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Abstract
The problem of quantification of emotions in the choice between alternatives is considered. The alternatives are evaluated in a
dual manner. From one side, they are characterized by rational features defining the utility of each alternative. From the other
side, the choice is affected by emotions labeling the alternatives as attractive or repulsive, pleasant or unpleasant. A decision
maker needs to make a choice taking into account both these features, the utility of alternatives and their attractiveness. The
notion of utility is based on rational grounds, while the notion of attractiveness is vague and rather is based on irrational
feelings. A general method, allowing for the quantification of the choice combining rational and emotional features, is
described. Despite that emotions seem to avoid precise quantification, their quantitative evaluation is possible at the aggregate
level. The analysis of a series of empirical data demonstrates the efficiency of the approach, including the realistic behavioral
problems that cannot be treated by the standard expected utility theory.

Keywords Emotions in decision making · Quantification of emotions · Behavioral probability · Dual choice · Affective
computing · Artificial intelligence

1 Introduction

The problem of making a choice between alternatives is a
core of decision theory and its numerous applications in eco-
nomics, finances, and the operation of intelligence, whether
artificial or human. The most well-developed procedure of
decision making is based on the expected utility theory for-
malized by vonNeumann andMorgenstern (1953). However,
as is well known, it is rather a rare occasion when decisions
are made on the basis of purely rational grounds estimating
the alternative utility. Almost always the choice is essentially
affected by emotions, and humans do not strictly follow the
prescriptions of the expected utility theory, which results in
numerous paradoxes and often does not allow even for qual-
itative predictions. To take into account behavioral effects
related to the influence of emotions and other subjective
biases, various so-called non-expected utility theories were
suggested by replacing the expected utility with specially
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constructed functionals invented for the purpose of a poste-
riori interpretation of one or just a few phenomena. A list of
such non-expected utility theories can be found in the review
by Machina (2008).

However, non-expected utility theories are descriptive
requiring fitting of several parameters from particular experi-
mental data. In addition, spoiling the structure of the expected
utility leads to the appearance of inconsistencies and new
paradoxes producing more problems than it resolves (Safra
and Segal 2008; Birnbaum 2008; Al-Najjar and Weinstein
2009a, b).

The major problem in describing real-life decision mak-
ing is caused by the difficulty of quantifying such behavioral
phenomena as emotions. This is because subjective emotions
are not precisely defined in explicit mathematical terms, con-
trary to such a crisp notion as utility that can be evaluated
on rational grounds. Therefore, emotions increase the uncer-
tainty that always exists in any choice, when decision makers
evaluate the features of the given alternatives (Scherer and
Moors 2019). When analyzing alternatives, decision makers
experience different feelings, emotions, and subconscious
intuitive movements (Kahneman 1982; Picard 1997; Min-
sky 2006; Plessner et al. 2008). This is why, even choosing
between seemingly well-formulated lotteries, humans often
do not obey the normative prescriptions of utility theory, but
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make decisions qualitatively contradicting the latter (Kahne-
man and Tversky 1979).

It is important to differentiate two sides in the problem
of emotion quantification. One side is the assessment of
emotions experienced by a subject as reactions on external
events, e.g., hearing voice or looking at pictures. The aris-
ing emotions can include happiness, anger, pleasure, disgust,
fear, sadness, astonishment, pain, and so on. The severity or
intensity of such emotions can be estimated by studying the
expressive forms manifesting themselves in motor reactions,
such as facial expressions, pantomime, and general motor
activity, and by measuring physiological reactions, such as
the activity of the sympathetic and parasympathetic parts of
the autonomic nervous system, as well as the activity of the
endocrine glands. Vegetative manifestations of emotions can
be noticed by studying changes in the electrical resistance of
the skin, the frequency and strength of heart contractions,
blood pressure, skin temperature, hormonal and chemical
composition of the blood, and like that. Several methods of
appraising particular emotions in separate setups have been
considered (Amjadzadeh andAnsari-Asl 2017; Vartanov and
Vartanova 2018; Scherer and Moors 2019; Vartanov et al.
2020; Wang et al. 2021).

The other, principally different, side of emotion evaluation
concerns the study of the influence of emotions on taking
decisions by subjects. It is generally accepted that human
decisions are not purely rational, but emotions do play a great
role in decision making. However, the quantitative influence
of emotions on the process of decision making remains yet
an unsolved problem.

The present paper studies the second problem: How it
would be possible to assess the influence of emotions on
decisions taken by humans? We do not consider the somatic
or physiological effects produced by emotions, but we aim
at analyzing how subjective emotions, arising in the process
of decision making, influence the resulting decisions.

Subjectivity in decision making arises because of uncer-
tainty in the suggested choice. This uncertainty can be of
dual nature. From one side, there is the usual probabilistic
uncertainty based on deliberations related to the alternative
utility. From the other side, there is an uncertainty in the
choice due to the subjective feelings that are not regulated by
rational rules. Emotions can be separated into three classes.
One class contains, loosely speaking, positive, features, such
as “good”, “pleasant”, “attractive” and like that. The sec-
ond class is composed of negative characterizations, such
as “bad”, “unpleasant”, and “repulsive”. And the third class
is intermediate, comprising neutral definitions expressing
indifference with respect to the alternatives under consid-
eration.

Despite the subjectiveness of emotions, their influence in
the choice between alternatives sometimes can be quantified.
Of course, this looks to be impossible for a particular deci-

sion maker and for each separate choice procedure. Yet, it
turns out that quantification is admissible at the aggregate
level for a typical decision maker representing the average
characteristics of a large group of decision makers.

The formulation of explicit mathematical rules allowing
for the selection of an optimal alternative under vague uncer-
tainty due to the influence of emotions, is not merely useful
for characterizing human decision making, but it is compul-
sory for the realization of affective computing (Picard 1997)
and for overcoming the challenge of creating artificial intelli-
gence (Russel andNorvig 2016; Poole andMackworth 2017;
Neapolitan and Jiang2018). The achievement of human-level
machine intelligence is a principal goal of artificial intelli-
gence since its inception.

The process of decision making, actually, consists of two
sides that can conditionally be named rational and irrational.
The rational side describes the comparative usefulness of the
considered alternatives, while the irrational side is due to
emotions making the decision process less predictable. It is
the rational-irrational duality that makes the quantification
of the decision-making process so difficult.

The distinction between rational and irrational has been
extensively discussed in the literature on dual processes (Sun
2002; Paivio 2007; Evans 2007; Stanovich 2011;KahemanD
2011) according to which the procedure of taking decisions
in human brains can be treated as a result of two differ-
ent processes that can be called rational (logical, controlled,
regulated, deterministic, slow, defined by clear rules) and
irrational (intuitive, uncontrolled, emotional, random, fast,
defined in a fuzzy manner). These processes may proceed in
parallel or in turn, but in any case they act differently (Milner
and Goodale 2008; Kahneman 2011).

It is important to stress that the differentiation of mental
processes onto rational and irrational has the meaning for
the moment of taking a decision (Ariely 2008). It is a psy-
chological distinction but not a philosophical one. It is clear
that giving a specially invented philosophical definition it is
straightforward to include afterward all intuitive and emo-
tional effects into the rank of rational just giving a definition
that rational is all what leads to the desired goal. Then, illog-
ical uncontrolled feelings that occasionally lead to the goal
should be termed rational, and vice versa logical conclusions
that occasionally miss the goal should be named irrational
(Searle 2001; Julmi 2019). The philosophical definition of
rational has the meaning only afterward, when the goal has
been reached. Only then it becomes clear what was leading
to the goal and what was not.

Moreover, the philosophical definition of rational as what
leads to the goal is ambiguous. For instance, assume that your
goal is to become rich. The easiest way to become rich is to
steal. Hence, to steal is rational. But then you are caught by
police and put into jail. To be jailedwas not your goal. Hence,
to steal is not rational. So it is not clear, is it rational or not,
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while from the psychological point of view there is no ambi-
guity. An action that is logically and explicitly formulated
is psychologically rational. The psychological definition is
based on real physiological processes in the brain, while the
philosophical definition is not uniquely defined and depends
on interpretations.

In what follows, we distinguish rational from irrational
as it is accepted in decision making, where rational is what
can be explicitly formulated, based on clear rules, determin-
istic, logical, prescriptive, normative, while irrational is the
opposite to rational (Ariely 2008; Zafirovski 2012), being
intuitive, uncontrolled, emotional, random, defined in a fuzzy
way.

