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Abstract
Accurate vehicle speed prediction is of great significance to the urban traffic intelligent control system. However, in terms

of traffic speed prediction, the modules that integrate temporal and spatial features in the existing traffic speed prediction

methods are effective in short-term prediction, but the medium-term or long-term prediction errors are relatively large. In

order to reduce the errors of existing methods in short-term prediction and predict the medium-term and long-term traffic

speed, this paper proposes a traffic speed prediction method that combines attention and Spatial–temporal features, referred

to as ASTCN. Specifically, unlike previous methods, ASTCN can use the temporal attention convolutional network

(ATCN) to separately extract temporal features from the traffic speed features collected by each sensor, and use the spatial

attention mechanism to extract spatial features and then perform spatial–temporal feature fusion. Experiments on three

real-world datasets show that the proposed ASTCN model outperforms the state-of-the-art baselines.

Keywords Traffic speed prediction � Temporal attention convolutional network � Spatial attention mechanism �
Spatial–temporal features

1 Introduction

Transportation plays a vital role in everyday life. Accord-

ing to a 2015 survey, the average driving time of American

drivers is about 48 min per day (https://aaafoundation.org/

american-driving-survey-2014-2015/). The intelligent

control of urban traffic is very important, and traffic speed

prediction has been paid more and more attention to the

intelligent control of traffic. Traffic speed prediction is

using the known road network structure and historical time

step traffic speed data to predict the traffic speed at future

time steps. The time step length of traffic speed prediction

can be divided into three types, short-term prediction

(within 30 min), medium-term prediction (30–60 min) and

long-term prediction (over 60 min). In the past four dec-

ades, due to the increasing demand for urban traffic intel-

ligent control system technology, traffic intelligent control

system can not only provide drivers with accurate infor-

mation but also can be used for signal optimization and

vehicle coordinated control. Therefore, traffic speed pre-

diction has always been hot research (Guo et al. 2020). If it

can predict accurately in advance, the traffic management

department can guide the vehicles more reasonably and

improve the operating efficiency of the road network.

However, due to complex temporal and spatial features,

accurate traffic speed prediction is a challenging problem.

Traffic speed prediction is a classic problem of spatial–

temporal data prediction. The traffic data are recorded at a

fixed point in time and a fixed location with the continuous

spatial distribution. Obviously, observations made at

adjacent locations and adjacent time points are dynamically

related to each other, as shown in Fig. 1. The correlation of

road network traffic data shows strong dynamics in both

spatial and temporal dimensions. Therefore, the key to

solving the problem of dynamic prediction based on the

existing conditions is how to effectively extract the tem-

poral and spatial features and effectively integrate them to

predict the traffic speed. How to mine nonlinear and

complex spatial–temporal data, discover its inherent spa-

tial–temporal patterns and make accurate traffic speed

predictions is a very challenging problem.

In Fig. 1, it can be seen that with the time going by, the

speed of traffic at each intersection will be affected by the

traffic conditions of the previous time step of the

& Anqin Zhang

aqzhang@fudan.edu.cn

1 College of Computer Science and Technology, ShangHai

University of Electric Power, ShangHai 200090, China

123

Soft Computing (2022) 26:695–707
https://doi.org/10.1007/s00500-021-06521-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1572-9585
https://aaafoundation.org/american-driving-survey-2014-2015/
https://aaafoundation.org/american-driving-survey-2014-2015/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06521-7&amp;domain=pdf
https://doi.org/10.1007/s00500-021-06521-7


intersection (the brown thick arrow in the vertical direc-

tion) and the traffic conditions of the adjacent intersection

(the red thin arrow in the transverse direction). In short, the

correlation of road network traffic data shows a strong

dynamic in both spatial and temporal dimensions.

In order to extract spatial and temporal feature of road

network traffic data, we propose the ASTCN method, the

main contributions are as follows:

1: In traffic speed prediction, the length of historical

time steps and future time steps are regarded as

significant factors, and temporal attention convolu-

tional networks are used to extract the temporal

features from traffic speed data observed by each

observation device.

2: The revised attention mechanism is used to extract

spatial features.

3: The spatial–temporal feature fusion (FST) module is

used to fuse spatial–temporal features.

The rest of this paper is as follows: Sect. 2 gives a

description and some definitions of the traffic speed pre-

diction problem. Section 3 introduces the architecture of

ASTCN for traffic speed prediction. Section 4 is the

experiment, and Sect. 5 is the conclusion and future work.

