
OPTIMIZATION

Hybrid meta-heuristic algorithms for U-shaped assembly line
balancing problem with equipment and worker allocations

Morteza Khorram1
• Mahmood Eghtesadifard1 • Sadegh Niroomand2

Accepted: 20 October 2021 / Published online: 10 November 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, a new U-shaped assembly line balancing problem is studied. For the first time, the criteria such as equipment

cost, number of stations and activity performing quality level are considered to be optimized simultaneously by activity to

station and worker to station decisions. For this aim, a multi-objective nonlinear formulation is proposed and its linearized

version is also presented. Since, according to the literature, the U-shaped assembly line balancing problem with equipment

requirements is an NP-hard problem, the problem of this study is NP-hard too. Because of this complexity, the classical

algorithms like simulated annealing, variable neighborhood search, and classical genetic algorithm with a novel encoding/

decoding scheme are used as solution approaches. As an extension, two hybrid versions of the proposed classical algo-

rithms are proposed according to the characteristics of the problem. In order to evaluate the proposed meta-heuristics,

because the problem is new, some test problems are generated randomly. Computational study of the paper, including

sensitivity analysis of the proposed meta-heuristics and final experiments on the test problems, proves the superiority of the

hybrid versions of the classical algorithms.

Keywords U-shaped assembly line balancing � Meta-heuristic algorithm � Worker assignment � NP-hard problem �
Equipment assignment

1 Introduction

Assembly lines are one of the most widely used traditional

manufacturing systems for mass and high volume pro-

duction, which help to increase the efficiency and speed of

production systems as well as reduce the production costs

and timely respond to fluctuations in demands of compet-

itive markets. These lines were first introduced by Henry

Ford at Ford automobile factories, and since that time

various researches have been done to improve the perfor-

mance of the assembly lines (Yuan et al. 2015; Saif et al.

2017; Make et al. 2017; Zhou and Tan 2018; Pattanaik and

Jena 2019). An assembly line consists of a set of several

workstations located along with a transportation system

with a flow of materials between them. Each of the stations

performs a set of activities. Materials and product parts

flow continuously on the line by the transportation system,

and after the operations of a station are performed, they are

transferred to the next station until they reach the end of the

line. Each station performs a set of activities from the

required activities for completing the product. Regarding

the production cycle time, a number of activities are

assigned to each workstation. According to the assembly

line balancing problem, the assignment should be done in a

way that one or more objectives is optimized subject to the

cycle time of the line and precedence relationships of the

activities. The objectives could be minimizing the number

of workstations, minimizing cycle time, minimizing total

costs, etc. (see Scholl and Klein (1999), Ozcan and Toklu

(2009) for the number of workstation minimization, Ozcan

and Toklu (2009) Foroughi et al. (2016) for cycle time

minimization, and Foroughi and Gökçen (2018), Yavari

et al. (2019), Li et al. (2019) for cost minimization).

Due to the type and characteristics of the products, the

layout of the line, as well as the technical and operational

& Sadegh Niroomand

niroomand@fabad-ihe.ac.ir

1 Department of Industrial Engineering, Shiraz University of

Technology, Shiraz, Iran

2 Department of Industrial Engineering, Firouzabad Institute of

Higher Education, Firouzabad, Fars, Iran

123

Soft Computing (2022) 26:2241–2258
https://doi.org/10.1007/s00500-021-06472-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8196-3906
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06472-z&domain=pdf
https://doi.org/10.1007/s00500-021-06472-z

requirements, different classifications are presented by the

researchers for assembly line balancing problems. The

most well-known classifications provided by Baybars

(1986) have divided assembly line balancing problems into

two categories. The first group is called the simple

assembly line balancing problem, and the second one is

called the general assembly line balancing problems. The

simple assembly balancing problem considers some simple

assumptions so that the balance problem can easily be

solved. Assembly line balancing problems that remove one

or more of the assumptions of simple assembly balancing

problems are in the category of general assembly line

balancing problem. Also, in a different classification,

assembly lines can be divided based on the layout of sta-

tions. The assembly lines can be divided into four types

according to the layout (Hadi-Vencheh and Mohamad-

ghasemi, 2013) of the stations such as straight assembly

lines, U-shaped assembly lines, parallel assembly lines, and

two-sided assembly lines (Saif et al. 2014). In straight

assembly lines, all stations are placed on a direct path and

the pieces or materials pass through the stations from the

beginning to the end of the line. An important condition is

that an activity can be assigned to a station if all of its

predecessors are assigned to that station or earlier stations.

U-shaped assembly lines generalize straight assembly lines

in which the stations are located in such a way that entry

and exit of the materials are carried out from one position

and operations of two or more stations can be performed by

one operator (Saif et al. 2014; Delice et al. 2017; Aigbedo

and Monden, 1997). An important condition is that an

activity can be assigned to a station if either all of its

predecessors or all of its successors are assigned to that

station or earlier stations (see Fig. 1). In these lines, the

time of worker’s unemployment is reduced. Moreover, the

number of stations required for U-shaped lines is never

greater than the number of stations required for straight

assembly lines (Baykasoglu 2006; Ajenblit and Wain-

wright 1998).

In recent years, many studies have been done on

assembly line balancing problems, and various algorithms

have been used to solve them. In the assembly line bal-

ancing problems, depending on the type of line and the

type of problem, different objectives can be considered.

For example, studies of Chica et al. (2011) and Hamta et al.

(2013) have been done to reduce the cycle time as a vari-

able. The studies of Ponnambalam et al. (2000) and

Nourmohammadi and Zandieh (2011) have met the goals

of minimizing the number of workstations and the

smoothness index in assembly line balancing problems.

Also, various meta-heuristic algorithms have been used to

solve these problems. The genetic algorithm was used by

Miltenburg (2002), Rabbani et al. (2012), Alavidoost et al.

(2017), and Zhang and Gen (2011) to solve a variety of the

assembly line balancing problems. The U-shaped assembly

line was first studied by Miltenburg and Wijngaard (1994).

Subsequently, many studies have been done to develop the

formulation and solution approaches to this problem. Kim,

et al. (2000), for the first time, considered the U-shaped

assembly line balancing problem with the sequencing

problem simultaneously. Kara et al. (2009) proposed a

fuzzy goal programming and fuzzy binary programming

model for this problem. Hamta et al. (2014) provided an

integer nonlinear mathematical model for this problem. On

the other hand, some researches were carried out by Agpak

Fig. 1 A precedence graph, its

simple balancing, and its

U-shaped balancing (Source:

Khorram 2018)

2242 M. Khorram et al.

123

et al. (2012) and Ogan and Azizoglu (2015) to improve and

develop the mathematical model of the U-shaped assembly

line balancing problem. Alavidoost et al., (2017) solved

straight and U-shaped assembly line balancing problems

using an improved genetic algorithm with consideration of

fuzzy values for activity performing times. Also, Ogan and

Azizoglu (2015) proposed a mathematical model for the

U-shaped assembly line balancing problem by considering

activities required equipment. Then they used a typical

branch and bound algorithm to solve this problem. Li et al.

(2017) presented a new mixed-integer linear programming

model with the goal of minimizing the number of work-

stations for balancing the U-shaped assembly lines. In this

model, one constraint is used to represent the precedence

relationship constraint instead of two constraints in the

studies of the literature. Li et al. (2018) proposed a branch,

bound and remember algorithm for the U-shaped assembly

line balancing problem. Li et al. (2021) proposed an

enhanced beam search heuristic for U-shaped assembly

line balancing problems.

There are a few researches employing the simulated

annealing algorithm to solve the assembly line balancing

problems. One is the study of Suresh and Sahu (1994)

which used the simulated annealing algorithm to solve the

assembly line balancing problem. Also, McMullen and

Frazier (1998) used this algorithm to solve the multi-ob-

jective assembly line balancing problem with parallel

workstations, random task times, and multiple products. In

addition, Roshani et al. (2012) used the simulated anneal-

ing algorithm to solve a two-sided assembly line balancing

problem. Baykasoglu (2006) used this algorithm to solve

U-shaped assembly line balancing problem with the

objectives of maximizing line performance and line

smoothness index. Erel et al. (2001) used this algorithm to

solve a typical U-shaped assembly line balancing problem.

In addition, Manavizadeh et al. (2013) investigated the

U-shaped assembly line balancing problem with the aim of

minimizing the number of workstations through balancing

workload and maximizing the weighted efficiency with the

simulated annealing algorithm.

In this study, an approach consisting of mathematical

formulation and meta-heuristic algorithms is developed to

solve a new U-shaped assembly balancing problem.

Compared to the literature, a new nonlinear multi-objective

formulation (Hadi-Vencheh 2011; Kovács et al. 2017) for

the U-shaped assembly line balancing problem is presented

and linearized. This problem for the first time considers the

criteria such as equipment purchasing cost, number of

stations, and activity performing quality simultaneously

and optimizes them by activity and worker allocations.

