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Abstract
Jaya algorithm is an advanced optimization algorithm, which has been applied to many real-world optimization problems.

Jaya algorithm has better performance in some optimization field. However, Jaya algorithm exploration capability is not

better. In order to enhance exploration capability of the Jaya algorithm, a self-adaptively commensal learning-based Jaya

algorithm with multi-populations (Jaya-SCLMP) is presented in this paper. In Jaya-SCLMP, a commensal learning strategy

is used to increase the probability of finding the global optimum, in which the person history best and worst information is

used to explore new solution area. Moreover, a multi-populations strategy based on Gaussian distribution scheme and

learning dictionary is utilized to enhance the exploration capability, meanwhile every subpopulation employed three

Gaussian distributions at each generation, roulette wheel selection is employed to choose a scheme based on learning

dictionary. The performance of Jaya-SCLMP is evaluated based on 28 CEC 2013 unconstrained benchmark problems. In

addition, three reliability problems, i.e., complex (bridge) system, series system and series–parallel system, are selected.

Compared with several Jaya variants and several state-of-the-art other algorithms, the experimental results reveal that Jaya-

SCLMP is effective.
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1 Introduction

To solve complex optimization problems with a limited

time in engineering optimization area is a challenge and

hot research topic. How to design some simple and effec-

tive methods to adapt and overcome more and more real-

world engineering optimization problems are value to

study and discussing. Many optimization problems come

from real life and industrial production, and they through

principle logic, mathematical thinking and planning mod-

eling method evolved into mathematical optimization

problems. Although the conventional methods can often

find a solution, it has become more and more tedious and

time consuming. Moreover, the conventional methods

cannot guarantee finding the optimal solution effectively in

a very short time. Therefore, many advanced metaheuristic

optimization algorithms are being developed. These new

optimization algorithms are capable of achieving the global

or near global optimum solution with less information

about the problems. Compared to the conventional method,

the metaheuristic optimization algorithms have some

advantages and they play an important role in science and

engineering field.

During the past several decades, many well-known

metaheuristic optimization algorithms have been devel-

oped to solve optimization problems, such as genetic

algorithm (GA) (Deb et al. 2002), harmony search(HS)

(Geem et al. 2001; Papa et al. 2016), particles swarm

optimization (PSO) (Eberhart and Kennedy 1995), artificial
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bee colony (ABC) (Akay and Karaboga 2012), differential

evolution (DE) (Storn and Price 1997), gravitational search

algorithm (GSA) (Rashedi et al. 2009) and teaching–

learning-based optimization (TLBO) (Rao et al. 2011).

These algorithms attracted much attention and aroused

many scholars interesting. Jaya algorithm is a relatively

new algorithm (Rao and Waghmare 2016) based on the

principle to move the solution closer to the best solution

and further away from the worst solution at the same time.

This principle ensures that Jaya algorithm has good

exploitation ability. However, its exploration capability is

not better. Therefore, it is important to find a strategy to

enhance the exploration capability of Jaya algorithm. To

improve the performance of the Jaya algorithm, researchers

have proposed various Jaya variants in the past decades

(Azizi et al. 2019; Degertekin et al. 2019; Yu et al. 2017;

Zhang et al. 2018; Wang et al. 2018a). Warid et al. (2018)

proposed a modified Jaya algorithm based on novel quasi-

oppositional strategy, and it is applied to the multi-objec-

tive optimal power flow problem. Yu et al. (2019)

employed a performance-guided Jaya algorithm to solve

the parameter identification problem of photovoltaic cell

and module. Rao (2019) summarized the application of

Jaya algorithm and its variants on constrained and uncon-

strained benchmark functions. Ocłoń et al. (2018) pre-

sented a modified Jaya algorithm to solve the thermal

performance optimization of the underground power cable

system. Rao and Saroj (2018a) designed an elitism-based

self-adaptive multi-population Jaya algorithm, which was

used to solve some engineering optimization problems.

Jaya algorithm faces a few problems like other meta-

heuristic optimization algorithms such as TLBO algorithm

and HS algorithm. For example, it easily gets stuck in local

space for some optimization problems and its exploitation

and exploration capability need to be balanced and adjus-

ted. Based on this observation, our aim is to improve the

performance of Jaya algorithm and to make it more

applicable.

To improve the performance of Jaya algorithm, some

main contributions are summarized as follows:

(1) A commensal learning strategy is used to increase

the probability of finding the global optimum, in

which the person history best and worst information

is used to explore new solution area.

(2) A multi-populations strategy based on Gaussian

distribution scheme and learning dictionary is uti-

lized to enhance the exploration capability, mean-

while every subpopulation employed three Gaussian

distributions at each generation, roulette wheel

selection is employed to choose a scheme based on

learning dictionary.

(3) The performance of Jaya-SCLMP is evaluated based

on 28 CEC 2013 unconstrained benchmark problems

and reliability problems, i.e., complex (bridge)

system, series system and series–parallel system.

Compared with several Jaya variants and several

state-of-the-art other algorithms, the experimental

results reveal that Jaya-SCLMP can obtain some

competitive results.

The remainder of this paper is organized as follows. The

related work on the Jaya algorithm is reviewed in Sect. 2.

Section 3 describes the original Jaya algorithm. The pro-

posed Jaya-SCLMP is proposed in Sect. 4. In Sect. 5, Jaya-

SCLMP is compared with several EAs based on 28 CEC

2013 unconstrained benchmark problems and three exam-

ple reliability problems. The experimental results and dis-

cussions are also reported. Finally, Sect. 6 draws the

conclusions.

2 Related work

To improve the performance of Jaya algorithm, researchers

have proposed many Jaya algorithm variants in recent

years. The improvements in Jaya algorithm have been

active and rapid with many successful applications to

various real-world optimization problems.

