
OPTIMIZATION

Hunter–prey optimization: algorithm and applications

Iraj Naruei1 • Farshid Keynia2 • Amir Sabbagh Molahosseini1

Accepted: 4 October 2021 / Published online: 1 December 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This paper proposes a new population-based optimization algorithm called hunter–prey optimizer (HPO). This algorithm is

inspired by the behavior of predator animals such as lions, leopards and wolves, and preys such as stag and gazelle. There

are many scenarios of animal hunting behavior, and some of them have transformed into optimization algorithms. The

scenario used in this paper is different from the scenario of the previous algorithms. In the proposed approach, a prey and

predator population, and a predator attacks a prey that moves away from the prey population. The hunter adjusts his

position toward this far prey, and the prey adjusts his position toward a safe place. The search agent’s position that was the

best value of the fitness function considered a safe place. The HPO algorithm implemented on several test functions to

evaluate its performance. Also, to performance verification, the proposed algorithm is applied to several engineering

problems. The results showed that the proposed algorithm performed effective in solving test functions and engineering

problems.

Keywords Hunter–Prey Optimizer � HPO Algorithm � Optimization � Meta-heuristic � Optimizer

1 Introduction

Optimization refers to the process of finding optimal values

for the parameters of a given system from all the possible

values to maximize or minimize its output (Mirjalili 2016).

Optimization problems can be found in various fields

which makes optimization methods essential, and provides

an exciting research direction for researchers (Hussain

et al. 2018). Optimization algorithms are an effective field

of research with exceedingly important improvements in

the resolve of intractable optimization problems. Signifi-

cant advances have been made since the first algorithm was

proposed, and many new algorithms are still being pro-

posed (Dokeroglu et al. 2019). Conventional optimization

methods such as the Newton method (Deuflhard 2011) and

quadratic programming (Hillier and Hillier 2003) have

problems such as local optimization stagnation and the

need to derive the search space (Simpson et al. 1994).

Stochastic optimization methods have become popular in

the last two decades (Spall 2003; Parejo et al. 2012;

Boussaı̈d et al. 2013). A meta-heuristic algorithm is an

algorithmic framework that can be applied to various

optimization problems with slight modifications. The use

of meta-algorithms significantly increases the ability to find

high-quality solutions to hybrid optimization problems. In

other words, a meta-heuristic algorithm is a heuristic

method that can search the search space to find high-quality

answers. The meta-algorithms’ common goal is to solve the

well-known challenging optimization problems (Dorigo

and Stützle 2004). Meta-heuristic methods have the fol-

lowing common characteristics (Crawford et al. 2017):

• These methods are somewhat probabilistic. This

approach avoids placing the algorithm in the optimal

local trap.

• A meta-heuristic is a high-level strategy that guides a

heuristic search process.

& Farshid Keynia

f.keynia@kgut.ac.ir

Iraj Naruei

irajnaruei@iauk.ac.ir

Amir Sabbagh Molahosseini

sabbagh@iauk.ac.ir

1 Department Engineering, Kerman Branch, Islamic Azad

University, Kerman, Iran

2 Department of Energy Management and Optimization,

Institute of Science and High Technology and Environmental

Sciences, Graduate University of Advanced Technology,

Kerman, Iran

123

Soft Computing (2022) 26:1279–1314
https://doi.org/10.1007/s00500-021-06401-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9027-7315
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06401-0&domain=pdf
https://doi.org/10.1007/s00500-021-06401-0

• The goal is to efficiently explore the search space in

order to find (close to) optimal solutions.

• Meta-heuristics are not problem-special.

• The basic concepts of meta-heuristics permit an abstract

level of description.

• Meta-heuristic algorithms are approximate and gener-

ally nondeterministic.

• One of the common disadvantages in these methods is

the difficulty of adjusting and matching of parameters.

Different criteria are used to classify meta-heuristic

algorithms (Talbi 2009). In general, meta-heuristic algo-

rithms are divided into two categories: one-solution-based

algorithms and population-based algorithms (Boussaı̈d

et al. 2013). A one-solution-based algorithm changes a

solution during the search process (Fig. 1), whereas in the

population-based algorithms, a population of solutions is

considered (Fig. 2). The characteristics of these two types

of algorithms are complementary to each other. One-so-

lution-based meta-heuristic algorithms can focus on local

search areas. In contrast, population-based meta-heuristic

algorithms can lead the search to different solution space

regions (Zhou et al. 2011).

Population-based optimization methods are inspired by

human phenomena, collective intelligence, evolutionary

concepts and physical phenomena (Shen et al. 2016; Wang

et al. 2017; Zhang et al. 2018; Rizk-Allah 2018). Many

studies have tried to classify optimization algorithms based

on their type of inspiration. Figure 3 shows a type of this

classification. The algorithms start with a random initial

population (Heidari et al. 2017; Mafarja et al. 2018a), and

this population is directed to the optimal areas in the search

space by search mechanisms (Aljarah et al. 2018; Mafarja

et al. 2018b). The search process involves two stages of

exploration and exploitation. The well-designed algorithm

and enriched random nature should explore different parts

of the search space at the exploration stage. The

exploitation stage is usually performed after the explo-

ration phase. The algorithm focuses on good solutions and

improves the search operation by searching around these

right solutions in this stage. A good algorithm should

balance the two steps to prevent premature convergence or

belated convergence. The structure of optimization algo-

rithms is almost similar, and their main difference is in how

the exploration and exploitation phases are performed.

How to balance the exploration and operation phases is

another indicator that differentiates the performance of

algorithms.

2 Related works

This section introduces a number of popular optimization

algorithms. These methods include genetic algorithms

(GA) (Holland 1967; Holland and Reitman 1977), evolu-

tionary programming(EP) (Fogel et al. 1966; Xin Yao et al.

1999), particle swarm optimization (PSO) (Eberhart and

Kennedy 2002), ant colony optimization (ACO) (Colorni

et al. 1991), differential evolution (DE) (Storn and Price

1995) and harmony search (HS) (Manjarres et al. 2013).

Although these algorithms can solve many real and chal-

lenging problems, there are still issues that these algorithms

have not been able to solve. Therefore, an algorithm can

help solve one set of problems, but it is ineffective in

another set of problems. Some of the new algorithms are

gray wolf optimizer (GWO) (Mirjalili et al. 2014), artificial

bee colony (ABC) algorithm (Basturk and Karaboga 2006),

firefly algorithm (FA) (Yang 2010), imperialist competitive

algorithm (ICA) (Atashpaz-Gargari and Lucas 2007),

cuckoo search algorithm (CS) (Yang and Suash Deb 2009;

Yang and Deb 2010; Rajabioun 2011), gravitational search

algorithm (GSA) (Rashedi et al. 2009), charged system

search (CSS) (Kaveh and Talatahari 2010), magnetic

Fig. 1 One-solution-based meta-heuristic algorithm

1280 I. Naruei et al.

123

charged system search (Kaveh et al. 2013), thermal

exchange optimization (TEO) (Kaveh and Dadras 2017),

ray optimization (RO) algorithm (Kaveh and Khayatazad

2012), colliding bodies optimization (CBO) (Kaveh and

Mahdavi 2014), sea lion optimization algorithm (SLOA)

(Masadeh et al. 2019), Biogeography-based optimizer

(BBO) (Simon 2008), dolphin echolocation (DE) (Kaveh

and Farhoudi 2013) and bat algorithm (BA) (Yang and

Hossein Gandomi 2012). The ant lion optimizer (ALO)

algorithm mimics the hunting mechanism of ant lions

(Mirjalili 2015a). The whale optimization algorithm

(WOA) is inspired by the social behavior of humpback

whales and mimics the bubble-net hunting method (Mir-

jalili and Lewis 2016). The Harris hawks optimizer (HHO)

mimics the cooperative behavior, and chasing style of

Harris’ hawks in nature called surprise pounce (Heidari

et al. 2019). The Lévy flight distribution (LFD) algorithm

mimics the Lévy flight random walk to find the optimal

solution (Houssein et al. 2020). The tunicate swarm algo-

rithm (TSA) is inspired by the swarm behaviors of tuni-

cates and jet propulsion during the food search and

navigation process (Kaur et al. 2020). The wild horse

optimizer (WHO) algorithm mimics the social life behavior

of wild horses (Naruei and Keynia 2021a).

In recent years, many optimization methods have been

proposed. The question now arises why, in spite of these

algorithms, it is still necessary to provide new algorithms

or improve previous algorithms. This question can be

Fig. 2 Population-based meta-heuristic algorithm

Fig. 3 Categorization of meta-

heuristic algorithms

Hunter–prey optimization: algorithm and applications 1281

123

answered by referring to the No Free Lunch (NFL) theory

(Wolpert and Macready 1997). The NFL theorem logically

proves that no one can present an algorithm that can solve

all problems of optimization. According to this theorem, it

can be concluded that the ability of an optimization algo-

rithm to solve a specific set of issues does not guarantee

that the algorithm is able to solve other problems. There-

fore, all optimizers act on average considering all opti-

mization problems despite higher performance in a subset

of optimization issues. The NFL theorem allows

researchers to suggest new optimization methods or

improve existing methods to solve a subset of problems in

different fields. This theory motivated us to propose a novel

optimization method to solve challenging problems in this

area.