The dual nature of decision making, comprising the
rational-irrational duality, suggests that this duality could
be mathematically represented by a theory that naturally
includes some kind of duality in its basis. The proper candi-
date for this could be quantum theory, with its particle-wave
duality. A consistent approach realizing this analogy, by
treating decision making as the procedure of quantum mea-
surements, is the recently developedquantumdecision theory
(Yukalov and Sornette 2008, 2009a, b, 2011, 2014, 2016,
2018; Yukalov 2020, 2021a).

However, mathematical techniques of quantum theory
are not customary for the majority of people. Therefore, it
would be desirable to develop a theory that could incorpo-
rate the achievements of quantum decision theory at the same
time avoiding mathematical complications of quantum tech-
niques and the language of quantum theory so unfamiliar
for the majority of researchers. The development of such an
approach and its farther elaboration is the goal of the present
paper. Specifically, the new results of the present article are
as follows.

(i) The axiomatic formulation of dual decision theory, taking
account of cognition-emotion duality, that is rational-
irrational duality in decision making, and comprising
the main points of quantum decision theory, but without
involving any quantum formulae.

(ii) The derivation, without appealing to quantum theory, of
the non-informative prior estimate for attraction factor
measuring the typical influence of emotions on the pro-
cess of decision making.

(iii) Illustration of a simple rule for distinguishing emo-
tionally attractive and repulsive characteristics of the
considered alternatives in the case of highly uncertain
lotteries of the Kahneman–Tversky type.

(iv) Analysis of empirical data confirming that the typical
influence of emotions in decisionmaking composes 25%.

The plan of the paper is as follows. The approach to
be formulated possesses two major features. First, it is
probabilistic, which requires to define the corresponding

probability measure. Second, it is dual, aiming at taking into
consideration rational as well as irrational characteristics of
alternatives. In Sect. 2, the rules for defining the rational prob-
abilistic choice, describing the utility of the alternatives, are
formulated. In Sect. 3, it is shown how it is possible to charac-
terize the emotional attractiveness of alternatives. In Sect. 4,
the behavioral probability is defined, combining the rational
utility measure and the irrational emotional characteristic,
called attraction factor. The properties of the attraction factor
are considered in Sect. 5,where the typical value of the attrac-
tion factor is found to be 1/4, which is called the quarter law.
This value allows for the estimation of non-informative priors
for the attraction factors describing the influence of emotions
at the aggregate level. Section 6 shows how the attraction fac-
tors for multiple alternatives can be estimated. Section 7, by
the example of binary decision tasks, illustrates that the defi-
nition of attraction factors, generally speaking, is contextual.
This is because the attraction factors can contain parameters
whose values need to be adjusted for describing a particu-
lar set of decision problems, which limits their use for other
sets of decision tasks. In Sect. 8, the method of defining the
attraction factor structure in the case of two alternatives with
equal or very close utilities is described. Section 9 considers
difficult choice tasks in the case of the Kahneman–Tversky
lotteries, whose utilities are either exactly equal or very close
to each other, so that the standard utility theory is not appli-
cable. A method is suggested estimating the quality of the
lotteries and their attractiveness and giving good quantitative
predictions at the aggregate level. In Sect. 10, the analysis of
a large set of lotteries is given demonstrating the validity of
the quarter law at the aggregate level. Section 11 concludes.

2 Probabilistic uncertainty

The main task of decision theory is to describe the process
of choice between a given set of alternatives

A = {An : n = 1, 2, . . . , NA} . (1)

Each alternative can be characterized from two sides, from
the rational point of view of its usefulness and, from the other
side, following irrational feelings and emotions.

In this and the following sections, we describe a new
approach to decision making, taking into account the ratio-
nal reasoning by estimating the utility of the considered
alternatives as well as the presence of irrational emotions
accompanying the choice.

Even when there exist rational logical arguments explain-
ing the utility of the given alternatives, not all subjects incline
to prefer a single alternative, but always an alternative An ,
with a clearly defined utility, is selected only by a fraction
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f (An) of decision makers (Slovic and Tversky 1974), which
can be termed rational fraction.

In the present section, the definition of the rational fraction
is formulated and its properties are described.

Definition 1 A rational fraction f (An) is the fraction of deci-
sion makers that would choose the alternative An provided
their decisions would be based solely on rational grounds.
The rational fraction is semi-positive and normalized

NA∑

n=1

f (An) = 1 , 0 ≤ f (An) ≤ 1 . (2)

The rational fraction represents the classical probability, with
its standard properties, including the additivity with respect
to mutually exclusive alternatives,

f

(
⋃

n

An

)
=

∑

n

f (An) . (3)

Definition 2 An alternative A1 is called more useful than A2

if and only if

f (A1) > f (A2) . (4)

Two alternatives, A1 and A2, are equally useful if and only
if

f (A1) = f (A2). (5)

The rational fraction f (An) shows how useful the alternative
is, because of which it can be called the utility fraction.

The ideas of decision theory ate typically illustrated by the
choice between lotteries. Let the alternatives be represented
by the lotteries

An = {xi , pn(xi ) : i = 1, 2, . . . , Nn} , (6)

which are the probability distributions over payoffs xi , with
pn(xi ) being the payoff probabilities that can be either
objective (von Neumann and Morgenstern 1953) or subjec-
tive (Savage 1954). The lottery utility is quantified by the
expected utility

U (An) =
∑

i

u(xi )pn(xi ) , (7)

where u(x) is a utility function. More generally, it is possible
to introduce a utility functional

U (An) =
∑

i

u(xi )w(pn(xi )) ,

with w(pn(xi )) being a postulated weighting function (Kah-
neman and Tversky 1979).

The rational fraction, associated with the expected utility,
should satisfy the limiting conditions

f (An) → 1 , U (An) → ∞ ,

f (An) → 0 , U (An) → −∞ , (8)

whose meaning is clear. An explicit form of the rational frac-
tion can be done by the Luce rule (Luce 1959; Luce and
Raiffa 1989) according to which if an alternative An is char-
acterized by an attribute an , then theweight of this alternative
can be defined as:

f (An) = an
∑NA

n=1 an
(an ≥ 0) . (9)

When the expected utilities of all lotteries are semi-positive,
the attribute values can be defined by these utilities

an = U (An) , U (An) ≥ 0 , (10)

while when the expected utilities are negative, the attribute
values are defined by the inverse quantities

an = 1

| U (An) | , U (An) < 0 . (11)

In the case of mixed utility signs, it is straightforward to
shift the utilities by a minimal available wealth making these
utilities semi-positive.

Definition 3 When alternatives are represented by lotteries,
the rational fractions can be defined as:

f (An) = U (An)
∑NA

n=1U (An)
(U (An) ≥ 0) (12)

for semi-positive utilities and as

f (An) = | U (An) |−1

∑NA
n=1 | U (An) |−1

(U (An) < 0) (13)

for negative utilities.

Generally speaking, as the utility U (An), one can imply
either the standard expected utility (von Neumann and Mor-
genstern 1953), or a utility functional, for instance as is used
in the prospect theory (Kahneman and Tversky 1979). It is
also possible to define the rational fraction as the minimizer
of an information functional, as has been done for resolving
the St. Petersburg paradox (Yukalov 2021b).

The so-defined rational fraction quantifies the fraction of
decision makers choosing an alternative being based only on
rational arguments of the alternative utility. In other words,

123



Quantification of emotions in decision making 2423

it is the probability that an alternative would be chosen by
decision makers, provided they are purely rational.

3 Emotional uncertainty

In addition to the probabilistic uncertainty that can be
quantified by the rational fraction, there exists an emo-
tional uncertainty ascribing to the alternatives such vague
emotional characteristics that do not seem to allow for a quan-
tification. In the simplest case, these characteristics can be
separated into three classes of different quality. One qual-
ity class includes such specifications as “positive”, “good”,
“pleasant”, and “attractive”, while the other is composed
of such depictions as “negative”, “bad”, “unpleasant”, and
“repulsive”. The third, intermediate class qualifies the related
alternatives as “neutral” or “indifferent” with respect to their
attractiveness. The principal question is how it would be pos-
sible to describe in mathematical terms and quantify these
classes of emotional uncertainty?