2 Related work

With the development of traffic, many information col-

lection devices have been deployed to the road network, so

that we can directly use the information collected by these

devices to predict the traffic speed. Many researchers have

made great efforts to solve these problems. In the early

days, the time series analysis model was used for traffic

prediction. However, in practical applications, they are

difficult to deal with unstable nonlinear data. Based on the

learning adaptability and capability to solve complex

computations, classifiers are always the best suited for the

pattern recognition problems (Kumar et al. 2019). Later,

traditional machine learning methods were developed to

model more complex data, but they are still difficult to

consider the spatial–temporal correlation of high-dimen-

sional traffic data at the same time. Deep learning (DL) is

the most effective, supervised and stimulating machine

learning approach in big data analysis (Dargan et al. 2019).

It can automatically identify patterns and features in

complex data through unsupervised/supervised learning. In

recent years, many researchers have been using some deep

learning methods to process high-dimensional spatial–

temporal data, that is, convolutional neural network (CNN)

is used to extract spatial features of grid data effectively;

graph convolution neural network (GCN) is used to

describe the spatial correlation of graph-based data.

ChebNet (Defferrard et al. 2016) is a powerful GCN, which

uses Chebyshev extension to reduce the complexity of

Laplacian computation. GraphSAGE (Hamilton et al.

2017) samples a fixed number of neighborhoods for each

node in the graph and aggregates its neighborhood and its

own elements. GAT (Velickovic et al. 2018) is a powerful

variant of GCN defined in the vertex domain, which uses

the attention layer to dynamically adjust the importance of

neighbor nodes. Najjar et al. (Najjar et al. 2017) proposed a

deep learning-based mapping approach that leverages open

data to learn from raw satellite imagery robust deep models

able to predict accurate city-scale road safety maps at an

affordable cost. Brewer et al. (Brewer et al. 2021) lever-

aged satellite imagery to estimate road quality and con-

comitant information about travel speed.

In order to make full use of spatial features, some

researchers use a convolutional neural network (CNN) to

capture the adjacent relationship between traffic networks,

and use the recurrent neural network (RNN) on the time

axis. By combining long short-term memory (LSTM) net-

work (Hochreiter and Schmidhuber 1997) with one-di-

mensional CNN, Wu, and Tan (Wu and Tan 2016), a

feature-level fusion structure CLTFP for short-term traffic

prediction is proposed. Later, Shi et al. (Shi et al. 2015)

proposed the convolutional LSTM, which is an extended

all connected LSTM (FC-LSTM) embedded in the con-

volution layer. Zhang et al. (Zhang et al. 2018) designed an

ST-RESNET model based on a residual convolution unit to

predict crowd flow. Yao et al. (Yao et al. 2018) proposed a

traffic volume prediction method combining CNN with

long short-term memory (LSTM), which combined spatial

and temporal correlation modeling. Yu et al. (Yu et al.

2018) proposed a new deep learning framework spatial–

temporal graph convolution network (STGCN) to solve the

problem of time series prediction in the field of trans-

portation. Li et al. (Li et al. 2018) proposed the diffusion

Fig. 1 Complex spatial–temporal correlation of traffic data
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convolution recurrent neural network (DCRNN), which

introduced graph convolution network into spatial–tempo-

ral network data prediction, and used diffusion graph

convolution network to describe information diffusion

process in the spatial network. Guo et al. (Guo and Yuan

2020) proposed a deep learning traffic prediction frame-

work based on graph attention network (GAT) and time

convolution network (TCN), called graph attention tem-

poral convolution network (GATCN). Zhao et al. (Zhao

et al. 2020) proposed a new traffic prediction method based

on neural network, the temporal graph convolution network

(T-GCN) model. Song et al. (Song et al. 2020) proposed a

new spatial–temporal synchronous graph convolutional

network (STSGCN). Guo et al. (Guo et al. 2019) proposed

a deep spatial–temporal 3D convolutional neural network

(ST-3DNet), which introduced three-dimensional convo-

lution into this field. Wu et al. (Wu et al. 2019) designed an

adaptive matrix to consider the change of influence

between nodes and their neighbors. Bai et al. (Bai et al.