To improve the Jaya algorithm, researchers are focusing

on parameter adjustment, operator design, hybrid algo-

rithm, etc. To increase the probability of finding the global

optimum, Ocłon et al. (2018) proposed a modified Jaya

algorithm (MJaya) with a novel candidate update scheme.

Farah and Belazi (2018) proposed a novel chaotic Jaya

algorithm for unconstrained numerical optimization, in

which chaotic theory and strategy are integrated into search

operation. Rao et al. (2017) introduced a quasi-oppositional

based Jaya algorithm (QO-Jaya). In QO-Jaya, a quasi-op-

posite population is generated at each generation to achieve

a better performance (Rao and Rai 2017). Rao et al. (2017)

presented a self-adaptive multi-population-based Jaya

algorithm for engineering optimization problems, called

SAMP-Jaya. SAMP-Jaya divides the population into a

number of groups based on the quality of the solution (Rao

and Saroj 2017a). One year later, Rao and Saroj (2018b)

incorporated an elitism strategy into SAMP-Jaya to

improve the performance of SAMP-Jaya. Rao and More

(2017) proposed a self-adaptive Jaya algorithm to optimize

and analyze the selected thermal devices. Some improved

Jaya algorithms are summarized in Table 1.

Application study is another research aspect of Jaya

algorithm. Rao et al. (2016) used the Jaya algorithm to

solve micro-channel heat sink dimensional optimization,

compared to other related algorithm, Jaya algorithm has
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some merits in optimization performance. Moreover,

(2017b) further considered the constrained economic

optimization of shell-and-tube heat exchangers and pro-

vided a modified Jaya algorithm based on differential

strategies such as elitist mechanism, and the simulation

shows that the modified Jaya algorithms perform better.

Wang et al. (2018b) combined wavelet Renyi entropy with

three-segment encoded Jaya algorithm to solve alcoholism

identification. Azizi et al. (2019) used hybrid ant lion

optimizer and Jaya algorithm to solve fuzzy controller

optimum design. In 2018, Rao et al. employed elitist-Jaya

algorithm to solve heat exchangers multi-objective opti-

mization problem (Rao and Saroj 2018c) and proposed a

multi-team perturbation guiding Jaya algorithm for wind

farm layout optimization problem (Rao and Keesari 2018).

Grzywinski employed Jaya algorithm with frequency

constraints for the optimization of the braced dome struc-

tures (Grzywinski et al. 2019). Degertekin proposed a Jaya

algorithm to solve sizing, layout and topology design

optimization of truss structures (Degertekin et al. 2018).

Huang proposed a novel model-free solution algorithm, the

natural cubic-spline-guided Jaya algorithm (S-Jaya), for

efficiently solving the maximum power point tracking

(MPPT) problem of PV systems under partial shading

conditions (Huang et al. 2018). Wang designed a novel

elite opposition-based Jaya algorithm for parameter esti-

mation of photovoltaic cell models (Wang and Huang

2018). In 2019, Gao et al. (2019) proposed a discrete Jaya

algorithm for solving a flexible job-shop rescheduling

problem (FJRP), in which five objective-oriented local

search operators and four ensembles of them are proposed

to improve the performance of DJaya algorithm.

In sum, Jaya algorithm has many advantages. However,

like other algorithms, it suffers from some weaknesses

while it is used to solve real-world complex and large-scale

optimization problems. It is valuable and important to

enhance the exploration capability of Jaya algorithm. Our

paper focuses on the improvement of the Jaya algorithm

and some applications with some new ideas.

3 Jaya algorithm

Jaya algorithm is a relatively new algorithm. The core of

Jaya algorithm lies in the principle of moving the solution

closer to the best solution and further away from the worst

solution at the same time. The details of Jaya algorithm can

be described as below.

Let f(x) be the objective function to be optimized.

Assume that at any iteration i, there are D design variables

and NP candidate solutions (i.e., population size, i = 1, 2,

…, NP). If xti,j is the value of the jth variable for the ith

candidate during the tth iteration, then this value is modi-

fied as follows:

X
t þ 1

i; j
¼ X

t
i; j

þ r
1; i; j

� X
t

best; j
� X

t
i; j

�
�
�
�

�
�
�
�

� �

� r
2; i; j

� X
t

worst; j
� X

t
i; j

�
�
�
�

�
�
�
�

� �

ð1Þ

where Xt
best,j is the value of the variable j for the best

candidate and Xt
worst,j is the value of the variable j for the

worst candidate in the population. Xt
i,
?
j
1 is the updated

value of Xt
i,j and r1,i,j and r2,i,j are the two random numbers

for the jth variable during the tth iteration in the range

[0,1]. The term r1,i,j 9 (Xt
best,j-|Xt

i,j|) indicates the ten-

dency of the solution to move closer to the best solution,

and the term r2,i,j 9 (Xt
worst,j-|Xt

i,j|) indicates the tendency

of the solution to avoid the worst solution (Rao and

Waghmare 2016). Xt
i,
?
j
1 is accepted if it gives a better

fitness value. Figure 1 shows the flowchart of the Jaya

algorithm.