Since the U-shaped assembly line balancing problem with

equipment requirements is an NP-hard problem (Ogan and

Azizoglu, 2015), the use of meta-heuristic algorithms for

the problem of this study is inevitable. As a solution

approach, the classical simulated annealing and classical

variable neighborhood search algorithms with a novel

encoding/decoding scheme are used and hybridized

according to the characteristics of the problem. In order to

evaluate the proposed meta-heuristics, because the problem

is new, some test problems are generated randomly.

Computational study of the paper including sensitivity

analysis of the proposed meta-heuristics and final com-

parison of them proves the effectiveness of the hybrid

versions of the classical simulated annealing for the prob-

lem of this study.

The remainder of this paper has four sections. Section 2

presents the problem description and its formulation. Sec-

tion 3 develops the meta-heuristic solution approaches.

Section 4 includes the computational study of the problem

and the solution approaches. The paper ends with the

concluding remarks of Sect. 5.

2 Problem description and formulation

The problem of this study is a typical U-shaped assembly

line balancing problem. This problem has some properties

and assumptions which are explained as follow.

• A set of activities with their given precedence relation-

ships are to be assigned to a set of given stations in

order to produce a single product.

• A set of workers is available where each of them is able

to perform all of the activities at a known quality level.

• Cycle time of the line is known.

• There is a set of equipment where one or some of them

is used to perform each activity.

• For each established station, the set of required

equipment and a worker should be allocated.

• For each station, after allocating its activities and

workers, the lowest quality among its activities deter-

mines the quality level of that station. Accordingly, the

dis-quality level of each station is one minus its quality

level.

• The following objectives are considered

simultaneously,

– Minimization of the equipment purchasing cost.

– Minimization of the number of established stations.

– Minimization of the average of the dis-quality level

of the line.

For this problem, the following notations are considered,

Sets PRi The set of predecessors for activity

SCi The set of successors for activity i.

TLi The set of equipment used for activity i.

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2243

123

Indexes i; p Indexes used for activities i; p 2 1; 2; :::; If g.
k; r Indexes used for stations k; r 2 1; 2; :::;Kf g.
u Index used for workers u 2 1; 2; :::;Uf g.
l Index used for equipment l 2 1; 2; :::; Lf g.

Parameters ti The time to perform activity i.

ecl The purchasing cost of equipment l.

qiu The quality level of worker u for performing activity

i.

ct Cycle time.

Variables Ui A binary variable. It takes value of 1 if

activity i is assigned to the front leg of the U-shaped line, it

takes value of zero if activity i is assigned to the behind leg

(the front leg is the first leg passing by the product).

Xik A binary variable. It takes value of 1 if activity i is

assigned to station k, otherwise, its value is zero.

Sk A binary variable. It takes value of 1 if station k

includes at least one activity, otherwise, its value is zero.

Zlk A binary variable. It takes value of 1 if equipment l is

assigned to station k, otherwise, its value is zero.

Wuk A binary variable. It takes value of 1 if worker u is

assigned to station k, otherwise, its value is zero.

Qk The quality level of station k.

According to the above-mentioned notations and

assumptions, the following mathematical formulation is

proposed to optimize the proposed U-shaped assembly line

balancing problem.

Objective function 1

OF1 ¼ min
XL

l¼1

XK

k¼1

eclZlk ð1Þ

Objective function 2

OF2 ¼ min
XK

k¼1

Sk ð2Þ

Objective function 3

OF3 ¼ min

PK

k¼1

1� Qk

PK

k¼1

Sk

ð3Þ

subject to

XK

k¼1

kXpk �
XK

k¼1

kXik �K 1þ Up � 2Ui

� �
; 8 p; ið Þjp 2 PRi

ð4Þ
XK

k¼1

kXsk �
XK

k¼1

kXik �KUi; 8 i; sð Þjs 2 SCi ð5Þ

XK

k¼1

Xik ¼ 1; 8i ð6Þ

Sk �Xik; 8i; k ð7Þ

Sk �
XI

i¼1

Xik; 8k ð8Þ

XI

i¼1

tiXik � ct; 8k ð9Þ

XK

u¼1

Wuk ¼ Sk; 8k ð10Þ

XK

k¼1

Wuk � 1; 8u ð11Þ

1� qiuð ÞWukXik � 1� Qk; 8i; k; u ð12Þ

Xik �

P
l2Tli

Zlk

Tlij j ;8i; k ð13Þ

Xik; Zlk; Sk;Wuk 2 0; 1f g; 8i; k; l; u ð14Þ
Qk � 0; 8k ð15Þ

Objective function (1) minimizes total equipment pur-

chasing cost for all stations. Objective function (2) mini-

mizes the number of established stations. Objective

function (3) minimizes average dis-quality level of the

established stations. Constraints (4)-(5) respect the prece-

dence relationships of the activities. These constraints also

respect to the concept of U-shaped assembly line, which

says an activity can be assigned to a station if either all of

its predecessors or all of its successors have been assigned

to earlier stations. Constraint (6) assigns each activity to

only one station. Constraints (7)-(8) consider a station as an

established station if it contains at least one activity.

Constraint (9) respects to the cycle time for each station.

Constraints (10)-(11) assign workers to established sta-

tions. Constraint (12) determines the dis-quality level of

each station. Constraint (13) determines the required

equipment for the activities of each station, where, Tlij j is
the cardinality of set Tli. Finally, constraints (14)-(15) are

sign constraints.

The proposed formulation (1)-(15) is a nonlinear for-

mulation because of objective function (3) and constraint

(12). In the rest of this section, this formulation is lin-

earized. For this aim, some steps are followed. These steps

are explained in the rest of this section.

Step 1

Linearize constraint (12) by the following conversion,

where, Yiuk is a binary variable.

2244 M. Khorram et al.

123

1� qiuð ÞWukXik � 1� Qk ,
1� qiuð ÞYiuk � 1� Qk

Wuk þ Xik � 2Yiuk

Wuk þ Xik � 1þ Yiuk

8
>><

>>:
; 8i; k; u

ð16Þ

Step 2

Use a typical Charnes and Cooper (1962) conversion

method for objective function (3) as follow, where T is a

non-negative variable.

OF3 ¼ min

PK

k¼1

1� Qk

PK

k¼1

Sk

,
OF3 ¼ min

PK

k¼1

T � T Qkð Þ
subject to
PK

k¼1 Sk ¼
1

T
)

XK

k¼1
T Skð Þ ¼ 1

8
>>><

>>>:
ð17Þ

Step 3 In the conversion (17), the nonlinear termPK
k¼1 T Skð Þ ¼ 1 is linearized as follow, where Vk ¼

T Skð Þ is a non-negative variable.

XK

k¼1
T Skð Þ ¼ 1 ,

PK
k¼1 Vk ¼ 1; 8k

Vk � Sk
Vk � T
Vk � T � 1� Skð Þ

8
>><

>>:
ð18Þ

Step 4 In the conversion (17), the nonlinear term T Qkð Þ
is linearized as follow, where Rk ¼ T Qkð Þ is a non-

negative variable. In this conversion, the inequality

1� qiuð ÞYiuk � 1� Qk obtained in Step 1 also is

influenced.

OF3 ¼ min
XK

k¼1

T � T Qkð Þ , OF3 ¼ min
XK

k¼1

T � Rk

ð19Þ

1� qiuð ÞYiuk � 1� Qk , 1� qiuð ÞYiukT � T
� Rk; 8i; k; u ð20Þ

Step 5 The nonlinear term YiukT of inequality (20) is

replaced by a non-negative variable Biuk ¼ YiukT , and the

inequality is linearized as follow,

1� qiuð ÞYiukT � T � Rk ,
1� qiuð ÞBiuk � T � Rk; 8i; k; u
Biuk � Yiuk

Biuk � T

Biuk � T � 1� Yiukð Þ

8
>>><

>>>:

ð21Þ

According to the obtained linearized constraints and

objective functions of the above steps, the nonlinear

formulation (1)-(15) is equivalent to the below linear

formulation.