We shall denote the set of alternatives pertaining to the
positive quality class as A+, while the set of alternatives
pertaining to the negative quality class, as A−. The set of
alternatives from the neutral quality class is denoted by A0.
Let the emotional attractiveness of an alternative An be repre-
sented by an attraction factor q(An). For a positive, attractive
alternative, the attraction factor is positive, for a negative,
repulsive alternative, it is negative, and for a neutral alterna-
tive, it is zero. The absolute value of the attraction factor is
limited by one.

Definition 4 The attraction factor pertaining to a positive,
negative or neutral quality class, respectively, varies in the
intervals

0 < q(An) ≤ 1 (An ∈ A+) ,

−1 ≤ q(An) < 0 (An ∈ A−) ,

q(An) = 0 (An ∈ A0) . (14)

Definition 5 An alternative A1 is more attractive than A2 if
and only if

q(A1) > q(A2) . (15)

Conversely, an alternative A2 is more repulsive than A1. Two
alternatives are said to be equally attractive, or equally repul-
sive, if and only if

q(A1) = q(A2) . (16)

Recall that quality, or attractiveness, is a vague subjective
notion which can be interpreted as that the attraction factor
is a random quantity varying in the frame of its quality class.

The qualities “attractive” or “repulsive” are subjective, being
associated with concrete decision makers. Moreover, they
can change for the same decision maker taking decisions at
different moments of time or under different circumstances;
hence, they are contextual (Helland 2018).

4 Behavioral probability

In real life, humans make decisions taking into account ratio-
nal arguments, at the same time being influenced by irrational
feelings and emotions. This implies that both quantities, the
rational fraction and attraction factor define the probability
p(An) of choosing alternatives by decisionmakers. Thus, the
probability p(An) of choosing an alternative An embodies
both a rational evaluation of the alternative utility as well as
reflects the emotional attitude of decision makers toward the
considered alternatives. This rational-irrational duality is typ-
ical for the behavior of real-life decision makers, because of
which the probability p(An) can be called behavioral prob-
ability.

When looking for the form of this probability, it is neces-
sary to keep in mind that the rational decision making has to
be a particular case of the more general process encompass-
ing both rational and irrational sides of decisionmaking. That
is, when irrational effects become not important, the choice
becomes purely rational. This requirement can be written as
a limiting condition.

Correspondence principle Rational decision making is a
particular case of behavioral decision making, when irra-
tional effects play no role:

p(An) → f (An) , q(An) → 0 . (17)

The behavior of decisionmakers reflects the superposition
of rational and irrational sides of consciousness. In other
words, the real-life behavior is a superposition of cognition
and emotions. This suggests the following axiom.

Axiom 1. Behavioral probability is the sum of a rational
fraction and of an attraction factor:

p(An) = f (An) + q(An) , (18)

with p(An) being semi-positive and normalized,

NA∑

n=1

p(An) = 1 , 0 ≤ p(An) ≤ 1 . (19)

The condition of additivity is not required, so that, in general,
the probability measure {p(An)} is not necessarily additive.

The rational part of the behavioral probability is explic-
itly defined by the rational fraction, while the irrational part
is characterized by a quantity represented by the attraction
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factor. The behavioral probability, being a superposition of
two terms, reflects the existence in life of rational-irrational
duality, or cognition-emotion duality, or utility-attractiveness
duality. When dealing with empirical data, the probability
p(An) describes the total fraction of decision makers prefer-
ring the given alternative.

The alternatives An from the set A acquire the following
properties understood as the corresponding relations between
their probabilities.

(i) Ordering: for any two alternatives A1 and A2, one of
the relations necessarily holds: either A1 ≺ A2, in the
sense that p(A1) < p(A2), or A1 � A2,when p(A1) ≤
p(A2), or A1 	 A2, if p(A1) > p(A2), or A1 
 A2,
when p(A1) ≥ p(A2), or A1 ∼ A2, if p(A1) = p(A2).

(ii) Linearity: the relation A1 � A2, implying p(A1) ≤
p(A2), means that A2 
 A1, in the sense that p(A2) ≥
p(A1).

(iii) Transitivity: for any three alternatives, such that A1 �
A2, with p(A1) ≤ p(A2), and A2 � A3, when
p(A2) ≤ p(A3), it follows that A1 � A3, in the sense
that p(A1) ≤ p(A3).

(iv) Completeness: the set of alternativesA contains a min-
imal Amin and a maximal Amax elements, for which
p(Amin) = minn p(An) and, respectively, p(Amax) =
maxn p(An). The ordered set of these alternatives is
called a complete lattice.

Relations between behavioral probabilities determine
preference relations between the alternatives.

Definition 6 An alternative A1 is called preferable to A2 if
and only if

p(A1) > p(A2) (A1 	 A2) . (20)

Two alternatives A1 and A2 are indifferent if and only if

p(A1) = p(A2) (A1 ∼ A2) . (21)

Definition 7 The alternative Aopt is called optimal if and only
if it corresponds to the maximal behavioral probability,

p(Aopt) = max
n

p(An) . (22)

It is clear that an alternative can be more useful but not
preferable, since its behavioral probability consists of a ratio-
nal fraction and an irrational attraction factor. An alternative
A1 is preferable to A2, implying that p(A1) > p(A2), then
and only then when

f (A1) − f (A2) > q(A2) − q(A1) . (23)

Both quantities, the rational fraction and attraction factor, are
important in the process of taking decisions.

5 Attraction factor

Although the attraction factor is a random quantity, it pos-
sesses, on average, some general properties that, because of
their importance, are formulated as theorems.

Theorem 1 The attraction factor q(An) varies in the interval

− f (An) ≤ q(An) ≤ 1 − f (An) (24)

and satisfies the alternation law

NA∑

n=1

q(An) = 0 . (25)

Proof These properties follow directly from the definition
of the behavioral probability (18), its semi-definiteness and
normalization (19), and from the semi-definiteness and nor-
malization of the rational fraction (2). �

Irrational feelings and emotions, playing a very important
role in decision making, are characterized by the attraction
factor. Strictly speaking, the attraction factor q(An) is a ran-
dom quantity that varies for different people and different
conditions. Despite that it is random, it enjoys some specific
features that can be used for estimating the non-informative
priors quantifying this factor.

Recall that being random does not prevent the quantity
from possessing well-defined properties on average. In deci-
sion making, this means that although the attraction factor
is difficult to define for a single decision maker and a sin-
gle choice, but it may enjoy quite explicit properties at the
aggregate level as an average for a large group of decision
makers and over several choices. Such averages, playing the
role of non-informative priors, could allow us to evaluate typ-
ical attraction factors, even having no detailed information
on each of the separate decision makers.

Definition 8 If a quantity y is given on an interval [a, b], the
average of y is defined as the arithmetic average

y ≡ a + b

2
. (26)

In the case when the boundaries a and b themselves are the
quantities given on the intervals [a1, a2] and, respectively,
[b1, b2], the non-informative prior for y is the arithmetic
average

y ≡ a + b

2

(
a ≡ a1 + a2

2
, b ≡ b1 + b2

2

)
. (27)
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Theorem 2 Quarter law The average value for the attraction
factor q(An) in the positive quality class is

q(An) = 1

4
(An ∈ A+) (28)

and in the negative quality class, it is

q(An) = − 1

4
(An ∈ A−) . (29)

Proof According to Theorem 1, the attraction factor is
defined on the interval [− f (An), 1 − f (An)]. Hence, for
the positive quality class it is given on the interval [0, 1 −
f (An)] and for the negative quality class, on the interval
[− f (An), 0]. By the definition of the averages, we have for
the positive quality class

q(An) = 1 − f (An)

2
(An ∈ A+) , (30)

while for the negative quality class

q(An) = − f (An)

2
(An ∈ A−) . (31)

Since f (An) is defined on the interval [0, 1], its non-
informative prior is the average f̄ (An) = 1/2. This gives
the averages (28) and (29). �

In this way, the average behavioral probability of choos-
ing an alternative An by a group of decision makers can be
estimated by the expression

p(An) = f (An) ± 0.25 , (32)

provided the probability properties (18) are preserved.
The attraction factor, being a random quantity, varies for

different agents as well as for the same decision maker at
different moments of time. Therefore, the same decision
task, with the same utility factors, even for the same pool of
subjects may be accompanied by different behavioral prob-
abilities (Murphy and Fu 2018), hence different attraction
factors. Such variations is a kind of random noise. Numerous
empirical data show that these variations lead to statistical
errors of about 0.1 (Murphy and ten Brincke 2018). This
implies that if the difference p(An) − f (An) is smaller than
0.1, then the attractiveness of the alternative pertains to the
neutral class and the attraction factor can be set to zero.