2019) attempted to simultaneously model spatial–temporal

correlation by using gating residual GCN module with two

attention mechanisms. Kong et al. (Kong et al. 2020)

proposed an end-to-end deep learning-based dual path

framework, spatial–temporal graph attention network

(STGAT). Zheng et al. (Zheng et al. 2020) proposed an

attention-based encoder–decoder framework.

However, the above methods are effective in the short-

term forecast, and the error is large in the medium-term or

long-term forecast. On the basis of the above background,

in order to address these problems, we propose the ASTCN

method that can capture the complex temporal and spatial

features from traffic data and can then be used for traffic

speed prediction tasks based on road network.

3 Problem setup

This section introduces the transportation network struc-

ture, the description of the traffic speed prediction problem

and the structure of the input and output data.

3.1 Transportation network structure

In this paper, we use an undirected graph G ¼ V ;E;Að Þ to
define the transportation network, where V is a finite set of

Vj j ¼ N vertices, corresponding to the number of obser-

vation devices in the transportation network; E is the set of

edges, indicating the connectivity between observation

points; and A represents the weighted adjacency matrix of

G. If the observation device i and the observation device j

are directly connected, the value of Aij is the cost (distance

or time, etc.) paid from the observation device i to the

observation device j, otherwise the value of Aij is 0. The

adjacency matrix is calculated according to the connection

relationship among the observation devices in the road

network. As shown in Fig. 2, the circles in the figure rep-

resent the observation devices, in which the number on the

edge represents the weight of the edge.

In Fig. 2, there are six roads in the figure, and each road

has an observation device (circle 1–6). If the observation

devices are connected by edges, it indicates that they can

reach each other directly. The value of the edge indicates

the weight. If there is no edge connection, it indicates that

they cannot reach each other directly.

The traffic speed observed by the observation device in

the road network is represented by a two-dimensional

matrix X 2 RP�V , where P corresponds to the number of

observation timestamps of the observation equipment; V is

a finite set of Vj j ¼ N vertices; the size of N corresponds to

the number of vertices in the adjacency matrix of the road

network; and Xn
t is the speed observed by the observation

device n at time t.

3.2 Traffic speed forecast

Traffic speed prediction is a typical time series prediction

problem. Traffic speed prediction is based on the current

and historical situation of the road network, plus some

objective conditions (such as road network structure,

weather conditions, emergencies and other factors) to

predict the traffic speed in the future.

Therefore, the traffic speed prediction problem can be

regarded as learning the mapping function f on the premise

of knowing the road network structure G and the traffic

speed matrix X, and then calculating the traffic speed at

time T, as shown in Formula 1.

Xtþ1; . . .;XtþT½ � ¼ f ðG; ½Xt�n; . . .;Xt�1;XtÞ�Þ ð1Þ

where n is the length of the historical time step and T is the

length of the time step to be predicted.

3.3 The structure of input data and output data

The input data of ASTCN traffic speed prediction model

include weighted adjacency matrix and historical step

traffic speed matrix. The output data structure of this model

is the traffic speed matrix of prediction time step.

The error value of the model is calculated by comparing

the predicted result of the model with the real data.
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4 Methodology

This section introduces the ASTCN network structure and

its details, including spatial–temporal convolution block

and fully connected output layer. The main ideas of

ASTCN are in the following:

ASTCN contains spatial–temporal convolution blocks

and fully connected output layer. Spatial–temporal con-

volution block is used to extract spatial and temporal fea-

tures and fuse these extracted features.

4.1 Model framework

In this part, we elaborate the structure of ASTCN. As

shown in Fig. 3, ASTCN contains two spatial–temporal

convolution blocks and a fully connected output layer.

Each spatial–temporal convolution block contains temporal

attention convolutional network (ATCN), spatial attention

network and spatial–temporal feature fusion module (FST).

We add an attention mechanism to extract temporal fea-

tures on the basis of temporal convolutional network

(TCN), which is named ATCN. And we use spatial–tem-

poral feature fusion module (FST) to fuse the extracted

temporal and spatial features.

4.2 Spatial–temporal convolutional block

Spatial–temporal convolutional block can capture the

dynamic spatial–temporal correlation in road network. And

it includes spatial attention network, temporal attention

convolution network and spatial–temporal feature fusion

module.

4.2.1 Temporal attention convolutional network

Different historical time steps have different effects on the

prediction results. In traffic speed prediction, the length of

historical time step is regarded as a significant dependent

variable, and the length of future time step is a significant

indicator to measure the accuracy of the model. In Sect. 4,

we do a comparative experiment with different lengths of

historical time steps.