Table 1 Several Jaya variants

and their improvements
Jaya variants Improvements

MJaya (Ocłoń et al. 2018) Multi-elitism strategy

CJaya (Farah and Belazi 2018) Chaotic search strategy

QO-Jaya (Rao and Rai 2017) Quasi-opposite population

SAMP-Jaya (Rao and Saroj

2017a)

Self-adaptive multi-population strategy

S-Jaya (Rao and More 2017) Self-adaptive population sizes

EO-Jaya (Wang and Huang 2018) Novel Elite opposition-based

SAMPE-Jaya (Rao and Saroj

2018a)

Elitism-based self-adaptive multi-population

S-Jaya (Huang et al. 2018) Natural cubic-spline-based prediction model

DJaya (Gao et al. 2019) Five objective-oriented local search operators and four ensembles of

them
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4 Jaya-SCLMP algorithm

In this section, we propose a self-adaptively commensal

learning-based multi-population Jaya algorithm, namely

Jaya-SCLMP. In Jaya-SCLMP, we modify the candidate

update scheme of Jaya algorithm. Moreover, the com-

mensal learning strategy and multi-population strategy are

incorporated into Jaya-SCLMP to increase the probability

of finding the global optimum.

4.1 Commensal learning strategy

In 2017, Peng et al. (2017) proposed the conception of

commensal learning, and the primary idea is the mutation

strategies and parameter settings adaptively adjust together

under the same criteria and multiple combinations of the

two parts commensal evolution for each individual. In Peng

et al. (2017), the results show that the commensal learning

can enhance the performance of differential evolution

algorithm. We analyze the characteristic of Jaya algorithm

and consider to use the commensal learning to amend the

performance of Jaya algorithm. Jaya algorithm was pro-

posed as an algorithm with less algorithm-specific param-

eters, but it can easily be trapped in local optima. To the

best of our knowledge, using a number of subpopulations

distributes the solutions over the search space rather than

concentrating on a particular region. This multi-population

strategy can enhance the population diversity of the algo-

rithm. Therefore, the candidate solutions can escape from

the local optima. How to use the commensal learning to

Ini�alize popula�on size, number of design 
variables and termina�on criterion

Iden�fy the best and the worst solu�on in the popula�on

Modify the solutions based on the best and the worst solution

Is the solution corresponding

to Xt
i,
+
j
1 better than that corresponding to Xi,

t
j

Accept and replace 

the previous 
Keep the previous 

solu�on

Is the termina�on criterion sa�sfied?

Report the op�mum solu�on

YES NO

YESNO

Fig. 1 The flowchart of the Jaya algorithm
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improve the performance of Jaya algorithm is a challenge?

We realized the random uniform distribution random

number maybe affect the optimization process of Jaya

algorithm. To adjust the random number under the same

condition for balancing the search space, so the idea of

commensal learning is integrated. In Jaya algorithm, new

candidate solutions are generated through Eq. (1), but in

Jaya-SCLMP, new candidates are produced by following

Eq. (2):

X
t þ 1

i; j
¼ X

t
i; j

þ N l; r2
� �

� X
t

bestðpÞ; j � X
t
i; j

�
�
�
�

�
�
�
�

� �

� Nðl;r2Þ � X
t

worstðpÞ; j � X
t
i; j

�
�
�
�

�
�
�
�

� �

ð2Þ

where X t
best(p),j is the value of the jth variable for the

person best candidate and X t
worst(p),j is the value of the jth

variable for the person worst candidate in pth subpopula-

tion at tth generation. N(l,r2) is a random real number

Gaussian distribution l = 0.3, 06, 0.9; r2 = 0.025. We use

Gaussian distribution with different average value take the

place of uniform distribution which is used in Jaya algo-

rithm. The idea is to maximize the likelihood of generating

new solutions along appropriate directions and accelerate

the convergence speed. To enhance the population diver-

sity of the algorithm, the commensal learning is proposed

in this paper. The primary idea is to balance the search

space based on the best solution and the worst solution

under the same criteria. Further, it uses multiple combi-

nations of the two parts of the commensal evolution for

each individual.

4.2 Multi-population strategy

In order to improve the diversity of the Jaya algorithm, we

consider to design multi-population strategy based on dif-

ferent Gaussian distribution. At first, combine with the

commensal learning to analyze the setting of Gaussian

distribution parameter values and the number of group. The

number of groups is set 2, 3, 4, 5, 6, the value of l set in (0,

1), the value of r2 set in stochastic value, a great many of

simulation test shown that if we use four groups to this

algorithm, it has better results. Meanwhile, we find the

value of l and r2 have effect for the performance, so we

fixed four groups and discuss the value of l and r2. We all

know if each groups contain different schemes, maybe the

diversity is better, but too many will reduce the search

accuracy, so we try to use three schemes, in fact, too many

times tests also show the three schemes are effect. There-

fore, we should use 12 schemes because each group has

three schemes. Although the simulation results may not

show the only one conditions, we obtain a relative better

situation. Due to space limitation, the data and charts of

specific parameter simulation will not be added. We elab-

orate how to choose the best solution and the worst solution

of four subpopulations combined with three Gaussian dis-

tribution parameter settings to form twelve subpopulation

update schemes. The twelve subpopulation update schemes

are shown as follows:

Scheme 1: Xt
best(1), X

t
worst(1), N(0.3, 0.025).

Scheme 2: Xt
best(1), X

t
worst(1), N(0.6, 0.025).

Scheme 3: Xt
best(1), X

t
worst(1), N(0.9, 0.025).

Scheme 4: Xt
best(2), X

t
worst(2), N(0.3, 0.025).

Scheme 5: Xt
best(2), X

t
worst(2), N(0.6, 0.025).

Scheme 6: Xt
best(2), X

t
worst(2), N(0.9, 0.025).

Scheme 7: Xt
best(3), X

t
worst(3), N(0.3, 0.025).

Scheme 8: Xt
best(3), X

t
worst(3), N(0.6, 0.025).

Scheme 9: Xt
best(3), X

t
worst(3), N(0.9, 0.025).

Scheme 10: Xt
best(4), X

t
worst(4), N(0.3, 0.025).

