Soft Computing (2022) 26:1279-1314
https://doi.org/10.1007/500500-021-06401-0

OPTIMIZATION q

Check for
updates

Hunter—prey optimization: algorithm and applications

Iraj Naruei' - Farshid Keynia®® + Amir Sabbagh Molahosseini'

Accepted: 4 October 2021/ Published online: 1 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

This paper proposes a new population-based optimization algorithm called hunter—prey optimizer (HPO). This algorithm is
inspired by the behavior of predator animals such as lions, leopards and wolves, and preys such as stag and gazelle. There
are many scenarios of animal hunting behavior, and some of them have transformed into optimization algorithms. The
scenario used in this paper is different from the scenario of the previous algorithms. In the proposed approach, a prey and
predator population, and a predator attacks a prey that moves away from the prey population. The hunter adjusts his
position toward this far prey, and the prey adjusts his position toward a safe place. The search agent’s position that was the
best value of the fitness function considered a safe place. The HPO algorithm implemented on several test functions to
evaluate its performance. Also, to performance verification, the proposed algorithm is applied to several engineering
problems. The results showed that the proposed algorithm performed effective in solving test functions and engineering

problems.

Keywords Hunter—Prey Optimizer - HPO Algorithm - Optimization - Meta-heuristic - Optimizer

1 Introduction

Optimization refers to the process of finding optimal values
for the parameters of a given system from all the possible
values to maximize or minimize its output (Mirjalili 2016).
Optimization problems can be found in various fields
which makes optimization methods essential, and provides
an exciting research direction for researchers (Hussain
et al. 2018). Optimization algorithms are an effective field
of research with exceedingly important improvements in
the resolve of intractable optimization problems. Signifi-
cant advances have been made since the first algorithm was

DX Farshid Keynia
f.keynia@kgut.ac.ir

Iraj Naruei
irajnaruei @iauk.ac.ir

Amir Sabbagh Molahosseini
sabbagh @iauk.ac.ir

Department Engineering, Kerman Branch, Islamic Azad
University, Kerman, Iran

Department of Energy Management and Optimization,
Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced Technology,
Kerman, Iran

proposed, and many new algorithms are still being pro-
posed (Dokeroglu et al. 2019). Conventional optimization
methods such as the Newton method (Deuflhard 2011) and
quadratic programming (Hillier and Hillier 2003) have
problems such as local optimization stagnation and the
need to derive the search space (Simpson et al. 1994).
Stochastic optimization methods have become popular in
the last two decades (Spall 2003; Parejo et al. 2012;
Boussaid et al. 2013). A meta-heuristic algorithm is an
algorithmic framework that can be applied to various
optimization problems with slight modifications. The use
of meta-algorithms significantly increases the ability to find
high-quality solutions to hybrid optimization problems. In
other words, a meta-heuristic algorithm is a heuristic
method that can search the search space to find high-quality
answers. The meta-algorithms’ common goal is to solve the
well-known challenging optimization problems (Dorigo
and Stiitzle 2004). Meta-heuristic methods have the fol-
lowing common characteristics (Crawford et al. 2017):

e These methods are somewhat probabilistic. This
approach avoids placing the algorithm in the optimal
local trap.

e A meta-heuristic is a high-level strategy that guides a
heuristic search process.

@ Springer

http://orcid.org/0000-0002-9027-7315
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06401-0&domain=pdf
https://doi.org/10.1007/s00500-021-06401-0

1280

I. Naruei et al.

e The goal is to efficiently explore the search space in
order to find (close to) optimal solutions.

e Meta-heuristics are not problem-special.

e The basic concepts of meta-heuristics permit an abstract
level of description.

e Meta-heuristic algorithms are approximate and gener-
ally nondeterministic.

e One of the common disadvantages in these methods is
the difficulty of adjusting and matching of parameters.

Different criteria are used to classify meta-heuristic
algorithms (Talbi 2009). In general, meta-heuristic algo-
rithms are divided into two categories: one-solution-based
algorithms and population-based algorithms (Boussaid
et al. 2013). A one-solution-based algorithm changes a
solution during the search process (Fig. 1), whereas in the
population-based algorithms, a population of solutions is
considered (Fig. 2). The characteristics of these two types
of algorithms are complementary to each other. One-so-
lution-based meta-heuristic algorithms can focus on local
search areas. In contrast, population-based meta-heuristic
algorithms can lead the search to different solution space
regions (Zhou et al. 2011).

Population-based optimization methods are inspired by
human phenomena, collective intelligence, evolutionary
concepts and physical phenomena (Shen et al. 2016; Wang
et al. 2017; Zhang et al. 2018; Rizk-Allah 2018). Many
studies have tried to classify optimization algorithms based
on their type of inspiration. Figure 3 shows a type of this
classification. The algorithms start with a random initial
population (Heidari et al. 2017; Mafarja et al. 2018a), and
this population is directed to the optimal areas in the search
space by search mechanisms (Aljarah et al. 2018; Mafarja
et al. 2018b). The search process involves two stages of
exploration and exploitation. The well-designed algorithm
and enriched random nature should explore different parts
of the search space at the exploration stage. The

exploitation stage is usually performed after the explo-
ration phase. The algorithm focuses on good solutions and
improves the search operation by searching around these
right solutions in this stage. A good algorithm should
balance the two steps to prevent premature convergence or
belated convergence. The structure of optimization algo-
rithms is almost similar, and their main difference is in how
the exploration and exploitation phases are performed.
How to balance the exploration and operation phases is
another indicator that differentiates the performance of
algorithms.

2 Related works

This section introduces a number of popular optimization
algorithms. These methods include genetic algorithms
(GA) (Holland 1967; Holland and Reitman 1977), evolu-
tionary programming(EP) (Fogel et al. 1966; Xin Yao et al.
1999), particle swarm optimization (PSO) (Eberhart and
Kennedy 2002), ant colony optimization (ACO) (Colorni
et al. 1991), differential evolution (DE) (Storn and Price
1995) and harmony search (HS) (Manjarres et al. 2013).
Although these algorithms can solve many real and chal-
lenging problems, there are still issues that these algorithms
have not been able to solve. Therefore, an algorithm can
help solve one set of problems, but it is ineffective in
another set of problems. Some of the new algorithms are
gray wolf optimizer (GWO) (Mirjalili et al. 2014), artificial
bee colony (ABC) algorithm (Basturk and Karaboga 2006),
firefly algorithm (FA) (Yang 2010), imperialist competitive
algorithm (ICA) (Atashpaz-Gargari and Lucas 2007),
cuckoo search algorithm (CS) (Yang and Suash Deb 2009;
Yang and Deb 2010; Rajabioun 2011), gravitational search
algorithm (GSA) (Rashedi et al. 2009), charged system
search (CSS) (Kaveh and Talatahari 2010), magnetic

Current position

) /

Local minimum

\ /

Local minimum

Global minimum

Next position

D/R Current position

/

Local minimum

Local minimum

Global minimum

Fig. 1 One-solution-based meta-heuristic algorithm

@ Springer

Hunter—prey optimization: algorithm and applications

1281

/

Local minimum

\ /

Local minimum

Global minimum

/

Local minimum

\ /

Local minimum

Global minimum

Fig. 2 Population-based meta-heuristic algorithm

Fig. 3 Categorization of meta-

heuristic algorithms Evolution based

(Holland 1967; Holland and Reitman 1977)
(Simon 2008)

(Storn and Price 1995)
(Fogel et al. 1966; Xin Yao et al. 1999)

(Raoetal. 2011)

(Atashpaz-Gargari and Lucas 2007)
(Jahangiri et al. 2020)
(Kaveh and Dadras 2017)

Gravitational Search Algorithm (GSA)

N/
.‘%" based

¥ Collective
Intelligence

',‘: Physics *Multi-Verse Optimization (MVO)
e Artificial electric field algorithm (AEFA)
o Lévy flight distribution (LFD)

(Eberhart and Kennedy 2002)
(Mirjalili and Lewis 2016)

(Kaur et al. 2020a)
(Heidari et al. 2019a)

charged system search (Kaveh et al. 2013), thermal
exchange optimization (TEO) (Kaveh and Dadras 2017),
ray optimization (RO) algorithm (Kaveh and Khayatazad
2012), colliding bodies optimization (CBO) (Kaveh and
Mahdavi 2014), sea lion optimization algorithm (SLOA)
(Masadeh et al. 2019), Biogeography-based optimizer
(BBO) (Simon 2008), dolphin echolocation (DE) (Kaveh
and Farhoudi 2013) and bat algorithm (BA) (Yang and
Hossein Gandomi 2012). The ant lion optimizer (ALO)
algorithm mimics the hunting mechanism of ant lions
(Mirjalili 2015a). The whale optimization algorithm
(WOA) is inspired by the social behavior of humpback
whales and mimics the bubble-net hunting method (Mir-
jalili and Lewis 2016). The Harris hawks optimizer (HHO)

mimics the cooperative behavior, and chasing style of
Harris’ hawks in nature called surprise pounce (Heidari
et al. 2019). The Lévy flight distribution (LFD) algorithm
mimics the Lévy flight random walk to find the optimal
solution (Houssein et al. 2020). The tunicate swarm algo-
rithm (TSA) is inspired by the swarm behaviors of tuni-
cates and jet propulsion during the food search and
navigation process (Kaur et al. 2020). The wild horse
optimizer (WHO) algorithm mimics the social life behavior
of wild horses (Naruei and Keynia 2021a).

In recent years, many optimization methods have been
proposed. The question now arises why, in spite of these
algorithms, it is still necessary to provide new algorithms
or improve previous algorithms. This question can be

@ Springer

1282

I. Naruei et al.

hunter” *

next position of prey(@)

Fig. 4 Hunter behavior (left image a), prey behaviors (right image b) and next position adjustment

answered by referring to the No Free Lunch (NFL) theory
(Wolpert and Macready 1997). The NFL theorem logically
proves that no one can present an algorithm that can solve
all problems of optimization. According to this theorem, it
can be concluded that the ability of an optimization algo-
rithm to solve a specific set of issues does not guarantee
that the algorithm is able to solve other problems. There-
fore, all optimizers act on average considering all opti-
mization problems despite higher performance in a subset
of optimization issues. The NFL theorem allows
researchers to suggest new optimization methods or
improve existing methods to solve a subset of problems in
different fields. This theory motivated us to propose a novel
optimization method to solve challenging problems in this
area.

This paper proposes a new population-based optimiza-
tion algorithm called the hunter—prey optimization algo-
rithm. This algorithm mimics the behavior of hunters such
as lions, leopards, wolves and prey such as deer, stag,
gazelle with a different scenario than the previously pro-
posed algorithms in this field.

The rest of the paper is as follows. Section 3 provides
the inspiration and scenario for this work and proposes the
HPO algorithm. In Sect. 4, the results of the proposed
method on different test functions are presented. In Sect. 5,
the performance of the proposed algorithm for solving real-
world problems was evaluated. Finally, conclusions and
possible new researches are presented in Sect. 6.

3 Hunter-prey optimization algorithms
In this part, first, the inspiration and hunting scenario of

HPO algorithm is explained, and then the mathematical
model and HPO algorithm are described in detail.

@ Springer

3.1 Inspiration

Nature inspiration may be a good idea to solve problems.
In nature, organisms interact with each other in different
ways (Han et al. 2001; Krebs 2009). One of these inter-
actions can occur between hunter and prey behavior.
Hunter—prey cycles are one of the most remarkable
observations in population biology, and thus, serious
debate is taking place among ecologists (Berryman 2002;
Turchin 2003). There are many scenarios of how animals
hunt. Some of these scenarios have been converted into
optimization algorithms. The scenario considered in this
paper is different from others scenarios. Our scenario is
that the hunter searches for prey, and since prey is usually
swarmed, the hunter chooses a prey that is far from the
swarm (average herd position). After the hunter finds his
prey, he chases and hunts it. At the same time, the prey
searches for food and escapes in a predator attack and
reaches a safe place (Berryman 1992; Krohne 2000). We
consider this safe place as the place of the best prey in
terms of a fitness function. Figure 4 illustrates these
behaviors.

3.2 Mathematical model and algorithm

As mentioned in the previous section, the general structure
of all optimization techniques is the same. First, the initial
population is randomly set to (¥) = {¥X;, X2, ...X,, }, and then
the objective function is computed as (O)=
{01, 0,,...0,} for all members of the population. The
population is controlled and directed in the search space
using a series of rules and strategies inspired by the pro-
posed algorithm. This process is repeated until the algo-
rithm is stopped. In each iteration, the position of each
member of the population is updated according to the rules
of the proposed algorithm, and the new position is evalu-
ated with the objective function. This process causes the
solutions to improve with each iteration. The position of

Hunter—prey optimization: algorithm and applications

1283

Z(1) Z(2) Z(3)
Cc<1 0.19
C<0.9 0.19

C<0.7

C<0.5

C<0.3

C<01

C=0.02

Z(..)

Z(-1) Z(j)

0.66

0.66

0.66

0.66

0.66

0.66

Fig. 5 Z parameter structure. R, is random vector (for example: [0.82, 0.19, 0.72, 0.25, 0.11 and 0.66]) and Rj3 is random number (for example:

with value 0.51). (j is the length of the dimension with value 6)

each member of the initial population is randomly gener-
ated in the search space by Eq. (1)

x; = rand(1,d). « (ub — Ib) + Ib (1)

where X; is the hunter position or prey, /b is the minimum
value for the problem variables (lower boundary), ub is the
maximum value for the problem variables (upper bound-
ary), and d is the number of variables (dimensions) of the
problem. Equation (2) defines the lower boundary and the
upper boundary of the search space. It should be noted that
a problem may have the same or different lower and upper
bounds for all its variables.

b = [lbl, lbz, ey lbd], ub = [ubl, Ltbg, ceey ubd] (2)

After generating the initial population and determining
each agent’s position, each solution’s fitness is calculated
using O; =f(X), the objective function. F (x) can be
maximum (efficiency, performance, etc.) or minimum
(cost, time, etc.). Calculating the fitness function determi-
nes which solution is good or bad, but we do not achieve
the optimal solution with a single run. A search mechanism

must be defined and repeated several times to guide the
search agents to the optimal position. The search mecha-
nism usually involves two steps: exploration and
exploitation. Exploration refers to the algorithm’s tendency
to highly random behaviors so that solutions change sig-
nificantly. The significant changes in solutions cause fur-
ther exploration of the search space and discover its
promising areas. After promising regions have been found,
random behaviors must be reduced so that the algorithm
can search around the promising regions, and this refers to
exploitation. For the hunter search mechanism, we propose
Eq. (3)

x,'l]'(l‘ + 1) = xiJ(t) +0.5 [(ZCZPpos(j) — xiJ(t))

3
+2(1 - €)Zng) — xi(1))]-)

Equation (3) updates the hunter position, where x () is
the current hunter position, x (f + 1) is the hunter next
position, Ppos is the prey position, p is the mean of all
positions, and Z is an adaptive parameter calculated by

Eq. (4)

@ Springer

1284 I. Naruei et al.
Fig. 6 How to calculate Kbest Kbest
and select prey (Pp,,) during
sleorithm running C=1 Xy [x@ [X3 [.. [XN [XM
Kbest Prey‘(Ppos)
C=08 [X | X [X® | .. [XN | XN
Prey‘(Ppos)
Kbest
C=04 [X [X [X@ [.. [XN [XN |
Kbest Prey (Ppos)
C=02 [X [X2 | X3 | [XD | XN
Kbest PreyL(Ppos)
C=002 [X | X2 [X3 [.. [X®D [XN |
Prey (Ppos)

P=R,<C; IDX = (P==0);

. (4
Z =R, ®IDX + R3 ® (~ IDX))

where I_é] and I_é_g are random vectors in the range [0,1], P is
a random vector with values 0 and 1 equal to the number of
problem variables, R, is a random number in the range
[0,1], and IDX is the index numbers of the vector R 1 which
satisfies the condition (P = = 0). The structure of param-
eter Z and its relationship with parameter C is shown in
Fig. 5. It should be noted that Fig. 5 is just an example for
the reader to understand. Numbers are random, and their
value and order change in each iteration.

