the SIFO
algorithm

Figure 4 shows flowchart of the SIFO algorithm.

6 Results and discussion

In this section, we evaluate the performance of the pro-

posed algorithm in solving two general categories of

optimization problems, including constrained and uncon-

strained problems. Figure 5 shows diagram block was

provided to demonstrate the road map in different steps of

this part. All problems have been run in a 3.2 GHz system

with 32 GB random access memory in Windows 10.

6.1 Introducing standard unconstrained
optimization and parameter regulation tests

In this research, we use four popular standardized tests,

including classic unimodal (Yao et al. 1999; Digalakis and

Margaritis 2001) and multimodal functions (Molga and

Smutnicki 2005), unimodal and multimodal CEC2014

functions and CEC2014 combined functions. The mathe-

matical structure, dimensions, and the range of values of

these functions are described in Tables 1, 2, 3, 4.

A very important issue in the implementation of a

metaheuristic algorithm is the accurate adjustment of

parameters to increase their efficiency. It is worth noting

that there is still no comprehensive approach to the

assessment of the performance of metaheuristic algorithms

(Yang 2010). Therefore, the solutions provided by the

proposed algorithm should be compared to the results

obtained from other algorithms. Therefore, we considered

the GA (Davis 1991), grey wolf optimizer (GWO)

Start
Ini�aliza�on the 

parameters 
Ini�aliza�on the posi�on 

of teams and agents
Calculate the fitness of all 

Teams and agents

Update best fitnessTeam merging by using 
model (6) and 

Remove worst 
team 

Run local search
Create a New array based on 

the number of removed teams

Update the 
Posi�on of 

Teams

Is stop Criteria 
Reached?

No

Yes

Return best 
fitness, best 

posi�on

Run levy flight 
End

Fig. 4 Flowchart of the SIFO algorithm
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(Mirjalili et al.2014), salp swarm (SSA) (Mirjalili et al.

2017), ant lion optimizer (ALO) (Mirjalili 2015), gravita-

tional search algorithm (GSA) (Rashidi and Cook 2009),

differential evolution (DE) (Storn and Price 1997), and

PSO (Zhou et al. 2003) algorithms as the base algorithms to

compare the results. It is thereby necessary to adjust the

parameters of each of the mentioned algorithms based on

Table 4.

All algorithms are implemented to achieve final results

in similar situations. In all algorithms, the population size

is estimated at 50 and a total of 1000 iterations are con-

sidered. In order to control the performance of all algo-

rithms, the best results are considered among the 30

independent performances. In addition, a number of dia-

grams are presented below to evaluate the results of the

proposed algorithm in comparison with other metaheuristic

algorithms in terms of solving standard numerical

representations.

• Diagram of search structure The diagram shows the

location of each search agent in the forest space during

the implementation of the algorithm. The diagram helps

determine the level of success of search agents in the

solution space.

• Improved trajectory The diagram shows the amount of

target function in the best solution obtained in each

implementation of the algorithm. In fact, the diagram

shows the improved trajectory of the best member of

the search agent population.

• Mean solutions The diagram demonstrates the mean of

a fitness function for all members in each iteration. The

diagram indicates the algorithm’s ability in converging

all population members.

• Convergence diagram The diagram shows the conver-

gence of the algorithm towards the best solution in each

iteration.

6.2 Numerical results of the limit of classic
unimodal and multimodal samples

The diagrams related to the comparison criteria are pre-

sented in Fig. 6 following solving the classic unimodal and

multimodal numerical representations with the help of the

proposed algorithm.

According to the results, the population members are

scattered in the space during the optimization process and

are concentrated on the optimal solution. This shows that

the algorithm performance has balance in diversification

Fig. 5 Road map of result and discussion
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and contemplation phases. In addition, the trajectory of the

best member of the population in each iteration shows

many numerical changes in the first iterations and then

convergence on the final solution. In fact, this confirms a

balance in the discovery of proper solutions in the initial

iterations (diversification) and focusing on the best solution

for local search to make an optimized global finding.

Evaluation of the convergent diagram shows that the con-

vergence process is carried out with less slope or is dis-

continued completely in some iterations. This means that

the algorithm has failed to find a solution better than the

existing solution. However, a sudden significant improve-

ment is observed and the improvement slope has a suit-

able state again. This shows that the proposed algorithm

can properly pass the trap of local optimization solutions

and continue the search in other parts of the space using the

operators designed in order to pass local optimization and

move towards global optimization. Therefore, the proposed

algorithm is able to discover global optimization solutions

in all standard representations in a shorter period. The

results obtained from solving the classic unimodal and

multimodal numerical representations are presented in

Table 5 with the help of the base algorithms and proposed

algorithm.

As observed, the SIFO optimizer produced better solu-

tions in all numerical representations, compared to SSA,

ALO, PSO, and GSA algorithms. Moreover, SIFO shows

very competitive results compared to DE in F4, F5, F6,

F11, F12, and F13 representations and compared to GWA

in F8 and F11 representations. Notably, the mean and

standard deviation of solutions are considered in Table 5.