6 Multiple alternatives

The estimate for the non-informative prior of the attraction
factor, derived above, is especially useful for the case of

choosing between two alternatives. In the case, where there
are many alternatives in the setA, it is possible to more pre-
cisely estimate typical attraction factors, playing the role of
non-informative priors.

Suppose NA alternatives can be classified according to the
level of their attractiveness, so that

q(An) > q(An+1) (n = 1, 2, . . . , NA − 1) . (33)

Let the nearest to each other attraction factors q(An) and
q(An+1) be separated by a typical gap

� ≡ q(An) − q(An+1) . (34)

And let us accept that the average over the set A absolute
value of the attraction factor can be estimated by the non-
informative prior q = 1/4, so that

q ≡ 1

NA

NA∑

n=1

| q(An) | = 1

4
. (35)

Theorem 3 For a setA of NA alternatives, under conditions
(33)–(35), the non-informative priors for the attraction fac-
tors are

q(An) = NA − 2n + 1

2NA
(NA even) ,

q(An) = NA(NA − 2n + 1)

2(N 2
A − 1)

(NA odd) , (36)

depending on whether NA is even or odd.

Proof In accordance with conditions (33)–(35), we can write

q(An) = q(A1) − (n − 1)� . (37)

From the alternation law (25), it follows

q(A1) = NA − 1

2
� . (38)

Using the definition of the average q in equation (35) gives
the gap

� =
{
4q/NA, NA even
4qNA/(N 2

A − 1), NA odd
, (39)

depending on whether the number of alternatives NA is even
or odd. Then, expression (38) becomes

q(A1) =
{
2q(NA − 1)/NA, NA even
2qNA/(NA + 1), NA odd

. (40)
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Using (37), we get

q(An) =
{
2q(NA + 1 − 2n)/NA, NA even
2qNA(NA + 1 − 2n)/(N 2

A − 1), NA odd
,

(41)

In view of equality (35), we have q̄ = 1/4. Then, expression
(40) leads to

q(A1) =
{

(NA − 1)/2NA, NA even
NA/2(NA + 1), NA odd

. (42)

And finally, Eq. (41) results in the answer (36). �

As applications of the above theorem, let us give some
examples. Thus for a set of two alternatives, we have the
already known values of the non-informative priors for the
attraction factors

{q(An) : n = 1, 2} =
{
1

4
, − 1

4

}
. (43)

For three alternatives, we find

{q(An) : n = 1, 2, 3} =
{
3

8
, 0 , − 3

8

}
. (44)

Respectively, for the set of four alternatives, we obtain the
quality factors

{q(An) : n = 1, 2, 3, 4} =
{
3

8
,
1

8
, − 1

8
, − 3

8

}
. (45)

7 Binary alternatives

The case of binary alternatives is, probably, the most often
considered in applications, being a typical choice problem.
In previous sections, a method of evaluating the average
value of the attraction factors is described. As is shown, the
typical attraction factor can be estimated, despite that, in gen-
eral, attractiveness seems to be a vague notion. The natural
question arises whether it would be feasible to give a more
detailed assessment of attractiveness. This problem has been
discussed for the case of two alternatives, when it has been
necessary to choose between two lotteries (Favre et al. 2016;
Vincent et al. 2016; Ferro et al. 2021; Zhang and Kjellström
2021).

Let us consider the choice between two lotteries, A and B,
whose utilities areU (A) andU (B), respectively. These quan-
tities can represent either the standard expected utility (von
Neumann andMorgenstern 1953) or other utility functionals
employed in decision theory, e.g., the utility functional of

prospect theory (Kahneman and Tversky 1979; Tversky and
Kahneman 1992). The attraction factor in the form:

q(A) = min{ϕ(A), ϕ(B)} tanh{a[ U (A) −U (B) ]} ,

q(B) = −q(A) , (46)

has been considered (Vincent et al. 2016; Ferro et al. 2021),
where

ϕ(A) = 1

Z
eβU (A) , ϕ(B) = 1

Z
eβU (B) ,

Z = eβU (A) + eβU (B) .

It has been used for characterizing the series of 91 binary
decision tasks (lotteries), where the choice is made by the
pool of 142 subjects (Murphy and ten Brincke 2018). The
parameters of the attraction factor are fitted so that to opti-
mally agree with the given experimental data. It is shown
(Vincent et al. 2016; Ferro et al. 2021) that the decision the-
ory with this attraction factor better describes the empirical
data than the stochastic cumulative prospect theory (Tversky
andKahneman 1992) and than the stochastic rank-dependent
utility theory (Quiggin 1982).

As is clear, the parameters calibrated so that to optimally
describe a given set of lotteries may be not appropriate for
another set of lotteries. In that sense, each combination of
parameters is contextual, being suitable for a particular set of
decision tasks, but not necessarily adequate for other groups
of decision problems. This can be easily understood notic-
ing that the attraction factor (46) becomes zero, when the
utilities U (A) and U (B) coincide, or it becomes negligible
when these utilities are close to each other. At the same time
very close, or equal utilities often correspond to high uncer-
tainty in the choice, which results in large attraction factors.
A typical example of such a situation has been illustrated
by Kahneman and Tversky (1979) for a set of lotteries with
close or coinciding expected utilities.

The choice between two alternatives with equal or close
utilities is a kind of the “Buridan’s donkey problem” (Kane
2005) that can be solved only considering emotions.

8 Buridan’s donkey problem

Emotions are characterized by attraction factors. Hence, to
quantify emotions means the necessity of evaluating the val-
ues of the attraction factors for the considered alternatives.
As is explained in Sect. 5, the first step in this estimation
is the formulation of the quarter law stating that the non-
informative prior for the magnitude of the attraction factor
for either positive or negative quality classes is ±0.25. How-
ever, we need to define how the actual classification could
be realized, so that each alternative would be associated with
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the corresponding quality class, either positive or negative.
This problem is typical for the research area known as soft
computing aspiring to find methods that tolerate imprecision
and uncertainty of fuzzy notions to achieve tractability and
robustness allowing for quantitative conclusions (Clocksin
2003; de Silva 2003; Jamshidi 2003).

Below we suggest an algorithm that is applicable to that
situation of close utilities of lotteries, whether with gains or
with losses. This algorithm can be justified on the basis of
studies in experimental neuroscience, which have discovered
that, when making a choice, the main and foremost attention
of decision makers is directed toward the payoff probabil-
ities (Kim et al. 2012). This implies that subjects evaluate
higher the probabilities than the related payoffs (Yukalov
and Sornette 2014, 2018). In mathematical terms, this can
be formulated as the existence of different types of scaling
for the alternative quality with respect to payoff utility and
payoff probability. Say, the payoff utility is scaled linearly,
while the payoff probability, exponentially.

To be explicit, let us consider a simple case of two alter-
natives, one lottery

A1 = {u, p | 0, 1 − p} , (47)

with a payoff utility u and a related probability p, and the
other lottery

A2 =
{
λu,

p

λ
| 0, 1 − p

λ

}
, (48)

whose payoff utility and probability are scaled in such a way
that the expected utilities of both lotteries are equal,

U (A1) = U (A2) = up .

Then, the corresponding rational fractions coincide, f (A1) =
f (A2) = 1/2, and one cannot choose a preferable alternative
being based on rational arguments. This is a typical example
of a series of lotteries considered by Kahneman and Tversky
(1979). However, empirical studies show that subjects do
make clear preferences between the lotteries, depending on
their payoffs and probabilities. This implies that subjects are
able to intuitively classify the lotteries into positive (attrac-
tive) or negative (repulsive).

Since “quality” or “attractiveness” are vague notions, it
would be tempting to accomplish the quality classification by
means of words. For instance, we could accept that between
two lotteries that one is of better quality, or more attractive,
that yields a more certain gain or less certain loss. Often this
is a reasonable way of classification, although not always.

Suppose the lottery A1 is quite certain, which implies that
the payoff probability is in the interval 1/2 < p ≤ 1. Hence,
the average probability is p = 3/4, which is appreciated
by people as highly certain (Hillson 2003, 2019). Let the

scaling with λ > 1 be such that the payoff utility increases,
while its probability diminishes. When λ is not large, sub-
jects do prefer themore certain lottery A1. However, strongly
increasing the payoff utility may attract more people, despite
a small payoff probability, as has been confirmed by real-life
lotteries (Rabin 2000).