C is the balance parameter between exploration and
exploitation, whose value decreases from 1 to 0.02 over the
course of iterations. C is calculated as follows:

c=1-u() 5)

where it is the current iteration value and Maxlt is the
maximum number of iterations. As shown in Fig. (4a), the
position of the prey (Ppos) is calculated so that we first
calculate the average of all positions () based on Eq. (6)
and then the distance of each of the search agents from this
mean position

1 n
= Ezfr (6)
i=1

@ Springer

We calculate the distance based on Euclidean distance
according to Eq. (7)
1

d 2
Dy = (Z (xij — Hj)2> . (7)

=

According to Eq. (8), the search agent with the maxi-
mum distance from the mean of positions is considered

prey (Ppus)
ﬁpos = X;|iis index of Max(end)sort(D). (8)

If we always consider the search agent with the maxi-
mum distance from the average position (x) in each itera-
tion, the algorithm will have late convergence. According
to the hunting scenario, when the hunter takes the prey, the
prey dies, and the next time, the hunter moves to the new
prey. To solve this problem, we consider a decreasing
mechanism as Eq. (9)

kbest = round(C x N) 9)

where N is the number of search agents.
Now, we change Eq. (8) and calculate the prey position
as Eq. (10)

f’pos = X|iis sorted D, (kbest). (10)

Figure 6 shows how to calculate Kbest and select prey
(Ppos) during algorithm running. At the beginning of the
algorithm, the value of Kbest is equal to N (number of
search agents). Therefore, the last search agent that is

Hunter—prey optimization: algorithm and applications

1285

Fig. 7 Flowchart of the hunter—
prey optimization

Initialize population randomly with Eq. (1)

v

Input HPO parameters,
nPop, MaxlIter

2

Fitness evaluation

v

Evaluate TpoS

%

Update C with Eq. (5)

Evaluate Z with Eq. (4)

No

Rs<B

Yes

Evaluate P, with Eq. (6): (10)

Evaluate with Eq. (6)

v

Update Position with Eq. 12(b)

Update Position with Eq. 12(a)

|

v
Fitness evaluation

v

Evaluate T
pos

v

Is termination

farthest from the search agents’ average position (i) is
selected as prey and attacked by the hunter. As shown in
Fig. 6, the Kbest value gradually decreases so that at the
end of the algorithm, the Kbest value equals the first search
agent (the shortest distance from the average position of the
search agents (u)). It should be mentioned that the search
agents are sorted in each iteration based on the distance
from the search agents’ average position ().

As shown in Fig. 4b, when prey is attacked, it tries to
escape and reach its safe place.

criteria met?

Output the best solution

Y

We assume that the best safe position is the optimal
global position because it will give the prey a better chance
of survival, and the hunter may choose another prey.
Equation (6) is proposed to update the prey position
xi_j(t + 1) = Tpos(j) =+ CZCOS(2TER4) X (Tpos(/‘) — x,;j(t))

(11)
where x () is the current position of the prey, x (t + 1) is
the next position of the prey, Tpos is the optimum global

@ Springer

1286 . Naruei et al.
Table 1 Unimodal benchmark - -
functions Function Dim Range Sy
filx) =320 x 30 [~ 100,100] 0
fx) =30 il + T bl 30 [10,10] 0
. 2 _
) =30, (ZLI xj> 30 [~ 100,100] 0
Sfa(x) = max{|x;|, 1 <i<n} 30 [— 100,100] 0
fs(x) = 0 [100(xi 1 — x2)% + (x; — 1)) 30 [— 30,30] 0
fox) =0, (Ixi +0.5]) 30 [100,100] 0
fr(x) = max{|x;|, 1 <i<n} 30 [— 1.28,1.28] 0
Table 2 Multi-modal benchmark functions
Function Dim range Fin
Fy(x) = 320, —x;sin(y/Jxi]) 30 [— 500,500] — 418.9829%5
Fo(x) = Y"1, [x* — 10cos(2mx;) + 10] 30 [— 5.12,5.12] 0
Fio(x) = —20exp(—0.24/137" | x2) —exp(1 30| cos(2mx;)) +20 + e 30 [—32.32] 0
Fii(x) = gu05 om0 7 — TTiy cos(3) + 1 30 [— 600,600] 0
Fia(x {10511’1 my1) + Z (yi—1) [1 + 10sin? (myi)] + vn — 1)2} 30 [— 50,50] 0
X + 1
+ Zizl u(x;, 10,100, 4) + Zi:l u(x;,10,100,4) y;i=1+
k(xi —a)" x;>a
u(x;, a,k,m) = 0 —a<x;<a
k(—xi—a)" xi< —a
Fi3(x) = 0.1{sin®(3mx;) + Z (x; — 1)*[1 + sin? Bmx; + 1)] 30 [— 50,50] 0

+(x, — D)?[1 + sin?(2mx,)]} + Z:’:l u(x;, 5,100, 4)

position, Z is an adaptive parameter calculated by Eq. (4),
and R4 is a random number in the range [—1, 1]. C is the
balance parameter between exploration and exploitation,
whose value decreases during the algorithm’s iteration. It is
calculated according to Eq. (5). The COS function and its
input parameter allow the next prey position to be posi-
tioned at global optimum different radials and angles and
increase the exploitation phase’s performance.

The question that arises here is how to choose the hunter
and prey in this algorithm.

To answer this question, we combine Eqgs. (3) and (11)
as Eq. (12)

xi(t) + 0.5[(2CZPps —

x(1) + (2(1
xilt 1) = { Tpos + CZ cos(2nRy) x

(Tpos — xi(1))

— &)z - x(1))]

where R5 is a random number in the range [0, 1], and B is a
regulatory parameter whose value in this study is set to 0.1.
If the RS value is smaller than B, the search agent is con-
sidered a hunter, and the next position of the search agent is
updated with Eq. (12a); if the RS value is larger than 3, the
search agent will be considered prey, and the next position
of the search agent will be updated with Eq. (12b). The
flowchart of the proposed algorithm is shown in Fig. 7.

if Rs<p (13a)
elses(l3b) (12)

@ Springer

Hunter—prey optimization: algorithm and applications

1287

3.3 Assumptions of the HPO algorithm

Theoretically, the proposed HPO algorithm can provide
suitable solutions to various problems for the following
reasons:

e Exploring the search space by selecting the farthest
search agent relative to the average search agent’s
position as prey.

e Exploring the search space is guaranteed by the random
selection of hunter and prey and hunters’ random
movements around the prey.

e Due to random movements and random selection of
hunter and prey, the probability of getting stuck in a
local optimal is low.

e The prey selection mechanism with the highest prey
distance from the average search agent position is
adaptively reduced during the iterations, ensuring both
algorithm convergence and HPO algorithm
exploitation.

e The severity of the hunter and prey movement during
the iterations is reduced by the adaptive parameter,
ensuring the HPO algorithm’s convergence.

e During optimization, the hunter gradually moves
toward the best prey position, and the balance between
the exploration and exploitation phases is maintained.

e The calculation of the adaptive parameter and the
random parameter for each hunter and prey in each
dimension increases the population diversity.

e Each search agent (hunter or prey) in each iteration is
compared with the best solution obtained so far, and the
best solution is stored.

e The hunter directs the prey to promising positions in the
search space.

e The HPO algorithm is a non-gradient approximation
algorithm that treats the problem as a black box.

e The number of adjustment parameters of HPO algo-
rithm is few, and some parameters are adjusted
adaptively.

3.4 Computational complexity analysis

In general, the complexity of calculating the HPO algo-
rithm depends on four components, namely initialization,
updating of the hunter, updating prey and fitness evalua-
tion. Note that with N search agents, the initialization
process’s computational complexity is O (N). The com-
putational complexity of the update process is O(T x
N)+ O((1-B) x Tx Nx D)4+ O x T x N x D),
which includes updating the position vector of all prey and
hunters to find the best optimal position. The computational
complexity of the update process is O (T x N) + O ((1-
B) x Tx Nx D)+ O(P x T x N x D), T denotes the
maximum number of iterations, D denotes the number of
problem variables, and B is a regulatory parameter whose
value in this study is set to 0.1. Therefore, the total com-
plexity of HPO is O (N x (T + (1-B) TD + BTN + 1)).

Table 3 Set parameters of

algorithms Algorithm Parameter Value
HPO C €[1,0.02]
B 0.1
PSO Social and cognitive coefficient Cl=2,C2=2
Inertial coefficient Adaptively decreases from 0.9 to 0.4
WOA a €[0,2]
a2 e[-1, - 2]
HHO B 1.5
Ey €l-1, - 1]
TSA Puin 1
Proax 4
LFD Threshold 2
CSV 0.5
B 1.5
01,002,063 10,0.00005,0.005
01,02 0.9,0.1
ALO r(t) €[0,1]

@ Springer

1288

I. Naruei et al.

Parameter space 1%((a)arch history (x1 and x2 only) Trajectory of 1st Search agents Averaggyfitness of all Search agents,_ Convergence curve
: - 8
= " 01 8 8100 ™
\/ Rl
r‘\ 6 g AN
‘ | I} \
0 5 4 3 L
[
-50 S 21\ s b1
. ¥ 0| [\ - 5
0 -100 : i
-100 -100 X -100 0 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
2 1 x1 Iteration# Iteration# Iteration#
Parameter space Search history (x1 and x2 only) Trajectory of 1st Search agents Average fitness of all Search agents. Convergence curve
1 S
- : | 200 o
o 0.5 . 0.2 || e \
- ER : 150 ‘g 100
=2 N of - M | £ 107 |
® x fh—— 5 100 | e |
g 05 : 0| o ‘ <
0 A 2 . \ 5 \
w B . . i‘ 50 || @
05 s £ i o \ 3 g, T——
%5 = o) 02U %
% 1 - X -1 0 1 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
2 1 x1 Iteration# Iteration# Iteration#
Parameter space Search history (x1 and x2 only) Trajectory of 1st Search agents Average fitness of all Search agents. Convergence curve
. 09 ‘ = =<
4 2 400 | ERTI RN
2 300 {| £
1 \ 3
0 200 | ©
\ o
2 0 100 \ 8
$ / \ 3
o
5 0 5 20 40 60 80 100 20 40 60 80 100 10 20 30 40 50

Iteration# Iteration# Iteration#
Trajectory of 1st Search agents Avemgﬂﬁness of all Search agents'r‘1 Convergence curve
T 8
” 10 8
\ °
20 { 8 2
1"\ 6 % |
0| Soe—r—— A— 0
4 L g
2| 8 10°
220 ' g o
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Iteration# Iteration# Iteration#

Fig. 8 Convergence behavior and search history of the proposed HPO algorithm

4 Results and discussion

In this section, the HPO algorithm is evaluated on 43 test
functions. The HPO has been compared to advanced
swarm-based optimization algorithms. In general, bench-
mark functions can be divided into four groups such as
unimodal, multi-modal, hybrid functions and composition
function. The first 13 benchmark functions are the classical
functions used by many researchers (Mirjalili 2016; Saremi
et al. 2017). From these 13 classical functions, the first
seven are unimodal, and the second six are multi-modal.
The unimodal functions (f1-f7) are suitable for determin-
ing algorithms’ exploitation because they have a global
optimum and no local optimum. Multi-modal functions
(f8-13) have many local optimal and are useful for
examining the exploration and avoiding the algorithms’
local optimal. These benchmark functions are given in
Tables 1 and 2, where DIM represents the dimensions of
the function, RANGE is the boundary of the function’s

@ Springer

search space, and FMIN is the optimal value. The hybrid
and composite functions are a combination of different
unimodal and multi-modal test functions, rotary and dis-
placement, from the CEC2017 session (Awad et al. 2017).
These functions’ search space is very challenging; they are
very similar to real search spaces and are useful for eval-
uating algorithms in terms of the balance of exploration
and exploitation. To further evaluate the proposed algo-
rithm, the HPO algorithm is implemented on nine real
engineering problems such as rolling element bearing
problem, reducer design problem, cantilever beam design,
multi-plate disk clutch brake, welded beam, three-bar truss,
step-cone pulley problem, pressure vessel designs and
tension/compression spring. For justly comparison, the
algorithm runs 30 times. The Wilcoxon statistical test will
examine the null hypothesis that two populations are equal
from the same distribution. The similarity objective can be
used to determine whether two sets of solutions are sta-
tistically different. The result obtained by using the Wil-
coxon statistical test is a parameter called p-value, which

Hunter—prey optimization: algorithm and applications 1289

Table 4 Results for the unimodal test functions

Function PSO WOA ALO LFD TSA HHO HPO

F1 min 4.1929¢-08 9.1868e-86 2.0758e-04 1.5743e-07 1.5625e-23 9.6839¢-117 1.3483e-186
max 4.3606e-05 1.3513e-72 0.0036 5.3000e-07 3.8843e-20 3.0576e-92 1.1673e-167
avg 2.7368e-06 7.2644e-74 0.0010 3.1904e-07 3.5086e-21 1.1030e-93 3.8960e-169
std 7.8979¢-06 2.6139e-73 8.3478e-04 7.0385e-08 7.5860e-21 5.5816e-93 0

F2 min 8.7537e-05 7.9595e-56 0.8653 2.2253e-04 1.0225e-14 4.0014e-60 4.2018e-99
max 0.0228 1.8836e-49 129.1467 5.0105e-04 1.0057e-12 7.4750e-48 6.0415e-91
avg 0.0023 1.2605e-50 43.2560 3.3647e-04 1.1593e-13 2.5192e-49 2.9108e-92
std 0.0042 3.9289¢-50 47.8404 6.0363e-05 1.8668e-13 1.3643e-48 1.1177e-91

F3 min 48.6588 1.5867e + 04 657.0275 5.0909e-07 1.4390e-07 6.0866e-102 2.4279%¢-161
max 676.5631 8.5120e + 04 1.2392e + 04 2.8215e-06 0.0059 5.4466e-70 2.0432e-142
avg 236.4627 4.6712e + 04 4.4373e 4 03 1.3700e-06 6.1660e-04 1.8158e-71 6.8323e-144
std 147.1275 1.5757e + 04 2.5847e + 03 5.0401e-07 0.0013 9.9440e-71 3.7299¢-143

F4 min 1.0616 0.8494 8.2454 2.8538e-04 0.0049 6.0051e-57 2.4541e-83
max 4.5613 89.0149 35.5695 4.7177e-04 1.3984 3.4493e-46 8.2385e-76
avg 2.6549 47.0941 16.6688 3.4946¢-04 0.3257 1.3491e-47 5.4057e-77
std 0.9912 28.9341 5.2473 4.5172e-05 0.3510 6.3104e-47 1.6203e-76

F5 min 8.7916 27.2605 26.2370 27.8536 26.1806 7.1629e-07 22.8180
max 193.4814 28.7582 2.0738e + 03 28.2583 30.3516 0.0895 25.9952
avg 48.5377 28.0400 330.3476 28.0628 28.3860 0.0171 23.7090
std 41.4386 0.4365 535.2123 0.1291 0.8620 0.0223 0.7436

F6 min 6.8884e-08 0.0846 1.9036e-04 0.8371 2.8156 7.7275e-07 6.3266e-10
max 1.3346e-05 1.1841 0.0027 2.1610 5.3077 9.4810e-04 2.2300e-06
avg 1.5340e-06 0.3742 0.0012 1.7965 3.8706 1.2635e-04 1.2538e-07
std 2.7959¢-06 0.2228 7.4550e-04 0.3084 0.6509 2.3701e-04 4.1350e-07

F7 min 0.0118 1.4784e-04 0.1053 0.2353 0.0037 1.7007e-06 9.1589¢-06
max 0.0522 0.0200 0.4769 2.8537 0.0249 3.9630e-04 0.0020
avg 0.0252 0.0036 0.2518 1.0900 0.0109 1.3213e-04 3.3854e-04
std 0.0091 0.0040 0.0917 0.5959 0.0046 1.0620e-04 4.1809e-04

Friedman mean rank 5 4.29 6.14 4.71 4.57 2 1.29

Rank 6 3 7 5 4 2 1

measures the significance level of the algorithms. In other
words, if the p-value is less than 0.05, the two algorithms
are statistically significant. A nonparametric Wilcoxon
statistical test was performed on 30 runs to obtain statis-
tically significant conclusions. Such statistical tests should
be performed considering the meta-heuristic algorithms’
random nature (Garcia et al. 2009; Derrac et al. 2011).