Objective function 1

OF1 ¼ min
XL

l¼1

XK

k¼1

eclZlk ð22Þ

Objective function 2

OF2 ¼ min
XK

k¼1

Sk ð23Þ

Objective function 3

OF3 ¼ min
XK

k¼1

T � Rk ð24Þ

subject to

XK

k¼1

kXpk �
XK

k¼1

kXik �K 1þ Up � 2Ui

� �
; 8 p; ið Þjp 2 PRi

ð25Þ
XK

k¼1

kXsk �
XK

k¼1

kXik �KUi8 i; sð Þjs 2 SCi ð26Þ

XK

k¼1

Xik ¼ 1; 8i ð27Þ

Sk �Xik; 8i; k ð28Þ

Sk �
XI

i¼1

Xik; 8k ð29Þ

XI

i¼1

tiXik � ct; 8k ð30Þ

XK

u¼1

Wuk ¼ Sk; 8k ð31Þ

XK

k¼1

Wuk � 1; 8u ð32Þ

1� qiuð ÞBiuk � T � Rk; 8i; k; u ð33Þ
Wuk þ Xik � 2Yiuk; 8i; k; u ð34Þ
Wuk þ Xik � 1þ Yiuk; 8i; k; u ð35Þ
XK

k¼1
Vk ¼ 1 ð36Þ

Vk � Sk; 8k ð37Þ
Vk � T ; 8k ð38Þ
Vk � T � 1� Skð Þ 8k ð39Þ
Biuk � Yiuk 8i; k; u ð40Þ

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2245

123

Biuk � T ; 8i; k; u ð41Þ
Biuk � T � 1� Yiukð Þ; 8i; k; u ð42Þ

Xik �

P
l2Tli

Zlk

Tlij j ; 8i; k ð43Þ

Xik; Zlk; Sk;Wuk; Yiuk 2 0; 1f g; 8i; k; l; u ð44Þ
T ;Vk;Rk;Biuk � 0; 8k ð45Þ

In the next section of the paper, some meta-heuristic

approaches are developed to solve the formulation (22)-

(45) effectively.

3 Solution methodology

Generally, the assembly line balancing problems in their

simple form are of the NP-hard class of combinatorial

optimization problems (see Ogan and Azizoglu 2015).

Therefore, we conclude that the linearized formulation

(22)-(45) which contains many variables and constraints in

addition to classical assembly line balancing problems of

the literature, has a high degree of complexity to be solved

exactly by optimization solvers. For this aim, first, the

classical simulated annealing (SA) and the classical vari-

able neighbourhood search (VNS) algorithms are proposed

to solve the formulation (22)-(45). In continue, these

algorithms are hybridized by a local search algorithm in

order to obtain better solutions. In the rest of this section,

first, an encoding/decoding scheme is proposed to construct

and evaluate the solutions of the proposed meta-heuristic

algorithms. Then the proposed meta-heuristic algorithms

are explained.

3.1 Encoding/decoding scheme

A special encoding/decoding scheme is proposed to con-

struct and evaluate a feasible solution for the formulation

(22)-(45). The proposed meta-heuristic approaches of this

study are mainly based on this scheme. This encoding/

decoding scheme follows three steps as represented by

Fig. 2 and its steps are detailed in continue.

Step 1. Activity to station assignment. According to

the concept of U-shaped lines, either all of the predecessors

or all of the successors of an eligible activity for being

assigned to a candidate station should be assigned to earlier

stations or that station. On the other hand, for each activity,

a set of eligible stations is defined to assign it to one of

them. Starting from Station 1, the last station contains one

of the predecessors or successors of an activity, and the

later stations are eligible for that activity. For example, if

we consider Station 6 for assigning an activity and the last

station containing its predecessors or successors is Station

3, the set of eligible stations for this activity contains sta-

tions 3, 4, 5, and 6. In the beginning, all of the stations,

respectively from 1 to K are eligible. Now, to perform this

step, the below sub-steps are followed.

Step 1.1. A permutation of the activities is generated

randomly as a solution vector.

Step 1.2. A set of eligible activities starting from the

beginning of the solution vector are obtained, respectively.

Also, a set of eligible stations is obtained for each eligible

activity.

Step 1.3. The first eligible activity is assigned to its

earliest possible eligible station. The condition for this

assignment is that the operating time of the stations does

not exceed the cycle time. If an eligible activity is assigned

to a station, it is removed from the solution vector, and also

it is removed from the predecessor and successor lists of

the remaining activities of the solution vector.

Step 1.4. The last two steps are repeated until the

solution vector becomes empty.

Step 2. Equipment to station assignment. In this step,

according to the activity assignment plan obtained by Step

1, the required equipment of each opened station is deter-

mined from the required equipment of the activities of that

station. For the cases that more than one activity from a

station requires an equipment, just one unit of that equip-

ment is assigned to that station.

Step 3. Worker to station assignment. A random

permutation of the available workers is generated. Starting

from the beginning of the permutation, the workers are

assigned to the opened stations, respectively. Therefore,

some of the workers are unassigned if all of the potential

stations are not opened.

Step 4. Solution evaluation. The solution obtained by

steps 1–3 is evaluated in this step. For this aim, the multi-

objective function of the formulation (22)-(45) is converted

to a single objective function by a typical global criterion.

For this aim, the following sub-steps are followed.

Step 4.1. For the obtained solution, the objective func-

tions of the formulation (22)-(45) are obtained easily by the

Eqs. 1-3. For this aim, the variables Zlk, Sk, and Qk are

calculated easily from the obtained solution.

Step. 4.2. Calculate the following single objective

function, which is a typical global criterion. According to

the minimization type objective functions (1)-(3), smaller

values of OF are favoured.

OF ¼

PL

l¼1

PK

k¼1

eclZlk

UBOF1

þ

PK

k¼1

Sk

UBOF2

þ

PK
k ¼ 1

1�Qk=
PK
k ¼ 1

Sk

UBOF3

ð46Þ

In this equation, UBOF1
is a proposed upper bound for

the value of objective function (1). In this global criterion,

2246 M. Khorram et al.

123

each objective function value is converted to a scale

between 0 and 1. Therefore, their summation has more

sense and gives a more accurate evaluation. Regardless of

the obtained solution, the following upper bounds are

proposed in this study.

UBOF1
¼ K

XL

l¼1

ecl ð47Þ

UBOF2
¼ K ð48Þ

UBOF3
¼ Kmax

i;u
1� qiuf g ð49Þ

In Eq. 47, it is assumed that all of the equipment are

assigned to all of the potential stations. In Eq. 48, it is

assumed that all potential stations are opened. In Eq. 49, it

is assumed that the highest possible dis-quality level

appears in all of the potential stations.

In order to explain the calculations of this step, the

example of Fig. 1 is considered. Some data from the

example is shown in Table 1 and others are given below,

• Number of stations is considered K ¼ 5.

• Three types of equipment are available where all of

them are required for any of the

• activities. We consider ec1 ¼ 1000, ec2 ¼ 2000, and

ec3 ¼ 3000.

Based on the given data and the U-shaped configuration of

Fig. 1, the following calculations are done to obtain the

value of the objective function (46).

• UBOF1
is calculated as UBOF1

¼ K

PL

l¼1

ecl ¼ 5� 1000þ 2000þ 3000ð Þ ¼ 30000.

• UBOF2
¼ K ¼ 5.

• UBOF3
¼ Kmax

i;u
1� qiuf g ¼ 5�

max 1� 0:8; 1� 0:8; . . .; 1� 0:9f g ¼ 4� 0:4 ¼ 2.

• In the U-shaped configuration, all 5 stations are

established and all of the equipment are assigned to

each station because it has been assumed that each

activity needs all of the equipment. Therefore, the total

equipment cost of the U-shaped configuration is

calculated as

XK

l¼1

XK

k¼1

eclZlk ¼ 1000þ 2000þ 3000ð Þ

þ 1000þ 2000þ 3000ð Þ þ 1000þ 2000þ 3000ð Þ ¼ 18000

On the other hand, it is assumed that workers 1 to 5 are

assigned to stations 1 to 5, respectively. Therefore,

based on the activities and workers of the stations,

• 1� Q1 ¼ max 1� q31; 1� q41; 1� q10;1
� �

¼ 0:3,

1� Q2 ¼ 0:4, 1� Q3 ¼ 0:4, 1� Q4 ¼ 0:4, and

1� Q5 ¼ 0:4.ss

• Finally, the objective function (46) is calculated as

below,

•

Fig. 2 The proposed encoding/decoding scheme

Table 1 Data of the illustrative example

Activity

(i)
ti qiu

u ¼ 1 u ¼ 2 u ¼ 3 u ¼ 4 u ¼ 5

1 2 0.8 0.8 0.6 0.8 0.9

2 4 0.7 0.8 0.7 0.7 0.6

3 1 0.9 0.6 0.8 0.7 0.8

4 6 0.7 0.9 0.7 0.8 0.6

5 4 0.6 0.6 0.8 0.6 0.7

6 3 0.6 0.8 0.6 0.6 0.8

7 5 0.8 0.7 0.6 0.9 0.6

8 2 0.9 0.8 0.8 0.6 0.7

9 5 0.7 0.6 0.8 0.8 0.6

10 5 0.8 0.9 0.6 0.8 0.9

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2247

123

OF ¼
PK

l¼1

PK
k¼1 eclZlk

UBOF1

þ
PK

k¼1 Sk
UBOF2

þ

P
K
k ¼ 1 1� Qk

� P
K
k ¼ 1 Sk

UBOF3

¼ 18000

30000
þ 5

5
þ
0:3 þ 0:4 þ 0:4 þ 0:4 þ 0:4=5

2
¼ 1:83

3.2 Meta-heuristic solution approaches

3.2.1 Classical simulated annealing (SA-1)

Simulated annealing (SA) is a meta-heuristic algorithm for

complex optimization problems based on a single solution,

which is introduced by Kirkpatrick et al. (1983) (see also

Niroomand and Vizvari, 2015). The objective function of

the algorithm is like the energy of materials that should be

decreased by decreasing the temperature. The search starts

with the initial temperature (T0) and the initial solution

(x0). The initial solution is changed to a new solution or

neighbor.

solution (x0). If this change decreases the objective

function (energy), the new solution is accepted, otherwise,

it can be accepted by the probability of exp �DOF
T0

� �
where

DOF ¼ OF x0ð Þ � OF x0ð Þ. The changing procedure is

repeated several times for the accepted solution, and in

each repetition, the accepted solution may be replaced by

the new solution. After that, the initial temperature is

cooled down and the whole procedure is repeated until

reaching a stopping criterion like a final temperature,

running time, etc. In the end, the best solution is reported.