In the temporal dimension, the traffic speed at the cur-

rent moment is dynamically affected by the traffic speed at

Fig. 2 Simple road network

structure

Fig. 3 The structure of ASTCN model

698 Zhang et al.

123



the historical moment. Here we use the temporal attention

convolutional network to extract the temporal features

from traffic speed data observed by each observation

device. In this module, we dynamically extract the tem-

poral correlation, as shown in Formula 2.

T ¼
XN

i

rðW1 � TCNðXiÞÞ ð2Þ

r Xð Þ ¼ maxð0;XÞ ¼ X; X[ 0

0; X� 0

�
ð3Þ

Among them,W1 2 Rtpre�tpre is a learnable weight

matrix, tpre is the historical time step input in the experi-

ment, Xi is the speed set observed by the observation

device i and N is the number of observation devices in the

road network, rð�Þ represents an activation function. Here,

the activation function is a ReLU function, as shown in

Formula 3. TCN �ð Þ is a temporal convolutional network.

The specific formula 4 is as follows:

TCN Xi
� �

¼ rðconv1dðrðconv1dðXiÞÞÞÞ ð4Þ

where conv1dð�Þ represents one-dimensional convolution,

rð�Þ is the ReLU activation function and Xi represents the

traffic speed series observed by the observation device i.

The architecture in temporal convolutional network

(TCN) (Bai et al. 2018) is a causal convolution, that is, no

information is leaked from the future to the past during

model training. At the same time, this architecture can use

sequences of any length and map them to sequences of the

same length, in similar to RNN. We can give TCN an input

sequence x0; x1; . . .; xn and then hope that TCN will output

the related results y0; y1; . . .; yn and generate a mapping

relationship, which is named f function:

Y0; . . .; Yn ¼ f X0; . . .;Xnð Þ. The value of Yj here only

depends on X0; . . .;Xj and has nothing to do with any

Xjþ1; . . .;Xn. The goal of structural learning for sequence

modeling is to find a f function mapping that minimizes the

expected loss between the actual output and the prediction.

In addition to causal convolution, TCN also has a

principle that the length of the input sequence and the

output sequence is the same. TCN uses a one-dimensional

fully connected network to meet this principle, that is, the

number of neurons in each hidden layer in the network is

the same as the number of input layers, and zero padding

with a length of core size-1 is added to maintain the same

length of subsequent layer and previous layer. We can use

TCN ¼ 1DFCN þ causalconvolutions to briefly describe

the characteristics of TCN.

In this paper, the experiment only needs to input the

traffic speed sequence of 24 historical time steps to predict

the traffic speed of 24 future time steps. Therefore, the

length of the historical time step that needs to be input is

relatively short, so we do not use the expansion convolu-

tion of TCN. The TCN structure used in this article is

shown in Fig. 4.

4.2.2 Spatial attention network

In the spatial dimension, the traffic speed of the current

location is affected by the dynamics of the neighboring

locations. Here we use a revised attention mechanism to

capture the dynamic correlation between different nodes in

the spatial dimension. In this module, we dynamically

capture the spatial correlation as shown in formula 5. We

use two learnable weight matrices W2;W3 to multiply the

road network weight matrix A to obtain a tensor with the

same dimension as the input tensor of the fully connection

output layer.

S ¼ rððW2 � AÞ �W3Þ ð5Þ

Among them, A 2 RN�N is the standardized road net-

work weighted adjacency matrix, W2 2 RI�B�this�N and

W3 2 RI�O are the learnable weight matrices, N is the

number of observation devices in the road network, I is the

input dimension of the convolution, B is the number of

each batch of data in the experiment, this is the historical

time step input in the experiment, O is the output dimen-

sion of the convolution, rð�Þ is the ReLU activation

function.

4.2.3 Spatial–temporal feature fusion module (FST)

In order to make full use of the temporal and spatial fea-

tures extracted by the above method in ASTCN model, we

need to fuse the temporal features and spatial features.

Fig. 4 The structure of temporal convolutional network (TCN)

module
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Zheng et al. (Zheng et al. 2020) designed a gated fusion to

adaptively fuse the spatial and temporal features. In this

paper, we modify this method by adding a learnable weight

matrix W, which is used to make the tensor dimension of

the temporal feature T consistent with the spatial feature S.