4.1 Experimental setup

The experimentations were run on a PC with a Windows 10
64-bit professional and 12 GB RAM. The algorithms were
implemented by MATLAB R2017b. The maximum itera-
tion and population size in all methods are 500 and 30,
respectively. For a fair comparison, all methods are run 30
times independently and then compared based on statistical

indicators such as minimum, maximum, average and
standard deviation. To verify performance, the proposed
algorithm is compared with famous and new algorithms
including Harris hawks optimizer, particle swarm opti-
mization, ant lion optimizer, whale optimization algorithm,
Lévy flight distribution and tunicate swarm algorithm. The
parameters of the algorithms are set according to Table 3.

4.2 Convergence analysis of the proposed HPO
algorithm

In optimization techniques, the search agents have sudden
and abrupt movements at the beginning of the search
process (exploration) and gradually shrinking their motions
(exploitation) (van den Bergh and Engelbrecht 2006).
Figure 8 shows the convergence behavior of the proposed

@ Springer

1290 I. Naruei et al.
I;gfofofgi“:j;;{hrins g Function PSO WOA ALO LFD TSA HHO HPO
number function evaluation Fl p-value 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 —
(NFE) nfe 15,000 15,000 15,000 15,030 15,000 30,649 15,000
F2 pvalue 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 -
nfe 15,000 15,000 15,000 15,030 15,000 30,002 15,000
F3 pvalue 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 -
nfe 15,000 15,000 15,000 15,030 15,000 34,045 15,000
F4 pvalue 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 —
nfe 15,000 15,000 15,000 15,030 15,000 33,416 15,000
F5 pvalue 12477e-04 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 —
nfe 15,000 15,000 15,000 15,030 15,000 36,756 15,000
F6 p-value 1.5581e-08 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.3384e-11 —
nfe 15,000 15,000 15,000 15,030 15,000 36,114 15,000
F7 pvalue 3.020E-11 2.3897e-08 3.020E-11 3.020E-11 3.020E-11 0.0156 -
nfe 15,000 15,000 15,000 15,030 15,000 33,562 15,000

HPO algorithm, the first column showing the three-di-
mensional figure of the test functions. The search history of
the search agents (only in the first and second dimensions
of the solution) is shown in the second column. It can be
seen that while dealing with different cases, HPO exhibits a
similar pattern, in which search agents attempt to maximize
diversity in exploring desirable areas and then exploit
around best areas. The third column shows the search
paths. In the early stages of the algorithm, the movements
of the search agents are sudden, and gradually the move-
ments become slower, so that in the final stages of the
algorithm, the search agents gather at one point. This is due
to the comparative reduction in prey selection based on
Eq. (9), making the search agents gradually converge to the
best point during the iterations. This behavior ensures that
the HPO algorithm changes during optimization from the
exploration phase to the exploitation phase. The fourth
column in Fig. 8 shows all search agents’ average fitness in
each iteration and shows that the other search agents
behave as the first search agent. The fifth column is the
convergence curve that represents the best value of each
iteration. In this graph, fast convergence can also be seen.

4.3 HPO algorithm exploitation analysis

The results in Table 4 shows that the hunter—prey optimizer
performs better in most of the unimodal functions (F1, F2,
F3, F4 and F6) than the other algorithms compared in
Table 4. The HPO performed better in F5 and F7 compared
to others except for the HHO algorithm. The p-values and
number function evaluation (NFE) in Table 5 also prove
that the proposed algorithm’s superiority is significant in
most cases. The point to be noted is that the HHO algo-
rithm achieved these results with about 30,000 number
function evaluations (NFE), while the HPO algorithm with

@ Springer

15,000 number function evaluations (NFE). This demon-
strates the exploitation ability of the HPO algorithm due to
the movement of prey toward the best position. An
example of this is shown in Fig. 9.

4.4 HPO algorithm exploration analysis

The results in Table 6 indicate that the HPO method pro-
vides competitive results compared with other methods. In
the F9, F10, F11 and F12 test functions, the proposed HPO
algorithm performs better than others. The p-values in
Table 7 also prove that the superiority of the HPO algo-
rithm is significant in most cases. This indicates that the
HPO method is capable of exploration, and this is due to
the fact that the hunter moves toward a prey that is far from
the group. This allows search agents (hunters) to explore
different areas of the search space.

The results in Table 6 for the F9, F10 and F11 functions
reveal that the proposed HPO algorithm and the HHO
algorithm have obtained the same results. The convergence
diagrams of these functions in Fig. 9 indicate that the HPO
algorithm has reached the optimal point in fewer iterations
compared to the HHO algorithm. Also, the number of
NFEs of the HPO algorithm is less than half of the HHO
algorithm. This shows that the HPO algorithm performs
much better than the HHO.

4.5 Scalability analysis of the HPO algorithm

This part explains the effect of scalability on different test
functions by using proposed HPO algorithm. The dimen-
sions of the test functions varies as 10, 30, 50 and 100. The
scalability results for all methods are also shown in Fig. 10.
This reveals the impact of dimension on the quality of
solutions for the HPO algorithm to diagnose its efficacy for

Hunter—prey optimization: algorithm and applications 1291
F1 Objective space F2 Objective space
100 -
x10* _] PSO C 100 T — ::2
2 8 TSA 8 —_ LFD
2 LFD 2
- HHO . : HHO
o 15 3 & ? WOA
3 A% = WOA % £ ———ALO
=1 £ ALO . 2
< 8 1071 HPO b | HPO
X 05 o = @ 10
w o w o
0 :'3 @
100 3 @
o 0
x2) 100 200 300 400 500 100 200 300 400 500
Iteration Iteration
F3 Objective space F4) Objective space
) 100 ——— — 10 50
10 = .
& TSA] TSA
5 o LFD 100 S LFD
—~4 g HHO 3 - HHO
%3 £ WOA ke 2 ———WOA
= k) - ALO 2 50 b ——AL0
=2 3 HPO) 8 HPO
= 3 = L 50
= 8 101 s g 10
0 2 0 2z
100 [100 3
o 100 @
x(2) 100 200 300 400 500 x@) 100 -100 (1) 100 200 300 400 500
Iteration Iteration
F5 Objective space F6 Objective space
) _ PSO
5] \ TSA & TSA
o \ LFD o LFD
o 105 \ HHO — HHO
g 10 \ WOA o 3 WOA
5 . ALO % g ——A0
3 HPO < 8 HPO
(] x 2
g T g
= 10 7
17 k-
2 [}
5] 100
100 200 300 400 500
R . 100 200 300 400 500 :
x(2) 200 -200 x(1) \teration Iteration
F7 Objective space Objective space
PSO P50
a s 80 8 0 TSA
o LFD o LFD
— HHO —~
o B 100 WOA o 60 3 hro
% £ < £ WOA
< s ALO - 40 g} ALO
s 2 HPO < 5 10° HPO
= 2 =20)
[S [S
2z 0 3
17 -
5 @ 410
a 5@ 1°
| 0
100 200 300 400 500 x(2) 5 -5 x(1) 100 200 300 400 500
Iteration Iteration
F10 Objective space F11 Objective space
_ 100 — PSO ~ ——PSO
8 TSA & 10° TSA
9 LFD 9 LFD
o 3 HHO 3 100 2z HHO
= £ WOA x 2 ————=WOA
= s ———ALO ~ 8 ALO
= <] = 50 2 HPO
T] HPO < S
= ® = ®
w o w o
% 107 ° g 10"
g 500 g
@ a
x2) 20 20 x(1) 100 200 300 400 500 x(2) ~ -500 -500 x(1) 100 200 300 400 500
Iteration Iteration
F12 Objective space F13 Objective space
[——pso PSO
TSA & TSA
LFD 9 LFD
—~ HHO ~ 10 - HHO
< ~———WOA < 2 WOA
Py AL = k=l ALO
< HPO = 5 | HPO
E3 x o
g g 5]
&
®
o
@
100 200 300 400 500 X2 55 «(1) 100 200 300 400 500
| { Iteration

Fig. 9 Convergence curve of the methods on classical functions

@ Springer

1292 I. Naruei et al.
Table 6 Results for the multi-modal benchmark functions
Function ~ PSO WOA ALO LFD TSA HHO HPO
F§ min —7.8120e + 03 — 1.2565¢ + 04 —8.5214e + 03 — 5.065le + 03 — 6.9100e + 03 — 1.2569¢ + 04 — 9.7233¢ + 03
max —4.9494e + 03 —7.0219¢ + 03 —5.4177e + 03 —3.2773e + 03 —4.3158¢ + 03 — 1.2565¢ + 04 — 7.3509% + 03
ave — 6.2641e + 03 — 1.0020e + 04 —5.6298¢ + 03 — 4.0512¢ + 03 — 5.9093¢ + 03 — 1.2569 + 04 — 8.843% + 03
std 773.1355 17649 + 03 598.9912 413.8118 562.0738 0.9315 598.0833
F9 min 21.8891 0 39.7995 9.5044¢-08 115.9126 0 0
max 67.6571 5.6843¢-14 151.2331 2.2914e-05 260.9939 0 0
avg 46.5640 1.8948e-15 81.3609 5.1798¢-06 184.6362 0 0
std 10.1715 1.0378e-14 243112 5.4679¢-06 40.2045 0 0
FI0 min 1.5447e-04 8.8818e-16 1.3414 9.7034e-05 2.0579-12 8.8818e-16 8.8818e-16
max 2.7383 7.9936e-15 13.2214 1.8362e-04 4.5968 8.8818e-16 8.8818e-16
avg 1.1543 3.8488¢-15 43800 1.2910e-04 1.2947 8.8818e-16 8.8818e-16
std 0.8514 2.8119-15 27934 2.0618e-05 1.6500 0 0
FIl min 2724207 0 0.0167 4.2184e-07 0 0 0
max 0.1350 0 0.1202 1.3533¢-06 0.0211 0 0
avg 0.0231 0 0.0625 8.5391e-07 0.0053 0 0
std 0.0281 0 0.0265 2.2683¢-07 0.0074 0 0
FI2 min 9.7696e-09 0.0060 6.4120 0.5363 1.3866 1.8766e-08 5.4631e-11
max 1.5771 0.1155 36.9798 1.0026 17.3209 5.4219¢-05 1.1089¢-08
avg 02156 0.0289 13.5841 0.7195 9.2604 6.4135¢-06 8.1369¢-10
std 03789 0.0233 6.8544 0.1128 4.1775 1.0672e-05 2.0305¢-09
FI3 min 1.7055¢-08 0.1375 0.1117 2.8223 1.7243 1.1862e-06 6.4274¢-09
max 0.5407 1.2581 64.2053 2.9661 4.2009 0.0012 0.5926
ave 0.0297 0.4814 30.1711 2.9581 2.9450 1.1887¢-04 0.1478
std 0.1000 0.2599 17.9875 0.0309 0.6237 2.2897e-04 0.1409
Friedman ~ 3.29 272 4.57 271 4 1.72 171
mean
rank
Rank 5 4 7 3 6 2 1
@gfozof'tvei“(fje‘r’;{h;ns g Function PSO WOA ALO LFD TSA HHO HPO
?;‘I;lé’)er function evaluation F8 p-value 4.9752e-11 0.0392 47456e-11 3.020E-11 3.020E-11 3.020B-11 -
nfe 15,000 15,000 15,000 15,030 15,000 37,137 15,000
F9 p-value 12118e-12 0.3337 12118e-12 1.2118e-12 1.2118e-12 NaN -
nfe 15,000 15,000 15,000 15,030 15,000 36,775 15,000
FI0 pvalue 12118e-12 7.6453e-07 1.2118e-12 1.2118e-12 1.2118e-12 NaN -
nfe 15,000 15,000 15,000 15,030 15,000 36,219 15,000
FIl pvalue 12118e-12 NaN 12118e-12 1.2118e-12 2.9329e-05 NaN -
nfe 15,000 15,000 15,000 15,030 15,000 36,280 15,000
FI2 p-value 3.6897e-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 -
nfe 15,000 15,000 15,000 15,030 15,000 36,358 15,000
FI3 p-value 2.6806e-04 1.3594e-07 7.389le-11 3.020E-11 3.020E-11 6.3560e-05 -
nfe 15,000 15,000 15,000 15,030 15,000 36,274 15,000

@ Springer

Hunter—prey optimization

: algorithm and applications

1293

4.50E402 F1 1.00E+02 2
4,00E402
w 3.50E402 »n 8-00E+01
£ 3.006402 g
5 =10D £ =10D
£ 2.506402 £ 6.008401
> -
& 2.00E+02 30D ® 4.008401 30D
S 1.50E+02 g
< 1.00E402 500 < 2.00E401 500
5.00E+01
0.00E+00 1000 0.00E+00 100D
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm
1.20E+06 3 8.00E+01 Fa
1.00E+06 7.00E+01
@ © 6.00E+01
o QJ
£ 8.00E+05 10D £ 5.006+01 10D
E} 6.00E+05 200 E} 4,00E+01 200
@ m
S 4.00E+05 § 3.00E+01
< 50D 2 2.00E+01 .
2.00E+05 1.00E+01
0.00E+00 1000 0.00E+00 - 100D
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm
1.20E+03 5 3.00E+02 6
1.00E+03 2.50E+02
2 a
g g
£ sooer02 =10D £ 2008402 =100
'S 6.00E+02 'S 1.50E402
@ 30D @ 30D
S 4.00E+02 S 1.00E+02
< 50D K 50D
2.00E+02 5.00E+01
0.00E+00 L 1000 0.00E+00 100D
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm
1.20E401 F7 1.00E+03 F9
1.00E+01
2 5 BODEH02
g g
£ B00ER00 = 10D £ 6.00E+02 =100
'S 6.00E+00 s
& 30D & 4.00E+02 30D
S 4.00E+00 2
K 50D Es 50D
2.00E+00 2.00E+02
0.00E+00 1000 0.00E+00 - - - 100D
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm
1.40E+01 F10 4.00E+00 F11
1.20E+01 3.50E+00
2 1.00E+01 % 3.00E400
2 2
£ 5008400 =10D £ 2508000 =10D
& 6.00E+00 30D g 2008100 30D
g OO0k £ 1506400
Z 4.00E+00 50D Z 1.00E+00 50D
2.00E+00 5.00E-01
0.00E+00 . 1000 0.00E+00 = . 1 100D
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm
4.50E+01 F12 2.50E+02 F13
4.00E+01
5 350E401 g 200E+02
£ 3006401 g
s =10D £ =10D
£ 250401 £ 150402
© o
% 2.00E+01 30D ® 1.008+02 30D
§ 150E+01 §
< 1.00E401 50D < 500401 500
5.00E+00 I
0.00E+00 e 100D 0.00E+00 1000
PSO WOA LFD ALO HHO TSA HPO PSO WOA LFD ALO HHO TSA HPO
Algorithm Algorithm

Fig. 10 Scalability of different methods on classical functions

@ Springer

1294

I. Naruei et al.

Table 8 Comparison of average

running time (aith 1000 Function PSO WOA ALO LED TSA HHO HPO
dimensions and 30 independent gy ave 08868 1.6677 477.0267 18.4953 1.8273 07652 1.1179
runs) sd 00350 0.0806 32761 0.1376 0.0549 0.0839 0.0491
1) ave 08968 1.6666 476.6731 32290 1.8667 07750 1.1621

std 0.0390 00544 31742 00806 0.0249 0.0335 0.0597

F3 ave 24.0046 250240 5022110 41.9845 254720 55.1191 24.3754

std 01258 0.2702 23877 01457 01650 23150 0.1582

F4 ave 08810 1.6398 479.5388 18.6519 20522 09421 1.1163

std 00538 0.0439 22317 01377 0.1818 0.0444 0.0654

F5 ave 09615 17738 480.0975 182776 1.8925 13174 1.1857

std 0.0824 0.0919 19048 00500 0.0365 00651 0.0331

F6 ave 08961 16361 4756420 18.5080 2.0374 1.1213 L1211

std 0.0356 00406 19587 0.1201 0.0979 00277 0.0460

F7 ave 22686 27341 4773803 33.8539 29844 34807 23877

std 01341 0.0449 21679 01937 00284 00589 0.0711

F8 ave 14018 19342 479.8049 18.1480 22017 2.1021 1.5796

std 00581 0.0739 19587 02370 0.0479 00544 0.0258

F9 ave 13984 17663 477.0510 82852 20892 16453 1.3559

std 01611 0.0736 15111 01298 00470 00637 0.0490

F10 ave 12925 17626 4775186 18.8905 21152 1.6899 1.3732

std 0.0405 00220 14021 0.1299 00847 00683 0.0405

Fi1 ave 14080 19048 478.0581 192788 2.1679 19587 1.5241

std 00550 0.0582 17926 0.1010 0.0493 00460 0.0370

F12 ave 37003 42255 479.8028 214206 45373 75103 3.8722

std 00582 0.0463 20802 01860 00724 00437 0.0629

FI3 avg 37426 44563 4812474 212718 45273 75211 3.8573

std 0.0340 03063 20844 01397 00494 00667 0.2430

problems with lower dimensions and higher dimension.
This is due to the better capability of the proposed HPO for
balancing between exploitation and exploration.