In order to describe themethod of classification of alterna-
tives into positive (attractive) or negative (repulsive) quality
classes, let us introduce the quality functional Q(An). The
fact that decision makers in their choice pay the main and
foremost attention to the payoff probabilities (Kim et al.
2012) is formalized by a linear dependence of the quality
functional with respect to the payoff utility and by an expo-
nential dependencewith respect to the payoff probability. For
the case of the lotteries (47) and (48), this implies the quality
functionals

Q(A1) = ubp , Q(A2) = λubp/λ .

When the scaling λ is of order one and A1 is more certain,
subjects consider the more certain lottery as more attractive,
which means that Q(A1) is larger than Q(A2). But if the
payoff probability is diminished by an order, which assumes
λ = 10,while the payoff utility increases by anorder, then the
lottery A1 can become less attractive than A2, so that Q(A1)

becomes smaller than Q(A2). The change of attractiveness
occurs where Q(A1) = Q(A2). The latter equality gives the
expression for the base b that for p = 3/4 and λ = 10 yields

b = λλ/(λ−1)p = 30 . (49)

The above arguments give a clue allowing us to define the
quality functional for any lottery.

Definition 9 The quality functional of an arbitrary lottery is

Q(An) =
∑

i

u(xi )30
pn(xi ) . (50)

Comparing the quality functionals of different lotteries,
we can meet the case, where these functionals are equal, but
the lotteries differ from each other by the gain-loss number
difference

N (An) = N+(An) − N−(An) (51)

between the number of admissible gains N+(An) and the
number of possible losses N−(An). A typical example is the
comparison of the lottery A1 defined in (47) and the lottery

A3 = {u1, p | u2, p | 0, 1 − 2p} , (52)
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in which u1 + u2 = u. Then, the related quality functionals
are equal

Q(A3) = u1b
p + u2b

p = ubp = Q(A1) ,

where b = 30. If un > 0, then the lottery A1 possesses
only one admissible gain and no losses, while the lottery
A3, two gains and also no losses. Hence, N (A1) = 1 and
N (A3) = 2. Since N (A3) is larger than N (A1), the lottery
A3 is treated as more attractive. Similarly, for the lotteries
with losses, where un < 0, and quality functionals are equal,
the gain-loss number difference N (A1) = −1 is larger than
N (A3) = −2, so that the lottery A1 with a smaller number
of losses is more attractive.

Definition 10 A lottery A1 is of better quality, ormore attrac-
tive, than A2, so that q(A1) > q(A2), if either

Q(A1) > Q(A2) , (53)

or if

Q(A1) = Q(A2) , N (A1) > N (A2) . (54)

If some lotteries A1 and A2 cannot be classified asmore or
less attractive, they are said to be of equal quality, or equally
attractive, so that q(A1) = q(A2). If there are only two of
these lotteries, then the alternation law q(A1) + q(A2) = 0
implies q(A1) = q(A2) = 0. In that case, the lotteries are in
the neutral quality class.

If the alternative A1 is more attractive than A2, then the
related behavioral probabilities can be estimated as:

p(A1) = f (A1) + 0.25 , p(A2) = f (A2) − 0.25 , (55)

where f (An) are rational fractions. Here the inequality 0 ≤
p(An) ≤ 1 is assumed, which can be formalized by the
definition

p(An) = Ret[0,1]{ f (An) ± 0.25} ,

where the retract function is defined as:

Ret[0,1]z =
⎧
⎨

⎩

0, z < 0
z, 0 ≤ z ≤ 1
1, z > 1

.

Recall that the above expressions estimate the aggregate
fractions of decisionmakers averagedovermany subjects and
a set of choices. For a single decision maker, the attraction
factor is a random quantity. However, the average attraction
factor and, respectively, the average behavioral probability
can be estimated according to rules (55). The rational frac-
tion f (An) shows the fraction (frequentist probability) of

decision makers that would choose the corresponding alter-
native on the basis of only rational rules.While the behavioral
probability p(An) defines the real total fraction of decision
makers actually choosing An , taking into account both the
rational utility as well as the irrational emotional attractive-
ness of the alternatives.

9 Kahneman–Tversky lotteries

By a number of examples, Kahneman and Tversky (1979)
have shown that the expected utility theory in many cases
does not work at all, so that decision makers do not decide
according to utility theory, because of the very close lot-
tery utilities, and even choose the alternatives that should
be neglected according to the utility theory prescriptions. In
their experiments, the number of participants was about 100.
The typical statistical error was close to±0.1. Payoffs below
are given inmonetary units, whosemeasures are of no impor-
tance when using dimensionless rational fractions.

Below, we show that the method described above cor-
rectly predicts the aggregate choice, giving good quantitative
estimates for behavioral probabilities. Rational fractions are
calculated by formulas of Sect. 2. For simplicity, the lin-
ear utility function u(x) is accepted. The attraction factor is
represented by its non-informative prior, with the sign pre-
scribed by the lottery quality functional defined in Sect. 8.
For brevity, we use the notation Q(An) ≡ Qn .

For the convenience of the reader, we summarize the for-
mulae that are used below in characterizing the lotteries. The
rational utility fraction is calculated according to the defini-
tion in Sect. 2 as

f (Ln) = U (Ln)∑
n U (Ln)

(U (Ln) ≥ 0)

for semi-positive expected utilities and as

f (Ln) = | U (Ln) |−1
∑

n | U (Ln) |−1 (U (Ln) < 0)

for negative expected utilities, where the latter are given by
the expression

U (Ln) =
∑

i

xi pn(xi ) .

The quality functional Qn = Q(Ln) is defined in (50).
Choice 1. Consider two lotteries

L1 = {2.5, 0.33 | 2.4, 0.66 | 0, 0.01} , L2 = {2.4, 1} .

The rational fractions are f (L1) = 0.501 and f (L2) =
0.499, so that the first lottery should be chosen on the
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rational grounds. However, the lottery quality functionals
Q1 = 30.3 and Q2 = 72 show that the second lottery, being
more certain, is more attractive, since Q2 > Q1. Hence,
q(L2) > q(L1), and involving the non-informative prior, we
have q(L1) = −0.25, while q(L2) = 0.25. This gives the
behavioral probabilities

p(L1) = 0.25 , p(L2) = 0.75 ,

according to which the second lottery is optimal. This is in
agreement with the empirical results

pexp(L1) = 0.18 , pexp(L2) = 0.82 .

The more certain, but less useful lottery is chosen.
Choice 2. One chooses between the lotteries

L1 = {2.5, 0.33 | 0, 0.67} , L2 = {2.4, 0.34 | 0, 0.66} .

The rational fractions are close to each other, f (L1) = 0.503
and f (L2) = 0.497. At the first glance, it is difficult to say
which of the lotteries is more attractive, since the first lottery
has a slightly larger payoff, while the second is a little more
certain. But the lottery qualities Q1 = 7.68 and Q2 = 7.63
show that the first lottery is a bit more attractive. Hence,
q(L1) = 0.25 and q(L2) = −0.25. Then, the behavioral
probabilities are

p(L1) = 0.75 , p(L2) = 0.25

which is well comparable with the experimental data

pexp(L1) = 0.83 , pexp(L2) = 0.17 .

This is an example, where the majority prefer a less certain,
but more useful lottery.

Choice 3. Considering the lotteries

L1 = {4, 0.8 | 0, 0.2} , L2 = {3, 1} ,

one sees that the first lottery, although being less certain,
is more useful, having a larger rational fraction f (L1) =
0.516 while f (L2) = 0.484. But its quality is lower than
that of the second lottery, Q1 = 60.8, while Q2 = 90. This
means that the second lottery is more attractive, because of
which q(L1) = −0.25 and q(L2) = 0.25. As a result, the
behavioral probabilities are

p(L1) = 0.27 , p(L2) = 0.73 ,

being close to the experimentally observed

pexp(L1) = 0.20 , pexp(L2) = 0.80 .