Meanwhile, SIFO optimizer produced better solutions in all

numerical representations, compared to the other algo-

rithms in independent implementations. In other words,

SIFO was able to provide solutions with higher quality in

independent implementations. The best and worst values

for final solutions obtained from the independent imple-

mentation of different algorithms are presented in Table 6

to better show this superiority. In addition, the number of

times that the SIFO optimizer has been able to generate

better solutions, compared to other algorithms, is shown

under the heading NBS.

As observed, SIFO optimizer produced better indepen-

dent solutions in standard representations, compared to

several algorithms, which shows its capacity to be used as

an efficient algorithm in solving optimization problems.

Table 2 CEC2014 unimodal

and multimodal standard

numerical representations

Function Dim Range fmin

f14 xð Þ ¼ Rotated High Conditioned Elliptic Function 30 �100; 100½ � 100

f15 xð Þ ¼ Rotated Cigar Function 30 �100; 100½ � 200

f16 xð Þ ¼ Shifted and Rotated Ackley’s Function 30 �100; 100½ � 500

f17 xð Þ ¼ Rotated Weierstrass Function 30 �100; 100½ � 600

f18 xð Þ ¼ Rotated HappyCat Function 30 �100; 100½ � 1300

f19 xð Þ ¼ Rotated HGBat Function 30 �100; 100½ � 1400

f20 xð Þ ¼ Rotated Expanded Griewank’s plus Rosenbrock’s Function 30 �100; 100½ � 1500

f21 xð Þ ¼ Rotated Expanded Scaffer’s F6 Function 30 �100; 100½ � 1600

Table 3 CEC2014 combined standard numerical representations

Function Dim Range fmin

f22 xð Þ ¼ Composite function 1 30 �100; 100½ � 2300

f23 xð Þ ¼ Composite function 2 30 �100; 100½ � 2400

f24 xð Þ ¼ Composite function 3 30 �100; 100½ � 2500

f25 xð Þ ¼ Composite function 4 30 �100; 100½ � 2600

f26 xð Þ ¼ Composite function 5 30 �100; 100½ � 2700

f27 xð Þ ¼ Composite function 6 30 �100; 100½ � 2800

Table 4 Parameters of algorithms

Algorithms Parameters

SIFO M ¼ 10;N ¼ 25; c ¼ 0:3

GA crossover ¼ 0:7; mutation ¼ 0:3

GWO a ¼ 0; 2½ �
SSA c1 ¼ 0; 1½ �; c2 ¼ 0; 1½ �
ALO k ¼ 500

PSO c1 ¼ 2; c2 ¼ 2; vMax ¼ 6

DE crossover ¼ 0:5

GSA g ¼ 0:2
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Fig. 6 Behavior of the proposed algorithm in solving the standard numerical representation
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Fig. 6 continued
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6.3 Numerical results obtained from the limit
of CEC2014 unimodal and multimodal
representations

In this section, CEC2014 standard representations pre-

sented in two unimodal and multimodal versions are solved

using SIFO optimizer and other comparative algorithms,

and the results are presented in the table. It should be

pointed out that owing to higher computational complexity,

compared to F1–F13 functions, the samples can challenge

the solution discovery power of the proposed algorithm in

the exploration phase. This is mainly due to the fact that

discovering the accurate location of the global optimization

solution in the complicated computational space of these

algorithms is extremely difficult, and the algorithm may get

stuck in the local optimization trap. In fact, the operators

presented in different algorithms can be well evaluated in

this category of standard functions. The necessary com-

parative results are presented in Tables 7 and 8. Notably,

solving the two standard samples was assessed in two

modes of 1000 and 10,000 iterations to evaluate the effect

of an increased number of iterations on the final solutions.

As observed, the proposed algorithm was able to provide

more efficient solutions in most numerical examples,

compared to the other algorithms. This level of superiority

is due to the presence of two different populations, which

extremely increases search power in the exploration phase.

As observed, the final solutions significantly improved

with an increase in the number of iterations, which con-

firmed the proper implementation of the algorithm’s

operators to escape the local optimization trap. In fact, an

increase in the number of iterations enabled the algorithms

Table 5 Numerical results obtained from solving the base algorithms and SIFO optimizer