This paper proposes a new population-based optimiza-

tion algorithm called the hunter–prey optimization algo-

rithm. This algorithm mimics the behavior of hunters such

as lions, leopards, wolves and prey such as deer, stag,

gazelle with a different scenario than the previously pro-

posed algorithms in this field.

The rest of the paper is as follows. Section 3 provides

the inspiration and scenario for this work and proposes the

HPO algorithm. In Sect. 4, the results of the proposed

method on different test functions are presented. In Sect. 5,

the performance of the proposed algorithm for solving real-

world problems was evaluated. Finally, conclusions and

possible new researches are presented in Sect. 6.

3 Hunter–prey optimization algorithms

In this part, first, the inspiration and hunting scenario of

HPO algorithm is explained, and then the mathematical

model and HPO algorithm are described in detail.

3.1 Inspiration

Nature inspiration may be a good idea to solve problems.

In nature, organisms interact with each other in different

ways (Han et al. 2001; Krebs 2009). One of these inter-

actions can occur between hunter and prey behavior.

Hunter–prey cycles are one of the most remarkable

observations in population biology, and thus, serious

debate is taking place among ecologists (Berryman 2002;

Turchin 2003). There are many scenarios of how animals

hunt. Some of these scenarios have been converted into

optimization algorithms. The scenario considered in this

paper is different from others scenarios. Our scenario is

that the hunter searches for prey, and since prey is usually

swarmed, the hunter chooses a prey that is far from the

swarm (average herd position). After the hunter finds his

prey, he chases and hunts it. At the same time, the prey

searches for food and escapes in a predator attack and

reaches a safe place (Berryman 1992; Krohne 2000). We

consider this safe place as the place of the best prey in

terms of a fitness function. Figure 4 illustrates these

behaviors.

3.2 Mathematical model and algorithm

As mentioned in the previous section, the general structure

of all optimization techniques is the same. First, the initial

population is randomly set to ðx~Þ ¼ fx~1; x~2; :::x~ng, and then

the objective function is computed as ðO~Þ ¼
fO1;O2; :::Ong for all members of the population. The

population is controlled and directed in the search space

using a series of rules and strategies inspired by the pro-

posed algorithm. This process is repeated until the algo-

rithm is stopped. In each iteration, the position of each

member of the population is updated according to the rules

of the proposed algorithm, and the new position is evalu-

ated with the objective function. This process causes the

solutions to improve with each iteration. The position of

Fig. 4 Hunter behavior (left image a), prey behaviors (right image b) and next position adjustment

1282 I. Naruei et al.

123

each member of the initial population is randomly gener-

ated in the search space by Eq. (1)

xi ¼ randð1; dÞ: � ðub� lbÞ þ lb ð1Þ

where Xi is the hunter position or prey, lb is the minimum

value for the problem variables (lower boundary), ub is the

maximum value for the problem variables (upper bound-

ary), and d is the number of variables (dimensions) of the

problem. Equation (2) defines the lower boundary and the

upper boundary of the search space. It should be noted that

a problem may have the same or different lower and upper

bounds for all its variables.

lb ¼ ½lb1; lb2; :::; lbd�; ub ¼ ½ub1; ub2; :::; ubd� ð2Þ

After generating the initial population and determining

each agent’s position, each solution’s fitness is calculated

using Oi ¼ f ðx~Þ, the objective function. F (x) can be

maximum (efficiency, performance, etc.) or minimum

(cost, time, etc.). Calculating the fitness function determi-

nes which solution is good or bad, but we do not achieve

the optimal solution with a single run. A search mechanism

must be defined and repeated several times to guide the

search agents to the optimal position. The search mecha-

nism usually involves two steps: exploration and

exploitation. Exploration refers to the algorithm’s tendency

to highly random behaviors so that solutions change sig-

nificantly. The significant changes in solutions cause fur-

ther exploration of the search space and discover its

promising areas. After promising regions have been found,

random behaviors must be reduced so that the algorithm

can search around the promising regions, and this refers to

exploitation. For the hunter search mechanism, we propose

Eq. (3)

xi;jðt þ 1Þ ¼ xi;jðtÞ þ 0:5 ð2CZPposðjÞ � xi;jðtÞÞ
�

þð2ð1 � CÞZlðjÞ � xi;jðtÞÞ
i
:

ð3Þ

Equation (3) updates the hunter position, where x (t) is

the current hunter position, x (t ? 1) is the hunter next

position, Ppos is the prey position, l is the mean of all

positions, and Z is an adaptive parameter calculated by

Eq. (4)

Fig. 5 Z parameter structure. R2 is random vector (for example: [0.82, 0.19, 0.72, 0.25, 0.11 and 0.66]) and R3 is random number (for example:

with value 0.51). (j is the length of the dimension with value 6)

Hunter–prey optimization: algorithm and applications 1283

123

P ¼ R~1\C ; IDX ¼ ðP ¼¼ 0Þ;
Z ¼ R2 � IDX þ R~3 � ð� IDXÞ

ð4Þ

where R~1 and R~3 are random vectors in the range [0,1], P is

a random vector with values 0 and 1 equal to the number of

problem variables, R2 is a random number in the range

[0,1], and IDX is the index numbers of the vector R~1 which

satisfies the condition (P = = 0). The structure of param-

eter Z and its relationship with parameter C is shown in

Fig. 5. It should be noted that Fig. 5 is just an example for

the reader to understand. Numbers are random, and their

value and order change in each iteration.

C is the balance parameter between exploration and

exploitation, whose value decreases from 1 to 0.02 over the

course of iterations. C is calculated as follows:

C ¼ 1 � it
0:98

MaxIt

� �
ð5Þ

where it is the current iteration value and MaxIt is the

maximum number of iterations. As shown in Fig. (4a), the

position of the prey (Ppos) is calculated so that we first

calculate the average of all positions (l) based on Eq. (6)

and then the distance of each of the search agents from this

mean position

l ¼ 1

n

Xn

i¼1

x~i: ð6Þ

We calculate the distance based on Euclidean distance

according to Eq. (7)

DeucðiÞ ¼
Xd

j¼1

ðxi;j � ljÞ2

 !1
2

: ð7Þ

According to Eq. (8), the search agent with the maxi-

mum distance from the mean of positions is considered

prey (Ppos)

P~pos ¼ x~iji is index of MaxðendÞsortðDeucÞ: ð8Þ

If we always consider the search agent with the maxi-

mum distance from the average position (l) in each itera-

tion, the algorithm will have late convergence. According

to the hunting scenario, when the hunter takes the prey, the

prey dies, and the next time, the hunter moves to the new

prey. To solve this problem, we consider a decreasing

mechanism as Eq. (9)

kbest ¼ roundðC � NÞ ð9Þ

where N is the number of search agents.

Now, we change Eq. (8) and calculate the prey position

as Eq. (10)

P~pos ¼ x~iji is sorted DeucðkbestÞ: ð10Þ

Figure 6 shows how to calculate Kbest and select prey

(Ppos) during algorithm running. At the beginning of the

algorithm, the value of Kbest is equal to N (number of

search agents). Therefore, the last search agent that is

Fig. 6 How to calculate Kbest
and select prey (Ppos) during

algorithm running

1284 I. Naruei et al.

123

farthest from the search agents’ average position (l) is

selected as prey and attacked by the hunter. As shown in

Fig. 6, the Kbest value gradually decreases so that at the

end of the algorithm, the Kbest value equals the first search

agent (the shortest distance from the average position of the

search agents (l)). It should be mentioned that the search

agents are sorted in each iteration based on the distance

from the search agents’ average position (l).

As shown in Fig. 4b, when prey is attacked, it tries to

escape and reach its safe place.

We assume that the best safe position is the optimal

global position because it will give the prey a better chance

of survival, and the hunter may choose another prey.

Equation (6) is proposed to update the prey position

xi;jðt þ 1Þ ¼ TposðjÞ þ CZ cosð2pR4Þ � ðTposðjÞ � xi;jðtÞÞ
ð11Þ

where x (t) is the current position of the prey, x (t ? 1) is

the next position of the prey, Tpos is the optimum global

Fig. 7 Flowchart of the hunter–

prey optimization

Hunter–prey optimization: algorithm and applications 1285

123

position, Z is an adaptive parameter calculated by Eq. (4),

and R4 is a random number in the range [-1, 1]. C is the

balance parameter between exploration and exploitation,

whose value decreases during the algorithm’s iteration. It is

calculated according to Eq. (5). The COS function and its

input parameter allow the next prey position to be posi-

tioned at global optimum different radials and angles and

increase the exploitation phase’s performance.

The question that arises here is how to choose the hunter

and prey in this algorithm.