Here the more certain, although less useful lottery is chosen.
Choice 4. For the lotteries

L1 = {4, 0.20 | 0, 0.80} , L2 = {3, 0.25 | 0, 0.75} ,

the rational fractions are again close to each other, as in the
previous case, f (L1) = 0.516 and f (L2) = 0.484. But the
quality of the first lottery is higher than that of the second,
Q1 = 7.9, but Q2 = 7.02. This makes the first lottery more
attractive, with q(L1) = 0.25 and q(L2) = −0.25. And the
choice reverses, as compared to the previous case,

p(L1) = 0.77 , p(L2) = 0.23 ,

in agreement with the empirical results

pexp(L1) = 0.65 , pexp(L2) = 0.35 .

Again, a less certain, although more useful, lottery is chosen.
Choice 5. Between the lotteries

L1 = {6, 0.45 | 0, 0.55} , L2 = {3, 0.9 | 0, 0.10} ,

it is difficult to choose which is better. The first lottery sug-
gests a twice larger payoff, while the second, twice higher
payoff probability. The utility of both the lotteries is the same,
with the same rational fractions f (L1) = f (L2) = 0.5.
However, the lottery qualities are different, Q1 = 27.7,while
Q2 = 64.1, showing that the second lottery ismore attractive,
which gives q(L1) = −0.25 and q(L2) = 0.25. Therefore,
the behavioral probabilities become

p(L1) = 0.25 , p(L2) = 0.75 .

And the empirical data are

pexp(L1) = 0.14 , pexp(L2) = 0.86 .

More certain lottery is chosen.
Choice 6. The lotteries

L1 = {6, 0.001 | 0, 0.999} , L2 = {3, 0.002 | 0, 0.998} ,

have the same rational fractions f (L1) = f (L2) = 0.5. But
the quality of the first lottery is higher than that of the second,
Q1 = 6.02, while Q2 = 3.02. That is, the first lottery ismore
attractive, so that q(L1) = 0.25 and q(L2) = −0.25. This
yields the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

practically coinciding with the experimental data

pexp(L1) = 0.73 , pexp(L2) = 0.27 .
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Between two equally useful lotteries, the less certain is cho-
sen.

Choice 7. For the lotteries

L1 = {6, 0.25 | 0, 0.75} ,

L2 = {4, 0.25 | 2, 0.25 | 0, 0.5} ,

the rational fractions are again the same, which does not
make it possible to choose on the basis of utility, f (L1) =
f (L2) = 0.5. Although the lottery qualities are equal, Q1 =
Q2 = 14, but the second lottery suggests a larger choice
of gains, N (L2) = 2 > N (L1) = 1, which makes it more
attractive, with q(L1) = −0.25 and q(L2) = 0.25. As a
result, the behavioral probabilities read as

p(L1) = 0.25 , p(L2) = 0.75 .

The empirical data are

pexp(L1) = 0.18 , pexp(L2) = 0.82 .

Among seemingly equally useful lotteries, the choice ismade
under the influence of the attraction factor.

Choice 8. Considering the lotteries

L1 = {5, 0.001 | 0, 0.999} , L2 = {0.005, 1} ,

we see that they are of equal utility, with the rational fractions
f (L1) = f (L2) = 0.5. But the lottery qualities are essen-
tially different, Q1 = 5.02 and Q2 = 0.15, which defines
the attraction factors q(L1) = 0.25 and q(L2) = −0.25.
Then, the behavioral probabilities are

p(L1) = 0.75 , p(L2) = 0.25 .

This is very close to the empirical data

pexp(L1) = 0.72 , pexp(L2) = 0.28 .

Again, this is an example,when a less certain lottery is chosen
among two equally useful lotteries.

Choice 9. The lotteries

L1 = {10, 0.5 | 0, 0.5} , L2 = {5, 1}

have equal utilities, with the rational fractions f (L1) =
f (L2) = 0.5. The lottery qualities Q1 = 54.8 and Q2 =
150 show that the second lottery is more attractive; hence,
q(L1) = −0.25 and q(L2) = 0.25. Therefore, the behav-
ioral probabilities become

p(L1) = 0.25 , p(L2) = 0.75 .

The empirical probabilities are

pexp(L1) = 0.16 , pexp(L2) = 0.84 .

The second lottery is more certain, although has a smaller
payoff.

Choice 10. For the lotteries

L1 = {2, 0.5 | 1, 0.5} , L2 = {1.5, 1} ,

rational fractions are equal, f (L1) = f (L2) = 0.5. The
lottery qualities are Q1 = 16.4 and Q2 = 45. Hence, the
second lottery is more attractive, which means that q(L1) =
−0.25 and q(L2) = 0.25. Then, the behavioral probabilities
are

p(L1) = 0.25 , p(L2) = 0.75 .

This is very close to the experimentally found probabilities

pexp(L1) = 0.20 , pexp(L2) = 0.80 ,

actually coinciding with them within the accuracy of exper-
iments.

Choice 11. The previous lotteries dealt with gains. Now
we shall treat the lotteries with losses, which implies that the
subject has to pay, that is to loose, the amount of monetary
units marked as negative. Consider the lotteries

L1 = {−4, 0.8 | 0, 0.2} , L2 = {−3, 1} .

The rational fraction of the second lottery is larger, f (L1) =
0.484, while f (L2) = 0.516. However, the first lottery is
more attractive, since its quality is higher, Q1 = −60.8,
while Q2 = −90. This tells us that q(L1) = 0.25 and
q(L2) = −0.25, which leads to the behavioral probabilities

p(L1) = 0.73 , p(L2) = 0.27 .

In experiments, the majority also choose the first lottery,

pexp(L1) = 0.92 , pexp(L2) = 0.08 .

The situation is opposite to the case of gains. Now a lottery
with a less certain loss is preferable.

Choice 12. For the lotteries

L1 = {−4, 0.2 | 0, 0.8} , L2 = {−3, 0.25 | 0, 0.75} ,

the rational fractions are f (L1) = 0.484 and f (L2) =
0.516. The related lottery qualities read as Q1 = −7.9 and
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Q2 = −7.02, showing that the second lottery is more attrac-
tive, with q(L1) = −0.25 and q(L2) = 0.25. Then, we find
the behavioral probabilities

p(L1) = 0.23 , p(L2) = 0.77 .

Now the majority of decision makers choose the second lot-
tery,

pexp(L1) = 0.42 , pexp(L2) = 0.58 ,

although it suggests a more certain loss.
Choice 13. The lotteries

L1 = {−3, 0.9 | 0, 0.1} , L2 = {−6, 0.45 | 0, 0.55}

possess equal utility, hence equal rational fractions f (L1) =
f (L2) = 0.5. But the second lottery is more attractive, since
its quality is higher, Q1 = −64.1,whileQ2 = −27.7.There-
fore, q(L1) = −0.25 and q(L2) = 0.25. The behavioral
probabilities

p(L1) = 0.25 , p(L2) = 0.75

show that the second lottery is optimal, in agreement with
the empirical observations,

pexp(L1) = 0.08 , pexp(L2) = 0.92 .

The second lottery is preferred, although its loss is higher,
but the loss is less certain.

Choice 14. For the lotteries

L1 = {−3, 0.002 | 0, 0.998} ,

L2 = {−6, 0.001 | 0, 0.999}

rational fractions are equal, f (L1) = f (L2) = 0.5. How-
ever, the lottery qualities Q1 = −3.02 and Q2 = −6.02
demonstrate that the first lottery is more attractive, so that
q(L1) = 0.25 and q(L2) = −0.25. This results in the behav-
ioral probabilities

p(L1) = 0.75 , p(L2) = 0.25

that are very close to the experimentally found,

pexp(L1) = 0.70 , pexp(L2) = 0.30 .

Now, between two equally useful lotteries, the lottery sug-
gesting a more certain loss is chosen.

Choice 15. The lotteries

L1 = {−1, 0.5 | 0, 0.5} , L2 = {−0.5, 1}

also have equal rational fractions, f (L1) = f (L2) = 0.5.
But the quality of the first lottery is higher, Q1 = −5.48,
while Q2 = −15. Hence, the first lottery is more attrac-
tive, with q(L1) = 0.25, but q(L2) = −0.25. The resulting
behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25

are in good agreement with the experimental data

pexp(L1) = 0.69 , pexp(L2) = 0.31 .