The traffic speed of a road at a specific time is related to

its previous traffic speed and the traffic speed of adjacent

roads. In this paper, we propose a spatial–temporal feature

fusion method, the specific method is shown in Fig. 5.

Z ¼ T �W4ð Þ þ S ð6Þ
H ¼ rðZ � Sþ 1� Zð Þ � ðT �W4ÞÞ ð7Þ

Among them, W4 2 RI�O is a learnable weight matrix,

where the temporal characteristic matrix T and the weight

matrix W4 multiplication are to make the tensor dimension

consistent with the spatial feature S, rð�Þ is the ReLU

activation function. We add them together to get the spa-

tial–temporal features and then proceed to the next

operation.

4.3 ASTCN training algorithm

The training process of the ASTCN is shown in Algorithm

1.

5 Experiment

In this section we describe datasets, baseline methods,

evaluation metrics and comparison results.

Fig. 5 The spatial–temporal feature fusion method (FST) used in this

paper

Table 1 Dataset description

Datasets Number of sensors Time range

PEMS04 307 1/1/2018–2/28/2018

PEMS08 170 7/1/2016–8/31/2016

LOS 207 3/1/2012–3/7/2012
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5.1 Datasets

We evaluated the traffic prediction performance of ASTCN

on three real datasets. The three real datasets are PEMS04,

PEMS08 (Song et al. 2020) and LOS (Hochreiter and

Schmidhuber 1997).

PEMS04 and PEMS08 are collected by Caltrans Per-

formance Measurement System. The Caltrans Performance

Measurement System collects datasets in real time every

30 s. And the traffic data are aggregated from the original

data every 5 min. The system deployed more than 39,000

detectors on highways in major metropolitan areas in

California. And the geographic information of the obser-

vation device has been recorded in the dataset. The LOS

dataset is collected in real time from Los Angeles highways

through loop detectors. This dataset is similar to PEMS in

that the traffic speed is collected every 5 min. In this

experiment, 80% of these three datasets is used as the

training set and the remaining 20% is used as the test set.

And the three datasets are composed of adjacency

matrix and speed feature matrix. The specific details and

the traffic speed distributions of the three datasets are

shown in Table 1 and Fig. 6, respectively.

In this paper, each dataset is composed of an adjacency

matrix dataset and a traffic speed dataset. Among them, the

adjacency matrix data represent the distance of each

observation device, and each column of the traffic speed

matrix corresponds to the traffic speed collected by each

observation device in the adjacency matrix. We standardize

the adjacency matrix by formula 7 and use formula 8

(Najjar et al. 2017) to normalize the traffic speed matrix.

A
0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj¼N

i;j Ai;j

q

0
B@

1
CA

T

� A � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj¼N
i;j Ai;j

q ð7Þ

Among them, A 2 RN�N is the adjacency

matrix;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj¼N

i;j Ai;j

q
2 R1�N represents the sum of each

column of matrix A; A0 is the normalized adjacency matrix.

X
0 ¼ X � mean Xð Þ

std Xð Þ ð8Þ

Fig. 6 The distribution of datasets

Fig. 7 The flowchart of ASTCN
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where X 2 RP�N is the traffic speed matrix, P is the total

number of minutes of the datasets divided by 5, which

corresponds to the observation time step of the observation

devices; N corresponds to the number of observation

devices, X
0
is the standardized traffic speed matrix, mean

(X) and STD (X) correspond to the mean and standard

deviation of the historical time series, respectively.

5.2 Baseline method

During the verification test stage, the ASTCN model we

proposed will be compared with the following two methods

in terms of traffic speed prediction.

STGCN: For predicting future traffic speed data, Spa-

tial–Temporal graph convolutional network (Yu et al.

2018) mainly uses graph convolutional network and two-

dimensional convolution to extract spatial and temporal

features, respectively.

T-GCN: The temporal graph convolutional network

(Zhao et al. 2020) uses graph convolutional network and

GRU to extract spatial and temporal features, respectively,

which captures the spatial and temporal features from

traffic data for application in predicting future traffic data.

ARMA: Auto-regressive and moving average model is a

well-known time series analysis method for predicting the

future values.