To answer this question, we combine Eqs. (3) and (11)

as Eq. (12)

where R5 is a random number in the range [0, 1], and b is a

regulatory parameter whose value in this study is set to 0.1.

If the R5 value is smaller than b, the search agent is con-

sidered a hunter, and the next position of the search agent is

updated with Eq. (12a); if the R5 value is larger than b, the

search agent will be considered prey, and the next position

of the search agent will be updated with Eq. (12b). The

flowchart of the proposed algorithm is shown in Fig. 7.

Table 1 Unimodal benchmark

functions
Function Dim Range fMIN

f1ðxÞ ¼
Pn

i¼1 x
2
i

30 [- 100,100] 0

f2ðxÞ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j 30 [- 10,10] 0

f3ðxÞ ¼
Pn

i¼1

Pi
j�1 xj

� �2 30 [- 100,100] 0

f4ðxÞ ¼ max xij j; 1	 i	 nf g 30 [- 100,100] 0

f5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� 30 [- 30,30] 0

f6ðxÞ ¼
Pn

i¼1 xi þ 0:5½ �ð Þ2 30 [- 100,100] 0

f7ðxÞ ¼ max xij j; 1	 i	 nf g 30 [- 1.28,1.28] 0

Table 2 Multi-modal benchmark functions

Function Dim range Fmin

F8ðxÞ ¼
Pn

i¼1 �xi sinð
ffiffiffiffiffiffi
xij j

p
Þ 30 [- 500,500] - 418.9829*5

F9ðxÞ ¼
Pn

i¼1 ½x2
i � 10 cosð2pxiÞ þ 10� 30 [- 5.12,5.12] 0

F10ðxÞ ¼ �20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q
Þ � expð1

n

Pn
i¼1 cosð2pxiÞÞ þ 20 þ e 30 [- 32,32] 0

F11ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cosð xiffi

i
p Þ þ 1 30 [- 600,600] 0

F12ðxÞ ¼
p
n

10 sinðpy1Þ þ
Xn�1

i¼1
ðyi � 1Þ2½1 þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2

n o

þ
Xn

i¼1
uðxi; 10; 100; 4Þ þ

Xn

i¼1
uðxi; 10; 100; 4Þ yi ¼ 1 þ xi þ 1

4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [a

0 � a\xi\a

kð�xi � aÞm xi\� a

8
><

>:

9
>=

>;

30 [- 50,50] 0

F13ðxÞ ¼ 0:1fsin2ð3px1Þ þ
Xn

i¼1
ðxi � 1Þ2½1 þ sin2ð3pxi þ 1Þ�

þðxn � 1Þ2½1 þ sin2ð2pxnÞ�g þ
Xn

i¼1
uðxi; 5; 100; 4Þ

30 [- 50,50] 0

xiðt þ 1Þ ¼ xiðtÞ þ 0:5 ð2CZPpos � xiðtÞÞ þ ð2ð1 � cÞZl� xiðtÞÞ
� �

if R5\b ð13aÞ
Tpos þ CZ cosð2pR4Þ � ðTpos � xiðtÞÞ else ð13bÞ

	
ð12Þ

1286 I. Naruei et al.

123

3.3 Assumptions of the HPO algorithm

Theoretically, the proposed HPO algorithm can provide

suitable solutions to various problems for the following

reasons:

• Exploring the search space by selecting the farthest

search agent relative to the average search agent’s

position as prey.

• Exploring the search space is guaranteed by the random

selection of hunter and prey and hunters’ random

movements around the prey.

• Due to random movements and random selection of

hunter and prey, the probability of getting stuck in a

local optimal is low.

• The prey selection mechanism with the highest prey

distance from the average search agent position is

adaptively reduced during the iterations, ensuring both

algorithm convergence and HPO algorithm

exploitation.

• The severity of the hunter and prey movement during

the iterations is reduced by the adaptive parameter,

ensuring the HPO algorithm’s convergence.

• During optimization, the hunter gradually moves

toward the best prey position, and the balance between

the exploration and exploitation phases is maintained.

• The calculation of the adaptive parameter and the

random parameter for each hunter and prey in each

dimension increases the population diversity.

• Each search agent (hunter or prey) in each iteration is

compared with the best solution obtained so far, and the

best solution is stored.

• The hunter directs the prey to promising positions in the

search space.

• The HPO algorithm is a non-gradient approximation

algorithm that treats the problem as a black box.

• The number of adjustment parameters of HPO algo-

rithm is few, and some parameters are adjusted

adaptively.

3.4 Computational complexity analysis

In general, the complexity of calculating the HPO algo-

rithm depends on four components, namely initialization,

updating of the hunter, updating prey and fitness evalua-

tion. Note that with N search agents, the initialization

process’s computational complexity is O (N). The com-

putational complexity of the update process is O(T 9

N) ? O((1-b) 9 T 9 N 9 D) ? O(b 9 T 9 N 9 D),

which includes updating the position vector of all prey and

hunters to find the best optimal position. The computational

complexity of the update process is O (T 9 N) ? O ((1-

b) 9 T 9 N 9 D) ? O (b 9 T 9 N 9 D), T denotes the

maximum number of iterations, D denotes the number of

problem variables, and b is a regulatory parameter whose

value in this study is set to 0.1. Therefore, the total com-

plexity of HPO is O (N 9 (T ? (1-b) TD ? bTN ? 1)).

Table 3 Set parameters of

algorithms
Algorithm Parameter Value

HPO C

b

2[1,0.02]

0.1

PSO Social and cognitive coefficient

Inertial coefficient

C1 = 2, C2 = 2

Adaptively decreases from 0.9 to 0.4

WOA a

a2

2[0,2]

2[- 1, - 2]

HHO b

E0

1.5

2[- 1, - 1]

TSA Pmin

Pmax

1

4

LFD Threshold

CSV

b

a1,a2,a3

o1,o2

2

0.5

1.5

10,0.00005,0.005

0.9,0.1

ALO r(t) 2[0,1]

Hunter–prey optimization: algorithm and applications 1287

123

4 Results and discussion

In this section, the HPO algorithm is evaluated on 43 test

functions. The HPO has been compared to advanced

swarm-based optimization algorithms. In general, bench-

mark functions can be divided into four groups such as

unimodal, multi-modal, hybrid functions and composition

function. The first 13 benchmark functions are the classical

functions used by many researchers (Mirjalili 2016; Saremi

et al. 2017). From these 13 classical functions, the first

seven are unimodal, and the second six are multi-modal.

The unimodal functions (f1–f7) are suitable for determin-

ing algorithms’ exploitation because they have a global

optimum and no local optimum. Multi-modal functions

(f8–13) have many local optimal and are useful for

examining the exploration and avoiding the algorithms’

local optimal. These benchmark functions are given in

Tables 1 and 2, where DIM represents the dimensions of

the function, RANGE is the boundary of the function’s

search space, and FMIN is the optimal value. The hybrid

and composite functions are a combination of different

unimodal and multi-modal test functions, rotary and dis-

placement, from the CEC2017 session (Awad et al. 2017).

These functions’ search space is very challenging; they are

very similar to real search spaces and are useful for eval-

uating algorithms in terms of the balance of exploration

and exploitation. To further evaluate the proposed algo-

rithm, the HPO algorithm is implemented on nine real

engineering problems such as rolling element bearing

problem, reducer design problem, cantilever beam design,

multi-plate disk clutch brake, welded beam, three-bar truss,

step-cone pulley problem, pressure vessel designs and

tension/compression spring. For justly comparison, the

algorithm runs 30 times. The Wilcoxon statistical test will

examine the null hypothesis that two populations are equal

from the same distribution. The similarity objective can be

used to determine whether two sets of solutions are sta-

tistically different. The result obtained by using the Wil-

coxon statistical test is a parameter called p-value, which

Fig. 8 Convergence behavior and search history of the proposed HPO algorithm

1288 I. Naruei et al.

123

measures the significance level of the algorithms. In other

words, if the p-value is less than 0.05, the two algorithms

are statistically significant. A nonparametric Wilcoxon

statistical test was performed on 30 runs to obtain statis-

tically significant conclusions. Such statistical tests should

be performed considering the meta-heuristic algorithms’

random nature (Garcı́a et al. 2009; Derrac et al. 2011).

4.1 Experimental setup

The experimentations were run on a PC with a Windows 10

64-bit professional and 12 GB RAM. The algorithms were

implemented by MATLAB R2017b. The maximum itera-

tion and population size in all methods are 500 and 30,

respectively. For a fair comparison, all methods are run 30

times independently and then compared based on statistical

indicators such as minimum, maximum, average and

standard deviation. To verify performance, the proposed

algorithm is compared with famous and new algorithms

including Harris hawks optimizer, particle swarm opti-

mization, ant lion optimizer, whale optimization algorithm,

Lévy flight distribution and tunicate swarm algorithm. The

parameters of the algorithms are set according to Table 3.

4.2 Convergence analysis of the proposed HPO
algorithm

In optimization techniques, the search agents have sudden

and abrupt movements at the beginning of the search

process (exploration) and gradually shrinking their motions

(exploitation) (van den Bergh and Engelbrecht 2006).