To more scrutinize the performance of HPO algorithm,
the algorithms were tested on classical functions (F1-F13)
with high dimensions (1000 variables), and the execution
time of each algorithm was calculated and given in Table 8.
Looking at the results in Table 8, it can be seen that the
proposed HPO algorithm showed competitive and logical
performance in solving high-dimensional classical func-
tions than other algorithms. According to the results of the
average execution time of algorithms on classical func-
tions, the HPO performs faster than WOA, ALO, LFD and
TSA algorithms. The HPO algorithm performed faster than
the HHO algorithm in all functions except F 1, F 2 and F 4.

4.6 The performance of the hunter and prey
optimizer on the CEC2017

In this section, we evaluate the performance of the pro-

posed HPO algorithm on the CEC2017 challenging func-
tion set. The CEC2017 set includes 30 functions, of which

@ Springer

the first ten are unimodal and multi-modal functions, the
second ten are hybrid functions, and the last ten are com-
position functions (Awad et al. 2017). Details of these
functions are given in Table 9.

The hunter—prey optimization (HPO) was tested on
CEC2017 test functions and compared with whale opti-
mization algorithm (WOA), particle swarm optimization
(PSO), ant lion optimizer (ALO), Harris hawks optimizer
(HHO), tunicate swarm algorithm (TSA) and Lévy flight
distribution (LFD). Each algorithm tested 30 times with 60
search agents and 1000 iterations. The dimensions of all
functions are considered 10. The functions were divided
into three groups, such as unimodal-multi-modal, hybrid
and composition. The result of unimodal and multi-modal
functions given in Table 10. The Friedman test is used to
find the differences in treatments or algorithms across
multiple test attempts. This test ranks the data within each
row (or block) and tests for a difference across columns.
We adopt Friedman test to compare the comprehensive
performance of every algorithm on each group of problems
of CEC 2017 benchmark (Derrac et al. 2011). Hence, the
Friedman test method allows us to determine which

Hunter—prey optimization: algorithm and applications 1295
Table 9 CEC 2017 test functions (Range = [-100, 100], Dimension = 10)
Type NO Functions Global min
Unimodal function F1 Bent cigar function (shifted and rotated) 100
F2 Sum of different power function (shifted and rotated) 200
F3 Zakharov function (shifted and rotated) 300
Multi-modal functions F4 Rosenbrock’s function (shifted and rotated) 400
F5 Rastrigin’s function (shifted and rotated) 500
F6 Expanded Schaffer’s function (shifted and rotated) 600
F7 Lunacek bi-Rastrigin function (shifted and rotated) 700
F8 Non-continuous Rastrigin’s function (shifted and rotated) 800
F9 Levy function (shifted and rotated) 900
F10 Schwefel’s function (shifted and rotated) 1000
Hybrid functions F11 Rastrigin’s, Rosenbrock and Zakharov 1100
F12 Bent cigar, modified Schwefel and high-conditioned elliptic 1200
F13 Lunache bi-Rastrigin, Rosenbrock and Bent ciagr 1300
F14 Rastrigin, Schaffer, Ackley and elliptic 1400
F15 Bent cigar, HGBat, Rastrigin and Rosenbrock 1500
F16 Modified Schwefel, Rosenbrock, HGBat and expanded Schaffer 1600
F17 Rastrigin, modified Schwefel, expanded Griewank plus Rosenbrock, Ackley and Katsuura 1700
F18 Discus, HGBat, Rastrigin, Ackley and high-conditioned elliptic 1800
F19 Expanded Schaffer, Weierstrass, expanded Grienwank plus Rosenbrock, Rastrigin and bent cigar 1900
F20 Schaffer, modified Schwefel, Rastrigin, Ackley, Katsuura and Happycat 2000
Composition F21 Rastrigin, high-conditioned elliptic and Rosenbrock 2100
functions F22 Modified Schwefel’s and Rastrigin’s, Griewank’s 2200
F23 Rastrigin, modified Schwefel, Ackley and Rosenbrock 2300
F24 Rastrigin, Girewank, high-conditioned elliptic and Ackley 2400
F25 Rosenbrock, discus, Ackley, Happycat and Rastrigin 2500
F26 Rastrigin, Rosenbrock, Griewank, modified Schwefel and expanded Scaffer 2600
F27 Expanded Schaffer, high-conditioned elliptic, bent cigar, modified Schwefel, Rastrigin and HGBat 2700
F28 Expanded Schaffer, HappyCat, Rosenbrock, Griewank, discus and Ackley 2800
F29 Lunacek bi-Rastrigin, expanded Schaffer and shifted and rotated Rastrigin 2900
F30 Levy function, non-continuous Rastrigin and shifted and rotated Rastrigin 3000

algorithms are significantly better/worse. The results in
Table 10 show that the PSO algorithm performed better
than the other algorithms. However, the HPO algorithm
ranks second, and it was able to discover the closest opti-
mal value in most functions.

The algorithms were implemented with the same con-
ditions of the first group on the functions of the second
group of CEC2017, which are hybrids. The results of this
experiment are shown in Table 11. From the results of
Table 11, it can be seen that the HPO algorithm has the best
performance in most hybrid functions compared to the
PSO, WOA, ALO, LFD, TSA and HHO algorithms. The
proposed algorithm was able to take the first rank in
solving the hybrid functions of CEC2017. This shows the
HPO algorithm has a good balance between exploration
and exploitation phase.

Table 12 shows the results of the implementation of
algorithms on the third group of functions that are com-
position. The results show that the HPO algorithm and PSO
algorithm show better performance than other algorithms
on the composition functions. However, the proposed
algorithm is ranked first.

The nonparametric Wilcoxon statistical test can effec-
tively evaluate the overall performance of algorithms. The
Wilcoxon statistical test was performed at 95% signifi-
cance level (a = 0.05) to detect significant differences
between the results obtained from different algorithms. The
results of the Wilcoxon statistical test are shown in
Table 13.

The convergence curve of the methods in all 30 func-
tions is shown in Fig. 11. It can be found that in most

@ Springer

1296 . Naruei et al.
Table 10 Results for the CEC2017 test functions (unimodal and multi-modal)
Function PSO WOA ALO LFD TSA HHO HPO
F1 min 100.3335 6.6725¢ + 04 8.8078e + 09 2.0455¢ + 09 7.6935¢ + 06 6.7222¢ + 04 100.1119
max 1.1318e + 04 1.4432e + 07 3.3940e + 10 7.0880e + 09 7.7544e + 09 6.8564e + 05 1.2741e + 04
avg 1.4407e + 03 1.2024e + 06 1.9224e + 10 3.8239¢ + 09 1.7501e + 09 3.0476e + 05 5.6629¢ + 03
std 2.1777e + 03 2.6326e + 06 6.2907e + 09 1.1656e + 09 1.9578e + 09 1.7304e + 05 4.5371e + 03
F2 min 200 1104 3.7030e + 10 9,934,158 8064 200 200
max 200 2,446,619 1.7844e + 16 1.1117e + 10 3.1292e + 10 15,268 201
avg 200 143,220 7.1056e + 14 2.654le + 09 5.0113e + 09 1.9650e + 03 200.1000
std 0 4.4677e + 05 3.2502e + 15 3.1110e + 09 8.0403e¢ + 09 4.0898e + 03 0.3051
F3 min 300 328.1045 2.5125¢ + 04 5.2120e + 03 526.4445 300.1734 300.0000
max 300.0000 2.1768e + 03 2.866le + 06 1.8234e + 04 1.8664e + 04 302.7382 300.0000
avg 300 882.0293 2.7020e + 05 1.2784e + 04 1.0477e + 04 301.2657 300.0000
std 3.9495e-14 553.4807 5.9332e + 05 3.2152e 4 03 5.4428e + 03 0.6645 8.6024e-12
F4 min 400.2036 403.5653 1.1264e + 03 487.8636 402.5429 400.0196 400.1992
max 408.3034 572.4386 3.4610e + 03 773.1190 792.4691 488.0464 400.8251
avg 403.7248 4241228 2.3370e + 03 650.8894 494.0990 423.0511 400.3703
std 2.9488 39.2210 654.5091 68.9828 88.3054 31.0169 0.1613
F5 min 515.9193 519.7263 594.0551 539.8437 524.3893 526.4103 503.9798
max 559.6973 605.5651 698.7312 575.2589 622.8365 575.0000 549.7477
avg 532.6014 549.3775 647.9928 560.4726 556.8053 551.1613 526.4024
std 10.4046 22.1945 26.6382 9.0874 24.8914 14.5799 10.3670
Fo6 min 600 617.3973 658.0840 618.4575 608.3568 609.7232 600.0000
max 622.0582 666.1594 726.7402 646.1767 666.9672 655.2942 612.8558
avg 606.6721 633.7535 698.2065 634.8130 628.0914 631.2847 602.3421
std 6.5948 12.3247 16.9382 54716 13.3051 12.2824 3.1498
F7 min 714.0140 736.0757 921.5228 790.5101 740.1315 753.7464 725.6064
max 741.4200 854.7155 1.2984e 4+ 03 833.3167 846.8011 827.0057 768.2235
avg 726.4628 778.2208 1.1531e + 03 813.2098 783.1846 780.0214 740.9441
std 7.1699 31.2622 85.5322 9.7414 23.5888 19.5062 11.6220
F8 min 808.9546 815.9955 891.0628 840.9710 818.1020 817.0544 805.9698
max 836.8134 880.6324 958.5254 873.6454 862.7627 847.1642 841.7881
avg 817.4118 844.9085 936.6075 860.0993 838.0162 829.8183 823.6945
std 6.6449 19.3296 16.5164 8.6212 11.9368 6.9328 9.6310
F9 min 900 1.0216e + 03 2.4766e + 03 1.1221e + 03 918.2225 956.7325 900.0000
max 918.6377 2.3434e + 03 7.3050e + 03 2.0510e + 03 3.2197e + 03 1.8342¢ + 03 1.7123e + 03
avg 900.6213 1.5025¢ + 03 4.5175¢ + 03 1.5375e¢ + 03 1.4280e + 03 1.443% + 03 979.1277
std 3.4028 325.6067 1.2298e + 03 233.4753 523.0850 288.6303 154.2818
F10 min 1.2374e + 03 1.0159e + 03 2.9441e + 03 1.7631e + 03 1.5864e¢ + 03 1.5359¢ + 03 1.1224e + 03
max 2.4820e + 03 2.7987e + 03 4.1909¢ + 03 2.6908e + 03 2.5668e + 03 2.3913e + 03 2.4365e + 03
avg 1.865% + 03 2.0068e + 03 3.6914e + 03 2.3014e + 03 2.0250e + 03 1.9048¢ + 03 1.8050e + 03
std 309.5024 420.3168 256.7451 189.3770 274.3471 234.7766 308.3789
Friedman mean rank 1.4 4.2 7 5.8 4.5 3.5 1.6
Rank 1 4 7 6 5 3 2

@ Springer

Hunter—prey optimization: algorithm and applications 1297

Table 11 Results for the CEC2017 hybrid test functions

Function PSO WOA ALO LFD TSA HHO HPO

F11 min 1.1117e + 03 1.1187e + 03 2.7434e + 03 1.2210e + 03 1.1128e + 03 1.1117e + 03 1.1040e + 03
max 1.1783e + 03 1.4428e + 03 9.7013e + 04 1.6675¢ + 03 5.6665¢ + 03 1.3690e + 03 1.1336e + 03
avg 1.1355¢ + 03 1.2042¢ + 03 2.0267e + 04 1.4752e + 03 1.7909¢ + 03 1.1629¢ + 03 1.1172e + 03
std 15.0440 82.4060 1.9601e + 04 116.1770 1.5193e + 03 53.9183 8.7811

F12 min 1.8848e + 03 7.3867e + 03 2.6430e + 08 1.1885¢ + 07 6.6769¢ + 04 4.4734e + 03 3.0170e + 03
max 5.5241e + 04 1.6165¢ + 07 4.5537e + 09 1.7882e + 08 3.4632e + 06 7.9466e + 06 6.2324e + 04
avg 1.4715¢ + 04 4.3501e + 06 1.8460e + 09 7.4129¢ + 07 1.0463e + 06 2.1511e + 06 2.0882¢ + 04
std 1.3570e + 04 5.0030e + 06 1.0696e + 09 4.6075¢ + 07 1.0316e + 06 2.2410e + 06 1.7196e + 04

F13 min 1.3934e + 03 2.1368e + 03 2.9212e + 06 2.0314e + 03 4.5065¢ + 03 2.1721e + 03 1.3586e + 03
max 2.2513e + 04 4.9296e 4+ 04 9.3756e + 08 6.9288e + 04 2.8878e + 04 3.1948¢ + 04 4.5066e + 03
avg 9.7998e + 03 1.7524e + 04 1.9327e¢ + 08 1.7738e + 04 1.3902e + 04 1.538%¢ + 04 1.8643e + 03
std 6.8674e + 03 1.3921e + 04 2.2074e + 08 1.8122e + 04 7.2055¢ + 03 9.0987¢ + 03 608.8909

F14 min 1.4258e + 03 1.4766e + 03 3.3010e + 03 1.4774e + 03 1.4513e + 03 1.4595e¢ + 03 1.4352¢ + 03
max 3.3814e + 03 5.0046e + 03 1.0508e + 08 2.8387e + 03 5.2743e + 03 1.7477e¢ + 03 1.7121e + 03
avg 1.6818e + 03 1.7129¢ + 03 1.1467e + 07 1.8098e + 03 3.4798e + 03 1.5303e¢ + 03 1.5007e + 03
std 473.7783 653.5951 2.0925e + 07 292.0676 1.8847e + 03 50.5499 55.9308

F15 min 1.5095¢ + 03 1.7400e + 03 3.6033e + 04 1.9506e + 03 1.5547¢ + 03 1.5752e + 03 1.5026e + 03
max 3.2460e + 03 1.8667e¢ + 04 1.0625¢ + 08 1.2991e + 04 2.3678e + 04 6.3665¢ + 03 1.9290e + 03
avg 1.7290e + 03 6.0473e + 03 1.7799¢ + 07 5.4373e + 03 7.7534e + 03 3.0154e + 03 1.5645e + 03
std 321.2525 4.3270e + 03 3.1615¢ + 07 2.9027e¢ + 03 7.1112e + 03 1.3153e + 03 87.5326

F16 min 1.6006e + 03 1.6511e + 03 2.2702¢ + 03 1.7192e + 03 1.6466e + 03 1.6041e + 03 1.6015¢ + 03
max 2.0570e + 03 2.1622e + 03 3.0826e + 03 2.0412e + 03 2.250le + 03 2.1596e + 03 2.0174e + 03
avg 1.8323e + 03 1.8418e + 03 2.6847e + 03 1.8719¢ + 03 1.9272e + 03 1.8273e + 03 1.7850e + 03
std 127.2654 122.4871 204.5139 89.7046 151.5610 131.1514 128.4766

F17 min 1.7219e + 03 1.7356e + 03 1.9878e 4+ 03 1.7662e + 03 1.7431e + 03 1.7287e + 03 1.7182e + 03
max 1.8031e + 03 2.1208e + 03 2.7484e + 03 1.8659¢ + 03 1.9576e + 03 1.9646e + 03 1.8654e + 03
avg 1.748%¢ + 03 1.8178e + 03 2.3624e + 03 1.8125¢ + 03 1.8273e + 03 1.7990e + 03 1.7718e + 03
std 20.3463 74.0312 211.2303 28.5784 62.8552 55.9787 47.2362

F18 min 1.9290e + 03 2.2511e + 03 4.3338e + 06 2.7740e + 03 3.0223e + 03 1.8881le + 03 1.8881e + 03
max 5.5240e + 04 3.7439¢ + 04 1.7160e + 09 1.5294e + 05 5.5740e + 04 3.4902¢ + 04 2.2481e + 04
avg 1.1022e + 04 1.2381e + 04 4.3233e + 08 2.1067e + 04 2.208% + 04 1.3984e + 04 4.1175e + 03
std 1.0442e + 04 8.439%6e + 03 4.2172e + 08 3.0507e + 04 1.5295¢ + 04 1.1304e + 04 3.9591e + 03

F19 min 1.9110e + 03 1.9531e + 03 1.0019e + 04 1.9544e + 03 1.9317e + 03 2.0178e + 03 1.9035e + 03
max 7.3022¢ + 03 4.3309¢ + 05 4.6308e + 08 3.1994e + 04 2.6794e + 05 3.2377e + 04 2.0422e¢ + 03
avg 3.2471e + 03 3.2402¢ + 04 4.288le + 07 6.9176e + 03 2.3324e + 04 1.0561le + 04 1.9332¢ + 03
std 1.5377e + 03 8.2526e + 04 8.4667e¢ + 07 6.5469 + 03 6.6563e + 04 1.0059% + 04 39.2552

F20 min 2.0223e + 03 2.0366e + 03 2.2322e + 03 2.069%¢ + 03 2.0467e + 03 2.0494e + 03 2.0213e + 03
max 2.2298e + 03 2.3345¢ + 03 2.6731e + 03 2.1992e + 03 2.4306e + 03 2.2826e + 03 2.1602e + 03
avg 2.0956e + 03 2.1442e + 03 2.4926e + 03 2.1254e + 03 2.1738¢ + 03 2.1540e + 03 2.0677e + 03
std 62.2516 68.0855 105.9201 29.6452 85.3777 54.7183 48.6816

Friedman mean rank 2 4.5 7 4.7 5.2 34 1.2

Rank 2 4 7 5 6 3 1

@ Springer

1298 . Naruei et al.