5.3 Evaluation metrics

In this paper, we use three metrics to evaluate the predic-

tion performance of different traffic speed prediction

models. They are the mean absolute error (MAE), the root

mean square error (RMSE) and mean absolute percentage

error (MAPE), which are represented by Formula 9, For-

mula 10 and Formula 11.

MAE ¼
Pn

i¼1 jbyi � yij
n

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 byi � yið Þ2

n

 !vuut ð10Þ

Fig. 8 The comparison results of prediction error of three methods on pems04 dataset

Table 2 The prediction error results of the ASTCN model and other

baseline methods on PEMS04

Future time step Metric STGCN T-GCN ASTCN ARMA

3 MAE 1.552 2.294 1.322 5.606

RMSE 3.185 3.992 2.600 5.673

MAPE 3.098 4.566 2.869 8.724

6 MAE 2.015 2.564 1.668 5.242

RMSE 4.299 4.502 3.256 5.296

MAPE 4.195 5.201 3.465 8.167

9 MAE 2.327 2.680 1.850 4.795

RMSE 4.928 4.767 3.707 4.876

MAPE 4.965 5.502 3.967 7.473

12 MAE 2.583 2.787 1.935 4.826

RMSE 5.422 5.075 4.067 4.891

MAPE 5.575 5.934 4.188 7.523

15 MAE 2.828 2.993 2.070 4.808

RMSE 5.901 5.395 4.360 4.865

MAPE 6.144 6.382 4.467 7.495

18 MAE 3.076 3.210 2.224 4.802

RMSE 6.391 5.651 4.669 4.851

MAPE 6.728 6.806 4.855 7.486

21 MAE 3.313 3.332 2.450 4.756

RMSE 6.879 5.884 4.981 4.802

MAPE 7.360 7.136 5.478 7.415

24 MAE 3.546 3.461 2.400 4.645

RMSE 7.364 6.058 5.024 4.696

MAPE 8.004 7.407 5.356 7.245

Bold values are the best compared to other statistics in the same

metrics
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MAPE ¼ 100%

n

Xn

i¼1

byi � yi
yi þ 10�10

����

���� ð11Þ

The range of MAE, RMSE and MAPE is ½0;þ1Þ. The
three metrics are 0 when the real value and the predicted

value are equal, which is a perfect model. A value of

MAPE exceeding 100% is indicated as an inferior model.

5.4 Model parameters and flowchart

The hyperparameters of the ASTCN model mainly include:

learning rate, batch size and training epoch. In the exper-

iment, we manually adjust and set the learning rate to

0.001, the batch size to 50 and the training epoch to 50.

We use the temporal attention convolutional network to

extract the temporal correlation, which includes four-layer

one-dimensional convolution neural network. And the

number of neurons of one-dimensional convolutional

neural networks is 1024.

The flowchart of ASTCN is shown in Fig. 7.

5.5 Experimental result

5.5.1 PEMS04

Figure 8 and Table 2 show the comparison of the three

methods for 24 time steps future predictions, which include

ASTCN, STGCN, T-GCN and ARMA, in three evaluation

metrics on PEMS04 dataset. And the three metrics are

MAE, RMSE and MAPE.

The above experimental results show that in PEMS04

dataset, the prediction error of ASTCN model is lower than

that of STGCN and T-GCN models. For example, when the

prediction time step length is 12, the prediction error MAE

of ASTCN model is 1.935, but the prediction error MAE of

the other baseline model are 2.583, 2.787 and 4.826,

respectively. There is one exception, when the prediction

time step lengths are 21 and 24, the prediction error RMSE

of ARMA model is 4.802 and 4.696, respectively, which

are lower than that of ASTCN.

In summary, the ASTCN model performs better than the

other three methods on the pems04 dataset.

Fig. 9 The comparison results of prediction error of three methods on pems08 dataset