Figure 8 shows the convergence behavior of the proposed

Table 4 Results for the unimodal test functions

Function PSO WOA ALO LFD TSA HHO HPO

F1 min 4.1929e-08 9.1868e-86 2.0758e-04 1.5743e-07 1.5625e-23 9.6839e-117 1.3483e-186

max 4.3606e-05 1.3513e-72 0.0036 5.3000e-07 3.8843e-20 3.0576e-92 1.1673e-167

avg 2.7368e-06 7.2644e-74 0.0010 3.1904e-07 3.5086e-21 1.1030e-93 3.8960e-169

std 7.8979e-06 2.6139e-73 8.3478e-04 7.0385e-08 7.5860e-21 5.5816e-93 0

F2 min 8.7537e-05 7.9595e-56 0.8653 2.2253e-04 1.0225e-14 4.0014e-60 4.2018e-99

max 0.0228 1.8836e-49 129.1467 5.0105e-04 1.0057e-12 7.4750e-48 6.0415e-91

avg 0.0023 1.2605e-50 43.2560 3.3647e-04 1.1593e-13 2.5192e-49 2.9108e-92

std 0.0042 3.9289e-50 47.8404 6.0363e-05 1.8668e-13 1.3643e-48 1.1177e-91

F3 min 48.6588 1.5867e ? 04 657.0275 5.0909e-07 1.4390e-07 6.0866e-102 2.4279e-161

max 676.5631 8.5120e ? 04 1.2392e ? 04 2.8215e-06 0.0059 5.4466e-70 2.0432e-142

avg 236.4627 4.6712e ? 04 4.4373e ? 03 1.3700e-06 6.1660e-04 1.8158e-71 6.8323e-144

std 147.1275 1.5757e ? 04 2.5847e ? 03 5.0401e-07 0.0013 9.9440e-71 3.7299e-143

F4 min 1.0616 0.8494 8.2454 2.8538e-04 0.0049 6.0051e-57 2.4541e-83

max 4.5613 89.0149 35.5695 4.7177e-04 1.3984 3.4493e-46 8.2385e-76

avg 2.6549 47.0941 16.6688 3.4946e-04 0.3257 1.3491e-47 5.4057e-77

std 0.9912 28.9341 5.2473 4.5172e-05 0.3510 6.3104e-47 1.6203e-76

F5 min 8.7916 27.2605 26.2370 27.8536 26.1806 7.1629e-07 22.8180

max 193.4814 28.7582 2.0738e ? 03 28.2583 30.3516 0.0895 25.9952

avg 48.5377 28.0400 330.3476 28.0628 28.3860 0.0171 23.7090

std 41.4386 0.4365 535.2123 0.1291 0.8620 0.0223 0.7436

F6 min 6.8884e-08 0.0846 1.9036e-04 0.8371 2.8156 7.7275e-07 6.3266e-10

max 1.3346e-05 1.1841 0.0027 2.1610 5.3077 9.4810e-04 2.2300e-06

avg 1.5340e-06 0.3742 0.0012 1.7965 3.8706 1.2635e-04 1.2538e-07

std 2.7959e-06 0.2228 7.4550e-04 0.3084 0.6509 2.3701e-04 4.1350e-07

F7 min 0.0118 1.4784e-04 0.1053 0.2353 0.0037 1.7007e-06 9.1589e-06

max 0.0522 0.0200 0.4769 2.8537 0.0249 3.9630e-04 0.0020

avg 0.0252 0.0036 0.2518 1.0900 0.0109 1.3213e-04 3.3854e-04

std 0.0091 0.0040 0.0917 0.5959 0.0046 1.0620e-04 4.1809e-04

Friedman mean rank 5 4.29 6.14 4.71 4.57 2 1.29

Rank 6 3 7 5 4 2 1

Hunter–prey optimization: algorithm and applications 1289

123

HPO algorithm, the first column showing the three-di-

mensional figure of the test functions. The search history of

the search agents (only in the first and second dimensions

of the solution) is shown in the second column. It can be

seen that while dealing with different cases, HPO exhibits a

similar pattern, in which search agents attempt to maximize

diversity in exploring desirable areas and then exploit

around best areas. The third column shows the search

paths. In the early stages of the algorithm, the movements

of the search agents are sudden, and gradually the move-

ments become slower, so that in the final stages of the

algorithm, the search agents gather at one point. This is due

to the comparative reduction in prey selection based on

Eq. (9), making the search agents gradually converge to the

best point during the iterations. This behavior ensures that

the HPO algorithm changes during optimization from the

exploration phase to the exploitation phase. The fourth

column in Fig. 8 shows all search agents’ average fitness in

each iteration and shows that the other search agents

behave as the first search agent. The fifth column is the

convergence curve that represents the best value of each

iteration. In this graph, fast convergence can also be seen.

4.3 HPO algorithm exploitation analysis

The results in Table 4 shows that the hunter–prey optimizer

performs better in most of the unimodal functions (F1, F2,

F3, F4 and F6) than the other algorithms compared in

Table 4. The HPO performed better in F5 and F7 compared

to others except for the HHO algorithm. The p-values and

number function evaluation (NFE) in Table 5 also prove

that the proposed algorithm’s superiority is significant in

most cases. The point to be noted is that the HHO algo-

rithm achieved these results with about 30,000 number

function evaluations (NFE), while the HPO algorithm with

15,000 number function evaluations (NFE). This demon-

strates the exploitation ability of the HPO algorithm due to

the movement of prey toward the best position. An

example of this is shown in Fig. 9.

4.4 HPO algorithm exploration analysis

The results in Table 6 indicate that the HPO method pro-

vides competitive results compared with other methods. In

the F9, F10, F11 and F12 test functions, the proposed HPO

algorithm performs better than others. The p-values in

Table 7 also prove that the superiority of the HPO algo-

rithm is significant in most cases. This indicates that the

HPO method is capable of exploration, and this is due to

the fact that the hunter moves toward a prey that is far from

the group. This allows search agents (hunters) to explore

different areas of the search space.

The results in Table 6 for the F9, F10 and F11 functions

reveal that the proposed HPO algorithm and the HHO

algorithm have obtained the same results. The convergence

diagrams of these functions in Fig. 9 indicate that the HPO

algorithm has reached the optimal point in fewer iterations

compared to the HHO algorithm. Also, the number of

NFEs of the HPO algorithm is less than half of the HHO

algorithm. This shows that the HPO algorithm performs

much better than the HHO.

4.5 Scalability analysis of the HPO algorithm

This part explains the effect of scalability on different test

functions by using proposed HPO algorithm. The dimen-

sions of the test functions varies as 10, 30, 50 and 100. The

scalability results for all methods are also shown in Fig. 10.

This reveals the impact of dimension on the quality of

solutions for the HPO algorithm to diagnose its efficacy for

Table 5 P-values of the

Wilcoxon test overall runs and

number function evaluation

(NFE)

Function PSO WOA ALO LFD TSA HHO HPO

F1 p-value 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 30,649 15,000

F2 p-value 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 30,002 15,000

F3 p-value 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 34,045 15,000

F4 p-value 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 33,416 15,000

F5 p-value 1.2477e-04 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 36,756 15,000

F6 p-value 1.5581e-08 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.3384e-11 –

nfe 15,000 15,000 15,000 15,030 15,000 36,114 15,000

F7 p-value 3.020E-11 2.3897e-08 3.020E-11 3.020E-11 3.020E-11 0.0156 –

nfe 15,000 15,000 15,000 15,030 15,000 33,562 15,000

1290 I. Naruei et al.

123

Fig. 9 Convergence curve of the methods on classical functions

Hunter–prey optimization: algorithm and applications 1291

123

Table 6 Results for the multi-modal benchmark functions

Function PSO WOA ALO LFD TSA HHO HPO

F8 min - 7.8120e ? 03 - 1.2565e ? 04 - 8.5214e ? 03 2 5.0651e 1 03 - 6.9100e ? 03 - 1.2569e ? 04 - 9.7233e ? 03

max - 4.9494e ? 03 - 7.0219e ? 03 - 5.4177e ? 03 2 3.2773e 1 03 - 4.3158e ? 03 - 1.2565e ? 04 - 7.3509e ? 03

avg - 6.2641e ? 03 - 1.0020e ? 04 - 5.6298e ? 03 2 4.0512e 1 03 - 5.9093e ? 03 - 1.2569e ? 04 - 8.8439e ? 03