The SA is detailed by the pseudo-code of Fig. 3.

Some clarifications for applying the classical SA to the

formulation (22)-(45) are as follow,

• The encoding/decoding scheme of classical SA is

exactly the same as Sect. 3.1.

• In the beginning of the algorithm, a random permuta-

tion of the workers is generated and it is used in all of

the generated solutions. Therefore, the common set of

workers is used in all of the generated solutions.

• The neighbourhood search operator is the swap. In the

swap operator, the current solution vector is considered.

Two integer random numbers from 1 to I are generated.

The activities of the positions of these generated

numbers are interchanged and a new solution vector

is obtained.

3.2.2 SA algorithm with random worker assignment (SA-2)

The proposed classical SA of Sect. 3.2.1 is hybridized here

in order to obtain a better solution. For this aim, at any

generated solution during the SA, a random permutation of

the workers is generated and applied to that solution.

Therefore, the difference of this version of the SA with the

SA of the previous sub-section is that just a common set of

workers is not used for the generated solutions, and for

each generated solution, a specific set of workers is gen-

erated randomly.

Fig. 3 The classical SA used for

the formulation (22)-(45)

2248 M. Khorram et al.

123

3.2.3 SA algorithm with local search for worker assignment
(SA-3)

In this sub-section, another hybrid version of the classical

SA is proposed to improve the solutions found for the

formulation (22)-(45). For this aim, the SA of Sect. 3.2.2 is

considered and improved. The improvement is done by

applying a local search in each worker assignment step of

the encoding/decoding scheme (Step 3). For this aim, the

following are done in the worker assignment step when a

new solution (neighbor solution) is generated,

• The worker assignment step of the encoding/decoding

scheme (Step 3) is repeated for a number of iterations

(nw).

• As in each iteration, a random permutation of the

workers is generated, this permutation is changed by a

swap (similar to the swap operator used in the classical

SA) operator for a number of iterations (nit) in order to

improve the worker assignment as much as possible.

• Among the nwnit generated set of workers, the set that

results in less value of objective function (3) obtained

by formulation

PK
k¼1

1�Qk=
PK
k¼1

Sk

is selected for worker assignment of the neighbor

solution.

3.2.4 Classical variable neighbourhood search (VNS-1)

The VNS is a single solution meta-heuristic algorithm to

solve the combinatorial optimization problems effectively

(see Niroomand and Vizvari, 2015). It contains a set of

neighbourhood search structures (this set is shown by NS).

The procedure starts with an initial solution and takes one

of the neighbourhood search structures (NSS) and tries to

improve the initial solution for a number of iterations. The

improved solution (if improved) or initial solution (if not

improved) is transferred to the next neighbourhood search

structure (NSS). The procedure is repeated for all neigh-

bourhood search structures (NSS). The whole procedure

may be repeated for a number of iterations. Finally, the

best-obtained solution is reported.

Some clarifications for applying the classical VNS to the

formulation (22)-(45) are as follow,

• The encoding/decoding scheme is exactly the same as

Sect. 3.1.

• At the beginning of the algorithm, a random permuta-

tion of the workers is generated and it is used in all of

the generated solutions. Therefore, the common set of

workers is used in all of the generated solutions.

• Three neighbourhood search structure are used as

follow,

• NSS-1: In the solution vector, an activity is selected

randomly and all activities before the selected activity

is transferred to the end of the vector in the same order.

• NSS-2: In the solution vector, an activity is selected

randomly and is transferred to another randomly

selected position.

• NSS-3: The neighbourhood search structure is the swap

introduced in Sect. 3.2.1.

The pseudo-code of the VNS-1 is shown in Fig. 4.

3.2.5 VNS algorithm with random worker assignment
(VNS-2)

The proposed classical VNS of Sect. 3.2.4 is hybridized

here in order to obtain a better solution. For this aim, at any

generated solution during the VNS, a random permutation

of the workers is generated and applied to that solution.

Therefore, the difference of this version of the VNS with

the VNS-1 is that just a common set of workers is not used

for the generated solutions, and for each generated solu-

tion, a specific set of workers is generated randomly.

3.2.6 VNS algorithm with local search for worker
assignment (VNS-3)

In this sub-section, another hybrid version of the classical

VNS is proposed to improve the solutions found for the

formulation (22)-(45). For this aim, the VNS-2 is consid-

ered and improved. The improvement is done by applying

a local search in each worker assignment step of the

encoding/decoding scheme (Step 3). For this aim, the fol-

lowings are done in the worker assignment step when a

new solution (neighbor solution) is generated,

• The worker assignment step of the encoding/decoding

scheme (Step 3) is repeated for a number of iterations

(nw).

• As in each iteration, a random permutation of the

workers is generated, this permutation is changed by a

swap (similar to the swap operator used in the classical

VNS) operator for a number of iterations (nit) in order

to improve the worker assignment as much as possible.

Among the nwnit generated set of workers, the set that

results in less value of objective function (3) obtained

by formulation

PK
k¼1

1�Qk=
PK
k¼1

Sk

is selected for worker assignment of the neighbor

solution.

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2249

123

3.2.7 Classical genetic algorithm and its improved versions

For more comparison of the proposed algorithms, the GA is

also considered in this study (similar to the GA applied by

Gen et al. (1997) and Niroomand et al. (2016)). The clas-

sical and modified versions of the GA is briefly explained

as below,

• GA-1: In this GA, a population of solutions is generated

randomly (the number of solutions of the population is

denoted by N). Each solution is generated and evaluated

by the encoding–decoding scheme of Sect. 3.1. A

roulette wheel mechanism (see Gen et al. 1997) is used

and two solutions (parents) from the population are

selected. The partial mapped crossover (PMX) (see

Niroomand et al. 2016) is applied to the sequences of

the first step of the solutions to form a new solution

(offspring). Then, with a mutation rate (pr) a swap

operator (see Niroomand et al. 2016) is applied on the

sequence of the first step of the new solution for

possible improvement. The remaining N � 2 solutions

of the population are regenerated randomly and are

added to the population. The new solution is also added

to the population while the parents remain in the

population. Then the best N solutions among all

solutions of the population are selected to form a new

population. The procedure is repeated for a number of

iterations (nmax) and the best-obtained solution among

the last population is introduced as the best solution of

the GA. Some clarifications for applying the classical

SA to the formulation (22)-(45) are as follow,

• The encoding/decoding scheme of the GA-1 is exactly

the same as Sect. 3.1.

• At the beginning of the algorithm, a random permuta-

tion of the workers is generated and it is used in all of

the generated solutions. Therefore, the common set of

workers is used in all of the generated solutions.

• GA-2: The proposed GA-1 is hybridized here in order

to obtain a better solution. For this aim, in any

generated solution during the procedure of GA-1, a

random permutation of the workers is generated and

applied in that solution. Therefore, the difference of this

version of the GA with the GA-1 is that just a common

set of workers is not used for the generated solutions,

and for each generated solution, a specific set of

workers is generated randomly.

• GA-3: In this sub-section, another hybrid version of the

GA-1 is proposed to improve the solutions found for the

formulation (22)-(45). For this aim, the GA-2 is

considered and improved. The improvement is done

by applying a local search in each worker assignment

step of the encoding/decoding scheme (Step 3). For this

aim, the followings are done in the worker assignment

step when a new solution (neighbor solution) is

generated,

• The worker assignment step of the encoding/decoding

scheme (Step 3) is repeated for a number of iterations

(nw).

• As in each iteration, a random permutation of the

workers is generated, this permutation is changed by a

swap (similar to the swap operator used in the GA-1)

operator for a number of iterations (nit) in order to

improve the worker assignment as much as possible.