Scheme 11: Xt
best(4), X

t
worst(4), N(0.6, 0.025).

Scheme 12: Xt
best(4), X

t
worst(4), N(0.9, 0.025).

For every subpopulation at each generation, roulette

wheel selection is employed to choose a scheme based on

learning dictionary to evolve. Learning dictionary is an

assessment table of evolution effectiveness. After selection

operation in pth subpopulation, the times of successful

update (stp,s) and the times of tried update (ttp,s) on the sth

scheme are recorded. As shown in Table 2, the row and

column of the learning dictionary represent four subpopu-

lations and the twelve update schemes, respectively. In the

learning dictionary, the cell(s,p) records the twelve update

schemes and the success rate (srp,s) for pth subpopulation

on sth scheme, and srp,s is obtained by dividing stp,s by ttp,s.

Subpopulations will select an update scheme according to

the success rate (srp,s) to update its individuals.

4.3 Framework of Jaya-SCLMP

Step 1: Initialization four subpopulations.

1.1 Randomly initialize the individuals of four subpop-

ulations within the upper and lower limits;

1.2 Evaluate fitness of each individual of four

subpopulations;

Step 2: Evolutionary phase.

Table 2 Illustration of the learning dictionary

Scheme population Scheme 1 Scheme 2 …… Scheme 12

Subpopulation1 sr1,1 sr1,2 …… sr1,12

Subpopulation2 sr2,1 sr2,2 …… sr2,12

Subpopulation3 sr3,1 sr3,2 …… sr3,12

Subpopulation4 sr4,1 sr4,2 …… sr4,12
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2.1 Find the best and worst individual of each

subpopulation.

2.2 For each subpopulation, select a scheme according

to learning dictionary for each subpopulation to update its

individuals;

2.3 If Xt
i,
?
j
1 is better than Xt

i,j, accept Xt
i,
?
j
1.

Step 3: If the termination criteria is satisfied, stop;

otherwise go to Step 2.

Like the traditional Jaya algorithm, Jaya-SCLMP also

consists of a very simple framework. At the first, Jaya-

SCLMP initializes four subpopulations. In the evolutionary

process, Jaya-SCLMP first finds the best solutions and the

worst solutions of the subpopulations. Then, for each

subpopulation, an update scheme according to the success

rate is chosen and then its individuals are updated. The

steps of the Jaya-SCLMP algorithm are described in Fig. 2.

4.4 Computational complexity

For simplicity we compute the running time of an algo-

rithm purely as a function of the length of the string rep-

resenting the input. In the worst-case analysis, the form we

consider the longest running time of all inputs of a par-

ticular length. The time complexity of an algorithm is

commonly expressed using the big O notation, which

excludes coefficients and lower-order terms. In this sub-

section, the computational complexity of the proposed

algorithm was briefly analyzed based on the computation

procedure of the proposed algorithm. Based on the

Initialize sub-populations size, the number of sub-population,
learning dictionary(srp,s=1), number of design variables and 

termina�on criterion

Find the best and worst solutions of each sub-population

Select a scheme according to learning dictionary for each sub-population to 
update their individuals 

Is the solution corresponding 

to Xt
i,
+
j
1 better than that corresponding to Xi,

t
j

Accept and replace the 
previous solution, update 

learning dictionary

Keep the previous 
solution, update learning 

dictionary

Is the termination criterion satified?

Report the optimum solution

YES NO

YESNO

Fig. 2 The flowchart of the Jaya-SCLMP algorithm
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flowchart of the Jaya algorithm (Fig. 1) and the

flowchart of the Jaya-SCLMP algorithm (Fig. 2), we can

know that the difference is Jaya-SCLMP algorithm need

select a scheme according to learning dictionary for each

subpopulation to update their individuals. Assume the

population size is NP, the dimension is D, to find the best

and worst solution need time is TB, Ft is the objective

function computational time, initialize each decision vari-

ables need time is TI, the implement iteration is K, £

denotes the updating time, then the computation time of the

Jaya as follows:

TQ ¼ TI þ K � ðTB þ NP � ðD þ Ft þ £ÞÞ ð3Þ

T1 ¼ lim
K!1

TQ

K
¼ TB þ NP � D þ Ft þ £ð Þ ð4Þ

Obviously, assume the same condition, the selection

operation needs W time, then the computation time of the

Jaya-SCLMP algorithm as follows:

TP ¼ TI þ K � ðTB þ 4 � ðW þ NP=4 � ðDþ Ft þ £ÞÞÞ
ð5Þ

T2 ¼ lim
K!1

TP

K
¼ TB þ 4 � W þ NP=4 � Dþ Ft þ £ð Þð Þ

ð6Þ
T2 � T1 ¼ 4W ð7Þ

Baes on the above analysis, we realized that the pro-

posed algorithm needs more time compared to the original

algorithm, but it not relative to the iteration times, if the

search mechanism is better, it can obtain a good solution in

a few time. The experiment results are shown in Table 10.

Under the same optimization accuracy, the computation

effort of SCLMP-Jaya is better than the other compared

algorithms.

5 Experiment results and analysis

5.1 Experimental settings

To test the performance of the proposed Jaya-SCLMP

algorithm, the CEC 2013 and CEC 2015 unconstrained

benchmark problems are considered in the experiment.

Twenty-eight unconstrained benchmark problems with

different characteristics including unimodal, multimodal

and composition are selected from CEC 2013 test suite.