std 773.1355 1.7649e ? 03 598.9912 413.8118 562.0738 0.9315 598.0833

F9 min 21.8891 0 39.7995 9.5044e-08 115.9126 0 0

max 67.6571 5.6843e-14 151.2331 2.2914e-05 260.9939 0 0

avg 46.5640 1.8948e-15 81.3609 5.1798e-06 184.6362 0 0

std 10.1715 1.0378e-14 24.3112 5.4679e-06 40.2045 0 0

F10 min 1.5447e-04 8.8818e-16 1.3414 9.7034e-05 2.0579e-12 8.8818e-16 8.8818e-16

max 2.7383 7.9936e-15 13.2214 1.8362e-04 4.5968 8.8818e-16 8.8818e-16

avg 1.1543 3.8488e-15 4.3800 1.2910e-04 1.2947 8.8818e-16 8.8818e-16

std 0.8514 2.8119e-15 2.7934 2.0618e-05 1.6500 0 0

F11 min 2.7242e-07 0 0.0167 4.2184e-07 0 0 0

max 0.1350 0 0.1202 1.3533e-06 0.0211 0 0

avg 0.0231 0 0.0625 8.5391e-07 0.0053 0 0

std 0.0281 0 0.0265 2.2683e-07 0.0074 0 0

F12 min 9.7696e-09 0.0060 6.4120 0.5363 1.3866 1.8766e-08 5.4631e-11

max 1.5771 0.1155 36.9798 1.0026 17.3209 5.4219e-05 1.1089e-08

avg 0.2156 0.0289 13.5841 0.7195 9.2604 6.4135e-06 8.1369e-10

std 0.3789 0.0233 6.8544 0.1128 4.1775 1.0672e-05 2.0305e-09

F13 min 1.7055e-08 0.1375 0.1117 2.8223 1.7243 1.1862e-06 6.4274e-09

max 0.5407 1.2581 64.2053 2.9661 4.2009 0.0012 0.5926

avg 0.0297 0.4814 30.1711 2.9581 2.9450 1.1887e-04 0.1478

std 0.1000 0.2599 17.9875 0.0309 0.6237 2.2897e-04 0.1409

Friedman

mean

rank

3.29 2.72 4.57 2.71 4 1.72 1.71

Rank 5 4 7 3 6 2 1

Table 7 P-values of the

Wilcoxon test overall runs and

number function evaluation

(NFE)

Function PSO WOA ALO LFD TSA HHO HPO

F8 p-value 4.9752e-11 0.0392 4.7456e-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 37,137 15,000

F9 p-value 1.2118e-12 0.3337 1.2118e-12 1.2118e-12 1.2118e-12 NaN –

nfe 15,000 15,000 15,000 15,030 15,000 36,775 15,000

F10 p-value 1.2118e-12 7.6453e-07 1.2118e-12 1.2118e-12 1.2118e-12 NaN –

nfe 15,000 15,000 15,000 15,030 15,000 36,219 15,000

F11 p-value 1.2118e-12 NaN 1.2118e-12 1.2118e-12 2.9329e-05 NaN –

nfe 15,000 15,000 15,000 15,030 15,000 36,280 15,000

F12 p-value 3.6897e-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 –

nfe 15,000 15,000 15,000 15,030 15,000 36,358 15,000

F13 p-value 2.6806e-04 1.3594e-07 7.3891e-11 3.020E-11 3.020E-11 6.3560e-05 –

nfe 15,000 15,000 15,000 15,030 15,000 36,274 15,000

1292 I. Naruei et al.

123

0.00E+00
5.00E+01
1.00E+02
1.50E+02
2.00E+02
2.50E+02
3.00E+02
3.50E+02
4.00E+02
4.50E+02

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F1

10D

30D

50D

100D 0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F2

10D

30D

50D

100D

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F3

10D

30D

50D

100D 0.00E+00
1.00E+01
2.00E+01
3.00E+01
4.00E+01
5.00E+01
6.00E+01
7.00E+01
8.00E+01

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F4

10D

30D

50D

100D

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F5

10D

30D

50D

100D 0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F6

10D

30D

50D

100D

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F7

10D

30D

50D

100D 0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F9

10D

30D

50D

100D

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F10

10D

30D

50D

100D 0.00E+00
5.00E-01
1.00E+00
1.50E+00
2.00E+00
2.50E+00
3.00E+00
3.50E+00
4.00E+00

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F11

10D

30D

50D

100D

0.00E+00
5.00E+00
1.00E+01
1.50E+01
2.00E+01
2.50E+01
3.00E+01
3.50E+01
4.00E+01
4.50E+01

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F12

10D

30D

50D

100D 0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

PSO WOA LFD ALO HHO TSA HPO

Av
ar

ag
e

Fi
tn

es
s

Algorithm

F13

10D

30D

50D

100D

Fig. 10 Scalability of different methods on classical functions

Hunter–prey optimization: algorithm and applications 1293

123

problems with lower dimensions and higher dimension.

This is due to the better capability of the proposed HPO for

balancing between exploitation and exploration.

To more scrutinize the performance of HPO algorithm,

the algorithms were tested on classical functions (F1–F13)

with high dimensions (1000 variables), and the execution

time of each algorithm was calculated and given in Table 8.

Looking at the results in Table 8, it can be seen that the

proposed HPO algorithm showed competitive and logical

performance in solving high-dimensional classical func-

tions than other algorithms. According to the results of the

average execution time of algorithms on classical func-

tions, the HPO performs faster than WOA, ALO, LFD and

TSA algorithms. The HPO algorithm performed faster than

the HHO algorithm in all functions except F 1, F 2 and F 4.

4.6 The performance of the hunter and prey
optimizer on the CEC2017

In this section, we evaluate the performance of the pro-

posed HPO algorithm on the CEC2017 challenging func-

tion set. The CEC2017 set includes 30 functions, of which

the first ten are unimodal and multi-modal functions, the

second ten are hybrid functions, and the last ten are com-

position functions (Awad et al. 2017). Details of these

functions are given in Table 9.

The hunter–prey optimization (HPO) was tested on

CEC2017 test functions and compared with whale opti-

mization algorithm (WOA), particle swarm optimization

(PSO), ant lion optimizer (ALO), Harris hawks optimizer

(HHO), tunicate swarm algorithm (TSA) and Lévy flight

distribution (LFD). Each algorithm tested 30 times with 60

search agents and 1000 iterations. The dimensions of all

functions are considered 10. The functions were divided

into three groups, such as unimodal–multi-modal, hybrid

and composition. The result of unimodal and multi-modal

functions given in Table 10. The Friedman test is used to

find the differences in treatments or algorithms across

multiple test attempts. This test ranks the data within each

row (or block) and tests for a difference across columns.

We adopt Friedman test to compare the comprehensive

performance of every algorithm on each group of problems

of CEC 2017 benchmark (Derrac et al. 2011). Hence, the

Friedman test method allows us to determine which

Table 8 Comparison of average

running time (with 1000

dimensions and 30 independent

runs)

Function PSO WOA ALO LFD TSA HHO HPO

F1 avg 0.8868 1.6677 477.0267 18.4953 1.8273 0.7652 1.1179

std 0.0350 0.0806 3.2761 0.1376 0.0549 0.0839 0.0491

F2 avg 0.8968 1.6666 476.6731 3.2290 1.8667 0.7750 1.1621

std 0.0390 0.0544 3.1742 0.0806 0.0249 0.0335 0.0597

F3 avg 24.0046 25.0240 502.2110 41.9845 25.4720 55.1191 24.3754

std 0.1258 0.2702 2.3877 0.1457 0.1650 2.3150 0.1582

F4 avg 0.8810 1.6398 479.5388 18.6519 2.0522 0.9421 1.1163

std 0.0538 0.0439 2.2317 0.1377 0.1818 0.0444 0.0654

F5 avg 0.9615 1.7738 480.0975 18.2776 1.8925 1.3174 1.1857

std 0.0824 0.0919 1.9048 0.0500 0.0365 0.0651 0.0331

F6 avg 0.8961 1.6361 475.6420 18.5080 2.0374 1.1213 1.1211

std 0.0356 0.0406 1.9587 0.1201 0.0979 0.0277 0.0460

F7 avg 2.2686 2.7341 477.3803 33.8539 2.9844 3.4807 2.3877

std 0.1341 0.0449 2.1679 0.1937 0.0284 0.0589 0.0711

F8 avg 1.4018 1.9342 479.8049 18.1480 2.2017 2.1021 1.5796

std 0.0581 0.0739 1.9587 0.2370 0.0479 0.0544 0.0258

F9 avg 1.3984 1.7663 477.0510 8.2852 2.0892 1.6453 1.3559

std 0.1611 0.0736 1.5111 0.1298 0.0470 0.0637 0.0490

F10 avg 1.2925 1.7626 477.5186 18.8905 2.1152 1.6899 1.3732

std 0.0405 0.0220 1.4021 0.1299 0.0847 0.0683 0.0405

F11 avg 1.4080 1.9048 478.0581 19.2788 2.1679 1.9587 1.5241

std 0.0550 0.0582 1.7926 0.1010 0.0493 0.0460 0.0370

F12 avg 3.7003 4.2255 479.8028 21.4206 4.5373 7.5103 3.8722

std 0.0582 0.0463 2.0802 0.1860 0.0724 0.0437 0.0629

F13 avg 3.7426 4.4563 481.2474 21.2718 4.5273 7.5211 3.8573

std 0.0340 0.3063 2.0844 0.1397 0.0494 0.0667 0.2430

1294 I. Naruei et al.

123

algorithms are significantly better/worse. The results in

Table 10 show that the PSO algorithm performed better

than the other algorithms. However, the HPO algorithm

ranks second, and it was able to discover the closest opti-

mal value in most functions.