Standard representation SIFO GA GWO SSA

Ave Std Ave Std Ave Std Ave Std

F1 2.41E2107 7.91E-05 0.00057 0.00013 6.59E-28 6.34E205 1.8531E-08 8.85E-05

F2 1.922E252 5.39E-02 0.0081 0.00077 7.18E-17 0.029014 9.2792E-06 8.95E-02

F3 5.11E229 8.40E?01 0.016 0.014 3.29E-06 79.14958 5.8652E-10 1.40E?02

F4 2.3189E-25 7.75E-01 0.3 0.5 5.61E-07 1.315088 1.3316E-05 1.12E?00

F5 0.40944 3.96E?01 5.06 5.87 26.81258 69.90499 7.3879 6.41E?01

F6 1.9265E-05 4.18E-05 0 0 0.816579 0.000126 5.1691E-10 6.96E-05

F7 0.00077283 1.08E-01 0.1415 0.3522 0.002213 0.100286 0.011272 6.29E-02

F8 - 1855.0007 - 3.63E?02 - 154.5 52.6 - 6123.1 - 4087.44 - 2923.4471 - 8.14E?02

F9 0 2.11E?01 0.046 0.012 0.310521 47.35612 12.9344 2.22E?01

F10 8.8818E216 1.65E-01 1.80E-02 2.10E-03 1.06E-13 7.78E-02 1.6462 2.74E-01

F11 0.012453 1.02E?00 1.60E-02 2.20E-02 4.49E203 6.66E203 0.1108 1.68E?00

F12 2.033E-07 2.00E-01 9.2E-01 3.6E-01 5.34E-02 2.07E-02 1.0168E-11 3.33E-01

F13 2.0979E-05 1.43E?00 1.60E-04 7.30E-05 6.54E-01 4.47E-03 0.010987 2.38E?00

Standard representation ALO PSO DE GSA

Ave Std Ave Std Ave Std Ave Std

F1 2.59E-10 1.65E-10 0.000136 0.000202 8.20E-14 5.90E-14 2.53E-16 9.67E-17

F2 1.84E-06 6.58E-07 0.042144 0.045421 1.50E-09 9.90E-10 0.055655 0.194074

F3 6.06847E-10 6.34E-10 70.12562 22.11924 6.80E-11 7.40E-11 896.5347 318.9559

F4 1.36E-08 1.81E-09 1.086481 0.317039 0 0 7.35487 1.741452

F5 0.34677239 0.109584 96.71832 60.11559 0 0 67.54309 62.22534

F6 2.56E-10 1.09E-10 0.000102 8.28E-05 0 0 2.50E-16 1.74E-16

F7 0.00429249 0.005089 0.122854 0.044957 0.00463 0.0012 0.089441 0.04339

F8 - 1606.2764 314.4302 - 4841.29 1152.814 - 1108.1 574.7 - 2821.07 493.0375

F9 7.71E-06 8.45E-06 46.70423 11.62938 69.2 38.8 25.96841 7.470068

F10 3.73E-15 1.50E-15 2.76E-01 5.09E-01 9.7E08 4.2E-08 6.21E-02 2.36E-01

F11 0.01860449 0.009545 9.22E-03 7.72E-03 0.00E?00 0.00E?00 2.77E?01 5.04E?00

F12 9.75E-12 9.33E-12 6.92E-03 2.63E-02 7.9E215 8.00E-15 1.80E?00 9.51E-01

F13 2.00E-11 1.13E-11 6.68E-03 8.91E-03 5.1E214 4.8E-14 8.90E?00 7.13E?00

Bold numbers represent the best values
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to leave the local optimization space and enter the global

optimization space by using operators that have the prop-

erty of causing mutations in the production responses. A

3D structure can be drawn for other functions (see Fig. 7).

6.4 Numerical results obtained from the limit
of CEC2014 combined examples

In this section, six combined numerical examples presented

at CEC2014 are considered as evaluation functions and the

results of the solution are described as the last numerical

analysis presented to test the proposed algorithm using

standard examples. These examples can assess the

exploitation phase of the proposed algorithm since the

space of solutions is designed in a way that it has made the

discovery of a global optimization solution in the solution

space extremely complicated. In other words, the extend of

the solution space leads to the appropriate implementation

of the exploration phase during an acceptable period.

However, finding a solution to the exploitation phase faces

Fig. 7 3D structure of F14, F15, and F16 functions

Table 9 Results obtained from solving CEC2014 combined standard representations

F22 F23 F24

AVG STD MED AVG STD MED AVG STD MED

SIFO 2500 0 2500 2600 0 2600 2700 0 2700

GA 2748.3148 5.8429272 2787.2 2721.0841 2.3848824 2760.4 2811.0338 3.9165984 2849.6

GWO 2746.6802 6.3599307 2811.9 2766.9163 3.1528094 2797.6 2805.5017 4.9085358 2849.6

SSA 2670.9288 2.1432852 2698.6 2752.9106 33.171974 2776.8 2793.6216 16.93302 2822.2

ALO 2721.2069 1.6228404 2672.4 2725.2286 32.809296 2750.1 2788.7129 13.175748 2811.9

PSO 2672.2238 6.148272 2735.2 2782.7946 42.195054 2781 2806.3121 12.592632 2784.6

DE 2710.7562 19.140402 2808 2678.0084 0.005512 2678 2826.635 3.877847 2822.2

GSA 2759.2115 17.331604 2766.4 2659.4071 5.4450435 2688.3 2768.5318 17.368581 2828.8

F25 F26 F27

AVG STD MED AVG STD MED AVG STD MED

SIFO 2800.769 100.14584 2800 2900 0 2900 3000 0 3030

GA 2881.7921 100.1502152 2881 2958 0 2987 3090 0 3151.2

GWO 2901.4135 141.570712 2884.6 3712.5562 106.92007 3855.6 4877.569 361.74373 5678.4

SSA 2884.2828 100.881382 2918.4 3385.5871 60.485184 3519 5610.5743 513.74952 7065.8

ALO 2923.3572 161.953984 2901.6 4072.2828 480.03356 4160 5922.2012 1120.4886 6000.8

PSO 2940.3414 169.563316 2932.5 4211.2077 414.9055 4274.4 5936.6541 1097.5672 6035.8

DE 2924.4071 157.992296 2928.8 4059.0527 382.53984 4066.4 5453.9283 870.50891 5520.8

GSA 2882.3581 100.8285664 2854 3391.3789 260.02034 3590.4 4409.4127 275.50292 5064.8

Bold numbers represent the best values
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serious challenges. Table 9 presents the numerical results

obtained from the implementation of these standard

examples.