The first lottery is preferred, although its loss is larger.
Choice 16. Among the lotteries

L1 = {−6, 0.25 | 0, 0.75} ,

L2 = {−4, 0.25 | − 2, 0.25 | 0, 0.5} ,

that look similar, having the same rational fractions f (L1) =
f (L2) = 0.5, and equal qualities Q1 = Q2 = −14, the
second is less attractive, exhibiting a larger number of losses,
N (L1) = −1 > N (L2) = −2. Therefore,q(L1) = 0.25 and
q(L2) = −0.25. This yields the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

practically coinciding with the empirical data

pexp(L1) = 0.70 , pexp(L2) = 0.30 ,

within the accuracy of experiments.
Choice 17. The lotteries

L1 = {−5, 0.001 | 0, 0.999} , L2 = {−0.005, 1}

have the same utility, with equal rational fractions f (L1) =
f (L2) = 0.5. But their qualities Q1 = −5.02 and Q2 =
−0.15 show that the second lottery is more attractive, having
a much larger quality. Hence, q(L1) = −0.25 and q(L2) =
0.25. The behavioral probabilities are

p(L1) = 0.25 , p(L2) = 0.75 ,

as compared with the experimental data

pexp(L1) = 0.17 , pexp(L2) = 0.83 .

Surprisingly, the lottery with certain loss is chosen, which is
explained by its higher quality.

Choice 18. For the lotteries

L1 = {−10, 0.5 | 0, 0.5} , L2 = {−5, 1} ,
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Table 1 Optimal lotteries Lopt from the Kahneman–Tversky set,
the rational fractions for the optimal lotteries, f (Lopt), predicted
behavioral probabilities p(Lopt), experimentally observed probabili-
ties pexp(Lopt), defined as the fractions of the participants choosing the
optimal lottery Lopt, and the experimental attraction factors qexp(Lopt)

corresponding to the optimal lotteries

Lopt f (Lopt) p(Lopt) pexp(Lopt) qexp(Lopt)

1 L2 0.50 0.75 0.82 0.32

2 L1 0.50 0.75 0.83 0.33

3 L2 0.48 0.73 0.80 0.32

4 L1 0.52 0.77 0.65 0.13

5 L2 0.50 0.75 0.86 0.36

6 L1 0.50 0.75 0.73 0.23

7 L2 0.50 0.75 0.82 0.32

8 L1 0.50 0.75 0.72 0.22

9 L2 0.50 0.75 0.84 0.34

10 L2 0.50 0.75 0.80 0.30

11 L1 0.48 0.73 0.92 0.44

12 L2 0.52 0.77 0.58 0.06

13 L2 0.50 0.75 0.92 0.42

14 L1 0.50 0.75 0.70 0.20

15 L1 0.50 0.75 0.69 0.19

16 L1 0.50 0.75 0.70 0.20

17 L2 0.50 0.75 0.83 0.33

18 L1 0.50 0.75 0.69 0.19

0.50 0.75 0.77 0.27

At the bottom, the average values are shown

the rational fractions are equal, f (L1) = f (L2) = 0.5.
But for the lottery qualities, we have Q1 = −54.8 and
Q2 = −150. Thus, the first lottery is more attractive, hence
q(L1) = 0.25 and q(L2) = −0.25. This gives the behavioral
probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

in agreement with empirical data

pexp(L1) = 0.69 , pexp(L2) = 0.31 .

Now the lottery with a larger, but less certain loss is chosen.
The results for all 18 choices between the Kahneman–

Tversky lotteries are summarized in Table 1 showing which
of the lotteries is optimal, that is, having the largest predicted
behavioral probability

p(Lopt) ≡ max
n

p(Ln) (56)

over the given lattice of alternatives.Also shown are the ratio-
nal fractions for the optimal lottery, f (Lopt), experimental
probabilities of the optimal lottery, defined as the fractions

of decision makers choosing the optimal lottery pexp(Lopt),
and the related empirical attraction factors

qexp(Lopt) = pexp(Lopt) − f (Lopt) . (57)

The results, corresponding to the non-optimal lotteries, can
be easily found from the normalization conditions

p(L1) + p(L2) = 1 , f (L1) + f (L2) = 1,

q(L1) + q(L2) = 0 . (58)

At the bottom of Table 1, the average values over all 18
cases are given for the rational fraction f (Lopt) = 0.5,
predicted behavioral probability p(Lopt) = 0.75, experi-
mentally observed probability pexp(Lopt) = 0.77, and the
experimentally observed average absolute value of the attrac-
tion factor

qexp = pexp(Lopt) − f (Lopt) = 0.27 . (59)

Within the accuracy of the experiment, the predicted aver-
age behavioral probability of choosing an optimal lottery,
0.75, equals the empirical average fraction of decision mak-
ers 0.77, and the average attraction factor 0.27 practically
coincides with the theoretical estimate of 0.25.

As the analysis of this set of choices demonstrates, it is not
possible to predict the behavioral decisionmaking of humans
by considering separately either lottery utilities, payoffs, or
payoff probabilities. But reliable predictions can be made by
defining behavioral probabilities, including the estimates of
both, rational fractions as well as attraction factors. On the
aggregate level, such predictions are not merely qualitative,
but provide good quantitative agreement with empirical data,
involving no fitting parameters.

At the same time, the expected utility theory is not appli-
cable to the Kahneman–Tversky lotteries, since the lottery
with a higher utility is preferred only twice among 18 lot-
teries, that is only in the 1/9 part of the lotteries. Also, it is
important to notice that the formula (46) here is not valid, as
far as for the coinciding utilities it gives zero attraction factor,
while the aggregate experimental data give for the attraction
factor 0.27.

10 Quarter law

In the previous sections, it has been shown that the average
influence of emotions in decision making can be quantified
by the typical value of attraction factor, which turns out to
be close to 0.25, which is termed quarter law and which
follows from the non-informative prior estimate of Sect. 5.
Thus, in the set of Kahneman–Tversky lotteries of Sect. 9 the
experimentally measured average attraction factor is 0.27,

123



Quantification of emotions in decision making 2433

which, within the typical statistical error of 0.1, coincides
with the predicted attraction factor 0.25.

In the present section, we verify the quarter law on the
basis of a large set of binary lotteries studied recently (Mur-
phy and ten Brincke 2018). In the analyzed experiment, 142
subjects were suggested a set of binary decision tasks (lot-
teries). The same experiment was repeated after two weeks,
with randomly changing the order of the pairs of lotteries.
The experiments at these two different times are referred as
session 1 and session 2. There are three types of lotteries:
lotteries containing only gains (all payoffs are positive), lot-
teries with only losses (all payoffs are negative), and mixed
lotteries containing gains as well as losses. As usual, a loss
implies the necessity to pay the designed amount of money.
Keeping in mind the estimation of attraction factors in pos-
itive and negative quality classes, we consider the related
lotteries, where the difference between the rational utility
factors and the empirical choice probabilities, at least in one
of the sessions, are larger than the value of the typical sta-
tistical error of 0.1 corresponding to random noise. On the
basis of these lotteries, we calculate the quantities of interest
and summarize the results in several tables.

Table 2 presents the results for the optimal lotteries with
only gains andTable 3 shows the results for the optimal lotter-
ies with only losses. Recall that a lottery L1 is called optimal,
as compared to a lottery L2 if and only if the corresponding
probability p(L1) is larger than p(L2). In both the cases, of
either the lotteries with only gains or the lotteries with only
losses, an optimal lottery is always a lottery from the posi-
tive quality class, in which q(Lopt) > 0. The situation can
be different for the mixed lotteries, containing gains as well
as losses. In these cases, an optimal lottery can occasion-
ally pertain to a negative quality class. Table 4 summarizes
the results for the mixed lotteries containing both gains and
losses. Among these lotteries, the first sixteen examples in
Table 4 are the lotteries from the positive quality class, which
at the same time are the optimal lotteries. The last five cases
are the lotteries that are not optimal, however being from the
positive quality class.

As is seen, the value of the attraction factor in the positive
or negative quality classes is ±0.22, which is in very good
agreement with the predicted non-informative priors ±0.25.
Thus, the quarter law provides a rather accurate estimate of
the attraction factor at the aggregate level.