The algorithms were implemented with the same con-

ditions of the first group on the functions of the second

group of CEC2017, which are hybrids. The results of this

experiment are shown in Table 11. From the results of

Table 11, it can be seen that the HPO algorithm has the best

performance in most hybrid functions compared to the

PSO, WOA, ALO, LFD, TSA and HHO algorithms. The

proposed algorithm was able to take the first rank in

solving the hybrid functions of CEC2017. This shows the

HPO algorithm has a good balance between exploration

and exploitation phase.

Table 12 shows the results of the implementation of

algorithms on the third group of functions that are com-

position. The results show that the HPO algorithm and PSO

algorithm show better performance than other algorithms

on the composition functions. However, the proposed

algorithm is ranked first.

The nonparametric Wilcoxon statistical test can effec-

tively evaluate the overall performance of algorithms. The

Wilcoxon statistical test was performed at 95% signifi-

cance level (a = 0.05) to detect significant differences

between the results obtained from different algorithms. The

results of the Wilcoxon statistical test are shown in

Table 13.

The convergence curve of the methods in all 30 func-

tions is shown in Fig. 11. It can be found that in most

Table 9 CEC 2017 test functions (Range = [-100, 100], Dimension = 10)

Type NO Functions Global min

Unimodal function F1 Bent cigar function (shifted and rotated) 100

F2 Sum of different power function (shifted and rotated) 200

F3 Zakharov function (shifted and rotated) 300

Multi-modal functions F4 Rosenbrock’s function (shifted and rotated) 400

F5 Rastrigin’s function (shifted and rotated) 500

F6 Expanded Schaffer’s function (shifted and rotated) 600

F7 Lunacek bi-Rastrigin function (shifted and rotated) 700

F8 Non-continuous Rastrigin’s function (shifted and rotated) 800

F9 Levy function (shifted and rotated) 900

F10 Schwefel’s function (shifted and rotated) 1000

Hybrid functions F11 Rastrigin’s, Rosenbrock and Zakharov 1100

F12 Bent cigar, modified Schwefel and high-conditioned elliptic 1200

F13 Lunache bi-Rastrigin, Rosenbrock and Bent ciagr 1300

F14 Rastrigin, Schaffer, Ackley and elliptic 1400

F15 Bent cigar, HGBat, Rastrigin and Rosenbrock 1500

F16 Modified Schwefel, Rosenbrock, HGBat and expanded Schaffer 1600

F17 Rastrigin, modified Schwefel, expanded Griewank plus Rosenbrock, Ackley and Katsuura 1700

F18 Discus, HGBat, Rastrigin, Ackley and high-conditioned elliptic 1800

F19 Expanded Schaffer, Weierstrass, expanded Grienwank plus Rosenbrock, Rastrigin and bent cigar 1900

F20 Schaffer, modified Schwefel, Rastrigin, Ackley, Katsuura and Happycat 2000

Composition

functions

F21 Rastrigin, high-conditioned elliptic and Rosenbrock 2100

F22 Modified Schwefel’s and Rastrigin’s, Griewank’s 2200

F23 Rastrigin, modified Schwefel, Ackley and Rosenbrock 2300

F24 Rastrigin, Girewank, high-conditioned elliptic and Ackley 2400

F25 Rosenbrock, discus, Ackley, Happycat and Rastrigin 2500

F26 Rastrigin, Rosenbrock, Griewank, modified Schwefel and expanded Scaffer 2600

F27 Expanded Schaffer, high-conditioned elliptic, bent cigar, modified Schwefel, Rastrigin and HGBat 2700

F28 Expanded Schaffer, HappyCat, Rosenbrock, Griewank, discus and Ackley 2800

F29 Lunacek bi-Rastrigin, expanded Schaffer and shifted and rotated Rastrigin 2900

F30 Levy function, non-continuous Rastrigin and shifted and rotated Rastrigin 3000

Hunter–prey optimization: algorithm and applications 1295

123

Table 10 Results for the CEC2017 test functions (unimodal and multi-modal)

Function PSO WOA ALO LFD TSA HHO HPO

F1 min 100.3335 6.6725e ? 04 8.8078e ? 09 2.0455e ? 09 7.6935e ? 06 6.7222e ? 04 100.1119

max 1.1318e 1 04 1.4432e ? 07 3.3940e ? 10 7.0880e ? 09 7.7544e ? 09 6.8564e ? 05 1.2741e ? 04

avg 1.4407e 1 03 1.2024e ? 06 1.9224e ? 10 3.8239e ? 09 1.7501e ? 09 3.0476e ? 05 5.6629e ? 03

std 2.1777e 1 03 2.6326e ? 06 6.2907e ? 09 1.1656e ? 09 1.9578e ? 09 1.7304e ? 05 4.5371e ? 03

F2 min 200 1104 3.7030e ? 10 9,934,158 8064 200 200

max 200 2,446,619 1.7844e ? 16 1.1117e ? 10 3.1292e ? 10 15,268 201

avg 200 143,220 7.1056e ? 14 2.6541e ? 09 5.0113e ? 09 1.9650e ? 03 200.1000

std 0 4.4677e ? 05 3.2502e ? 15 3.1110e ? 09 8.0403e ? 09 4.0898e ? 03 0.3051

F3 min 300 328.1045 2.5125e ? 04 5.2120e ? 03 526.4445 300.1734 300.0000

max 300.0000 2.1768e ? 03 2.8661e ? 06 1.8234e ? 04 1.8664e ? 04 302.7382 300.0000

avg 300 882.0293 2.7020e ? 05 1.2784e ? 04 1.0477e ? 04 301.2657 300.0000

std 3.9495e-14 553.4807 5.9332e ? 05 3.2152e ? 03 5.4428e ? 03 0.6645 8.6024e-12

F4 min 400.2036 403.5653 1.1264e ? 03 487.8636 402.5429 400.0196 400.1992

max 408.3034 572.4386 3.4610e ? 03 773.1190 792.4691 488.0464 400.8251

avg 403.7248 424.1228 2.3370e ? 03 650.8894 494.0990 423.0511 400.3703

std 2.9488 39.2210 654.5091 68.9828 88.3054 31.0169 0.1613

F5 min 515.9193 519.7263 594.0551 539.8437 524.3893 526.4103 503.9798

max 559.6973 605.5651 698.7312 575.2589 622.8365 575.0000 549.7477

avg 532.6014 549.3775 647.9928 560.4726 556.8053 551.1613 526.4024

std 10.4046 22.1945 26.6382 9.0874 24.8914 14.5799 10.3670

F6 min 600 617.3973 658.0840 618.4575 608.3568 609.7232 600.0000

max 622.0582 666.1594 726.7402 646.1767 666.9672 655.2942 612.8558

avg 606.6721 633.7535 698.2065 634.8130 628.0914 631.2847 602.3421

std 6.5948 12.3247 16.9382 5.4716 13.3051 12.2824 3.1498

F7 min 714.0140 736.0757 921.5228 790.5101 740.1315 753.7464 725.6064

max 741.4200 854.7155 1.2984e ? 03 833.3167 846.8011 827.0057 768.2235

avg 726.4628 778.2208 1.1531e ? 03 813.2098 783.1846 780.0214 740.9441

std 7.1699 31.2622 85.5322 9.7414 23.5888 19.5062 11.6220

F8 min 808.9546 815.9955 891.0628 840.9710 818.1020 817.0544 805.9698

max 836.8134 880.6324 958.5254 873.6454 862.7627 847.1642 841.7881

avg 817.4118 844.9085 936.6075 860.0993 838.0162 829.8183 823.6945

std 6.6449 19.3296 16.5164 8.6212 11.9368 6.9328 9.6310

F9 min 900 1.0216e ? 03 2.4766e ? 03 1.1221e ? 03 918.2225 956.7325 900.0000

max 918.6377 2.3434e ? 03 7.3050e ? 03 2.0510e ? 03 3.2197e ? 03 1.8342e ? 03 1.7123e ? 03

avg 900.6213 1.5025e ? 03 4.5175e ? 03 1.5375e ? 03 1.4280e ? 03 1.4439e ? 03 979.1277

std 3.4028 325.6067 1.2298e ? 03 233.4753 523.0850 288.6303 154.2818

F10 min 1.2374e ? 03 1.0159e 1 03 2.9441e ? 03 1.7631e ? 03 1.5864e ? 03 1.5359e ? 03 1.1224e ? 03

max 2.4820e ? 03 2.7987e ? 03 4.1909e ? 03 2.6908e ? 03 2.5668e ? 03 2.3913e ? 03 2.4365e 1 03

avg 1.8659e ? 03 2.0068e ? 03 3.6914e ? 03 2.3014e ? 03 2.0250e ? 03 1.9048e ? 03 1.8050e 1 03