As observed, the proposed algorithm provided better

solutions in solving the combined representations, com-

pared to the other algorithms presented in the research.

Therefore, it could be expressed that the application of the

proposed algorithm can create a suitable condition for

finding the final solution in the global optimization solution

space. To sum up, the SIFO optimizer was able to create a

proper situation for a general assessment of the solution

space using the mechanism of production of multiple

populations in the form of search teams and applying

various search factors in each team. Moreover, the algo-

rithm reinforced the discovery phase by integrating search

teams in various iterations. In addition, using the Levy

flight operator to transfer the elite members resulted in a

suitable convergence in the problem-solving procedure. A

numerical example corresponding to real-world conditions

is solved using this algorithm, and the numerical results are

fully described to examine the application of the proposed

algorithm in solving engineering problems more precisely.

6.5 Solving constrained optimization problems

As mentioned at the beginning of this section, two

numerical examples in the area of supply field design are

evaluated as constrained optimization problems in order to

more accurately evaluate the performance of the proposed

algorithm.

6.5.1 Classic supply chain design

In brief, supply chain management is one of the basic

issues in the fields of management, economics, industrial

engineering, planning, and other related fields. A part of

issues in the area of supply chain management is defined as

optimization problems and in the field of operations

research (Zou et al. 2016a). In this set of problems, the flow

of goods, from the beginning of the production path, which

0
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includes the supply of raw materials, manufacturing in

production centres, and distribution of the final product, is

managed in a way that the final cost of the system is

minimized. In this research, the data extracted from the

research by (Beamon 1998) are used, which is recognized

as one of the most complete classic models in this field. In

this research, 20 numerical examples were generated

according to the structure of the basic article to more

accurately evaluate the behaviour of the SIFO optimizer. In

Table 10 the numerical results obtained from comparison

with GWA, SSA, and SIFO optimizer were described.

Notably, the comparison criteria included the value of the

objective function, the amount of deviation of solutions,

and the number of iterations required to achieve the final

solution.

Fig. 10 K-S test diagrams for various criteria

Table 11 Final results of testing the normal distribution of the criteria

Criterion Time Number of iterations Target function value Standard deviation

P-Value \ 0.027 0.048 \ 0.010 \ 0.010

Result Rejection of the null

hypothesis

Rejection of the null

hypothesis

Rejection of the null

hypothesis

Rejection of the null

hypothesis

Table12 Kruskal–Wallis test results

Criterion Time Number of iterations Target function value Standard deviation

P-Value \ 0.012 0.041 \ 0.016 \ 0.126

Result Rejection of the null

hypothesis

Rejection of the null

hypothesis

Rejection of the null

hypothesis

Rejection of the null

hypothesis
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According to Table 10, the SIFO optimizer had lower

objective function values, compared to the other algo-

rithms, which is also observed in Fig. 8. In fact, the algo-

rithm is able to conduct a better search in the solution space

and report more appropriate results. This is mainly due to

the presence of robust operators based on the crossover and

mutation in the algorithm.

Regarding the amount of deviation, the SIFO optimizer

had the lowest value in this respect, whereas SSA had the

highest value, which showed the higher efficiency of the

proposed algorithm in solving problems in this field.

As observed, in Fig. 9 there was a large gap between the

solutions provided by the SIFO optimizer and SSA, while

GWO produced solutions similar to SIFO optimizer in

some cases. Therefore, it is necessary to more analyse the

comparison of the GWA and SIFO optimizer, for which

statistical tests are used to make a more accurate compar-

ison. Since the tests compared two different societies, the

GWO and SIFO optimizer, which had the highest effi-

ciency, was selected as the criterion algorithms and the

necessary estimations were carried out. In choosing a sta-

tistical test for research, it is necessary to decide on the use

of parametric and nonparametric tests in a specific way. In

this regard, one of the main criteria for selection is con-

ducting the Kolmogorov–Smirnov test, which shows the

normal or abnormal distribution of the data. In general,

data have a normal distribution if the mentioned test is

rejected, which means that the parametrical statistical tests

can be used for research. On the other hand, confirmation

of the Kolmogorov–Smirnov test is interpreted as an

abnormal distribution of the data, which means that non-

parametrical tests should be used in the research. Mean-

while, significant results of the Kolmogorov–Smirnov test

Table 13 Indices and sets

I: Index of the set of suppliers

J: Index of the set of producers

K: Index of the set of retailers

L: Index of the set of assembly centres

M: Index of the set of destruction centres

N: Index of the set of capacity level points for all facilities

E: Index of the set of common points between points of production

centres (J) and points of assembly centres (L)

F: Index of the set of modules used (optional or mandatory)