Among the nwnit generated set of workers, the set that

results in less value of objective function (3) obtained

by formulation

Fig. 4 The classical VNS used

for the formulation (22)-(45)

2250 M. Khorram et al.

123

PK
k¼1

1�Qk=
PK
k¼1

Sk

is selected for worker assignment of the neighbor

solution.

4 Computational study

The formulation (22)-(45) and the proposed meta-heuristic

solution approaches are numerically evaluated in this sec-

tion. For this aim, some test problems are generated. Using

these test problems, the behavior of the parameters of the

meta-heuristic algorithms is studied experimentally and the

best value for each parameter is determined. Then the final

experiments using the obtained values of the parameters

are performed. It is notable to mention that the meta-

heuristic solution approaches are coded in MATLAB and

are run on a computer Core i7- 16.00 GB RAM—

3.88 GHz CPU. The rest of this section describes the

details of the computational study.

4.1 Test problems

As mentioned earlier, some test problems are generated to

evaluate the proposed meta-heuristic solution approaches.

In this section, some characteristics of these test problems

are detailed. The interested readers can contact the

corresponding author for the complete set of data of the test

problems.

Except the characteristics represented by Table 2, the

following data are also considered for the test problems

which are not reported in the paper.

• Activity operating time, which is randomly generated

between 1 and CT.

• Equipment purchasing cost, which is randomly gener-

ated for each equipment.

• Quality level of performing each activity by each

worker which is randomly generated between 0 and 1.

• Set of equipment used for each activity.

In order to study the performance of the proposed meta-

heuristics deeply, the size of the test problems are con-

sidered from a small size to a large size.

4.2 Parameter tuning

A very important step in implementing any meta-heuristic

algorithm is to determine the best value of its parameters.

A very simple but time-consuming and even impossible

way is to consider all possible values of the parameters of a

meta-heuristic algorithm and determine all of the combi-

nations of the parameters. These combinations determine

the number of experiments to be performed for studying

the effect of the parameters on the performance of the

algorithm.

As an effective method to deal with such difficulty and

reduce the number of required experiments, Taguchi

(1986) proposed Taguchi experimental design method

which has been used in many optimization-based studies

like Taassori et al. (2015), Niroomand et al. (2015), Mir-

zaei et al. (2016), Niroomand et al. (2016), Sanei et al.

(2016), Boros et al. (2016), Salehi et al. (2020), etc. The

process of the Taguchi method divides the parameters into

two groups of uncontrollable and controllable parameters.

During the process, it tries to decrease the impact of

uncontrollable parameters and find the best value of the

controllable parameters. For this aim, the Taguchi method

uses orthogonal arrays to decrease the number of required

experiments. The number of rows (experiments) of the

orthogonal array of an algorithm with four parameters and

three levels in each parameter is at least

4� 3� 1ð Þð Þ þ 1 ¼ 9. If there is no orthogonal array with

exactly nine number of rows, the larger arrays are modi-

fied. The result of experiments of the orthogonal array is a

signal-to-noise ratio (S/N ratio) to be minimized in the case

of best values of the parameters. For a minimization type

objective function, this ratio is as follow,

S=N ¼ �10 log10 objective functionð Þ2
� �

ð50Þ

Table 2 Some characteristics of the test problems

Test problem I K U L CT

TP1 11 11 11 4 55

TP2 11 11 11 8 55

TP3 25 25 25 5 14

TP4 25 25 25 10 14

TP5 35 35 35 5 50

TP6 35 35 35 10 50

TP7 53 53 53 5 2000

TP8 53 53 53 10 2000

TP9 70 70 70 5 200

TP10 70 70 70 10 200

TP11 89 89 89 5 90

TP12 89 89 89 10 90

TP13 111 111 111 5 580

TP14 111 111 111 10 580

TP15 148 148 148 5 140

TP16 148 148 148 10 140

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2251

123

For the meta-heuristics of this study, two or three values

for each parameter is proposed which are mainly taken

from the literature. These values are reported in Table 3

and the total required number of experiments is also

obtained there to show the complexity of simple parameter

tuning for these algorithms. For the algorithms based on

SA, in final temperature, only one value is considered,

which means that this parameter is not studied for tuning

purposes. On the other hand, the most suitable orthogonal

array for each meta-heuristic is obtained and its experi-

ments using values of Table 3 are designed.

The experiments of the orthogonal arrays are performed

on TP6 test problem. Each experiment is run five times to

obtain more reliable results. The average objective function

values is used to obtain the S/N ratio of each parameter

level and finally, the best value of each parameter is

obtained and reported by Table 4.

Table 3 The levels considered for the parameters of the proposed meta-heuristics

Algorithm Levels of the parameters

T0 a nmax Tf nw nit W n1 n2 n3 N pr nmax

SA-1 50, 100,

250

0.8, 0.9,

0.99

20, 80,

200

5 – – – – – – – – –

SA-2 50, 100,

250

0.8, 0.9,

0.99

20, 80,

200

5 – – – – – – – – –

SA-3 100, 250 0.85,

0.99

40, 80 5 25,

50

25,

50

– – – – – – –

VNS-1 – – – – – – 50, 100,

200

50, 100,

200

50, 100,

200

50, 100,

200

– – –

VNS-2 – – – – – – 50, 100,

200

50, 100,

200

50, 100,

200

50, 100,

200

– – –

VNS-3 – – – – 25,

50

25,

50

50, 100,

200

50, 100,

200

50, 100,

200

50, 100,

200

– – –

GA-1 – – – – – – – – 50, 100,

150

0.4, 0.6,

0.8

50, 150,

300

GA-2 – – – – 25,

50

25,

50

– – – – 50, 100,

150

0.4, 0.6,

0.8

50, 150,

300

GA-3 – – – – 25,

50

25,

50

– – – – 50, 100,

150

0.4, 0.6,

0.8

50, 150,

300

Table 4 The best level obtained

for the parameters of the

proposed meta-heuristics

Algorithm Levels of the parameters

T0 a nmax Tf nw nit W n1 n2 n3 N pr nmax

SA-1 250 0.99 200 5 – – – – – – – – –

SA-2 250 0.99 200 5 – – – – – – – – –

SA-3 250 0.99 80 5 50 50 – – – – – – –

VNS-1 – – – – – – 200 100 100 200 – – –

VNS-2 – – – – – – 200 100 100 200 – – –

VNS-3 – – – – 50 50 200 100 100 200 – – –

GA-1 – – – – – – – – 150 0.6 300

GA-2 – – – – 50 50 – – – – 150 0.6 300

GA-3 – – – – 25 50 – – – – 150 0.8 300

2252 M. Khorram et al.

123

4.3 Final experiments

The best level of the parameters obtained by Sect. 4.2 are

used to run the proposed algorithms for all test problems. In

order to have a fair comparison among the proposed

algorithms, the following conditions are considered when

running the proposed meta-heuristic algorithms,

• A common CPU time equal to the CPU time of the

longest algorithm in each test problem is considered to

run that test problem by all of the algorithms. This issue

considers two points, (1) all algorithms are run for equal

CPU time, and (2) as the considered CPU time is

depended on the size of the test problems, for larger test

problems, larger CPU time is considered.

• In order to obtain more reliable results, each test

problem is solved by each algorithm 20 times.

In addition, the problem (22)-(45) is solved by CPLEX

solver of GAMS for obtaining the optimal solution of each

test problem. For this aim, each objective function is

divided by its upper bound explained by Eqs. (47)-(49) and

the obtained fractions are summed up. The obtained single

objective function is identical to the objective function

(46), which is used to evaluate the solutions generated by

the meta-heuristic solution approaches. The CPU running

time of 30,000 s is considered for all test problems while

they are solved by GAMS. The obtained results by exact

experiments is depicted in the last column of Table 5. It can

be seen that only test problems TP1 to TP6 can be solved

exactly in the given CPU running time. For other test

problems, no optimal solution is obtained at that running

time.

The results obtained by final experiments are reported in

Table 5, Figs. 5, 6, and 7. In these table and figures, the

minimum, maximum and average of the objective function

values obtained by each meta-heuristic algorithm for each

test problem are reported.

The results of Table 5 are represented based on the

average of the objective function values obtained by each

meta-heuristic algorithm. The graphs of the objective

function values are depicted in Figs. 5, 6, and 7 where

minimum obtained value, maximum obtained value, and

average of values of all 20 runs of each meta-heuristic

algorithm for each test problem are represented, respec-

tively. According to the obtained results, the following

conclusions are drawn from the results of Table 5 and

Figs. 5, 6, 7.

• In all test problems, among the SA-based algorithms,

the best average of the obtained objective function

values is related to the SA-3 algorithm. After this

algorithm, the SA-2 algorithm results in a better

average of the obtained objective function values

compared to the SA-1 algorithm for most of the test

problems. Among the VNS-based algorithms, the VNS-

3 performs better than the VNS-2 and VNS-1 algo-

rithms. Among the GA-based algorithms, the GA-3

performs better than the GA-2 and GA-1 algorithms.