Table 3 The prediction error results of the ASTCN model and other

baseline methods on PEMS08

Future time step Metric STGCN T-GCN ASTCN ARMA

3 MAE 1.268 2.070 1.230 8.044

RMSE 2.852 3.554 2.416 12.351

MAPE 2.622 4.006 2.624 13.347

6 MAE 1.633 2.147 1.619 7.958

RMSE 3.897 3.783 3.141 12.350

MAPE 3.509 4.240 3.437 13.213

9 MAE 1.876 2.233 1.576 7.946

RMSE 4.482 3.991 3.257 12.441

MAPE 4.040 4.464 3.355 13.203

12 MAE 2.078 2.433 1.674 7.851

RMSE 4.918 4.324 3.511 12.383

MAPE 4.403 4.886 3.538 13.046

15 MAE 2.292 2.526 1.777 7.791

RMSE 5.324 4.447 3.747 12.317

MAPE 4.782 5.058 3.747 12.942

18 MAE 2.509 2.610 1.878 7.739

RMSE 5.707 4.664 4.038 12.244

MAPE 5.105 5.338 4.121 12.850

21 MAE 2.714 2.683 1.902 7.624

RMSE 6.055 4.831 4.142 12.147

MAPE 5.422 5.512 4.189 12.655

24 MAE 2.907 2.717 1.949 7.340

RMSE 6.395 4.914 4.273 11.952

MAPE 5.741 5.616 4.338 12.184

Bold values are the best compared to other statistics in the same

metrics
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5.5.2 PEMS08

Figure 9 and Table 3 show the comparison of the three

methods for 24 time steps future predictions, which include

ASTCN, STGCN, T-GCN and ARMA, in three evaluation

metrics on PEMS08 dataset. And the three metrics are

MAE, RMSE and MAPE.

The above experimental results show that in PEMS08

dataset, when the prediction time step length is 3, although

the prediction error MAPE of STGCN model is 2.622,

which is lower than that of ASTCN, on the whole, when

the prediction time step lengths are 3, 6, 9, 12, 15, 18, 21,

24, the prediction errors of ASTCN model are lower than

that of STGCN, T-GCN and ARMA models.

5.5.3 LOS

Figure 10 and Table 4 show the comparison of the three

methods for 24 time steps future predictions, which include

ASTCN, STGCN, T-GCN and ARMA, in three evaluation

metrics on LOS dataset. And the three metrics are MAE,

RMSE and MAPE.

The LOS dataset is real urban traffic data, and there are

many and miscellaneous factors affecting vehicle speed, so

the prediction error of ASTCN model is higher than that of

PEMS dataset.

For example, in LOS dataset, when the prediction time

step length is 15, the prediction error RMSE of ASTCN

model is significantly lower than that of the other three

models. Therefore, there is no denying that ASTCN model

outperforms STGCN, T-GCN and ARMA model in traffic

speed prediction.

5.6 Choosing historical Time step

In order to choose a more appropriate length of the his-

torical time step, we designed a comparative experiment,

which sets the length of the historical time step to 24 (2 h),

36 (3 h) and 48 (4 h), respectively, to compare the error of

the prediction results on PEMS04 dataset.

Figure 11 and Table 5 show the comparison of the three

lengths of historical time steps for 24 time steps future

predictions in three evaluation metrics on PEMS04 dataset.

And the three metrics are MAE, RMSE and MAPE.

Fig. 10 The comparison results of prediction error of three methods on LOS dataset

Table 4 The prediction error results of the ASTCN model and other

baseline methods on LOS

Future time step Metric STGCN T-GCN ASTCN ARMA

3 MAE 3.773 2.032 3.241 14.664

RMSE 6.812 7.415 5.515 15.466

MAPE 10.405 13.830 8.954 25.415

6 MAE 4.514 5.962 3.834 10.552

RMSE 8.406 8.573 6.436 12.065

MAPE 12.705 16.395 10.656 18.284

9 MAE 4.995 6.843 4.080 13.120

RMSE 9.313 9.313 7.290 14.686

MAPE 14.329 17.790 12.100 22.838

12 MAE 5.484 6.270 4.595 11.971

RMSE 10.102 9.253 7.918 13.518

MAPE 16.230 18.052 12.554 20.817

15 MAE 6.041 6.671 4.989 13.882

RMSE 10.994 9.822 8.647 15.552

MAPE 18.345 19.337 16.051 24.209

18 MAE 6.539 7.126 5.224 14.138

RMSE 11.833 10.363 8.952 15.829

MAPE 20.247 20.730 14.870 24.668

21 MAE 6.963 7.932 5.219 15.096

RMSE 12.551 11.168 8.941 16.657

MAPE 22.183 22.679 15.674 26.353

24 MAE 7.337 8.301 5.376 14.350

RMSE 13.217 11.464 9.512 15.998

MAPE 24.231 23.421 16.489 25.007

Bold values are the best compared to other statistics in the same

metrics
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In above comparative experiment, we found that with

the increase of the length of the historical time step, the

medium- and long-term prediction error of traffic speed

decreased, but the short-term prediction error of traffic

speed increased. When future time step length of the pre-

dicted traffic speed is 3 and 6, the prediction error of the

model with historical time step length of 24 is lower than

that of the model with historical time step length of 36 and

48, but when future time step length of the predicted traffic

speed is more than 12, the prediction error of the model

with historical time step length of 24 is higher than that of

the model with historical time step length of 36 and 48.