Table 12 Results for the CEC2017 composition test functions

Function PSO WOA ALO LFD TSA HHO HPO

F21 min 2200 2.2110e + 03 2.3614e + 03 2.2131e + 03 2.2051e + 03 2.2036e + 03 2.2000e + 03
max 2.3676e + 03 2.3840e 4+ 03 2.4792e 4+ 03 2.3072e¢ + 03 2.3658e + 03 2.3685¢ + 03 2.3612e + 03
avg 2.3023e + 03 2.3234e 4+ 03 2.4464e + 03 2.2509e¢ + 03 2.3237e + 03 2.3236e + 03 2.3043e + 03
std 58.9363 61.4838 22.6579 20.8729 50.0590 54.8047 58.8420

F22 min 2.2275e + 03 2.3051le + 03 3.1505¢ + 03 2.3679 + 03 2.3089%¢ + 03 2.3046e + 03 2.2241e + 03
max 2.3055e + 03 3.6662e 4+ 03 4.9698e + 03 2.7317e + 03 3.6750e + 03 2.3273e + 03 2.3137e + 03
avg 2.2977e + 03 2.3602e + 03 4.0072e + 03 2.5368e + 03 2.5391e + 03 2.3136e + 03 2.3012e + 03
std 19.0744 246.8083 472.6296 106.2993 305.4145 6.3606 14.9762

F23 min 2.6544e + 03 2.6149e 4+ 03 2.7437e + 03 2.5762e + 03 2.6395¢ + 03 2.6236e + 03 2.6124e + 03
max 2.7652e + 03 2.7042e + 03 2.9432e + 03 2.7180e + 03 2.7675e + 03 2.7124e 4+ 03 2.6720e + 03
avg 2.6894e + 03 2.6552e + 03 2.8392e 4+ 03 2.677% + 03 2.6828e + 03 2.666le + 03 2.6323e + 03
std 25.7810 23.0100 46.7610 22.8367 34.8402 25.6549 14.1667

F24 min 2500 2.5103e + 03 2.8415e + 03 2.6343e + 03 2.5127e + 03 2.7470e 4+ 03 2.5000e + 03
max 2.8536e + 03 2.834le + 03 3.2084e + 03 2.828le + 03 2.885le + 03 2.8972e + 03 2.7981e + 03
avg 2.7223e + 03 2.765% + 03 3.0065e + 03 2.7531e + 03 2.8005e¢ + 03 2.8097e + 03 2.7452e¢ + 03
std 138.5768 69.1731 78.5597 51.4355 78.2055 43.1536 67.7618

F25 min 2.6001e + 03 2.9037e 4+ 03 3.2478e 4+ 03 3.004%9¢ 4+ 03 2.8987e + 03 2.6113e + 03 2.897% + 03
max 2.9464e + 03 3.6025¢ + 03 5.1168e + 03 3.2064e + 03 3.3252e + 03 2.9735¢ + 03 3.0244e + 03
avg 2.9126e + 03 2.9673e + 03 4.2638e + 03 3.1185e + 03 3.0303e + 03 2.9311le + 03 2.9406e + 03
std 63.2366 121.3296 550.4555 52.8685 115.2854 63.0897 33.3675

F26 min 2.8000e + 03 2.6055e + 03 3.6896e + 03 3.1271e + 03 3.0230e + 03 2.6085e + 03 2.6000e + 03
max 4.5065¢ + 03 4.3860e + 03 5.5380e + 03 3.6117e + 03 4.4069¢ + 03 4.4757¢ + 03 4.2176e + 03
avg 3.0874e + 03 3.2965e 4+ 03 4.7471e + 03 3.4041e + 03 3.425le + 03 3.3120e + 03 3.0802¢ + 03
std 446.0531 446.2029 487.4479 115.1949 326.5004 482.0550 363.8518

F27 min 3.1051e + 03 3.0925¢ 4+ 03 3.2099¢ 4+ 03 3.1068¢ + 03 3.096%¢ + 03 3.0951le + 03 3.0895e + 03
max 3.325%9 + 03 3.2282e + 03 3.6317e + 03 3.1520e + 03 3.2397e + 03 3.236le + 03 3.1931e + 03
avg 3.1665¢ + 03 3.1212e + 03 3.4340e + 03 3.1265¢ + 03 3.1433e + 03 3.1459% + 03 3.1023e + 03
std 54.9809 33.3036 121.8437 13.3818 40.1819 41.5257 24.6708

F28 min 2.8000e + 03 3.1020e + 03 3.4325¢ + 03 3.2683e + 03 3.1704e + 03 3.1678¢ + 03 3.1000e + 03
max 3.4465e + 03 3.7362e + 03 4.6043e + 03 3.5088e + 03 3.8474e + 03 3.4611le + 03 3.7362¢ + 03
avg 3.2105e + 03 3.3794e + 03 4.0653e + 03 3.4142e + 03 3.4499¢ + 03 3.3892e¢ + 03 3.3340e + 03
std 158.5970 140.8683 290.1687 62.3776 209.0705 80.3515 155.1064

F29 min 3.1663e + 03 3.2043e + 03 3.3916e + 03 3.2119e + 03 3.1964e + 03 3.1763e + 03 3.1370e + 03
max 3.3926e + 03 3.4403e + 03 4.3402e + 03 3.4254e + 03 3.4420e + 03 3.5315¢ + 03 3.4771e + 03
avg 3.2383e + 03 3.3136e + 03 3.9282e + 03 3.2999¢ + 03 3.2945¢ + 03 3.3302¢ + 03 3.2704e + 03
std 57.5350 67.6805 210.4884 53.9732 67.3381 92.8523 81.8499

F30 min 5.0274e + 03 7.5637e 4+ 03 2.5335e 4+ 07 1.3086e + 05 2.3189% + 04 1.7377e + 04 3.975% + 03
max 1.2551e + 06 4.4022¢ + 06 1.7699¢ + 08 8.1772e + 06 1.0433e 4+ 07 3.2042e + 06 1.2518e + 06
avg 1.9623e + 05 8.7166e + 05 9.0789% + 07 2.9422¢ + 06 1.4958e + 06 6.4400e 4+ 05 3.7477e + 05
std 3.9119e + 05 1.2567e + 06 4.5756e + 07 2.2208e + 06 2.4098e + 06 8.9853e + 05 4.7518e + 05

Friedman mean rank 2.2 3.6 7 4.2 5.1 4 1.9

Rank 2 3 7 5 6 4 1

@ Springer

Hunter—prey optimization: algorithm and applications 1299

I;g':olgn };lflf_‘ﬁn"fe‘geoverau Function PSO WOA ALO LFD TSA HHO

runs F1 5.2637e-05 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11
F2 0.0814 3.1507e-12 3.1507e-12 3.1507e-12 3.1507e-12 1.0173e-09
F3 1.4459¢-11 3.0142e-11 3.0142e-11 3.0142e-11 3.0142e-11 3.0142e-11
F4 6.3330e-07 3.4971e-09 3.0199e-11 3.0199¢-11 2.1544e-10 2.0023e-06
F5 0.0314 1.4294e-05 3.0180e-11 9.9127e-11 4.3088¢-08 5.5305e-08
F6 0.0042 3.0199-11 3.0199¢-11 3.0199-11 4.5043e-11 4.5043e-11
F7 8.1975e-07 1.8731e-07 3.0199e-11 3.0199-11 7.3803e-10 5.5727e-10
F8 0.0053 1.2486e-05 3.016le-11 3.3342e-11 2.2768e-05 0.0044
F9 1.9359¢-11 7.3763e-10 3.0180e-11 23701e-10 6.5238¢-07 4.1804e-09
F10 0.3871 0.0232 3.0199¢-11 5.5329¢e-08 0.0091 0.1624
Fl1 8.1975e-07 7.3803e-10 3.0199-11 3.0199e-11 1.0105¢-08 1.1567e-07
F12 0.1087 6.7220e-10 3.0199-11 3.0199e-11 3.0199¢-11 3.4971e-09
F13 1.2541e-07 1.6132e-10 3.0199e-11 1.7769e-10 3.3384e-11 8.1527e-11
Fl14 0.6520 2.3885e-04 3.0199%-11 6.0104e-08 3.9881e-04 0.0281
F15 1.3250e-04 3.6897e-11 3.0199¢-11 3.0199-11 9.9186e-11 2.1544e-10
F16 0.4119 0.0484 3.0199¢-11 0.0083 1.7836e-04 0.2116
F17 0.1494 0.0012 3.0199-11 3.0059¢-04 7.6588¢-05 0.0156
F18 5.6073e-05 1.5964e-07 3.0199e-11 7.0881e-08 1.3111e-08 1.5292¢-05
F19 4.3106e-08 4.9752e-11 3.0199¢-11 9.9186e-11 5.0922¢-08 4.0772e-11
F20 0.1715 2.5974e-05 3.0199-11 1.4067e-04 8.1975e-07 1.2860e-06
F21 0.3040 0.0012 3.0199-11 3.9881e-04 0.0207 0.0051
F22 0.7283 5.4617e-09 3.0199-11 3.0199-11 1.2057e-10 1.6980e-08
F23 1.3289%-10 3.5923¢-05 3.0199e-11 9.7555e-10 1.6947¢-09 1.6062e-06
F24 0.0434 0.0061 3.0199-11 0.9470 1.4294e-08 3.5708e-06
F25 3.5905e-05 0.0615 3.0199-11 4.5043e-11 0.0013 0.3953
F26 0.1018 1.4932¢-04 6.0658e-11 1.1567e-07 3.2555e-07 0.0421
F27 3.8249¢-09 1.4298¢-05 3.0199-11 2.1947¢-08 5.5329¢-08 3.0811e-08
F28 3.9389¢-05 0.0013 3.3876e-11 0.0023 0.0319 0.0043
F29 0.1154 0.0339 3.6897e-11 0.1154 0.1907 0.0163
F30 0.1809 0.0025 3.0180e-11 1.8492¢-08 0.0011 0.0070

functions, the proposed algorithm has better convergence
than other algorithms.

Figure 12 shows the Friedman mean rank of all the
compared methods for unimodal and multi-modal func-
tions (group 1), hybrid functions (group 2) and composition
functions (group 3). As per results of Fig. 12, HPO has
indicated a trustworthy and sure behavior in two groups
(hybrid and composition function) compared to the other
algorithms.

5 Performance of HPO algorithm
on constrained problems

Engineers and decision makers face problems that increase
their complexity daily. These problems create different
fields such as research in operation, mechanical systems,
image processing and electronics design (Kumar et al.

2020). In all these areas, the problem can be expressed as
an optimization problem. In optimization problems, one or
more objective functions are defined that should be mini-
mized or maximized considering all the parameters. Usu-
ally, constraints are defined in optimization problems. All
solutions must apply to these constraints. Otherwise, the
solutions will not be justified. There are nine real-world
problems in engineering design that are used by many
researchers, namely reducer design problem, rolling ele-
ment bearing problem, cantilever beam design, multi-plate
disk clutch brake, welded beam, three-bar truss, step-cone
pulley problem, pressure vessel designs and tension/com-
pression spring. Unlike basic test functions, real-world
problems have equality and inequality constraints, so HPO
should be equipped with a constraints control method to
optimize such problems. Unlike basic test functions, real-
world problems have equality and inequality constraints, so

@ Springer

1300 I. Naruei et al.

"
§
w”
I o an v me e T e me e o m e T m w R T T T
" onctesace 0
720| "e 960
o
700, “0
8)
§ o0
@ o i\\—“‘i_—‘: wn
75"\1 &0/
o me e e ee e w0 o me m T me we e me R T T T T AT
o
oo
P
00 au '
El 000 g
) H
i N i
i H
- :
1 N
- o
T T o w0 w0 mr wo wo o s w0 ow > T T oo
13) 14) 15) Objective space (F16)
07
.
. om
5 3" 5]
H 3 .
! ! i
H i,
H H 8 g
« L :
B T T e e e e o w0 mo wr w0 W0 0 W W0 ow o m e e T e me
onctesace P11 onctesace F1) onctesace F19) onctesace 7201
- o o
Fow H
g gz:m
0 I
= 1o S
150 L
e e e e
onctesace 1) onctesace 721 onctesace 23 onctesace 20
o s
2 fow e i
? [[g
g 8 8 2780 8
» 0
20 a0
P
N
e tan tan taen
onctesace 729 onctesace 20 onecte space 1) onctesace 21
p >
o i B a0 H
Lo 2 —_—] i L
[g g [
E2 .
— o _k ata
e e e e
onctesace 291 [Ee——
5 10
Baf
o
T
2w 0°

W mo w0 40 0 w0 10 wo w0 00 W m w0 40 0 w0 70
Horatn Horatn

Fig. 11 Convergence curve of the methods on the CEC2017 test function

@ Springer

Hunter—prey optimization: algorithm and applications

1301

HPO should be equipped with a constraints control method
to optimize such problems.

The performance of the algorithm in dealing with con-
strained optimization problems is significantly influenced
by the employed constraint handling technique (CHT). In
recent decades, many constraint control methods have been
developed for optimization algorithms. Some popular
CHTs among them are death penalty, co-evolutionary,
adaptive, annealing, dynamic and static (Coello Coello
2002). The death penalty function is the simplest method,
which assigns a big objective value. This method elimi-
nates impossible solutions by optimization algorithms
during optimization process. The advantages of this
method are low computational cost and simplicity (Mir-
jalili and Lewis 2016). To compare the methods, we used
the death penalty method because most of the algorithms
used the same. The results of the HPO algorithm were
compared with the algorithms that previously solved these
problems. For all problems, the number of search agents
are set to 30, and the maximum number of iterations are set
to 500. Details of these problems are given in Table 14.

Real-world problems have been used by many
researchers, and any researcher may have tested these
problems under different conditions, so only the best
solution obtained by algorithms is reported.

5.1 Three-bar truss design problem

In general, one of the most important issues in the field of
civil engineering is truss design. The goal in this problem is
to design a truss with the least weight so that it does not
violate any of the constraints of buckling, deflection and
stress. The structure of this problem and its parameters are
shown in Fig. 13.

Table 14 Details of the nine constrained problems. h is the number of
equality constraints, g is the number of inequality constraints, and D
is the number of problem variables

No Name h g D Objective
1 Three-bar truss 0 3 2 Minimize
2 Reducer design problem o 11 7 Minimize
3 Cantilever beam design 1 1 5 Minimize
4 Welded beam design 0o 7 4 Minimize
5 Tension/compression spring 0 4 3 Minimize
6 Step-cone pulley problem 0 1 4 Minimize
7 Multi-plate disk clutch brake 0 8 5 Minimize
8 Pressure vessel design 0 4 4 Minimize
9 Rolling element bearing problem 1 9 10 Maximize

AT=A3]

Fig. 13 Three-bar truss design problem (Mirjalili et al. 2016)

The formula for this problem and its constraints are in
the form of Eq. (13).