• In all test problems, the best minimum value of the

obtained objective function values is related to either

GA-3 or SA-3 algorithms. After these algorithms, the

Table 5 The results obtained for the test problems by the proposed meta-heuristic approaches SA-1, SA-2, and SA-3

Test problem SA-1 SA-2 SA-3 VNS-1 VNS-2 VNS-3 GA-1 GA-2 GA-3 Exact solution (CPLEX)

TP1 1.411 1.238 1.185 1.429 1.240 1.185 1.360 1.126 1.096 1.011

TP2 1.342 1.204 1.166 1.407 1.181 1.149 1.378 1.211 1.114 1.019

TP3 1.192 1.202 1.126 1.259 1.250 1.118 1.351 1.132 1.125 1.112

TP4 1.191 1.204 1.136 1.294 1.257 1.155 1.359 1.166 1.122 1.049

TP5 1.221 1.177 1.112 1.229 1.210 1.117 1.433 1.176 1.115 1.101

TP6 1.242 1.191 1.114 1.259 1.201 1.123 1.354 1.159 1.117 1.018

TP7 1.194 1.090 1.032 1.203 1.218 1.035 1.397 1.201 1.086 –

TP8 1.217 1.093 1.031 1.204 1.212 1.055 1.379 1.180 1.089 –

TP9 1.192 1.185 1.135 1.195 1.198 1.136 1.344 1.165 1.097 –

TP10 1.202 1.195 1.141 1.205 1.203 1.147 1.333 1.201 1.083 –

TP11 1.293 1.133 1.067 1.224 1.181 1.098 1.308 1.212 1.090 –

TP12 1.204 1.217 1.070 1.342 1.198 1.139 1.344 1.149 1.122 –

TP13 1.317 1.206 1.082 1.257 1.134 1.107 1.235 1.205 1.083 –

TP14 1.241 1.198 1.117 1.394 1.202 1.128 1.364 1.244 1.125 –

TP15 1.376 1.199 1.120 1.206 1.104 1.136 1.280 1.152 1.109 –

TP16 1.299 1.120 1.092 1.224 1.217 1.124 1.284 1.246 1.092 –

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2253

123

Fig. 5 Minimum objective

function values obtained by the

metaheuristic algorithms for all

test problems

Fig. 6 Maximum objective

function values obtained by the

metaheuristic algorithms for all

test problems

Fig. 7 Average of objective

function values obtained by the

metaheuristic algorithms for all

test problems

2254 M. Khorram et al.

123

SA-2 and GA-2 algorithms result in better minimum

value of the obtained objective function values com-

pared to others.

• In all test problems, the best maximum value of the

obtained objective function values is related to either

SA-3 or GA-3 algorithms. After these algorithms, the

SA-2 algorithm results in a better maximum value of

the obtained objective function values compared to the

SA-1 algorithm is most of the test problems. Among the

VNS-based algorithms, the VNS-3 performs better than

the VNS-2 and VNS-1 algorithms.

• In the case of the minimum obtained objective function

value, the GA-3 algorithm performs definitely better

than the other algorithms.

• The obtained results prove the superiority of the SA-3,

VNS-3, and GA-3 algorithms over others. This means

that, applying a local search on the worker assignment

step in the classical algorithms, makes them a powerful

solution approach compared to the classical SA, VNS,

and GA (the SA-1, VNS-1, and GA-1 algorithms).

For more exact comparison of the obtained results of

Table 5, a one-way ANOVA is used to statistically com-

pare them in 0.05 a-level. The result of ANOVA shows

Table 6 The results of one-way ANOVA for comparison of the algorithms overall test problems (the sign ‘‘\ / = /[’’ means that the algorithm

of row performs better/equal/worse than the algorithm of the column in 0.05 a-level)

Algorithm SA-1 SA-2 SA-3 VNS-1 VNS-2 VNS-3 GA-1 GA-2 GA-3

SA-1 – \ \ = \ \ = \ \
SA-2 – – \ [= \ [= \
SA-3 – – – [[= [[=

VNS-1 – – – – \ \ = \ \
VNS-2 – – – – – \ [= \
VNS-3 – – – – – – [[=

GA-1 – – – – – – – \ \
GA-2 – – – – – – – – \
GA-3 – – – – – – – – –

Table 7 CPU running times of the algorithms and common run time used for the final experiments in seconds

Test problem SA-1 SA-2 SA-3 VNS-1 VNS-2 VNS-3 GA-1 GA-2 GA-3 Common run time

TP1 25 25 1100 30 30 1400 25 25 1300 1400

TP2 25 25 1100 25 25 1400 25 25 1300 1400

TP3 100 100 2300 140 140 2900 130 130 2700 2900

TP4 100 100 2300 140 140 2900 130 130 2700 2900

TP5 210 210 3500 300 300 4300 250 250 4000 4300

TP6 210 210 3500 300 300 4300 250 250 4000 4300

TP7 660 660 5800 900 900 7400 810 810 7000 7400

TP8 660 660 5800 900 900 7400 810 810 7000 7400

TP9 1500 1500 8500 2100 2100 11,500 1900 1900 10,500 11,500

TP10 1500 1500 8500 2100 2100 11,500 1900 1900 10,500 11,500

TP11 3600 3600 10,800 4100 4100 12,600 3900 3900 11,700 12,600

TP12 3600 3600 10,800 4100 4100 12,600 3900 3900 11,700 12,600

TP13 5300 5300 11,600 6200 6200 13,800 5800 5800 13,100 13,800

TP14 5300 5300 11,600 6200 6200 13,800 5800 5800 13,100 13,800

TP15 6900 6900 13,200 7900 7900 15,000 7200 7200 14,200 15,000

TP16 6900 6900 13,200 7900 7900 15,000 7200 7200 14,200 15,000

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2255

123

that there is a significant difference among the average of

objective function values of Table 5. In continue, the

Tukey test is performed to exactly compare the algorithms

based on the average of objective function values of

Table 5. The result of the Tukey test is shown by Table 6

where the sign ‘‘\ / = /[’’ means that the algorithm of

row performs better/equal/worse than the algorithm of

column in 0.05 a-level. According to the results of Table 6,

the SA-1, VNS-1, and GA-1 algorithms are strongly worse

than the others while the algorithms SA-3, VNS-3, and

GA-3 are strongly better than the others. Interestingly, the

algorithms SA-3, VNS-3, and GA-3 are equal in all of the

test problems. This means that, applying a local search on

the worker assignment step in the classical algorithms

makes them a powerful solution approach compared to the

classical SA, VNS, and GA (the SA-1, VNS-1, and GA-1

algorithms).

4.4 Managerial insights

The mathematical formulation, solution procedure, and

obtained results show the following implications from the

managerial point of view,

• For industrial holdings, the formulation and solution

approaches can be used to establish the assembly line of

a new product for the first time.

• The proposed solution approaches can help the man-

agers to overcome multi-objective nature of real-world

multi-objective optimization problems.

• The proposed improvement procedure of the proposed

algorithms can be modified for other assembly line

balancing problems.

5 Conclusions

In this paper, a new U-shaped assembly line balancing

problem was studied. Comparing to the literature, a new

multi-objective formulation for U-shaped assembly line

balancing problem was presented. The problem considers

the criteria such as equipment purchasing cost, number of

stations, and activity performing quality simultaneously

and optimizes them by activity and worker allocations.

Since the proposed U-shaped assembly line balancing

problem is an NP-hard problem, the use of meta-heuristic

algorithms for the problem is inevitable. As solution

approach, the classical simulated annealing (SA), variable

neighborhood search (VNS), and genetic algorithm (GA)

with a novel encoding/decoding scheme were used and

hybridized according to the characteristics of the problem.

In order to evaluate the proposed meta-heuristics, because

the problem is new, some test problems were generated

randomly. Computational study of the paper including

sensitivity analysis of the proposed meta-heuristics and

final comparison of them, proved the effectiveness of the

hybrid versions of the SA, VNS, and GA comparing to

other approaches. It means that in the problem of this study

applying the local search on the worker assignment phase

(the hybrid algorithms SA-3, VNS-3, and GA-3) dramati-

cally improved the obtained solutions (Table 7).

As the future study on the problem of this paper, the

problem can be tackled by multi-objective meta-heuristic

solution approaches. Furthermore, considering the problem

in an uncertain environment and applying the methods such

as stochastic programming, fuzzy programming, interval

programming, etc. can be of interest.

Funding This study was not funded by any organization.