Table 14 Input parameters

Dk: Demand of retailer k

Rk: Average deduction of returned product quantity from retailer k

(%)

S: Average deduction of the returned product in collection centres

(%)

fi
n: Fixed cost of activation of supplier i with capacity level n

gnj : Fixed cost of activation of producer j with capacity level n

hnl : Fixed cost of activation of a collection centre at location l with

capacity n

bnm: Fixed cost of activation of destruction centre at location m

with capacity n

f nn
0

et : A fixed amount of savings from the integration of the

production centre with capacity n with the collection centre with

capacity n
0

in location e

cxij: Total costs of transferring a product unit from the supplier

centre I to collection centre j

cujk: Total costs of transferring a product unit from the production

centre j to retailer k

cqkl: Total costs of transferring a returned product unit from

retailer k to collection centre l

cpli: Total costs of displacement of a returned product unit from

collection centre l to supplier i

ctlm: Total costs of transferring a returned product unit from

collection centre l to destruction centre m

cawn
i : Capacity level n of potential supply centre I (direct flow)

caynj : Capacity level n of potential production centre j

caznl : Capacity level n of potential collection centre l

cavnm: Capacity level n of potential destruction centre m

carni : Capacity level n of potential recovery centre I (reverse flow)

costf : Module production cost f

valuef : Value created for the customer if module f is provided

Skf : Value 1 if module f is mandatory for client k and equal to zero

if module f is optional

Bf
j : an input parameter that has the ability to produce module f if

the producer j is one

M: A large enough integer

Table 15 Decision variables

Kkf : Equal to one if module f is used for customer k; otherwise, it

is zero

Xij: Raw material flow rate from supplier i to producer j

Ujk: Product flow rate from producer j to retailer k

Wkl: Product flow rate from retailer k to collection centre l

pli: Product flow rate from collection centre l to supplier i

tlm: Product flow rate from collection centre l to destruction centre

m

wn
i : A binary variable that is activated in case of one value for a

supplier I at the capacity level n

ynj : A binary variable that is activated in case of one value for

producer j at the capacity level n

znl : A binary variable that is activated in case of one value for

collection centre I at the capacity level n

vnm: A binary variable that is activated in case of one value for

destruction centre m at the capacity level n
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(P-value B 0.05) show the abnormal distribution of the

data and the need for using nonparametric tests since

confirmation of the test is defined as nonparametric data.

Figure 10 diagrams show the result of the assessment of all

defined criteria in the test.

As observed, K–S test results are indicative of the

abnormal distribution of all criteria. Therefore, nonpara-

metric tests should be used to compare the two commu-

nities. In this research, we used the Kruskal–Wallis test, the

results of which are presented in Tables 11 and 12.

As observed, the two algorithms are different in terms of

all criteria, and SIFO optimizer has higher efficiency,

compared to GWO, at all times.

However, the difference is not significant, and it can be

expressed that the two algorithms had similar functions. As

Table 17 Parameters and their

values of the proposed SIFO

algorithm with other algorithms

Algorithms Parameters Optimal value

Search in forest optimizer M ¼ 10; N ¼ 40; c ¼ 0:3 6104.0226

Equilibrium Optimizer (2019) a1 ¼ 2; a2 ¼ 1; GP ¼ 0:5 12,000.41

Marine Predators Algorithm (2020) P = 0.5; fads = 0.2 8602.74824

Slime mould algorithm (2020) z = 0.03 9147.5764

Horse herd optimization algorithm (2021) W = 0.95 7881.1196

Wild horse optimizer (2021) PS = 0.5, PC = 0.33 7230.7444

Table18 Customer demand

Customer Demand Customer Demand Customer Demand Customer Demand Customer Demand

1 120 5 95 9 114 13 88 17 84

2 85 6 56 10 121 14 75 18 95

3 65 7 74 11 78 15 109 19 100

4 110 8 91 12 68 16 118 20 110

Table19 Average deduction of returned product from customers (%)

Customer Demand Customer Demand Customer Demand Customer Demand Customer Demand

1 5 5 8 9 6 13 3 17 5

2 7 6 4 10 8 14 8 18 5

3 10 7 12 11 5 15 10 19 4

4 5 8 4 12 4 16 11 20 9

Table 20 Fixed cost of using suppler with different capacity levels

(million Rials)

Capacity level 1 Capacity level 2 Capacity level 3

Supplier 1 1831 1651 1350

Supplier 2 1253 1142 1857

Supplier 3 1416 1385 1509

Supplier 4 1675 1415 1817

Table21 Fixed cost of

construction of production

centres with different capacity

levels (million Rials)

Capacity level 1 Capacity level 2 Capacity level 3

Potential centre 1 316 429 323

Potential centre 2 445 366 343

Potential centre 3 474 391 474

Potential centre 4 448 403 362

Potential centre 5 416 469 485

Potential centre 6 445 418 315
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such, SIFO implementation can lead to highly efficient

solutions for problems related to the management chain

field.

6.6 Advanced supply chain design problem
solving

In this research, we focus on the design of a reverse supply

chain to minimize the costs of facility location and material

transfer between different categories of the chain in ques-

tion. Evaluation of this issue is important since determining

the proper location of the facility and the proper flow of

products transferred between the levels of the chain can

improve the performance of the chain and ultimately

achieve a suitable profit margin for industry managers. The

proposed model is explained in Tables 13, 14, 15, 16.