11 Conclusion

An approach is developed allowing for the quantification
of emotions in decision making. The approach takes into
account the duality of decision making, including both ratio-
nal and irrational sides of decision process. The rational
evaluation of alternatives is based on logical clearly pre-

Table 2 Optimal lotteries with gains

f (Lopt) p1(Lopt) p2(Lopt) q1(Lopt) q2(Lopt)

1 0.55 0.86 0.89 0.31 0.34

2 0.48 0.66 0.69 0.18 0.21

3 0.51 0.68 0.62 0.17 0.11

4 0.59 0.80 0.75 0.22 0.17

5 0.63 0.89 0.90 0.26 0.27

6 0.66 0.96 0.95 0.30 0.29

7 0.51 0.79 0.81 0.28 0.30

8 0.48 0.60 0.63 0.12 0.15

9 0.63 0.88 0.92 0.26 0.30

10 0.56 0.89 0.82 0.33 0.26

11 0.63 0.77 0.73 0.14 0.10

12 0.51 0.72 0.73 0.21 0.21

13 0.61 0.87 0.85 0.26 0.24

14 0.63 0.93 0.93 0.30 0.30

15 0.64 0.85 0.87 0.21 0.23

16 0.64 0.80 0.80 0.16 0.16

17 0.64 0.89 0.89 0.25 0.25

18 0.48 0.65 0.70 0.17 0.22

19 0.65 0.87 0.93 0.22 0.28

20 0.66 0.86 0.82 0.20 0.16

21 0.58 0.84 0.80 0.26 0.22

22 0.52 0.75 0.74 0.23 0.22

23 0.48 0.64 0.65 0.16 0.17

24 0.44 0.60 0.53 0.16 0.10

25 0.62 0.73 0.79 0.11 0.17

26 0.64 0.81 0.90 0.17 0.26

27 0.66 0.93 0.96 0.27 0.30

0.58 0.80 0.80 0.22 0.22

The rational fraction f (Lopt) of the optimal lottery, fractions of subjects
(frequentist probabilities) pi (Lopt) choosing the optimal lottery in the
session i = 1, 2, and the attraction factors qi (Lopt) of the optimal
lottery in the session i . At the bottom, the average values for the related
quantities

scribed rules defining a rational fraction representing the
probability of choosing alternatives on the basis of rational
principles.

The irrational side of decision processes is due to subcon-
scious feelings, emotions, and intuition that cannot be exactly
measured for a given subject at a given moment of time,
thus inducing emotional uncertainty in the process of deci-
sion making. Irrational processes are superimposed on the
rational evaluation of the considered alternatives and define
for each alternative a correction term called attraction fac-
tor. Since irrational processes cannot be exactly quantified,
the attraction factor is a random quantity. The attraction fac-
tor can be described by linguistic characteristics that can be
classified into three quality classes, briefly speaking, posi-
tive, negative, and neutral. The positive quality class includes
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Table 3 Optimal lotteries with losses

f (Lopt) p1(Lopt) p2(Lopt) q1(Lopt) q2(Lopt)

1 0.52 0.77 0.75 0.25 0.23

2 0.60 0.85 0.83 0.25 0.23

3 0.53 0.72 0.71 0.19 0.18

4 0.64 0.96 0.92 0.32 0.28

5 0.55 0.70 0.68 0.15 0.13

6 0.54 0.73 0.72 0.20 0.19

7 0.63 0.79 0.84 0.16 0.21

8 0.54 0.66 0.63 0.12 0.09

9 0.56 0.80 0.89 0.24 0.33

10 0.58 0.89 0.92 0.31 0.34

11 0.49 0.66 0.71 0.17 0.22

12 0.62 0.87 0.93 0.25 0.31

13 0.55 0.79 0.74 0.24 0.19

14 0.54 0.82 0.77 0.29 0.24

15 0.53 0.65 0.70 0.12 0.17

16 0.51 0.59 0.62 0.08 0.11

17 0.56 0.79 0.86 0.23 0.30

18 0.58 0.89 0.90 0.31 0.32

19 0.61 0.76 0.74 0.15 0.13

0.56 0.77 0.78 0.21 0.22

The rational fraction f (Lopt) of the optimal lottery, fractions of subjects
(frequentist probabilities) pi (Lopt) choosing the optimal lottery in the
session i = 1, 2, and the attraction factors qi (Lopt) of the optimal
lottery in the session i . At the bottom, the average values for the related
quantities

such specifications as attractive, pleasant, good and like that.
The negative quality class comprises the features like repul-
sive, unpleasant, bad, and so on. The neutral quality class is
intermediate, being neither positive nor negative.

The attraction factor is a variable randomly varying for dif-
ferent decision makers and even for the same decision maker
at different moments of time. Nevertheless, being random,
does not preclude this quantity to have awell-defined average
value inside each of the quality classes. A theorem is proved
defining the average values of the quality factor inside the
positive class as 1/4 and inside the negative class as −1/4.
For alternatives represented by lotteries with equal or close
utilities, a method is suggested ascribing each lottery to the
appropriate quality class.

Being able to determine the belonging of alternatives to
the related quality classes and knowing the average values
of attraction factors allows us to find the average behavioral
probabilities associated with the typical fractions of decision
makers choosing this or that alternative.

The method is illustrated by a series of lotteries with a
difficult choice, when the standard expected utility theory
is not applicable, or its prescriptions contradict the choice
of real humans. The empirical data confirm that the non-

Table 4 Mixed lotteries, containing gains and losses, from the positive
quality class

f (L+) p1(L+) p2(L+) q1(L+) q2(L+)

1 0.40 0.69 0.66 0.29 0.26

2 0.62 0.85 0.85 0.23 0.23

3 0.67 0.87 0.82 0.20 0.15

4 0.44 0.62 0.61 0.18 0.17

5 0.50 0.64 0.54 0.15 0.05

6 0.59 0.71 0.65 0.12 0.06

7 0.54 0.69 0.63 0.16 0.10

8 0.49 0.66 0.60 0.18 0.16

9 0.57 0.87 0.85 0.30 0.28

10 0.65 0.75 0.77 0.10 0.12

11 0.52 0.77 0.70 0.26 0.19

12 0.49 0.58 0.63 0.09 0.14

13 0.55 0.87 0.92 0.32 0.37

14 0.52 0.61 0.67 0.09 0.15

15 0.53 0.80 0.83 0.27 0.30

16 0.56 0.67 0.63 0.11 0.07

17 0.00 0.27 0.27 0.27 0.27

18 0.00 0.29 0.36 0.29 0.36

19 0.00 0.30 0.45 0.30 0.45

20 0.00 0.39 0.38 0.39 0.38

21 0.00 0.37 0.35 0.37 0.35

0.41 0.63 0.63 0.22 0.22

The rational fraction f (L+) of the lottery, fractions of subjects pi (L+)

choosing the corresponding lottery in the session i = 1, 2, and the
attraction factors qi (L+) of the lottery in that session i . At the bottom,
the average values of the related quantities

informative prior for attraction factors provides an accurate
quantification of emotions at the aggregate level.

Summarizing, the main points of the suggested approach
can be formulated as follows.

(i) Decision making is treated as a probabilistic process
that can be characterized by behavioral probabilities
defining the portions of decision makers choosing this
or that alternative from the given set of alternatives.

(ii) The behavioral probability, taking into account the
rational-irrational or cognition-emotion duality of deci-
sion processes, describes decision making affected by
emotions. The superposition of utility and attractive-
ness is represented as a sum of two terms, a rational
fraction and an attraction factor.

(iii) The rational fraction, having the properties of the
standard additive probability, describes the fraction of
decision makers that would make their choice being
based solely on rational grounds, following prescribed
rational rules. The rational fraction quantifies the utility
of the choice.

123



Quantification of emotions in decision making 2435

(iv) The attraction factor takes into account irrational effects
influencing the choice, such as feelings, emotions, and
biases. The attraction factor characterizes subconscious
attractiveness of the considered alternatives, because of
which it is called attraction factor. The attraction fac-
tor is a random quantity, varying for different subjects,
different choices, and different times.

(v) Despite being random, the attraction factor possesses
well defined average features. The average values of the
attraction factor for positive or negative quality classes
can be defined by non-informative priors.

(vi) The approach makes it possible to give quantitative
predictions in the choice between the lotteries with
emotional uncertainty, where the expected utility the-
ory does not work. The aggregate predictions, averaged
over decision makers and choices, are in good quanti-
tative agreement with empirical data.

(vii) Empirical data confirm the quarter law providing, at
the aggregate level, an accurate evaluation of typical
influence of emotions in decision making.

(viii) The appealing feature of the approach is its straightfor-
ward axiomatic formulation employing rather simple
mathematics. Although the structure of the approach is
implicitly influenced by quantum theory, but it com-
pletely avoids borrowed from physics complicated
quantum techniques.
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