These benchmark problems are briefly described in

Table 3. The detailed description of these unconstrained

benchmark problems can be found in Problem Definitions

and Evaluation Criteria for the CEC 2013 Special Session

on Real-Parameter Optimization (Liang et al. 2013). The

size of dimension D of these unconstrained benchmark

problems is set to 30. In our experiments, Jaya-SCLMP is

compared with Jaya algorithm (Rao and Waghmare 2016),

MJaya (Ocłoń et al. 2018), QO-Jaya (Rao and Rai 2017),

SAMP-Jaya (Rao and Saroj 2017a), GOTLBO (Chen et al.

2016) and GOPSO (Wang et al. 2011) in the experiments.

GOTLBO and GOPSO use generalized oppositional

teaching learning-based optimization to enhance the per-

formance of basic algorithms. The subpopulation size of

SCLMP-Jaya is 25. The other parameters of Jaya, MJaya,

QO-Jaya, SAMP-Jaya, GOPSO and GOTLBO are set as

the same as in their original papers. Due to the stochastic

characteristics of EAs, we conduct 30 independent runs for

each algorithm and each benchmark problem with 300,000

function evaluations (FEs) as the termination criterion.

Moreover, we record the mean and standard deviation of

the optimization error values (f(X’) - f(X*)) for evaluating

the efficiency of the comparison algorithms, where X’ is

the best individual gained by the algorithm in a run and X*

is the global optimum of the benchmark problem.

In addition to 28 unconstrained benchmark problems,

three example problems are selected to test the perfor-

mance of the Jaya-SCLMP algorithm for reliability prob-

lems. Reliability problem is a kind of constrained

optimization problems. According to the definition of the

Advisory Group on the Reliability of Electronic Equip-

ment, reliability indicates the probability implementing

specific performance or function of products and achieving

successfully the objectives within a time schedule under a

certain environment. The reliability problem is usually

formulated as a nonlinear programming problem, which is

subject to several resource constraints such as cost, weight

and volume. Various complex systems come out with the

development of industrial engineering, and the reliability

designing of these systems is very important. Thus, more

accurate and efficient methods are needed in finding the

optimal system reliability. Otherwise, the safety and effi-

ciency of a system cannot be guaranteed. The three prob-

lems are a series system, series–parallel system and

complex (bridge) system. Three reliability problems are

described as in Wu et al. (2011), Ouyang et al. (2015).

P1. Complex (bridge) system (Fig. 3).

P1 is a nonlinear mixed integer programming problem for a

complex (bridge) system with five subsystems, and this

example is used to demonstrate the efficiency of Jaya-

SCLMP algorithm. The complex (bridge) system opti-

mization problem (Ouyang et al. 2015) is as follows:
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max f ðr; nÞ ¼ R1R2 þ R3R4 þ R1R4R5 þ R2R3R5

� R1R2R3R4 � R1R2R3R5

� R1R2R4R5 � R1R3R4R5 � R2R3R4R5

þ 2R1R2R3R4R5

s:t:g1ðr; nÞ ¼
Xm

i¼1

wiv
2
i n

2
i � V � 0;

g2ðr; nÞ ¼
Xm

i¼1

ai � 1000

lnðriÞ

� �bi

½ni þ expð0:25niÞ� � C� 0;

g3ðr; nÞ ¼
Xm

i¼1

wini expð0:5niÞ �W � 0;

0� ri � 1; ni 2 Zþ; 1� i�m:

ð8Þ

Here, m is the number of subsystems in the system; ni is

the number of components in subsystem i, (1 B i B m); ri
is the reliability of each component in subsystem i; qi-
= 1 - ri is the failure probability of each component in

subsystem i; Ri(ni) = 1 - qnii is the reliability of subsystem

i; f(r, n) is the system reliability. wi is the weight of each

component in subsystem i, and vi is the volume of each

component in subsystem i; furthermore, V is the upper limit

on the sum of the subsystems’ products of volume and

Table 3 Summary of the 28

CEC 2013 Test Functions

(search range [- 100,100])

No Functions f*i = fi(x
*)

Unimodal functions 1 Sphere function - 1400

2 Rotated high conditioned elliptic function - 1300

3 Rotated bent cigar function - 1200

4 Rotated discus function - 1100

5 Different powers function - 1000

Basic multimodal functions 6 Rotated Rosenbrock’s function - 900

7 Rotated Schaffer’s F7 function - 800

8 Rotated Ackley’s function - 700

9 Rotated Weierstrass function - 600

10 Rotated Griewank’s Function - 500

11 Rastrigin’s function - 400

12 Rotated Rastrigin’s function - 300

13 Non-continuous Rotated Rastrigin’s function - 200

14 Schwefel’s function - 100

15 Rotated Schwefel’s function 100

16 Rotated Katsuura function 200

17 Lunacek Bi_Rastrigin function 300

18 Rotated Lunacek Bi_Rastrigin function 400

19 Expanded Griewank’s plus Rosenbrock’s function 500

20 Expanded Schaffer’s F6 function 600

Composition functions 21 Composition function 1 (n = 5, rotated) 700

22 Composition function 2 (n = 3, not rotated) 800

23 Composition function 3 (n = 3, rotated) 900

24 Composition function 4 (n = 3, rotated) 1000

25 Composition function 5 (n = 3, rotated) 1100

26 Composition function 6 (n = 5, rotated) 1200

27 Composition function 7 (n = 5, rotated) 1300

28 Composition function 8 (n = 5, rotated) 1400

2

5

4

1

3

Fig. 3 The schematic diagram of complex (bridge) system (P1)
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weight; C is the upper limit on the cost of the system; W is

the upper limit on the weight of the system. The parameters

bi and ai are physical features of system components.

Constraint g1(r, n) is a combination of weight, redundancy

allocation and volume; g2(r, n) is a cost constraint, while

g3(r, n) is a weight constraint. The input parameters of the

complex (bridge) system are shown in Table 4.