The first sentence of the objective function calculates

the cost of activation of a supply centre. The second sen-

tence of the objective function shows the cost of activation

of producers. In addition, the third sentence estimates the

activation cost of collection centres, whereas the fourth

sentence calculates the cost of activation of a destruction

centre. Moreover, the fifth sentence calculates savings

resulted from matching the centres. Notably, the sentence

is presented in the target function with a negative symbol

since it must be maximized. Furthermore, the sixth sen-

tence shows the transfer of producers from suppliers to

producers, while the seventh sentence estimates the costs of

transfer from producer to retailer. The eighth sentence

calculates the cost of transfer of returned products from

retailer to collection centres, and the ninth centre estimates

the cost of transferring products from collection centres to

destruction centres. Finally, the 10th sentence shows the

entire costs of moving a returned product unit from the

collection centre to the supplier. Phrases (16) and (17)

guarantee that all demands of customers are responded to

the direct flow, and all returned products are collected from

retailers in the reverse flow. In addition, phases (18–20) are

related to flow balance constraints at nodes. In fact, it is

guaranteed in these constraints that the products that enter

each chain level must exist from the same level. Moreover,

constraints (19–26) guarantee that the flow exists only

between points where facilitation has been activated and

the entire flow does not exceed the capacity of each

facilitation. Furthermore, constraints (29–33) guarantee

that only one level of capacity is allocated to each facili-

tation, whereas constraint (31) guarantees that the neces-

sary module exists in the products sent to the desired

customer if the modules are mandatory. Additionally,

constraint (34) guarantees that customer demand can only

be met by a manufacturer when that manufacturer has the

ability to add a mandatory customer module. Finally,

constraints (35–36) are logical and obvious limitations

related to decision variables of a problem.

Table 22 Fixed cost of

construction of collection

centres with different capacity

levels (million Rials)

Capacity level 1 Capacity level 2 Capacity level 3

Potential centre 1 391 438 340

Potential centre 2 366 359 428

Potential centre 3 422 329 381

Potential centre 4 392 463 450

Table 23 Fixed cost of

construction of destruction

centres with different capacity

levels (million Rials)

Capacity level 1 Capacity level 2 Capacity level 3

Potential centre 1 254 157 312

Potential centre 2 214 187 319

Potential centre 3 267 164 327

Potential centre 4 219 155 355

Table 24 Total costs of

transferring a product unit from

supplier i to producer j (hundred

Rials)

Producer 1 Producer 2 Producer 3 Producer 4 Producer 4 Producer 5

Supplier 1 17 12 30 12 29 16

Supplier 2 30 17 16 15 11 17

Supplier 3 24 10 22 14 17 18

Supplier 4 12 25 17 16 15 23

2348 A. Ahwazian et al.

123



6.6.1 Comparison of results obtained from supply chain
design problem solving values by SIFO optimizer
and latest algorithm

The supply chain model is solved using the random values

by SIFO optimizer and latest algorithm, Equilibrium

Optimizer (EO) (Farmarzi et al. 2020), Marine Predators

Algorithm (MPA) (Farmarzi et al. 2020), Slime mould

algorithm (SMA) (Li et al. 2020), Horse herd optimization

algorithm (HOA) (MiarNaeimi et al. 2021), Wild horse

optimizer (WHO) (Naruei and Keynia 2021), and the

results are compared in Table 17. The results of solved

supply chain model by SIFO optimizer indicated better

optimal values than the MPA, EO, SMA, HOA, and WHO.

Table 25 Total costs of transferring a product unit from the production centre j to customer centre k (hundred Rials)

Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer

5 17 6 13 9 9 9 5 6 1

7 18 5 14 5 10 9 6 5 2

7 19 8 15 9 11 5 7 6 3

5 20 8 16 6 12 7 8 9 4

Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer

9 17 9 13 7 9 9 5 6 1

5 18 7 14 9 10 5 6 6 2

8 19 9 15 7 11 6 7 8 3

5 20 7 16 6 12 7 8 7 4

Production

centre 3

Customer Production

centre 3

Customer Production

centre 3

Customer Production

centre 3

Customer Production

centre 3

Customer

9 17 6 13 6 9 7 5 7 1

6 18 5 14 5 10 5 6 5 2

7 19 5 15 5 11 5 7 7 3

6 20 9 16 9 12 7 8 6 4

Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer

8 17 88 13 114 9 95 5 120 1

9 18 75 14 121 10 56 6 85 2

5 19 109 15 78 11 74 7 65 3

9 20 118 16 68 12 91 8 110 4

Production

centre 5

Customer Production

centre 5

Customer Production

centre 5

Customer Production

centre 5

Customer Production

centre 5

Customer

7 17 6 13 5 9 7 5 8 1

6 18 6 14 5 10 8 6 7 2

9 19 6 15 8 11 6 7 7 3

9 20 8 16 8 12 9 8 5 4

Production

centre 6

Customer Production

centre 6

Customer Production

centre 6

Customer Production

centre 6

Customer Production

centre 6

Customer

5 17 5 13 9 9 7 5 9 1

6 18 7 14 6 10 5 6 8 2

7 19 8 15 7 11 9 7 9 3

7 20 6 16 8 12 6 8 9 4
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Table 26 Total costs of transferring a product unit from customer k to collection centres (hundred Rials)