Therefore, in the short-term prediction of traffic speed, we

should set the historical time step length to 24, that is, 2 h;

in the medium- and long-term prediction of traffic speed,

the length of historical time step should be set to 48, that is,

4 h.

5.7 Model interpretation

In order to better understand the ASTCN model, we chose

an observation device in pems04 dataset, in this test set and

visualized the prediction results and actual traffic speed.

Figure 12 shows the visualization results with the predicted

horizon of 15 min, 30 min, 45 min, 60 min, 75 min,

90 min, 105 min and 120 min. With the increase of pre-

diction time step, the worse the prediction effect is, which

accords with the actual situation.

In Fig. 12, the ‘‘out_y’’ denotes the test set data and the

‘‘out_pre’’ denotes the prediction result. The titles of these

pictures, for example ‘‘PEMS04_24_15_traffic_speed’’, the

first number 24 is the historical time step and the second

number 15 is the predicting time step.

6 Conclusion

Transportation plays a vital role in our everyday life.

However, due to complex temporal and spatial features,

accurate traffic speed prediction is a challenging problem,

and the existing traffic forecasting methods are effective in

the short-term forecast, but the errors of these methods are

large in the medium-term or long-term forecast.

In order to increase the accuracy of existing methods in

short-term prediction and predict the medium-term and

Fig. 11 The comparison results of prediction error of three different lengths of historical time steps on PEMS04 dataset

Table 5 The prediction error results of the different lengths of his-

torical time steps on PEMS04

Future time step Metric Historical time steps

24 36 48

3 MAE 1.322 1.366 1.474

RMSE 2.600 2.683 2.783

MAPE 2.869 3.000 3.208

6 MAE 1.668 1.820 1.694

RMSE 3.256 3.373 3.314

MAPE 3.465 3.675 3.685

9 MAE 1.850 1.799 1.800

RMSE 3.707 3.757 3.693

MAPE 3.967 4.059 3.808

12 MAE 1.935 1.955 1.942

RMSE 4.067 4.079 4.087

MAPE 4.188 4.056 4.309

15 MAE 2.070 2.086 2.057

RMSE 4.360 4.375 4.311

MAPE 4.467 4.572 4.393

18 MAE 2.224 2.264 2.215

RMSE 4.669 4.571 4.589

MAPE 4.855 4.907 4.747

21 MAE 2.450 2.379 2.366

RMSE 4.981 4.882 4.812

MAPE 5.478 5.113 5.071

24 MAE 2.400 2.424 2.406

RMSE 5.024 5.048 4.949

MAPE 5.356 5.604 5.228

Bold values are the best compared to other statistics in the same

metrics
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Fig. 12 The visualization results

for prediction horizon of 15, 30,

45, 60, 75, 90, 105, 120 min
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long-term traffic speed, we propose the ASTCN method.

ASTCN introduces temporal attention convolution net-

work, spatial attention network and spatial–temporal fea-

ture fusion module. ATCN is the TCN with attention

mechanism, and TCN contains one-dimensional convolu-

tion and causal convolution, which related to time, so

temporal features can be extracted using ATCN. And the

revised attention mechanism and the improved gate fusion

method are used to extract the spatial features and fuse the

extracted temporal and spatial features, respectively. The

experiments of ASTCN on three real datasets show that,

with the verification of three indicators (MAPE, RMSE and

MAE), ASTCN has better performance than baseline

methods (STGCN, T-GCN and ARMA) in traffic speed

prediction, not only in short-term prediction, but also in

medium-term and long-term prediction.

Since ASTCN is a general spatial–temporal prediction

framework, we can also apply it to other spatial–temporal

prediction tasks (precipitation forecast, etc.). In the future,

in traffic forecasting, we can regard the traffic state dia-

gram as an image and use the ORB and SIFT in (Chhabra

et al. 2018) to extract the main features in the traffic state

diagram and predict the traffic data.
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