P2. Series system (Fig. 4).

P2 is a nonlinear mixed integer programming problem for a

series system with five subsystems, and the problem for-

mulation is as follows (Ouyang et al. 2018):

max f ðr; nÞ ¼
Ym

i¼1

RiðniÞ

s:t:

g1ðr; nÞ ¼
Xm

i¼1

wiv
2
i n

2
i � V � 0;

g2ðr; nÞ ¼
Xm

i¼1

ai � 1000

lnðriÞ

� �bi

½ni þ expð0:25niÞ� � C� 0;

g3ðr; nÞ ¼
Xm

i¼1

wini expð0:5niÞ �W � 0;

0� ri � 1; ni 2 Zþ; 1� i�m:

ð9Þ

P2 has three nonlinear constraints, and they are the same

as P1. In addition, the input parameters of series system are

also the same as those of the complex (bridge) system, and

they are also shown in Table 4.

P3. Series–parallel system (Fig. 5).

P3 is a nonlinear mixed integer programming problem for a

series–parallel system with five subsystems. The problem

formulation is as follows:

Max f ðr; nÞ ¼ 1 � ð1 � R1R2Þð1 � ðR3 þ R4 � R3R4ÞR5Þ
s:t:

g1ðr; nÞ ¼
Xm

i¼1

wiv
2
i n

2
i � V � 0

g2ðr; nÞ ¼
Xm

i¼1

ai � 1000

lnðriÞ

� �bi

ni þ expð0:25niÞ½ � � C� 0

g3ðr; nÞ ¼
Xm

i¼1

wini expð0:25niÞ �W � 0

0� r1 � 1; ni 2 Zþ; 1� i�m

ð10Þ

P3 has the same nonlinear constraints as P1, but there

are some differences in input parameters. The input

parameters of P3 are shown in Table 5.

To demonstrate the superiority of the Jaya_SCLMP

algorithm in solving the reliability problems, we select the

other five algorithms for comparison, and they are the Jaya

algorithm, the SAMP_Jaya, the QO_Jaya, the GOPSO and

the GOTLBO. The above three problems are used to

compare performance of six algorithms on solving relia-

bility problems. The parameters of the six algorithms are

set as follows: For GOTLBO, population size NP = 50,

jumping rate Jr = 1, teaching factor TF = 1; For GOPSO,

NP = 40, cognitive parameter c1 = 1.49618, social

parameter c2 = 1.49618, inertia weight w = 0.72984, Jr-
= 0.3; For Jaya, NP = 10; For QO_Jaya, NP = 20; For

1 2 3 4 5

Fig. 4 Series system (P2)

1 2

3

4

5

Fig. 5 Series–parallel system (P3)

Table 4 Data used in complex (bridge) system (P1) and series system

(P2)

i 105ai bi wivi
2 wi V C W

1 2.330 1.5 1 7 110 175 200

2 1.450 1.5 2 8 110 175 200

3 0.541 1.5 3 8 110 175 200

4 8.050 1.5 4 6 110 175 200

5 1.950 1.5 3 9 110 175 200

Table 5 Data used in series–parallel system (P3)

i 105ai bi wivi
2 wi V C W

1 2.500 1.5 2 3.5 180 175 100

2 1.450 1.5 4 4.0 180 175 100

3 0.541 1.5 5 4.0 180 175 100

4 0.541 1.5 8 3.5 180 175 100

5 2.100 1.5 4 4.5 180 175 100

Self-adaptively commensal learning-based Jaya algorithm with multi-populations and its application 15171
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SAMP_Jaya, NP = 300, the minimal number of subpopu-

lations is 2, the maximal number of subpopulations is 10;

For Jaya_SCLMP, subpopulations size sNP = 25. In addi-

tion, we adopt a penalty function method to handle con-

straints. It is well known that the maximization of f (r, n)

can be transformed into the minimization of - f (r, n);

thus, the penalty function is described as:

minFðr; nÞ ¼ �f ðr; nÞ þ k
Xng

j¼1

½maxð0; giðr; nÞÞ�2 ð11Þ

where k represents penalty coefficient and it is set to 1010

in this paper. Due to the stochastic characteristics of EAs,

we conduct 30 independent runs for each algorithm and

each test problem with 15,000 function evaluations (FEs)

as the termination criterion.

5.2 Results discussion and analysis

The mean and standard deviation of the optimization error

values achieved by each algorithm for 28 unconstraint

benchmark problems CO1 * CO28 are shown in Tables 6

and 7. For convergence, the best results among all algo-

rithms are highlighted in overstriking. In order to obtain

statistically sound conclusions, the two-tailed t test at a

0.05 significance level is performed on the experimental

results (Wang et al. 2011; Yao et al. 1999). The summary

of the comparison results is shown in the last three rows of

Tables 6 and 7. ‘‘Mean’’ and ‘‘SD’’ represent the mean and

standard deviation of the optimization error values

achieved by 30 independent runs, respectively. The sym-

bols ‘‘ ? ’’, ‘‘ - ’’, and ‘‘&’’ denote that Jaya-SCLMP

achieves better, worse and similar results, respectively,

Fig. 6 Convergence curves of

Jaya, MJaya, QO-Jaya, SAMP-

Jaya, Jaya_SCLMP, GOPSO

and GOTLBO for some typical

benchmark functions

15174 Z. Xie et al.
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than the corresponding algorithms according to the two-

tailed t test.