Collection

centre 1

Customer Collection

centre 1

Customer Collection

centre 1

Customer Collection

centre 1

Customer Collection

centre 1

Customer

2 17 3 13 3 9 5 5 3 1

2 18 2 14 2 10 5 6 3 2

3 19 3 15 4 11 4 7 2 3

4 20 4 16 1 12 7 8 4 4

Collection

centre 2

Customer Collection

centre 2

Customer Collection

centre 2

Customer Collection

centre 2

Customer Collection

centre 2

Customer

3 17 6 13 5 9 4 5 4 1

2 18 5 14 2 10 2 6 2 2

2 19 3 15 3 11 2 7 2 3

3 20 4 16 5 12 3 8 2 4

Collection

centre 3

Customer Collection

centre 3

Customer Collection

centre 3

Customer Collection

centre 3

Customer Collection

centre 3

Customer

3 17 5 13 4 9 3 5 5 1

2 18 5 14 2 10 3 6 5 2

4 19 2 15 3 11 2 7 2 3

2 20 2 16 4 12 4 8 4 4

Collection

centre 4

Customer Collection

centre 4

Customer Collection

centre 4

Customer Collection

centre 4

Customer Collection

centre 4

Customer

4 17 8 13 12 9 10 5 10 1

7 18 12 14 14 10 11 6 15 2

5 19 12 15 10 11 12 7 12 3

7 20 10 16 10 12 10 8 14 4

Table 27 Total costs of moving

a returned product unit from

collection centre l to supplier I

(hundred Rials)

Producer 1 Producer 2 Producer 3 Producer 4

Collection centre 1 5 4 5 9

Collection centre 2 7 7 6 6

Collection centre 3 8 5 5 4

Collection centre 4 6 9 5 5

Table 28 Total costs of moving a returned product unit from collection centre l to destruction centres (hundred Rials)

Destruction centre 1 Destruction centre 2 Destruction centre 3 Destruction centre 4

Collection centre 1 3 2 4 3

Collection centre 2 2 3 2 3

Collection centre 3 4 2 3 2

Collection centre 4 3 3 3 4
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So, the SIFO is presented to solve industrial engineering

and supply chain problems as an efficient metaheuristic

algorithm. The parameters of each of the mentioned algo-

rithms are adjusted based on Table 17.

6.6.2 Evaluation of results obtained from supply chain
design problem solving

In the numerical example of the present model, we assume

that a supply chain network is being designed, where four

potential points are available for the activation of suppliers,

whereas 6, 20, 4, and 4 potential points exist for activation

of production centres, customers, the establishment of

collection centres, and construction of destruction centres,

respectively. Overall, two suppliers, three producers, two

collection centres, and two destruction centres must be

constructed among the potential points. Also, all centres

have three capacity levels. The amount of customer

demand is presented in Tables 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30.

It is possible that all producers are able to upload any

module for their customers in order to create more com-

plications in problem-solving process. After solving the

problem using the proposed algorithm, the convergence

diagram is presented in Fig. 11.

As observed, the SIFO optimizer was suitably con-

verged towards the optimal solution, and the mean of

solutions matched the best solution in the final iterations.

This shows that the proposed algorithm has efficiently

guided all members in search teams towards the final

solution. The structure of the supply chain can also be

described in Tables 31, 32, 33, 34.

Table29 Cost of loading different modules

Module 1 Module 2 Module 3 Module 4 Module 5

Cost 50 45 60 52 48

Value 58 43 62 50 45

Table 30 Determining mandatory (1) or optional (0) modules

Module 1 Customer Module 1 Customer Module 1 Customer Module 1 Customer Module 1 Customer

1 17 0 13 0 9 1 5 0 1

0 18 0 14 0 10 0 6 0 2

0 19 1 15 0 11 0 7 1 3

0 20 0 16 0 12 1 8 0 4

Module 2 Customer Module 2 Customer Module 2 Customer Module 2 Customer Module 2 Customer

0 17 1 13 1 9 1 5 0 1

0 18 0 14 0 10 0 6 0 2

1 19 0 15 0 11 0 7 0 3

0 20 1 16 1 12 1 8 0 4

Module 3 Customer Module 3 Customer Module 3 Customer Module 3 Customer Module 3 Customer

1 17 0 13 0 9 0 5 0 1

0 18 0 14 0 10 0 6 0 2

0 19 0 15 1 11 0 7 1 3

1 20 0 16 0 12 0 8 0 4

Module 4 Customer Module 4 Customer Module 4 Customer Module 4 Customer Module 4 Customer

0 17 0 13 0 9 0 5 0 1

0 18 0 14 0 10 0 6 0 2

0 19 1 15 0 11 1 7 1 3

0 20 0 16 0 12 0 8 0 4

Module 5 Customer Module 5 Customer Module 5 Customer Module 5 Customer Module 5 Customer