Declarations

Conflict of interest AuthorMorteza Khorram declares that he has no

conflict of interest. AuthorMahmood Eghtesadifard declares that he

has no conflict of interest. Author Sadegh Niroomand declares that

he has no conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Ağpak K, Yegül MF, Gökçen H (2012) Two-sided U-type assembly

line balancing problem. Int J Prod Res 50(18):5035–5047.

https://doi.org/10.1080/00207543.2011.631599

Aigbedo H, Monden Y (1997) A parametric procedure for multicri-

terion sequence scheduling for Just-In-Time mixed-model

assembly lines. Int J Prod Res 35(9):2543–2564. https://doi.

org/10.1080/002075497194651

Ajenblit DA, Wainwright RL (1998) Applying genetic algorithms to

the U-shaped assembly line balancing problem. In: Evolutionary
Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence, The 1998 IEEE International Con-
ference on (pp. 96–101). IEEE. https://doi.org/10.1109/ICEC.

1998.699329

Alavidoost MH, Zarandi MF, Tarimoradi M, Nemati Y (2017)

Modified genetic algorithm for simple straight and U-shaped

assembly line balancing with fuzzy processing times. J Intell

Manuf 28(2):313–336. https://doi.org/10.1007/s10845-014-

0978-4

Baybars I (1986) A survey of exact algorithms for the simple

assembly line balancing problem. Manage Sci 32(8):909–932.

https://doi.org/10.1287/mnsc.32.8.909

Baykasoglu A (2006) Multi-rule multi-objective simulated annealing

algorithm for straight and U type assembly line balancing

problems. J Intell Manuf 17(2):217–232. https://doi.org/10.1007/

s10845-005-6638-y

Boros P, Fehér O, Lakner Z, Niroomand S, Vizvári B (2016)

Modeling supermarket re-layout from the owner’s perspective.

Ann Oper Res 238(1–2):27–40

2256 M. Khorram et al.

123

https://doi.org/10.1080/00207543.2011.631599
https://doi.org/10.1080/002075497194651
https://doi.org/10.1080/002075497194651
https://doi.org/10.1109/ICEC.1998.699329
https://doi.org/10.1109/ICEC.1998.699329
https://doi.org/10.1007/s10845-014-0978-4
https://doi.org/10.1007/s10845-014-0978-4
https://doi.org/10.1287/mnsc.32.8.909
https://doi.org/10.1007/s10845-005-6638-y
https://doi.org/10.1007/s10845-005-6638-y

Charnes A, Cooper WW (1962) Programming with linear fractional

functionals. Naval Res Logist Q 9(3–4):181–186. https://doi.org/

10.1002/nav.3800090303

Chica M, Cordon O, Damas S (2011) An advanced multiobjective

genetic algorithm design for the time and space assembly line

balancing problem. Comput Ind Eng 61(1):103–117. https://doi.

org/10.1016/j.cie.2011.03.001

Delice Y, Aydoğan EK, Özcan U, İlkay MS (2017) Balancing two-

sided U-type assembly lines using modified particle swarm

optimization algorithm. 4OR. https://doi.org/10.1007/s10288-

016-0320-4

Erel E, Sabuncuoglu I, Aksu BA (2001) Balancing of U-type

assembly systems using simulated annealing. Int J Prod Res

39(13):3003–3015. https://doi.org/10.1080/00207540110051905

Foroughi A, Gökçen H, Tiacci L (2016) The cost-oriented stochastic

assembly line balancing problem: a chance constrained pro-

gramming approach. Int J Ind Eng, 23(6)

Foroughi A, Gökçen H (2018) A multiple rule-based genetic

algorithm for cost-oriented stochastic assembly line balancing

problem. Assem Autom. https://doi.org/10.1108/AA-03-2018-

050

Gen M, Cheng R, Wang D (1997) Genetic algorithms for solving

shortest path problems. In: Proceedings of 1997 IEEE Interna-

tional Conference on Evolutionary Computation (ICEC’97) (pp.

401–406). IEEE

Gökçen H, Kara Y, Atasagun Y (2010) Integrated line balancing to

attain Shojinka in a multiple straight line facility. Int J Comput

Integr Manuf 23(5):402–411. https://doi.org/10.1080/

09511921003642162

Hadi-Vencheh A (2011) A new nonlinear model for multiple criteria

supplier-selection problem. Int J Comput Integr Manuf

24(1):32–39. https://doi.org/10.1080/0951192X.2010.527372

Hadi-Vencheh A, Mohamadghasemi A (2013) An integrated AHP–

NLP methodology for facility layout design. J Manuf Syst

32(1):40–45. https://doi.org/10.1016/j.jmsy.2012.07.009

Hamta N, Ghomi SF, Jolai F, Shirazi MA (2013) A hybrid PSO

algorithm for a multi-objective assembly line balancing problem

with flexible operation times, sequence-dependent setup times

and learning effect. Int J Prod Econ 141(1):99–111. https://doi.

org/10.1016/j.ijpe.2012.03.013

Hamta N, Ghomi SF, Tavakkoli-Moghaddam R, Jolai F (2014) A

hybrid meta-heuristic for balancing and scheduling assembly

lines with sequence-independent setup times by considering

deterioration tasks and learning effect Scientia Iranica. Trans E,

Ind Eng 21(3):963

Kara Y, Paksoy T, Chang CT (2009) Binary fuzzy goal programming

approach to single model straight and U-shaped assembly line

balancing. Eur J Oper Res 195(2):335–347. https://doi.org/10.

1016/j.ejor.2008.01.003

Khorram M (2018) A cost based mathematical formulation for U-type

assembly line balancing problem. Ann Optim Theory and Pr

1(1):11–21

Kim YK, Kim Y, Kim YJ (2000) Two-sided assembly line balancing:

a genetic algorithm approach. Prod Plan Control 11(1):44–53.

https://doi.org/10.1080/095372800232478

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680. https://doi.

org/10.1126/science.220.4598.671

Kovács G, Nagy B, Vizvári B (2017) An integer programming

approach to characterize digital disks on the triangular grid. In:

International Conference on Discrete Geometry for Computer

Imagery (pp. 94–106). Springer, Cham. https://doi.org/10.1007/

978-3-319-66272-5_9

Li Z, Kucukkoc I, Tang Q (2017) New MILP model and station-

oriented ant colony optimization algorithm for balancing U-type

assembly lines. Comput Ind Eng 112:107–121. https://doi.org/

10.1016/j.cie.2017.07.005

Li Z, Kucukkoc I, Zhang Z (2018) Branch, bound and remember

algorithm for U-shaped assembly line balancing problem.

Comput Ind Eng 124:24–35

Li Z, Janardhanan MN, Ashour AS, Dey N, Li Z, Janardhanan MN,

Ashour AS, Dey N (2019) Mathematical models and migrating

birds optimization for robotic U-shaped assembly line balancing

problem. Neural Comput Appl 31(12):9095–9111. https://doi.

org/10.1007/s00521-018-3957-4

Li Z, Janardhanan MN, Rahman HF (2021) Enhanced beam search

heuristic for U-shaped assembly line balancing problems. Eng

Optim 53(4):594–608

Make MRA, Rashid MFFA, Razali MM (2017) A review of two-

sided assembly line balancing problem. Int J Adv Manuf

Technol 89(5–8):1743–1763. https://doi.org/10.1007/s00170-

016-9158-3

Manavizadeh N, Hosseini NS, Rabbani M, Jolai F (2013) A simulated

annealing algorithm for a mixed model assembly U-line

balancing type-I problem considering human efficiency and

Just-In-Time approach. Comput Ind Eng 64(2):669–685. https://

doi.org/10.1016/j.cie.2012.11.010

McMullen PR, Frazier GV (1998) Using simulated annealing to solve

a multiobjective assembly line balancing problem with parallel

workstations. Int J Prod Res 36(10):2717–2741. https://doi.org/

10.1080/002075498192454

Miltenburg J (2002) Balancing and scheduling mixed-model

U-shaped production lines. Int J Flex Manuf Syst

14(2):119–151. https://doi.org/10.1023/A:1014434117888

Miltenburg GJ, Wijngaard J (1994) The U-line line balancing

problem. Manage Sci 40(10):1378–1388. https://doi.org/10.

1287/mnsc.40.10.1378

Mirzaei N, Niroomand S, Zare R (2016) Application of statistical

process control in service industry. J Model Manag

11(3):763–782

Niroomand S, Vizvari B (2015) Exact mathematical formulations and

metaheuristic algorithms for production cost minimization: a

case study of the cable industry. Int Trans Oper Res

22(3):519–544. https://doi.org/10.1111/itor.12096

Niroomand S, Hadi-Vencheh A, Şahin R, Vizvári B (2015) Modified

migrating birds optimization algorithm for closed loop layout

with exact distances in flexible manufacturing systems. Exp Syst

Appl 42(19):6586–6597

Niroomand S, Hadi-Vencheh A, Mirzaei N, Molla-Alizadeh-Zavar-

dehi S (2016) Hybrid greedy algorithms for fuzzy tardiness/

earliness minimisation in a special single machine scheduling

problem: case study and generalisation. Int J Comput Integr

Manuf 29(8):870–888

Nourmohammadi A, Zandieh M (2011) Assembly line balancing by a

new multi-objective differential evolution algorithm based on

TOPSIS. Int J Prod Res 49(10):2833–2855. https://doi.org/10.