std 309.5024 420.3168 256.7451 189.3770 274.3471 234.7766 308.3789

Friedman mean rank 1.4 4.2 7 5.8 4.5 3.5 1.6

Rank 1 4 7 6 5 3 2

1296 I. Naruei et al.

123

Table 11 Results for the CEC2017 hybrid test functions

Function PSO WOA ALO LFD TSA HHO HPO

F11 min 1.1117e ? 03 1.1187e ? 03 2.7434e ? 03 1.2210e ? 03 1.1128e ? 03 1.1117e ? 03 1.1040e 1 03

max 1.1783e ? 03 1.4428e ? 03 9.7013e ? 04 1.6675e ? 03 5.6665e ? 03 1.3690e ? 03 1.1336e 1 03

avg 1.1355e ? 03 1.2042e ? 03 2.0267e ? 04 1.4752e ? 03 1.7909e ? 03 1.1629e ? 03 1.1172e 1 03

std 15.0440 82.4060 1.9601e ? 04 116.1770 1.5193e ? 03 53.9183 8.7811

F12 min 1.8848e 1 03 7.3867e ? 03 2.6430e ? 08 1.1885e ? 07 6.6769e ? 04 4.4734e ? 03 3.0170e ? 03

max 5.5241e 1 04 1.6165e ? 07 4.5537e ? 09 1.7882e ? 08 3.4632e ? 06 7.9466e ? 06 6.2324e ? 04

avg 1.4715e 1 04 4.3501e ? 06 1.8460e ? 09 7.4129e ? 07 1.0463e ? 06 2.1511e ? 06 2.0882e ? 04

std 1.3570e 1 04 5.0030e ? 06 1.0696e ? 09 4.6075e ? 07 1.0316e ? 06 2.2410e ? 06 1.7196e ? 04

F13 min 1.3934e ? 03 2.1368e ? 03 2.9212e ? 06 2.0314e ? 03 4.5065e ? 03 2.1721e ? 03 1.3586e 1 03

max 2.2513e ? 04 4.9296e ? 04 9.3756e ? 08 6.9288e ? 04 2.8878e ? 04 3.1948e ? 04 4.5066e 1 03

avg 9.7998e ? 03 1.7524e ? 04 1.9327e ? 08 1.7738e ? 04 1.3902e ? 04 1.5389e ? 04 1.8643e 1 03

std 6.8674e ? 03 1.3921e ? 04 2.2074e ? 08 1.8122e ? 04 7.2055e ? 03 9.0987e ? 03 608.8909

F14 min 1.4258e ? 03 1.4766e ? 03 3.3010e ? 03 1.4774e ? 03 1.4513e ? 03 1.4595e ? 03 1.4352e 1 03

max 3.3814e ? 03 5.0046e ? 03 1.0508e ? 08 2.8387e ? 03 5.2743e ? 03 1.7477e ? 03 1.7121e 1 03

avg 1.6818e ? 03 1.7129e ? 03 1.1467e ? 07 1.8098e ? 03 3.4798e ? 03 1.5303e ? 03 1.5007e 1 03

std 473.7783 653.5951 2.0925e ? 07 292.0676 1.8847e ? 03 50.5499 55.9308

F15 min 1.5095e ? 03 1.7400e ? 03 3.6033e ? 04 1.9506e ? 03 1.5547e ? 03 1.5752e ? 03 1.5026e 1 03

max 3.2460e ? 03 1.8667e ? 04 1.0625e ? 08 1.2991e ? 04 2.3678e ? 04 6.3665e ? 03 1.9290e 1 03

avg 1.7290e ? 03 6.0473e ? 03 1.7799e ? 07 5.4373e ? 03 7.7534e ? 03 3.0154e ? 03 1.5645e 1 03

std 321.2525 4.3270e ? 03 3.1615e ? 07 2.9027e ? 03 7.1112e ? 03 1.3153e ? 03 87.5326

F16 min 1.6006e 1 03 1.6511e ? 03 2.2702e ? 03 1.7192e ? 03 1.6466e ? 03 1.6041e ? 03 1.6015e ? 03

max 2.0570e ? 03 2.1622e ? 03 3.0826e ? 03 2.0412e ? 03 2.2501e ? 03 2.1596e ? 03 2.0174e 1 03

avg 1.8323e ? 03 1.8418e ? 03 2.6847e ? 03 1.8719e ? 03 1.9272e ? 03 1.8273e ? 03 1.7850e 1 03

std 127.2654 122.4871 204.5139 89.7046 151.5610 131.1514 128.4766

F17 min 1.7219e ? 03 1.7356e ? 03 1.9878e ? 03 1.7662e ? 03 1.7431e ? 03 1.7287e ? 03 1.7182e 1 03

max 1.8031e 1 03 2.1208e ? 03 2.7484e ? 03 1.8659e ? 03 1.9576e ? 03 1.9646e ? 03 1.8654e ? 03

avg 1.7489e 1 03 1.8178e ? 03 2.3624e ? 03 1.8125e ? 03 1.8273e ? 03 1.7990e ? 03 1.7718e ? 03

std 20.3463 74.0312 211.2303 28.5784 62.8552 55.9787 47.2362

F18 min 1.9290e ? 03 2.2511e ? 03 4.3338e ? 06 2.7740e ? 03 3.0223e ? 03 1.8881e ? 03 1.8881e 1 03

max 5.5240e ? 04 3.7439e ? 04 1.7160e ? 09 1.5294e ? 05 5.5740e ? 04 3.4902e ? 04 2.2481e 1 04

avg 1.1022e ? 04 1.2381e ? 04 4.3233e ? 08 2.1067e ? 04 2.2089e ? 04 1.3984e ? 04 4.1175e 1 03

std 1.0442e ? 04 8.4396e ? 03 4.2172e ? 08 3.0507e ? 04 1.5295e ? 04 1.1304e ? 04 3.9591e 1 03

F19 min 1.9110e ? 03 1.9531e ? 03 1.0019e ? 04 1.9544e ? 03 1.9317e ? 03 2.0178e ? 03 1.9035e 1 03

max 7.3022e ? 03 4.3309e ? 05 4.6308e ? 08 3.1994e ? 04 2.6794e ? 05 3.2377e ? 04 2.0422e 1 03

avg 3.2471e ? 03 3.2402e ? 04 4.2881e ? 07 6.9176e ? 03 2.3324e ? 04 1.0561e ? 04 1.9332e 1 03

std 1.5377e ? 03 8.2526e ? 04 8.4667e ? 07 6.5469e ? 03 6.6563e ? 04 1.0059e ? 04 39.2552

F20 min 2.0223e ? 03 2.0366e ? 03 2.2322e ? 03 2.0699e ? 03 2.0467e ? 03 2.0494e ? 03 2.0213e 1 03

max 2.2298e ? 03 2.3345e ? 03 2.6731e ? 03 2.1992e ? 03 2.4306e ? 03 2.2826e ? 03 2.1602e 1 03

avg 2.0956e ? 03 2.1442e ? 03 2.4926e ? 03 2.1254e ? 03 2.1738e ? 03 2.1540e ? 03 2.0677e 1 03

std 62.2516 68.0855 105.9201 29.6452 85.3777 54.7183 48.6816

Friedman mean rank 2 4.5 7 4.7 5.2 3.4 1.2

Rank 2 4 7 5 6 3 1

Hunter–prey optimization: algorithm and applications 1297

123

Table 12 Results for the CEC2017 composition test functions

Function PSO WOA ALO LFD TSA HHO HPO

F21 min 2200 2.2110e ? 03 2.3614e ? 03 2.2131e ? 03 2.2051e ? 03 2.2036e ? 03 2.2000e ? 03

max 2.3676e ? 03 2.3840e ? 03 2.4792e ? 03 2.3072e 1 03 2.3658e ? 03 2.3685e ? 03 2.3612e ? 03

avg 2.3023e ? 03 2.3234e ? 03 2.4464e ? 03 2.2509e 1 03 2.3237e ? 03 2.3236e ? 03 2.3043e ? 03

std 58.9363 61.4838 22.6579 20.8729 50.0590 54.8047 58.8420

F22 min 2.2275e ? 03 2.3051e ? 03 3.1505e ? 03 2.3679e ? 03 2.3089e ? 03 2.3046e ? 03 2.2241e 1 03

max 2.3055e 1 03 3.6662e ? 03 4.9698e ? 03 2.7317e ? 03 3.6750e ? 03 2.3273e ? 03 2.3137e ? 03

avg 2.2977e 1 03 2.3602e ? 03 4.0072e ? 03 2.5368e ? 03 2.5391e ? 03 2.3136e ? 03 2.3012e ? 03

std 19.0744 246.8083 472.6296 106.2993 305.4145 6.3606 14.9762

F23 min 2.6544e ? 03 2.6149e ? 03 2.7437e ? 03 2.5762e ? 03 2.6395e ? 03 2.6236e ? 03 2.6124e 1 03

max 2.7652e ? 03 2.7042e ? 03 2.9432e ? 03 2.7180e ? 03 2.7675e ? 03 2.7124e ? 03 2.6720e 1 03