Based on the experimental results in Tables 6 and 7, we

can see that Jaya-SCLMP is significantly better than Jaya,

MJaya, QO-Jaya, SAMP-Jaya algorithms for the majority

of the benchmark problems. Specifically, Jaya-SCLMP

achieves better results than Jaya on 20 out of 28 benchmark

problems. For the remaining eight benchmark problems,

Jaya-SCLMP performs similarly to Jaya on benchmark

problems CO8, CO14, CO16, CO22 and CO26 while Jaya

performs better than Jaya-SCLMP on benchmark problems

CO15, CO20 and CO23. MJaya outperforms Jaya-SCLMP

on 4 benchmark problems (namely CO15, CO20, CO23

and CO26), while SCLMP-Jaya achieves better results than

MJaya on 19 benchmark problems. Both Jaya-SCLMP and

MJaya exhibit almost similar performance on 5 benchmark

problems. For QO-Jaya, it performs similarly to Jaya-

SCLMP on 7 benchmark problems. In addition, QO-Jaya is

better than Jaya-SCLMP on CO15 and CO26, while Jaya-

SCLMP outperforms QO-Jaya on 19 benchmark problems.

Moreover, SAMP-Jaya surpasses Jaya-SCLMP on CO26.

In contrast, Jaya-SCLMP is better than SAMP-Jaya on 26

out of 28 benchmark problems. Both SAMP-Jaya and Jaya-

Fig. 6 continued

Table 8 Average rankings of

the seven algorithms for 28

unconstraint benchmark

problems gained by the

Friedman test

Algorithm Ranking

Jaya-SCLMP 1.95

MJaya 2.95

Jaya 3.36

QO-Jaya 3.52

SAMP-Jaya 5.18

GOPSO 5.23

GOTLBO 5.82
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SCLMP demonstrate similar performance on benchmark

problems CO20. From the comparison results among Jaya-

SCLMP, Jaya, MJaya, QO-Jaya and SAMP-Jaya, it is

known that the multi-population strategy and the com-

mensal learning strategy work together to improve the

performance of Jaya-SCLMP. It can be known that Jaya-

SCLMP outperforms GOPSO and GOTLBO 25 and 24 out

of 28 benchmark problems, respectively. GOPSO is better

than Jaya-SCLMP on 1 benchmark problem. GOTLBO

cannot be better than Jaya-SCLMP on any benchmark

problems. In addition, Jaya-SCLMP is similar to GOPSO

and GOTLBO on 2 and 4 benchmark problems. Thus, Jaya-

SCLMP is significantly better than many algorithms on the

majority of the benchmark problems.

Figure 6 shows the convergence curves of Jaya-SCLMP,

MJaya,QO-Jaya, SAMP-Jaya, GOPSO and GOTLBO for

Table 10 Results of the three examples using six algorithms

System Algorithm Best Median Worst Mean SD NFOS

Complex(bridge)system Jaya_SCLMP 0.999883549 0.999833971 0.999461664 0.999797487 9.42711E-05 30

Jaya 0.999889346 0.999437835 0.961121253 0.996131898 0.00908008 30

SAMP_Jaya 0.99940552 0.997584964 0.959870003 0.993467548 0.009196379 28

QO_Jaya 0.999884492 0.999618557 0.96110165 0.997024407 0.007636702 30

GOPSO 0.999775289 0.985948626 0.845410525 0.973898103 0.031632413 30

GOTLBO 0.999813211 0.9994845 0.998192219 0.99938652 0.000373204 30

Series system Jaya_SCLMP 0.930857191 0.921915622 0.812318905 0.913923462 0.025567467 30

Jaya 0.927192502 0 0 0.330671641 0.4141113 16

SAMP_Jaya 0.778022092 0.2207907 0 0.262025706 0.270740581 18

QO_Jaya 0.931625154 0.896286221 0 0.615559881 0.41828363 21

GOPSO 0.85329627 0.518145845 0.419909711 0.560191097 0.087762806 30

GOTLBO 0.890073556 0.770805532 0.6107089 0.770191226 0.073212912 30

Series–parallel system Jaya_SCLMP 0.999971474 0.999937817 0.999540351 0.999921054 7.58188E-05 30

Jaya 0.999957072 0.999815828 0.979288961 0.998992035 0.00376119 30

SAMP_Jaya 0.999657598 0.997427065 0.775324133 0.989118538 0.040610439 13

QO_Jaya 0.999969394 0.999862169 0.956967758 0.998096611 0.00786544 30

GOPSO 0.999931245 0.986080476 0.882912107 0.98174293 0.027307023 30

GOTLBO 0.999919509 0.999609273 0.999091319 0.999534884 0.000228179 30

Fig. 7 The result of P1 using six

algorithms
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some typical benchmark problems. It can be seen from

Fig. 6 that Jaya-SCLMP exhibits faster convergence speed

than Jaya, MJaya, QO-Jaya, SAMP-Jaya, GOPSO and

GOTLBO. The outstanding convergence performance of

Jaya-SCLMP should be due to the incorporated multi-

populations and commensal learning strategy, which can

enhance the search ability. In order to compare the total

performance of multiple algorithms on all benchmark

problems, the Friedman test is conducted on the experi-

mental results following (Yao et al. 1999). The average

rankings of the seven algorithms for all benchmark prob-

lems are shown in Table 8. The best average ranking

among the comparison algorithms is shown in italics. The

seven algorithms can be sorted by the average ranking into

the following order: Jaya-SCLMP, MJaya, Jaya, QO-Jaya,

GOPSO, SAMP-Jaya and GOTLBO. Jaya-SCLMP rank

first, which exhibits better total performance than MJaya,

Jaya, QO-Jaya, GOPSO, SAMP-Jaya and GOTLBO on all

benchmark problems. The better performance of Jaya-

SCLMP can be because both the multi-population

scheme and the commensal learning strategy work together

to improve the performance of Jaya-SCLMP.