1080/00207540903473367

Ogan D, Azizoglu M (2015) A branch and bound method for the line

balancing problem in U-shaped assembly lines with equipment

requirements. J Manuf Syst 36:46–54. https://doi.org/10.1016/j.

jmsy.2015.02.007

Özcan U, Toklu B (2009a) Multiple-criteria decision-making in two-

sided assembly line balancing: a goal programming and a fuzzy

goal programming models. Comput Oper Res 36(6):1955–1965.

https://doi.org/10.1016/j.cor.2008.06.009

Özcan U, Toklu B (2009b) A tabu search algorithm for two-sided

assembly line balancing. Int J Adv Manuf Technol 43(7–8):822.

https://doi.org/10.1007/s00170-008-1753-5

Pattanaik LN, Jena A (2019) Tri-objective optimisation of mixed

model reconfigurable assembly system for modular products. Int

Hybrid meta-heuristic algorithms for U-shaped assembly line balancing… 2257

123

https://doi.org/10.1002/nav.3800090303
https://doi.org/10.1002/nav.3800090303
https://doi.org/10.1016/j.cie.2011.03.001
https://doi.org/10.1016/j.cie.2011.03.001
https://doi.org/10.1007/s10288-016-0320-4
https://doi.org/10.1007/s10288-016-0320-4
https://doi.org/10.1080/00207540110051905
https://doi.org/10.1108/AA-03-2018-050
https://doi.org/10.1108/AA-03-2018-050
https://doi.org/10.1080/09511921003642162
https://doi.org/10.1080/09511921003642162
https://doi.org/10.1080/0951192X.2010.527372
https://doi.org/10.1016/j.jmsy.2012.07.009
https://doi.org/10.1016/j.ijpe.2012.03.013
https://doi.org/10.1016/j.ijpe.2012.03.013
https://doi.org/10.1016/j.ejor.2008.01.003
https://doi.org/10.1016/j.ejor.2008.01.003
https://doi.org/10.1080/095372800232478
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-319-66272-5_9
https://doi.org/10.1007/978-3-319-66272-5_9
https://doi.org/10.1016/j.cie.2017.07.005
https://doi.org/10.1016/j.cie.2017.07.005
https://doi.org/10.1007/s00521-018-3957-4
https://doi.org/10.1007/s00521-018-3957-4
https://doi.org/10.1007/s00170-016-9158-3
https://doi.org/10.1007/s00170-016-9158-3
https://doi.org/10.1016/j.cie.2012.11.010
https://doi.org/10.1016/j.cie.2012.11.010
https://doi.org/10.1080/002075498192454
https://doi.org/10.1080/002075498192454
https://doi.org/10.1023/A:1014434117888
https://doi.org/10.1287/mnsc.40.10.1378
https://doi.org/10.1287/mnsc.40.10.1378
https://doi.org/10.1111/itor.12096
https://doi.org/10.1080/00207540903473367
https://doi.org/10.1080/00207540903473367
https://doi.org/10.1016/j.jmsy.2015.02.007
https://doi.org/10.1016/j.jmsy.2015.02.007
https://doi.org/10.1016/j.cor.2008.06.009
https://doi.org/10.1007/s00170-008-1753-5

J Comput Integr Manuf 32(1):72–82. https://doi.org/10.1080/

0951192X.2018.1550673

Ponnambalam SG, Aravindan P, Naidu GM (2000) A multi-objective

genetic algorithm for solving assembly line balancing problem.

Int J Adv Manuf Technol 16(5):341–352. https://doi.org/10.

1007/s001700050166

Rabbani M, Moghaddam M, Manavizadeh N (2012) Balancing of

mixed-model two-sided assembly lines with multiple U-shaped

layout. Int J Adv Manuf Technol 59(9–12):1191–1210. https://

doi.org/10.1007/s00170-011-3545-6

Roshani A, Fattahi P, Roshani A, Salehi M, Roshani A (2012) Cost-

oriented two-sided assembly line balancing problem: a simulated

annealing approach. Int J Comput Integr Manuf 25(8):689–715.

https://doi.org/10.1080/0951192X.2012.664786

Saif U, Guan Z, Wang B, Mirza J, Huang S (2014) A survey on

assembly lines and its types. Front Mech Eng 9(2):95–105.

https://doi.org/10.1007/s11465-014-0302-1

Saif U, Guan Z, Zhang L, Mirza J, Lei Y (2017) Hybrid Pareto

artificial bee colony algorithm for assembly line balancing with

task time variations. Int J Comput Integr Manuf

30(2–3):255–270. https://doi.org/10.1080/0951192X.2016.

1145802

Salehi M, Maleki HR, Niroomand S (2020) Solving a new cost-

oriented assembly line balancing problem by classical and

hybrid meta-heuristic algorithms. Neural Comput Appl

32(12):8217–8243

Sanei M, Mahmoodirad A, Niroomand S (2016) Two-stage supply

chain network design problem with interval data. Int J e-Nav-

igation and Maritime Econom 5:74–84

Scholl A, Klein R (1999) ULINO: optimally balancing U-shaped JIT

assembly lines. Int J Prod Res 37(4):721–736. https://doi.org/10.

1080/002075499191481

Suresh G, Sahu S (1994) Stochastic assembly line balancing using

simulated annealing. Int J Prod Res 32(8):1801–1810. https://doi.

org/10.1080/00207549408957042

Taassori M, Taassori M, Niroomand S, Vizvári B, Uysal S, Hadi-

Vencheh A (2015) OPAIC: an optimization technique to

improve energy consumption and performance in application

specific network on chips. Measurement 74:208–220

Taguchi G (1986) Introduction to quality engineering: designing

quality into products and processes (No. 658.562 T3).

Yavari M, Marvi M, Akbari AH (2019) Semi-permutation-based

genetic algorithm for order acceptance and scheduling in two-

stage assembly problem. Neural Comput Appl. https://doi.org/

10.1007/s00521-019-04027-w

Yuan B, Zhang C, Shao X, Jiang Z (2015) An effective hybrid honey

bee mating optimization algorithm for balancing mixed-model

two-sided assembly lines. Comput Oper Res 53:32–41. https://

doi.org/10.1016/j.cor.2014.07.011

Zhang W, Gen M (2011) An efficient multiobjective genetic

algorithm for mixed-model assembly line balancing problem

considering demand ratio-based cycle time. J Intell Manuf

22(3):367–378. https://doi.org/10.1007/s10845-009-0295-5

Zhou BH, Tan F (2018) Electric vehicle handling routing and battery

swap station location optimisation for automotive assembly

lines. Int J Comput Integr Manuf 31(10):978–991. https://doi.

org/10.1080/0951192X.2018.1493229

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2258 M. Khorram et al.

123

https://doi.org/10.1080/0951192X.2018.1550673
https://doi.org/10.1080/0951192X.2018.1550673
https://doi.org/10.1007/s001700050166
https://doi.org/10.1007/s001700050166
https://doi.org/10.1007/s00170-011-3545-6
https://doi.org/10.1007/s00170-011-3545-6
https://doi.org/10.1080/0951192X.2012.664786
https://doi.org/10.1007/s11465-014-0302-1
https://doi.org/10.1080/0951192X.2016.1145802
https://doi.org/10.1080/0951192X.2016.1145802
https://doi.org/10.1080/002075499191481
https://doi.org/10.1080/002075499191481
https://doi.org/10.1080/00207549408957042
https://doi.org/10.1080/00207549408957042
https://doi.org/10.1007/s00521-019-04027-w
https://doi.org/10.1007/s00521-019-04027-w
https://doi.org/10.1016/j.cor.2014.07.011
https://doi.org/10.1016/j.cor.2014.07.011
https://doi.org/10.1007/s10845-009-0295-5
https://doi.org/10.1080/0951192X.2018.1493229
https://doi.org/10.1080/0951192X.2018.1493229

	Hybrid meta-heuristic algorithms for U-shaped assembly line balancing problem with equipment and worker allocations
	Abstract
	Introduction
	Problem description and formulation
	Solution methodology
	Encoding/decoding scheme
	Meta-heuristic solution approaches
	Classical simulated annealing (SA-1)
	SA algorithm with random worker assignment (SA-2)
	SA algorithm with local search for worker assignment (SA-3)
	Classical variable neighbourhood search (VNS-1)
	VNS algorithm with random worker assignment (VNS-2)
	VNS algorithm with local search for worker assignment (VNS-3)
	Classical genetic algorithm and its improved versions

	Computational study
	Test problems
	Parameter tuning
	Final experiments
	Managerial insights

	Conclusions
	Funding
	References