Fig. 12 Friedman mean rank NN N
(CEC2017) 7 °
6 = N~
~ 5 N ¥~ <
c S 6 < <
& 4 . R
) (a2}
Q0
c 3 ~
> ~ N e 2
-
<, = S o
-
) I II
0
PSO WOA ALO LFD TSA HHO HPO
Algorithm
B unimodal-multimodal m Hybrid Composition

@ Springer

1302

I. Naruei et al.

Table 15 Results for the three-

bar truss design problem Algorithm Optimal values for variables Optimal weight
X X5

HPO 0.788643655 0.4083373345 263.895844104
CS 0.78867 0.40902 263.9716
DEDS 0.78867513 0.40824828 263.8958434
GOA 0.788897555578973 0.407619570115153 263.8958814
HHO 0.788662816 0.408283133832900 263.8958434
MBA 0.7885650 0.4085597 263.8958522
MFO 0.788244771 0.409466905784741 263.8959797
MVO 0.78860276 0.408453070000000 263.8958499
PRO 0.7886475 0.4083262 263.8958439
PSO-DE 0.7886751 0.4082482 263.8958433
Ray and Sain 0.795 0.395 264.3
SC-GWO 0.78941 0.40617 263.8963
SSA 0.788665414 0.408275784444547 263.8958434

Fig. 14 Speed reducer design (Hassan et al. 2005)

Minimize : f(A1,A2) = (24/24A1 + Ay) x 1
Subject to :

V2A1 +A
g = #p —6<0
\/EA% + 2A1A;
Ay
= P-—-0<0
SRV, 7O VIV (13)
1
g3=——P—-0<0
A + V24,
where
0<A; <1 and 0<A, <1; [=100cm,
P =2KN/cm*, o =2KN/cm*.

The performance of the proposed HPO algorithm on this
problem was compared with cuckoo search algorithm (CS)
(Gandomi et al. 2013), differential evolution with dynamic
stochastic selection (DEDS) (Zhang et al. 2008),

@ Springer

grasshopper optimization algorithm (GOA) (Saremi et al.
2017), Harris hawks optimizer (HHO) (Heidari et al. 2019),
mine blast algorithm (MBA) (Sadollah et al. 2013), moth-
flame optimization (MFO) algorithm (Mirjalili 2015¢),
multi-verse optimizer (MVO) (Mirjalili et al. 2016), poor
and rich optimization (PRO) algorithm (Samareh Moosavi
and Bardsiri 2019), particle swarm optimization with dif-
ferential evolution (PSO-DE) (Liu et al. 2010), Ray and
Sain (RAY and SAINI 2001), sine cosine gray wolf opti-
mizer (SC-GWO) (Gupta et al. 2020) and salp swarm
algorithm (SSA) (Mirjalili et al. 2017). The comparison
results are shown in Table 15. The results in Table 15 show
that the proposed HPO algorithm offers competitive results
with the HHO, SSA, DEDS and PSO-DE algorithms. The
HPO algorithm also performs better than other compared
methods.

5.2 Speed reducer design problem

The speed reducer design problem has seven design vari-
ables (Gandomi et al. 2013), as shown in Fig. 14. This test
problem’s objective is to minimize the weight of a speed
reducer with subject to different constraints on surfaces
stress, bending stress, stresses in the shafts and transverse
deflections of the shafts (Mezura-Montes and Coello,
2005). The formula for this problem and its constraints are
in the form of Eq. (14)

Hunter—prey optimization: algorithm and applications

1303

Considerz = (21222324 2526 27] = [bmply L dy dy),
Minimize f(Z) = 0.7854z123(3.333323 + 14.9334z; — 43.0934)
— 1508z (z¢ + 23) + 74777 (2 + z3) + 0.7854 (2425 + 2523),

Subject to :
27
gl(Z) = P 1 §07
213333
397.5
(2) =——55 - 1<0,
ZIZQZS
. 1937
83(z) = —+— 1 <0,
222723
o 1.9373
g(z) =—12—1<0,
222723
. [(745(z4/2223))* + 16.9 x 10°]'/2
- —1<0,
85(2) 1102 =
745(25/2223))* + 157.5 x 106]'/?
o) = /2L = izo
7
o 1.9373
84(2): 4471S07
222723
D
g1(2) =5~ 1<0,
5z
gs(7) = = — 1 <0,
21
_ 21
=—-—1<0
89(2) g, =0
1.5z + 1.9
gi(z) =27 1<0,
2%
1.1z + 1.9
8112 =TT 7 1<0,
25
where,

2.6<7,<3.6, 0.7<72,<08, 17<z;<28, 7.3<7<8.3,
73<z5<83, 2.9<7,<3.9, 5.0<z <5.5.

(14)

The proposed HPO algorithm was tested on this prob-
lem, and the results were compared with artificial ecosys-
tem-based optimization (AEO) (Zhao et al. 2020), chaotic
multi-verse optimization (CMVO) (Sayed et al. 2018),
Coot optimization algorithm (COOT) (Naruei and Keynia
2021b), emperor penguin optimizer (EPO) (Dhiman and
Kumar 2018), genetic algorithm (GA), gray prediction
evolution algorithm based on accelerated even (GPEAae)
(Gao et al. 2020), gray wolf optimizer (GWO) (Mirjalili
et al. 2014), sine cosine gray wolf optimizer (SC-GWO)
(Gupta et al. 2020), artificial bee colony with enhanced
food locations (I-ABC) (Sharma and Abraham 2020),
spotted hyena optimizer (SHO) (Dhiman and Kumar 2017)
and tunicate swarm algorithm (TSA) (Kaur et al. 2020).

The compared results are shown in Table 16. As it is clear
from the results, the proposed HPO algorithm has shown a
very good performance for this problem. The HPO algo-
rithm has found a better optimal value than other compared
methods.

5.3 Cantilever beam design problem

Cantilever beams are one of the most important problems
in the field of mechanics and civil engineering. The pur-
pose of this problem is to minimize the weight of the beam.
As shown in Fig. 15, a cantilever beam consists of five
hollow elements with a square cross section. Each element
is defined by a variable, and the thickness of all of them is
constant. This problem has a constraint that should not be
violated. The formula for this problem and its constraints
are in the form of Eq. (15)
Minimize :
X = [)C1XQX3)C4)C5],
f(f) = 0‘6224()(1 + X2 +Xx3 + x4 +X5),
61 37 19 7 1 <1
Wt tatest
0.01 SX1,)C2,X3,X4,X5 S 100.

(15)

The performance of the proposed HPO algorithm on this
problem was compared with AEO, ALO, COOT, CS,
GPEAae, MVO, interactive autodidactic school (IAS)
(Jahangiri et al. 2020) and symbiotic organisms search
(SOS) (Cheng and Prayogo 2014). The comparison results
are shown in Table 17. The results of Table 17 show that
the proposed HPO algorithm offers a better solution to
solve this problem at the lowest cost.

5.4 Welded beam design

This test problem’s objective is to minimize the welded
beam’s fabrication cost shown in Fig. 16. This problem has
four constraints such as end deflection of the beam (5),
buckling load on the bar (Pc), bending stress in the beam
(o), shear stress in weld (1) and side constraints.

Problem variables are thickness of the bar (b), the height
of the bar (t), length of the attached part of the bar (1) and
the thickness of weld (h). The formula for this problem and
its constraints are in the form of Eq. (16)

@ Springer

1304

I. Naruei et al.

Table 16 Comparison results

for speed reducer design Algorithm Optimum variables Optimum cost
problem b m p L L, D, D,
HPO 3.241297 0.7 17 7.3 7.7153199 3.350215 5.28665 2892.7292
AEO 35 0.7 17 173 7.7153199 3.3502146 5.2866545 2994.471066
CMVO 35 07 17 73 7.715319 3.350214 5.286654 2994.471
COOT 324132 0.7 17 173 7.715336 3.350215 5.28665 2892.7461
EPO 350123 0.7 17 73 7.8 3.33421 5.26536 2994.2472
GA 3.510253 0.7 17 835 7.8 3362201 5.287723 3067.561
GPEAae 3.499997 0.7 17 7.300001 7.715311 3.350214 5.286653 2994.468240
GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
I-ABC greedy 3.50021 0.7 17 7.3 7.71531189 3.3502147 5.2866554 2994.4710315
PSO 3.500019 0.7 17 83 7.8 3352412 5.286715 3005.763
SC-GWO 3.50064 0.7 17 7.30643 7.80617 3.35034 5.28694 2996.9859
SHO 350159 0.7 17 173 7.8 3.35127 5.28874 2998.5507
TSA 350120 0.7 17 173 7.8 3.33410 5.26530 2990.9580
X =[x x x3xa] = [lib], The optimal results of HPO versus those attained by
F(@) = 1.10471x%x; + 0.04811x3x4(14.0 + x3), AEOQ, an effective co-evolutionary differential evolution
g1(%) = t(X) — tmax <0, (CDE) (Huang et al. 2007), CMVO, GPEAae, GSA, HHO,
82(%) = (%) — Omax <0, HS, I-ABC, IAS, LFD, SHO and TSA are given in
83(%) = (%) — Omax <0, Tablt‘j 18. The results shqwed that the proposed HPO
2a(®) = x1 — 14 <0, algorithm f0}1nd a better optimal value .than other compared
- - methods. It is noteworthy that the optimal value found by
gs(¥) =P = P.(¥) <0, the HPO algorithm is very different from the optimal val-
86(x) = 0.125 —x; <0, ues found by other methods.
¢7(%) = 1.10471x%x, + 0.04811x3x4(14.0 + x3) — 5.0 <0
0.1<x <2, 5.5 Tension/Compression spring design problem
0.1 S X2 § 107
0.1 <x; < 10, The engineering test problem used is the tension/ com-
01<x <2 pression spring design problem. The goal is to minimize
the cost of building a spring with three parameters, namely
(X = /() + 21’1;—; + ()%, number of active loops (N), average coil diameter (D) and
wire diameter (d) (Arora 2017). Figure 17 shows the
=—Fr ,T = @,M = P(L +9), details of the spring and its parameters. The spring design
problem has a number of inequality constraints, which are
R— /%3 n (xl +x3>27 given in Eq. (17)
4 xZ% o X = [x1 x2 x3] = [dDN],
J = 2{\/5)61)62 [Z+ (T) } }, (@) = (x3 + 2)x2xf,
6PL 6PL> - 53
o (%) :mﬁ(f) =By §1(8) = 1= 71765 <0
3 . 433 — x1x2 1
Pu(E) = 4-013E\/%) \/E), 8209 = 125660t —xt) | 51082 =
2 2L V4G } 140.45x, (17)
P =60001b,L = 14in., Sy = 0.25in., s =1-—5—<0,
E =30 x 1°psi, G = 12 x 10° psi, g4®:x1+x2_1§0’
Tmax = 13600 psi, Gmax = 30000 psi. 1.5
0.05 <x; <£2.00,
(16)

@ Springer

0.25 <x, <1.30,
2.00 <x3 <15.0.

Hunter—prey optimization: algorithm and applications 1305
Fig. 15 Cantilever beam design
problem (Mirjalili et al. 2016)

/ I i

(.
(e

C il & 8| & | a 3|

Table 17 Comparison results

for the cantilever design Algorithm Optimal values for variables Optimal weight

problem X, X, X5 Xy Xs
HPO 6.0055233569 5.30591367 4.49474956 3.51336235 2.154234 1.33652825
AEO 6.028850 5.316521 4.462649 3.508455 2.157761 1.339965
ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995
COOT 6.02743657 5.3385748 4.4904867 3.483437 2.134591 1.3365745
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
GPEAae 6.014808 5.306724 4.493232 3.505168 2.153781 1.339982
IAS 5.99140 5.30850 4.51190 3.50210 2.16010 1.34000
MVO 6.0239402 5.3060112 4.4950113 3.496022 2.1527261 1.3399595
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

Fig. 16 Welded beam design
(Khalilpourazari and
Khalilpourazary 2019)

¢ (c)

The problem of spring design has been solved by many
researchers. The proposed HPO algorithm was tested to
solve this problem and compared with popular and new
methods such as AEO, BA, COOT, co-evolutionary parti-
cle swarm optimization (CPSO) (He and Wang 2007a),
GPEAae, GSA, GWO, HHO, stochastic fractal search
(SFS) (Salimi 2015), SHO, SSA, water cycle algorithm
(WCA) (Eskandar et al. 2012), water evaporation opti-
mization (WEO) (Kaveh and Bakhshpoori 2016) and
WOA. Table 19 shows the comparison results of different

(d)

methods to solve the spring design problem. The proposed
HPO algorithm was able to solve this problem better than
all the compared methods and find better values for the
problem variables with the least weight.

5.6 Step-cone pulley problem
One of the important problems in the field of engineering is

the problem of step-cone pulley. The goal is to minimize
the weight of the four step-cone pulleys. Figure 18 shows

@ Springer

1306

I. Naruei et al.

the structure and parameters of this problem. As shown in
Fig. 18, this problem has five variables, four of which are
related to the diameter of the pulley, and one variable is the
width of the pulley. The step-cone pulley is to be designed
for transmitting a power of at least 0.75 hp. The formula for
this problem and its constraints are in the form of Eq. (17)

Minimize:
pi-mfafis (V) el (2))
e () el ()

Subject to:

hl(f) =C,—-C,=0,
hz(f) =C,—-C3=0,
h3(f) =C,—C4=0,

g,‘:1ﬁ2$34(7€) = (075 X 7456998) — P,‘ SO

where,

2
nd; N; (M—l)
St B ITR) AN 424 i=(1.2.3.4
2(+N>+ 1, t2ai=(1234),

N; d;
R, = —2sin(Z—1]= i =(1,2,3,4
oo(uf{z-2n{ (F-1)5}}) =023

C =

AN
P, = sto(l — R) 22N i = (1,2,3,4),
60
t =8mm, s=175MPa, pn=0.35,

p = 7200kg/m>, a = 3mm.
(18)

A schematic view of this problem is shown in Fig. 18.

The proposed HPO algorithm was tested on this problem
and the results were compared with artificial electric field
algorithm (AEFA) (Anita and Kumar 2020), passing
vehicle search (PVS) (Savsani and Savsani 2016), artificial
bee colony (ABC) (Rao et al. 2011) and Coot optimization
algorithm (COOT). The results are shown in Table 20. As
shown in Table 20, the HPO algorithm has discovered
better optimal values than other algorithms and has been
able to rank first.

5.7 Multiple disk clutch brake

The purpose of this test problem is to minimize the multi-
disk clutch brake mass. This problem has five discrete
decision variables, namely friction levels (Z), inner radius
(r1), disk thickness (t), driving force (F) and outer radius
(r0). The structure and parameters of this problem are
shown in Fig. 19. The formula for this problem and its
constraints are in the form of Eq. (19)

@ Springer

Minimize :
f3) = n(g —a)xs(xs + 1),
subject to :

gl(x) = —Pmax +Prz < 07

22(X) = prver — Vgr,max Pmax < 0,
83(¥) = AR + x; — x, <0,
84(X) = —Lmax + (x5 + 1)(x3 + 6) <0,
g5(i) =sM; — M, <0,
g6(X) =T >0,
g7(X) = =V max + v <0,
88(X) = T — Tiax <0,
where
PR
M, = 3 s > N.mm,
27X
Tn
o =—rad/s, (19)
A = (G — x3)ymm?,
4 2
Pre =~ N/mm”,
nR,n
Vgr 30 mm/s,
R _ %x% — x?
T3 g ’
Lo
My + My

AR = 20mm, Ly,x = 30mm, u = 0.6,
Virmax = 10m/s,0 = 0.5mm,s = 1.5,
Tnax = 15s,n = 250rpm, T. = 55Kg.m*,
M, = 40Nm, My = 2Nm, and ppax = 1.
with bounds :

60 <x; <80,90 <x; <110,1<x3 <3,
0<x4<1000,2 <x5<9.

The proposed HPO algorithm was tested on this prob-
lem, and the results were compared with AEO, CMVO,
flying squirrel optimizer (FSO) (Azizyan et al. 2019),
HHO, I-ABC greedy, PVS, quantum-behaved simulated
annealing algorithm-based moth-flame optimization
(QSMFO) (Yu et al. 2020), TLBO and WCA. The com-
pared results are shown in Table 21. As it is clear from the
results, the proposed HPO algorithm has shown a very
good performance for this problem. The HPO algorithm
has found a better optimal value than other compared
methods, while other algorithms have performed almost
similarly.