In order to further show the performance of the proposed

algorithm, according to the literature (Rao and Saroj

2017a), the summary of the CEC 2015 expensive opti-

mization test problem is used in our paper. The detail of the

15 CEC 2015 test functions can be seen in the literature

(Rao and Saroj 2017a) (Appendix A2). Based on the

Fig. 8 The result of P2 using six

algorithms

Fig. 9 The result of P3 using six

algorithms
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reference (Rao and Saroj 2017a), maximum function

evaluations (MFE) of 500 and 1500 are considered as one

of the stopping criteria for 10-dimensional and 30-dimen-

sional problems, respectively. All the experiment condi-

tions are same to the reference (Rao and Saroj 2017a). The

results obtained by our proposed algorithm are compared

with cooperative PSO with stochastic movements (EPSO),

DE, (l ? k)-evolutionary strategy (ES), specialized and

generalized parameters experiments of covariance matrix

adaption evolution strategy (CMAES-S and CMAES-G).

The comparison of the computational results is presented in

Table 9.

From Table 9, it can be seen that the performance of the

proposed algorithm is superior to DE algorithm in 12

problems. Only 3 functions, DE algorithm achieves better

results for all the functions with 10 and 30 dimensions.

Therefore, the proposed algorithm has better performance

than DE algorithm. In contrast to Jaya algorithm, our

proposed algorithm performs significantly better in 11

problems. Besides the rest of 4 functions, the proposed

algorithm achieves similar results as Jaya algorithm.

Compared to (l ? k)ES algorithm, the proposed algorithm

have better results in 11 functions. The proposed algorithm

also get 11 better results compared to CMAES-S and

CMAES-G algorithm. Compared to our proposed algo-

rithm, EPSO have better results only 3 functions in 15

functions. SAMP-Jaya perform better in 5 functions, and

similar in 2 functions, but worse in 8 cases. According to

the experimental results, it can be observed that the pro-

posed algorithm performs better on the more complex

shifted and rotated problems. In all, the proposed algorithm

has some advantages compared to all the compared

algorithms.

The comparison of three example problems between the

optimization results of the Jaya_SCLMP and those of the

five other algorithms are presented in Table 10. NFOS

represents the number of feasible ‘‘optima’’ solution found

out of 30 runs and SD represents standard deviation. For

convenience, the best results among all algorithms are

highlighted in overstriking. Based on the experimental

results in Table 10, we can see that for P1 and P3, the best,

worst, mean results obtained by the Jaya_SCLMP are all

very close to each other in each case, and the standard

deviations are 9.42711E-05 and 7.58188E-05, respec-

tively. From Figs. 7, 8 and 9, it can be seen that the

Jaya_SCLMP has strong convergence and stability than

five other algorithms. In addition, the mean results for P1

and P3 using Jaya_SCLMP algorithm are 0.9997974871

and 0.9999210543, respectively, and both mean results are

better than those obtained by five other algorithms. For P2,

the best result obtained by QO_Jaya is better than the best

result obtained by Jaya_SCLMP, but the mean result

obtained by Jaya_SCLMP is better than those obtained byTa
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five other algorithms. In addition, for P2, we can see that

Jaya, QO_Jaya and SAMP_Jaya are easy to be trapped in

local optima. For P1 and P3, the Jaya_SCLMP obtains

larger NFOS than the SAMP_Jaya. For P2, the

Jaya_SCLMP obtains larger NFOS than Jaya, QO_Jaya

and SAMP_Jaya, and the same NFOS is obtained by

Jaya_SCLMP, GOPSO and GOTLBO for P1–P3. On the

whole, the Jaya_SCLMP has demonstrated a higher effi-

ciency in finding an ‘‘optima’’ solution (or near ‘‘optima’’

solution) when compared to the other three Jaya variants.

In order to compare the search efficiency and running

time of the proposed algorithm and the other different

algorithms, we select a threshold value for each benchmark

problems. To give a fair chance to all the metaheuristics

compared. We run each algorithm on a function and stop as

soon as the best value determined by the algorithm falls

below the predefined threshold or a maximum number of

OFEs is exceeded. Here, the threshold is 102, the maximum

number of objective function evaluations (OFE) is fixed as

1 9 105. The experiment results are recorded in Table 11.

From Table 11, it can be obviously seen that SCLMP-

Jaya take less number of objective function evaluations for

the same predefined threshold compared to all the other

algorithms, which is demonstrated that the SCLMP-Jaya

has better search efficiency. In other words, under the same

optimization accuracy, the computation effort of SCLMP-

Jaya is better than the other compared algorithms.

6 Conclusion

Jaya algorithm has gained great success in science and

engineering field. In order to enhance the performance of

the Jaya algorithm, a self-adaptively commensal learning-

based multi-populations Jaya algorithm, called Jaya-

SCLMP, is proposed in this study. On the one hand, Jaya-

SCLMP employs commensal learning strategy to acceler-

ate the convergence speed. On the other hand, Jaya-

SCLMP uses multi-populations scheme to increase the

probability of finding the global optimum. In the numerical

experiments, 28 benchmark test functions and three

example problems of reliability problems are utilized to

evaluate the performance of Jaya-SCLMP. Moreover, Jaya-

SCLMP is compared with six algorithms, namely MJaya,

Jaya, QO-Jaya, SAMP-Jaya, GOPSO and GOTLBO. The

experimental results reveal that Jaya-SCLMP can exhibit

better performance than these algorithms on the majority of

the test functions and that the Jaya-SCLMP is superior to

the other five algorithms in finding the maximal reliability

for the three example problems. In the future research, we

will utilize the proposed Jaya-SCLMP to solve other real-

world optimization problems, such as constraint and multi-

objective optimization problems.
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