0 17 0 13 0 9 1 5 0 1

0 18 0 14 0 10 0 6 0 2

0 19 1 15 0 11 0 7 1 3

0 20 0 16 0 12 1 8 0 4
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The supplier 1 with capacity level 1 and supplier 4 with

capacity level 2 are selected to supply the products required

by producers. In addition, producers 1, 2, and 4 with

capacity level 1 and producer 6 with capacity level 3 are

activated. Moreover, the collection centre 1 with capacity

level 1, collection centre 3 with capacity level 2, and col-

lection centres 2 and 4 with capacity level 3 are constructed

to collect products used by customers. Furthermore,

destruction centres 2, 3, and 4 with capacity level 2 are

constructed to destroy the nonrecyclable part of products.

In the management of material flow, 151, 1211, and 84

units are delivered to producer 1, 2, and 3, respectively, by

supplier 1. In addition, the supplier 4 sends 410 product

units to producer 1. Information related to the flow of

products from manufacturers to customers is also in

accordance with Table 33.

As observed, all demands of each customer are met

based on the flow of presented products, which shows the

proper performance of the proposed model. The rate of

return of products from customers to collection centres is

also presented in Table 34.

As observed, the necessary allocations are made based

on the parameter of the percentage of returned products and

cost of transferring products between customers and each

centre in order to conduct the product collection operations

with the lowest cost possible. Table 35 shows the product

flow between the collection centres and the suppliers,

aiming at reusing the recycled materials obtained in the

collection centres.

As observed, the total products delivered to suppliers are

equal to the deduction of recyclable producers delivered by

customers to collection centres, which makes the return of

products into the production cycle possible. However, a

part of the products is unrecyclable and is directly sent to

destruction centres to carry out the destruction stages. The

flow of products is presented in Table 35.
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Fig. 11 Diagram of convergence obtained from supply chain design problem-solving

Table 31 Mandatory and

optional allocation of modules

to products of customers

Module 1 Module 2 Module 3 Module 4 Module 5

Customer 3 * * * *

Customer 5 * * *

Customer 7 *

Customer 8 * * *

Customer 9 *

Customer 11 *

Customer 12 *

Customer 13 *

Customer 15 * * *

Customer 16 *

Customer 17 * *

Customer 19 *

Customer 20 *
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Table 32 Optimal flow of products between producers and customers

Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer Production

centre 1

Customer

17 13 114 9 95 5 1

18 75 14 121 10 6 2

19 109 15 11 7 65 3

20 118 16 12 91 8 4

Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer Production

centre 2

Customer

17 88 13 9 5 120 1

95 18 14 10 56 6 85 2

100 19 15 78 11 74 7 3

110 20 16 68 12 8 110 4

Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer Production

centre 4

Customer

84 17 13 9 5 1

18 14 10 6 2

19 15 11 7 3

20 16 12 8 4

Table 33 Optimal flow of

returned products between

customers and collection centres

Collection centre 1 Collection centre 2 Collection centre 3 Collection centre 4

Customer 1 60

Customer 2 60

Customer 3 7

Customer 4 55

Customer 5 76

Customer 6 23

Customer 7 9

Customer 8 37

Customer 9 69

Customer 10 97

Customer 11 1 38

Customer 12 28

Customer 13 27

Customer 14 60

Customer 15 11

Customer 16 13

Customer 17 42

Customer 18 2 46

Customer 19 40

Customer 20 99
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7 Conclusions

This article evaluates a new SIFO-based structure to pre-

sent a new optimal problem solution approach as a meta-

heuristic algorithm. The mathematical structure of the

algorithm involves determining a specific number of

groups in the form of teams, each encompassing a number

of search members. Two different types of search are

carried out in each iteration of the algorithm; the first type

is an intragroup search, which is adapted from the orga-

nizing structure of search teams to accurately inspect the

region, and the second type is local search of all teams in

the solution space in order not to cover the entire solution

space. This guarantees the effective and parallel assessment

of the whole solution space. One of the advantages of the

present research is the exploitation of parallel search

operators in the algorithm structure, which leads to a

proper balance in the diversification and contemplation

phases of the algorithm. In addition, standard functions

presented in two unimodal and multimodal modes are used

to evaluate the efficiency of the proposed algorithm (Di-

galakis and Margaritis 2001; Molga and Smutnicki 2005).

According to the numerical results, the SIFO optimizer

yielded better results in numerical representations, com-

pared to GA and ALO. SIFO optimizer can also be used in

optimization problems as an efficient algorithm. Moreover,

SIFO optimizer yielded far better solutions in solving

CEC2014 standard numerical representations, compared to

the other algorithms. Furthermore, according to the result

obtained from supply chain design problem solving, the

algorithm developed in the present research seemed to

effectively find optimal solutions in the solution space and

converge towards the global optimization solution when

solving some practical issues in the field of industrial

engineering. As such, the algorithm is proposed to solve

optimization problems in various engineering fields. In

order to expand the dimensions of research, it is recom-

mended that multi-purpose SIFO optimizer is developed,

and numerical results obtained from solving various opti-

mization problems are compared to the existing algorithms.
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