Hunter—prey optimization: algorithm and applications

1307

Table 18 Results for the welded
beam

Fig. 17 Tension/compression
spring design problem (Mirjalili
2015b)

Table 19 Results for
tension/compression spring

5.8 Pressure vessel design

Algorithms T c Pc S Optimal cost

HPO 0.198811887 3.3377539 9.1920155 0.1988326 1.670240392337

AEO 0.2057296 3.4704886 9.0366239 0.2057296 1.7248520

CDE 0.203137 3.542998 9.033498 0.206179 1.733462

CMVO 0.20573 3.4705 9.03662 0.20573 1.724852

GPEAae 0.205731 3.470467 9.036624 0.205730 1.724851

GSA 0.182129 3.856979 10 0.202376 1.879952

HHO 0.204039 3.531061 9.027463 0.206147 1.73199057

HS 0.2442 6.2231 8.2915 0.2443 2.3807

I-ABC greedy 0.2057294 3.47048861 9.03662389 0.20572876 1.7248210

IAS 0.2057 3.4705 9.0366 0.2057 1.7249

LFD 0.1857 3.9070 9.1552 0.2051 1.77E + 00

SHO 0.205563 3.474846 9.035799 0.205811 1.725661

TSA 0.203290 3.471140 9.035100 0.201150 1.721020

—D
P p—
I

Algorithms N D d Weight

HPO 11.21536452893 0.3579796674 0.0517414615 0.012665282823723

AEO 10.879842 0.361751 0.051897 0.0126662

BA 11.2885 0.35673 0.05169 0.012665

COOT 11.34038 0.35584 0.05165 0.012665293

CPSO 11.244543 0.357644 0.051728 0.012674

GPEAae 11.294000 0.356631 0.051685 0.012665

GSA 13.525410 0.323680 0.050276 0.012702

GWO 11.28885 0.356737 0.05169 0.012666

HHO 11.138859 0.359305355 0.051796393 0.012665443

SES 11.288966 0.356717736 0.051689061 0.012665233

SHO 12.09550 0.343751 0.051144 0.012674000

SSA 12.004032 0.345215 0.051207 0.0126763

WCA 11.30041 0.356522 0.05168 0.012665

WEO 11.294103 0.356630 0.051685 0.012665

WOA 12.004032 0.345215 0.051207 0.0126763

The problem of designing pressure vessels is another
common engineering test problem in the optimization
algorithm design. As shown in Fig. 20, one side of the dish
is hemispherical, while the other side is flat. Problem
parameters for optimization are length of cylindrical

section without considering head (L), internal radius (R),
head thickness (Th) and shell thickness (Ts). The problem
of designing pressure vessels is formulated in Eq. (20)

@ Springer

1308

I. Naruei et al.

Fig. 18 Step-cone pulley
problem (Savsani and Savsani I

2016)

-
Ci’;‘_i. aln __:@ -

d'y| N=

350

)? == [xl X2 X3X4] = [TxThRLL
F(®) = 0.6224x1x3x4 + 1.7781x2x3 + 3.1661x7xs4 + 19.84x7x3,

g1(X¥) = —x1 4+ 0.0193x; <0,

82(¥) = —x3 + 0.00954x3 <0,

(X)) = *TUC3X4 - gnxg + 1296000 <0,
g4(X) = x4 — 240 <0,

0<x; <99,

0<x, <99,

10 < x3 < 200,

10 < x4 <200.

(20)

The proposed HPO algorithm was tested to solve the
pressure vessel design problem. The results of this exper-
iment were compared with methods such as AEO, BA,
charged system search (CSS) (Kaveh and Talatahari 2010),
GA, GPEAae, Gaussian quantum-behaved particle swarm
optimization (G-QPSO) (dos Santos Coelho 2010), GWO,
HHO, hybrid particle swarm optimization (HPSO) (He and
Wang 2007b), MFO, SC-GWO,WEO and WOA. Table 22

@ Springer

shows the results of this comparison. As can be seen from
the results, the proposed HPO algorithm has found better
values for the variables of this problem and solved it better
than other methods.

5.9 Rolling element bearing design problem

Rolling element bearings have different geometric shapes
that are optimized for different applications. The main goal
of this problem is to maximize the dynamic load capacity
by considering ten geometric design variables and nine
constraints based on geometric and assembly constraints.
Out of ten design variables, one design variable (number of
balls in the bearing) is required to obtain the correct value.
The formula for this problem and its constraints are in the
form of Eq. (21)

Maximize:
£ = 1.Z*’D}® Lif Dy <25.4mm
T\ 3.6471.2°3D}* | otherwise

Subject to:

Hunter—prey optimization: algorithm and applications 1309

si®)=2- 2 sin_lf)gb/Dm) —1=<0,

82(%) =2Dp — Kpmin(D — d) > 0,

83(X) = Kpmax(D — d) — 2D}, >0,

g4(X) = (B, — D, <0,

gs(x) =D, —05(D+d)>0,

g(*) = (0.54+¢)(D+d) — D, <0,

7(%) = 0.5(D — D,y — D) — eD}, >0,

gs(x) =£; >0.515,

g9(X) = fo>0.515, (21)
where

1—'}) 1.72 f(2f0—1) 0.41 10/3 —0.3
e {o(5) =]

Dy, ri ro
V—Dmaft_va.fO—Dby
¢0:27'C_2

oot (LD =)2 = 3(T/4)YH{D/2 — (T/4) = Dy} —{d/2 + (T/4)}’
2(D = d)/2 = 3T/ HD/2 = (1/4) - Dy}

T=D—d—2D,, D= 160, d =90, B, = 30.

With bounds:

0.5(D+d) <D, <0.6(D+d),
0.15(D—d)<D,<045(D —d),
4<7<50,

0.515<f;<0.6,

0.515<f, <0.6,

0.4 <Kpmin <0.5,

0.6 <Kpmax <0.7,

03<e<04,

0.02<e<0.1,

0.6 <{<0.85.

Fig. 19 Multiple disk clutch brake (Azizyan et al. 2019)

Table 20 Comparison of results

for step-cone pulley problem Algorithm X X5 X3 X4 Xs Optimal weight
HPO 38.414146 52.858892 70.473035 84.496123 90 16.09042816
AEFA 39.25346 54.01469 72.01386 86.34195 89.03809 16.6218705
pPVC 40 54.76430219 73.013177 88.428419 85.98624 16.63450513
ABC NAN NAN NAN NAN NAN 16.634655
TLBO 40 54.7643 73.01318 88.42842 85.98624 16.63451
COOT 38.58523 53.09449 70.78712 84.87239 89.82746 16.203291

@ Springer

1310

I. Naruei et al.

Table 21 Comparison of
optimized designs for multi-
plate disk clutch brake

Fig. 20 Pressure vessel design
(Khalilpourazari and
Khalilpourazary 2019)

Table 22 Results for the

pressure vessel

@ Springer

Algorithm ri(x1) ro(X2) t(x3) F(x4) Z(Xs) Optimal cost
HPO 70 90 1 907.769 2 0.23524245
AEO 70 90 1 810 3 0.3136566
CMVO 70 90 1 910 3 0.313656
FSO 70 90 1 870 3 0.313657
HHO 69.9999999992493 90 1 1000 2.3128 0.259768993
I-ABC greedy 70 90 1 900 3 0.313766
PVS 70 90 1 980 3 0.31366
QSMFO 80 101.3002 3 600 9 0.2902
TLBO 70 90 1 810 3 0.313656
WCA 70 90 1 910 3 0.313656
- z
f T
| L .A
&l ™

"o"

SECTION A-A

(b)

(@)
Algorithms Ts Th R L Weight
HPO 0.778168 0.384649 40.3196187 200 5885.33277
AEO 0.8374205 0.413937 43.389597 161.268592 5994.50695
BA 0.812500 0.437500 42.098445 176.636595 6059.7143
CSS 0.812500 0.437500 42.103624 176.572656 6059.0888
GA 0.812500 0.437500 42.097398 176.654050 6059.9463
GPEAae 0.812500 0.437500 42.098497 176.635954 6059.708025
G-QPSO 0.812500 0.437500 42.0984 176.6372 6059.7208
GWO 0.8125 0.4345 42.089181 176.758731 6051.5639
HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
HPSO 0.812500 0.437500 42.0984 176.6366 6059.7143
MFO 0.8125 0.4375 42.098445 176.636596 6059.7143
SC-GWO 0.8125 0.4375 42.0984 176.63706 6059.7179
WEO 0.812500 0.437500 42.098444 176.636622 6059.71
WOA 0 .812500 0.437500 42 .0982699 176 .638998 6059 .7410

Hunter—prey optimization: algorithm and applications

131

Fig. 21 Rolling element bearing
problem (Heidari et al. 2019)

do

D
Table 23 Comparison of optimized designs for rolling element bearing design problem
Algorithm SCA PVS TLBO GA4 HHO HPO
£ 0.3 0.300000 0.300000 0.300043 0.300000 0.3000
e 0.02778 0.079990 0.068858 0.022300 0.050474 0.0290
¢ 0.62912 0.700000 0.799498 0.751000 0.600000 0.6000
Dy 21.14834 21.425590 21.42559 21.423000 21.000000 21.8750
D, 125 125.719060 125.7191 125.717100 125.000000 125.0000
Fo 0.515 0.515000 0.515000 0.515000 0.515000 0.5150
F; 0.515 0.515000 0.515000 0.515000 0.515000 0.5150
Kbmax 0.7 0.680160 0.633948 0.651000 0.600000 0.7000
Kbmin 0.5 0.400430 0.424266 0.415900 0.400000 0.4000
Z 10.92928 11.000000 11.000000 11.000000 11.092073 10.7770
Maximum cost 83,431.117 81,859.741210 81,859.74 81,843.30 83,011.88329 83,918.4925

The structure and parameters of the rolling element
bearing design problem are shown in Fig. 21.

The proposed HPO algorithm was tested to solve the
rolling element bearing design problem, which is a maxi-
mization problem. The results of this experiment were
compared with methods such as Harris hawks optimizer

Table 24 Results of the proposed HPO algorithm in solving real-
world engineering problems

No Name Optimal value Rank
1 Three-bar truss 263.895844104 7
2 Reducer design problem 2892.7292 1
3 Cantilever beam design 1.33652825 1
4 Welded beam design 1.670240392337 1
5 Tension/compression spring 0.012665282823723 1
6 Step-cone pulley problem 16.09042816 1
7 Multi-plate disk clutch brake 0.23524245 1
8 Pressure vessel design 5885.33277 1
9 Rolling element bearing problem 83,918.4925 1

(HHO), passing vehicle search (PVS), teaching—learning-
based optimization (TLBO), genetic algorithm (GA) and
sine cosine algorithm (SCA). The results of this compar-
ison are shown in Table 23. As can be seen from the
results, the proposed HPO algorithm was able to provide
the best solution to solve this problem.

As mentioned before, in real-world problems, the best
solutions obtained by different algorithms are reported.
However, many of these algorithms achieved these results
in better conditions, including more iterations, more pop-
ulation and number function evaluations (NFE). Despite all
this, the proposed HPO algorithm still performed better in
solving these problems. In summary, the best optimal value
obtained by the proposed HPO algorithm for real-world
problems is given in Table 24.

6 Conclusion
In this paper, a new population-based optimization algo-

rithm is proposed that is inspired by hunters’ behavior such
as lions and leopards and prey such as deer and gazelle.

@ Springer

1312

I. Naruei et al.

The unique characteristics, such as hunting a prey out of
the group and moving the prey toward the leader in front of
the group, are the main motivation to create this opti-
mization algorithm. In order to evaluate the algorithm in
terms of exploration, exploitation and scalability, 43 test
functions including seven unimodal test functions to eval-
uate algorithm exploitation, six multi-modal test functions
to evaluate algorithm exploration, and CEC2017 test
functions containing 30 functions which at least half of the
functions are among the challenging hybrid and composi-
tion functions, to evaluate escape from the local optimal
and the evaluation of the balance between the exploration
phase and exploitation phase were used. The results
showed that the proposed HPO algorithm has sufficient
exploration and exploitation power to solve unimodal and
multi-modal problems and establishes a good balance
between these two phases. The HPO algorithm presented
very competitive results compared to the well-known and
new optimization algorithms. To further evaluate, the
proposed algorithm was tested on nine real-world prob-
lems. The results showed that the proposed algorithm
provided better solutions to solve these problems, while
some algorithms were tested with better conditions. For
future work, the proposed algorithm can be used to solve
problems in different fields of study. The development of
binary and the multi-objective versions is also proposed.

Funding No funding is provided for the preparation of manuscript.

Data availability We used own data and we used own coding.

Declarations

Conflict of interest 1. Naruei, Dr. F. Keynia and A. Sabbagh Mola-
hosseini declared that they have no conflict of interest.

References

Aljarah I, Mafarja M, Heidari AA et al (2018) Asynchronous
accelerating multi-leader salp chains for feature selection. Appl
Soft Comput 71:964-979. https://doi.org/10.1016/j.asoc.2018.
07.040

Anita YA, Kumar N (2020) Artificial electric field algorithm for

engineering optimization problems. Expert Syst Appl
149:113308. https://doi.org/10.1016/j.eswa.2020.113308
Arora JS (2017) Introduction to optimum design. Elsevier,

Amsterdam

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-
rithm: An algorithm for optimization inspired by imperialistic
competition. In: 2007 IEEE Congress on Evolutionary Compu-
tation. IEEE, pp 4661-4667

Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem
definitions and evaluation criteria for the CEC 2017 special
session and competition on single objective real-parameter

@ Springer

numerical optimization. In: 2017 IEEE Congress on Evolution-
ary Computation (CEC)

Azizyan G, Miarnaeimi F, Rashki M, Shabakhty N (2019) Flying
squirrel optimizer (FSO): a novel Sl-based optimization algo-
rithm for engineering problems. Iran J Optim 11:177-205

Basturk B, Karaboga D (2006) An artificial bee colony (ABC)
algorithm for numeric function optimization. In: Proceedings of
the IEEE swarm intelligence symposium, Indianapolis, IN, USA.
In: May. pp 12-14

Berryman A (2002) Population cycles: the case for trophic interac-
tions. Oxford University Press, Oxford

Berryman AA (1992) The orgins and evolution of predator-prey
theory. Ecology 73:1530-1535. https://doi.org/10.2307/1940005

Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization
metaheuristics. Inf Sci (ny) 237:82-117. https://doi.org/10.1016/
j+ins.2013.02.041

Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new
metaheuristic ~ optimization algorithm. Comput Struct
139:98-112. https://doi.org/10.1016/j.compstruc.2014.03.007

Cdos Santos Coelho LS (2010) Gaussian quantum-behaved particle
swarm optimization approaches for constrained engineering
design problems. Expert Syst Appl 37:1676-1683. https://doi.
org/10.1016/j.eswa.2009.06.044

Coello Coello CA (2002) Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a survey
of the state of the art. Comput Methods Appl Mech Eng
191:1245-1287. https://doi.org/10.1016/S0045-7825(01)00323-
1

Colorni A, Dorigo M, Maniezzo V (1991) Distributed Optimization
by Ant Colonies. In: European Conference on artificial life.
Cambridge, MA, pp 134-142

Crawford B, Soto R, Astorga G et al (2017) Putting continuous
metaheuristics to work in binary search spaces. Complexity
2017:1-19. https://doi.org/10.1155/2017/8404231

Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on
the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1:3-18. https://doi.org/10.1016/j.swevo.
2011.02.002

Deuflhard P (2011) Newton methods for nonlinear problems.
Springer, Berlin

Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-
inspired algorithm for engineering problems. Knowledge-Based
Syst 159:20-50. https://doi.org/10.1016/j.knosys.2018.06.001

Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-
inspired based metaheuristic technique for engineering applica-
tions. Adv Eng Softw 114:48-70. https://doi.org/10.1016/j.
advengsoft.2017.05.014

Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on
new generation metaheuristic algorithms. Comput Ind Eng
137:106040. https://doi.org/10.1016/.cie.2019.106040

Dorigo M, Stiitzle T (2004) Ant Colony Optimization. Bradford
Company, Scituate, MA, USA

Eberhart R, Kennedy J (2002) A new optimizer using particle swarm
theory. In: MHS’95. In: Proceedings of the sixth international
symposium on micro machine and human science. IEEE,
pp 3943

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water
cycle algorithm—a novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput
Struct 110-111:151-166. https://doi.org/10.1016/j.compstruc.
2012.07.010

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through
simulated evolution. Wiley, Oxford

Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm:
a metaheuristic approach to solve structural optimization

https://doi.org/10.1016/j.asoc.2018.07.040
https://doi.org/10.1016/j.asoc.2018.07.040
https://doi.org/10.1016/j.eswa.2020.113308
https://doi.org/10.2307/1940005
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.eswa.2009.06.044
https://doi.org/10.1016/j.eswa.2009.06.044
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1155/2017/8404231
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.knosys.2018.06.001
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.compstruc.2012.07.010

Hunter—prey optimization: algorithm and applications

1313

problems. Eng Comput
s00366-011-0241-y

Gao C, Hu Z, Xiong Z, Su Q (2020) Grey prediction evolution
algorithm based on accelerated even grey model. IEEE Access
8:107941-107957. https://doi.org/10.1109/ACCESS.2020.
3001194

Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use
of non-parametric tests for analyzing the evolutionary algo-
rithms’ behaviour: a case study on the CEC’2005 Special
Session on Real Parameter Optimization. J Heuristics
15:617-644. https://doi.org/10.1007/s10732-008-9080-4

Gupta S, Deep K, Moayedi H et al (2020) Sine cosine grey wolf
optimizer to solve engineering design problems. Eng Comput.
https://doi.org/10.1007/s00366-020-00996-y

Han L, Ma Z, Hethcote HW (2001) Four predator prey models with
infectious diseases. Math Comput Model 34:849-858. https://
doi.org/10.1016/S0895-7177(01)00104-2

Hassan R, Cohanim B, de Weck O, Venter G (2005) A Comparison of
Particle Swarm Optimization and the Genetic Algorithm. In:
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. American Institute of
Aeronautics and Astronautics, Reston, Virigina

He Q, Wang L (2007a) An effective co-evolutionary particle swarm
optimization for constrained engineering design problems. Eng
Appl Artif Intell 20:89-99. https://doi.org/10.1016/j.engappai.
2006.03.003

He Q, Wang L (2007b) A hybrid particle swarm optimization with a
feasibility-based rule for constrained optimization. Appl Math
Comput 186:1407-1422. https://doi.org/10.1016/j.amc.2006.07.
134

Heidari AA, Ali Abbaspour R, Rezaee Jordehi A (2017) An efficient
chaotic water cycle algorithm for optimization tasks. Neural
Comput Appl 28:57-85. https://doi.org/10.1007/s00521-015-
2037-2

Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks
optimization: Algorithm and applications. Futur Gener Comput
Syst 97:849-872. https://doi.org/10.1016/j.future.2019.02.028

Hillier MS, Hillier FS (2003) Conventional optimization techniques.
In: Evolutionary optimization. Kluwer Academic Publishers,
Boston, pp 3-25

Holland JH (1967) Genetic algorithms understand genetic algorithms.
Surprise 96(1):12—15. https://doi.org/10.2307/24939139

Holland JH, Reitman JS (1977) Cognitive systems based on adaptive
algorithms. ACM SIGART Bull. https://doi.org/10.1145/
1045343.1045373

Houssein EH, Saad MR, Hashim FA et al (2020) Lévy flight
distribution: A new metaheuristic algorithm for solving engi-
neering optimization problems. Eng Appl Artif Intell 94:103731.
https://doi.org/10.1016/j.engappai.2020.103731

Huang F, Wang L, He Q (2007) An effective co-evolutionary
differential evolution for constrained optimization. Appl Math
Comput 186:340-356. https://doi.org/10.1016/j.amc.2006.07.
105

Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2018) Metaheuristic
research: a comprehensive survey. Artif Intell Rev. https://doi.
org/10.1007/s10462-017-9605-z

Jahangiri M, Hadianfard MA, Najafgholipour MA et al (2020)
Interactive autodidactic school: a new metaheuristic optimiza-
tion algorithm for solving mathematical and structural design
optimization problems. Comput Struct 235:106268. https://doi.
org/10.1016/j.compstruc.2020.106268

Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm
Algorithm: A new bio-inspired based metaheuristic paradigm for
global optimization. Eng Appl Artif Intell 90:103541. https://doi.
org/10.1016/j.engappai.2020.103541

29:17-35. https://doi.org/10.1007/

Kaveh A, Bakhshpoori T (2016) Water Evaporation Optimization: A
novel physically inspired optimization algorithm. Comput Struct
167:69-85. https://doi.org/10.1016/j.compstruc.2016.01.008

Kaveh A, Dadras A (2017) A novel meta-heuristic optimization
algorithm: Thermal exchange optimization. Adv Eng Softw
110:69-84. https://doi.org/10.1016/j.advengsoft.2017.03.014

Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin
echolocation. Adv Eng Softw 59:53-70. https://doi.org/10.1016/
j-advengsoft.2013.03.004

Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray
optimization. Comput Struct 112-113:283-294. https://doi.org/
10.1016/j.compstruc.2012.09.003

Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: A novel
meta-heuristic method. Comput Struct 139:18-27. https://doi.
org/10.1016/j.compstruc.2014.04.005

Kaveh A, Motie Share MA, Moslehi M (2013) Magnetic charged
system search: a new meta-heuristic algorithm for optimization.
Acta Mech 224:85-107. https://doi.org/10.1007/s00707-012-
0745-6

Kaveh A, Talatahari S (2010) A novel heuristic optimization method:
charged system search. Acta Mech 213:267-289. https://doi.org/
10.1007/s00707-009-0270-4

Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid
algorithm based on Water Cycle and Moth-Flame Optimization
algorithms for solving numerical and constrained engineering
optimization problems. Soft Comput 23:1699-1722. https://doi.
org/10.1007/s00500-017-2894-y

Krebs CJ (2009) Ecology: the experimental analysis of distribution
and abundance. Pearson Benjamin Cummings

Krohne DT (2000) Ie General Ecology. Cengage Learning, Inc

Kumar A, Wu G, Ali MZ et al (2020) A test-suite of non-convex
constrained optimization problems from the real-world and some
baseline results. Swarm Evol Comput 56:100693. https://doi.org/
10.1016/j.swev0.2020.100693

Mafarja M, Aljarah I, Heidari AA et al (2018a) Evolutionary
population dynamics and grasshopper optimization approaches
for feature selection problems. Knowl-Based Syst 145:25-45.
https://doi.org/10.1016/j.knosys.2017.12.037

Mafarja M, Aljarah I, Heidari AA et al (2018b) Binary dragonfly
optimization for feature selection using time-varying transfer
functions. Knowle-Based Syst 161:185-204. https://doi.org/10.
1016/j.knosys.2018.08.003

Manjarres D, Landa-Torres 1, Gil-Lopez S et al (2013) A survey on
applications of the harmony search algorithm. Eng Appl Artif
Intell 26:1818-1831. https://doi.org/10.1016/j.engappai.2013.05.
008

Masadeh R, Mahafzah BA, Sharieh A (2019) Sea Lion Optimization
Algorithm. Int] Adv Comput Sci Appl. https://doi.org/10.14569/
IJACSA.2019.0100548

Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving
optimization problems. Knowl-Based Syst 96:120-133. https://
doi.org/10.1016/j.knosys.2015.12.022

Mirjalili S (2015a) The ant lion optimizer. Adv Eng Softw 83:80-98.
https://doi.org/10.1016/j.advengsoft.2015.01.010

Mirjalili S (2015b) Moth-flame optimization algorithm: A novel
nature-inspired heuristic ~ paradigm. Knowl-Based Syst
89:228-249. https://doi.org/10.1016/j.knosys.2015.07.006

Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm
Algorithm: A bio-inspired optimizer for engineering design
problems. Adv Eng Softw 114:163-191. https://doi.org/10.1016/
j-advengsoft.2017.07.002

Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv
Eng Softw 95:51-67. https://doi.org/10.1016/j.advengsoft.2016.
01.008

Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer:
a nature-inspired algorithm for global optimization. Neural

@ Springer

https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1109/ACCESS.2020.3001194
https://doi.org/10.1109/ACCESS.2020.3001194
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1007/s00366-020-00996-y
https://doi.org/10.1016/S0895-7177(01)00104-2
https://doi.org/10.1016/S0895-7177(01)00104-2
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.amc.2006.07.134
https://doi.org/10.1016/j.amc.2006.07.134
https://doi.org/10.1007/s00521-015-2037-2
https://doi.org/10.1007/s00521-015-2037-2
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.2307/24939139
https://doi.org/10.1145/1045343.1045373
https://doi.org/10.1145/1045343.1045373
https://doi.org/10.1016/j.engappai.2020.103731
https://doi.org/10.1016/j.amc.2006.07.105
https://doi.org/10.1016/j.amc.2006.07.105
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1016/j.compstruc.2020.106268
https://doi.org/10.1016/j.compstruc.2020.106268
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.compstruc.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1016/j.knosys.2017.12.037
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008

1314

I. Naruei et al.

Comput Appl 27:495-513. https://doi.org/10.1007/s00521-015-
1870-7

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv
Eng Softw 69:46-61. https://doi.org/10.1016/j.advengsoft.2013.
12.007

Naruei I, Keynia F (2021a) Wild horse optimizer: a new meta-
heuristic algorithm for solving engineering optimization prob-
lems. Eng Comput. https://doi.org/10.1007/s00366-021-01438-z

Naruei I, Keynia F (2021b) A new optimization method based on
COOT bird natural life model. Expert Syst Appl 183:115352.
https://doi.org/10.1016/j.eswa.2021.115352

Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Meta-
heuristic optimization frameworks: a survey and benchmarking.
Soft Comput 16:527-561. https://doi.org/10.1007/s00500-011-
0754-8

Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft
Comput 11:5508-5518. https://doi.org/10.1016/j.asoc.2011.05.
008

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravita-
tional search algorithm. Inf Sci (ny) 179:2232-2248. https://doi.
org/10.1016/j.ins.2009.03.004

Rizk-Allah RM (2018) An improved sine—cosine algorithm based on
orthogonal parallel information for global optimization. Soft
Comput. https://doi.org/10.1007/s00500-018-3355-y

Salimi H (2015) Stochastic Fractal Search: A powerful metaheuristic
algorithm. Knowl-Based Syst 75:1-18. https://doi.org/10.1016/j.
knosys.2014.07.025

Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation
algorithm: theory and application. Adv Eng Softw 105:30-47.
https://doi.org/10.1016/j.advengsoft.2017.01.004

Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel
metaheuristic algorithm. Appl Math Model 40:3951-3978.
https://doi.org/10.1016/j.apm.2015.10.040

Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic multi-
verse optimization algorithm for solving engineering optimiza-
tion problems. J Exp Theor Artif Intell 30:293-317. https://doi.
org/10.1080/0952813X.2018.1430858

Sharma TK, Abraham A (2020) Artificial bee colony with enhanced
food locations for solving mechanical engineering design
problems. J Ambient Intell Humaniz Comput 11:267-290.
https://doi.org/10.1007/s12652-019-01265-7

Shen L, Chen H, Yu Z et al (2016) Evolving support vector machines
using fruit fly optimization for medical data classification.
Knowl-Based Syst 96:61-75. https://doi.org/10.1016/j.knosys.
2016.01.002

Simon D (2008) Biogeography-based optimization. IEEE Trans Evol
Comput 12:702-713. https://doi.org/10.1109/TEVC.2008.
919004

Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms
compared to other techniques for pipe optimization.] Water
Resour Plan Manag 120:423-443. https://doi.org/10.1061/
(ASCE)0733-9496(1994)120:4(423)

Spall JC (2003) Introduction to stochastic search and optimization.
Wiley, Hoboken

@ Springer

Storn R, Price K (1995) Differential Evolution- A Simple and
Efficient Adaptive Scheme for Global Optimization over Con-
tinuous Spaces. Tech Rep TR-95-012 11:1-12. https://doi.org/
10.1023/A:1008202821328

Talbi E-G (2009) Metaheuristics: from design to implementation.
Wiley, Hoboken

Turchin P (2003) Complex population dynamics: a theoretical/
empirical synthesis. Princeton University Press, Princeton

van den Bergh F, Engelbrecht AP (2006) A study of particle swarm
optimization particle trajectories. Inf Sci (Ny) 176:937-971.
https://doi.org/10.1016/j.ins.2005.02.003

Wang M, Chen H, Yang B et al (2017) Toward an optimal kernel
extreme learning machine using a chaotic moth-flame optimiza-
tion strategy with applications in medical diagnoses. Neurocom-
puting 267:69—-84. https://doi.org/10.1016/j.neucom.2017.04.060

Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1:67-82. https://doi.org/
10.1109/4235.585893

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster.
IEEE Trans Evol Comput 3:82-102. https://doi.org/10.1109/
4235771163

Yang X-S, Deb S (2009) Cuckoo Search via Lévy flights. In: 2009
World Congress on Nature & Biologically Inspired Computing
(NaBIC). IEEE, pp 210-214

Yang X-S, Deb S (2010) Engineering Optimisation by Cuckoo Search

Yang X, Hossein Gandomi A (2012) Bat algorithm: a novel approach
for global engineering optimization. Eng Comput 29:464-483.
https://doi.org/10.1108/02644401211235834

Yang XS (2010) Firefly algorithm, stochastic test functions and
design optimisation. Int J Bio-Inspired Comput 2:78. https://doi.
org/10.1504/1JBIC.2010.032124

Yu C, Heidari AA, Chen H (2020) A quantum-behaved simulated
annealing algorithm-based moth-flame optimization method.
Appl Math Model 87:1-19. https://doi.org/10.1016/j.apm.2020.
04.019

Zhang M, Luo W, Wang X et al (2008) Differential evolution with
dynamic stochastic selection for constrained optimization. Inf
Sci Int J 178(15):3043-3074. https://doi.org/10.1016/j.ins.2008.
02.014

Zhang Q, Chen H, Luo J et al (2018) Chaos Enhanced Bacterial
Foraging Optimization for Global Optimization. IEEE Access
6:64905-64919. https://doi.org/10.1109/ACCESS.2018.2876996

Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based
optimization: a novel nature-inspired meta-heuristic algorithm.
Neural Comput Appl 32:9383-9425. https://doi.org/10.1007/
s00521-019-04452-x

Zhou A, Qu B-Y, Li H et al (2011) Multiobjective evolutionary
algorithms: A survey of the state of the art. Swarm Evol Comput
1:32-49. https://doi.org/10.1016/j.swevo.2011.03.001

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00366-021-01438-z
https://doi.org/10.1016/j.eswa.2021.115352
https://doi.org/10.1007/s00500-011-0754-8
https://doi.org/10.1007/s00500-011-0754-8
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s00500-018-3355-y
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.apm.2015.10.040
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1007/s12652-019-01265-7
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.771163
https://doi.org/10.1109/4235.771163
https://doi.org/10.1108/02644401211235834
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1016/j.apm.2020.04.019
https://doi.org/10.1016/j.apm.2020.04.019
https://doi.org/10.1016/j.ins.2008.02.014
https://doi.org/10.1016/j.ins.2008.02.014
https://doi.org/10.1109/ACCESS.2018.2876996
https://doi.org/10.1007/s00521-019-04452-x
https://doi.org/10.1007/s00521-019-04452-x
https://doi.org/10.1016/j.swevo.2011.03.001

	Hunter--prey optimization: algorithm and applications
	Abstract
	Introduction
	Related works
	Hunter--prey optimization algorithms
	Inspiration
	Mathematical model and algorithm
	Assumptions of the HPO algorithm
	Computational complexity analysis

	Results and discussion
	Experimental setup
	Convergence analysis of the proposed HPO algorithm
	HPO algorithm exploitation analysis
	HPO algorithm exploration analysis
	Scalability analysis of the HPO algorithm
	The performance of the hunter and prey optimizer on the CEC2017

	Performance of HPO algorithm on constrained problems
	Three-bar truss design problem
	Speed reducer design problem
	Cantilever beam design problem
	Welded beam design
	Tension/Compression spring design problem
	Step-cone pulley problem
	Multiple disk clutch brake
	Pressure vessel design
	Rolling element bearing design problem

	Conclusion
	Data availability
	References