avg 2.6894e ? 03 2.6552e ? 03 2.8392e ? 03 2.6779e ? 03 2.6828e ? 03 2.6661e ? 03 2.6323e 1 03

std 25.7810 23.0100 46.7610 22.8367 34.8402 25.6549 14.1667

F24 min 2500 2.5103e ? 03 2.8415e ? 03 2.6343e ? 03 2.5127e ? 03 2.7470e ? 03 2.5000e ? 03

max 2.8536e ? 03 2.8341e ? 03 3.2084e ? 03 2.8281e ? 03 2.8851e ? 03 2.8972e ? 03 2.7981e 1 03

avg 2.7223e 1 03 2.7659e ? 03 3.0065e ? 03 2.7531e ? 03 2.8005e ? 03 2.8097e ? 03 2.7452e ? 03

std 138.5768 69.1731 78.5597 51.4355 78.2055 43.1536 67.7618

F25 min 2.6001e 1 03 2.9037e ? 03 3.2478e ? 03 3.0049e ? 03 2.8987e ? 03 2.6113e ? 03 2.8979e ? 03

max 2.9464e 1 03 3.6025e ? 03 5.1168e ? 03 3.2064e ? 03 3.3252e ? 03 2.9735e ? 03 3.0244e ? 03

avg 2.9126e 1 03 2.9673e ? 03 4.2638e ? 03 3.1185e ? 03 3.0303e ? 03 2.9311e ? 03 2.9406e ? 03

std 63.2366 121.3296 550.4555 52.8685 115.2854 63.0897 33.3675

F26 min 2.8000e ? 03 2.6055e ? 03 3.6896e ? 03 3.1271e ? 03 3.0230e ? 03 2.6085e ? 03 2.6000e 1 03

max 4.5065e ? 03 4.3860e ? 03 5.5380e ? 03 3.6117e 1 03 4.4069e ? 03 4.4757e ? 03 4.2176e ? 03

avg 3.0874e ? 03 3.2965e ? 03 4.7471e ? 03 3.4041e ? 03 3.4251e ? 03 3.3120e ? 03 3.0802e 1 03

std 446.0531 446.2029 487.4479 115.1949 326.5004 482.0550 363.8518

F27 min 3.1051e ? 03 3.0925e ? 03 3.2099e ? 03 3.1068e ? 03 3.0969e ? 03 3.0951e ? 03 3.0895e 1 03

max 3.3259e ? 03 3.2282e ? 03 3.6317e ? 03 3.1520e ? 03 3.2397e ? 03 3.2361e ? 03 3.1931e 1 03

avg 3.1665e ? 03 3.1212e ? 03 3.4340e ? 03 3.1265e ? 03 3.1433e ? 03 3.1459e ? 03 3.1023e 1 03

std 54.9809 33.3036 121.8437 13.3818 40.1819 41.5257 24.6708

F28 min 2.8000e 1 03 3.1020e ? 03 3.4325e ? 03 3.2683e ? 03 3.1704e ? 03 3.1678e ? 03 3.1000e ? 03

max 3.4465e 1 03 3.7362e ? 03 4.6043e ? 03 3.5088e ? 03 3.8474e ? 03 3.4611e ? 03 3.7362e ? 03

avg 3.2105e 1 03 3.3794e ? 03 4.0653e ? 03 3.4142e ? 03 3.4499e ? 03 3.3892e ? 03 3.3340e ? 03

std 158.5970 140.8683 290.1687 62.3776 209.0705 80.3515 155.1064

F29 min 3.1663e ? 03 3.2043e ? 03 3.3916e ? 03 3.2119e ? 03 3.1964e ? 03 3.1763e ? 03 3.1370e 1 03

max 3.3926e 1 03 3.4403e ? 03 4.3402e ? 03 3.4254e ? 03 3.4420e ? 03 3.5315e ? 03 3.4771e ? 03

avg 3.2383e 1 03 3.3136e ? 03 3.9282e ? 03 3.2999e ? 03 3.2945e ? 03 3.3302e ? 03 3.2704e ? 03

std 57.5350 67.6805 210.4884 53.9732 67.3381 92.8523 81.8499

F30 min 5.0274e ? 03 7.5637e ? 03 2.5335e ? 07 1.3086e ? 05 2.3189e ? 04 1.7377e ? 04 3.9759e 1 03

max 1.2551e 1 06 4.4022e ? 06 1.7699e ? 08 8.1772e ? 06 1.0433e ? 07 3.2042e ? 06 1.2518e ? 06

avg 1.9623e 1 05 8.7166e ? 05 9.0789e ? 07 2.9422e ? 06 1.4958e ? 06 6.4400e ? 05 3.7477e ? 05

std 3.9119e 1 05 1.2567e ? 06 4.5756e ? 07 2.2208e ? 06 2.4098e ? 06 8.9853e ? 05 4.7518e ? 05

Friedman mean rank 2.2 3.6 7 4.2 5.1 4 1.9

Rank 2 3 7 5 6 4 1

1298 I. Naruei et al.

123

functions, the proposed algorithm has better convergence

than other algorithms.

Figure 12 shows the Friedman mean rank of all the

compared methods for unimodal and multi-modal func-

tions (group 1), hybrid functions (group 2) and composition

functions (group 3). As per results of Fig. 12, HPO has

indicated a trustworthy and sure behavior in two groups

(hybrid and composition function) compared to the other

algorithms.

5 Performance of HPO algorithm
on constrained problems

Engineers and decision makers face problems that increase

their complexity daily. These problems create different

fields such as research in operation, mechanical systems,

image processing and electronics design (Kumar et al.

2020). In all these areas, the problem can be expressed as

an optimization problem. In optimization problems, one or

more objective functions are defined that should be mini-

mized or maximized considering all the parameters. Usu-

ally, constraints are defined in optimization problems. All

solutions must apply to these constraints. Otherwise, the

solutions will not be justified. There are nine real-world

problems in engineering design that are used by many

researchers, namely reducer design problem, rolling ele-

ment bearing problem, cantilever beam design, multi-plate

disk clutch brake, welded beam, three-bar truss, step-cone

pulley problem, pressure vessel designs and tension/com-

pression spring. Unlike basic test functions, real-world

problems have equality and inequality constraints, so HPO

should be equipped with a constraints control method to

optimize such problems. Unlike basic test functions, real-

world problems have equality and inequality constraints, so

Table 13 P-values of the

Wilcoxon rank-sum test overall

runs

Function PSO WOA ALO LFD TSA HHO

F1 5.2637e-05 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11

F2 0.0814 3.1507e-12 3.1507e-12 3.1507e-12 3.1507e-12 1.0173e-09

F3 1.4459e-11 3.0142e-11 3.0142e-11 3.0142e-11 3.0142e-11 3.0142e-11

F4 6.3330e-07 3.4971e-09 3.0199e-11 3.0199e-11 2.1544e-10 2.0023e-06

F5 0.0314 1.4294e-05 3.0180e-11 9.9127e-11 4.3088e-08 5.5305e-08

F6 0.0042 3.0199e-11 3.0199e-11 3.0199e-11 4.5043e-11 4.5043e-11

F7 8.1975e-07 1.8731e-07 3.0199e-11 3.0199e-11 7.3803e-10 5.5727e-10

F8 0.0053 1.2486e-05 3.0161e-11 3.3342e-11 2.2768e-05 0.0044

F9 1.9359e-11 7.3763e-10 3.0180e-11 2.3701e-10 6.5238e-07 4.1804e-09

F10 0.3871 0.0232 3.0199e-11 5.5329e-08 0.0091 0.1624

F11 8.1975e-07 7.3803e-10 3.0199e-11 3.0199e-11 1.0105e-08 1.1567e-07

F12 0.1087 6.7220e-10 3.0199e-11 3.0199e-11 3.0199e-11 3.4971e-09

F13 1.2541e-07 1.6132e-10 3.0199e-11 1.7769e-10 3.3384e-11 8.1527e-11

F14 0.6520 2.3885e-04 3.0199e-11 6.0104e-08 3.9881e-04 0.0281

F15 1.3250e-04 3.6897e-11 3.0199e-11 3.0199e-11 9.9186e-11 2.1544e-10

F16 0.4119 0.0484 3.0199e-11 0.0083 1.7836e-04 0.2116

F17 0.1494 0.0012 3.0199e-11 3.0059e-04 7.6588e-05 0.0156

F18 5.6073e-05 1.5964e-07 3.0199e-11 7.0881e-08 1.3111e-08 1.5292e-05

F19 4.3106e-08 4.9752e-11 3.0199e-11 9.9186e-11 5.0922e-08 4.0772e-11

F20 0.1715 2.5974e-05 3.0199e-11 1.4067e-04 8.1975e-07 1.2860e-06

F21 0.3040 0.0012 3.0199e-11 3.9881e-04 0.0207 0.0051

F22 0.7283 5.4617e-09 3.0199e-11 3.0199e-11 1.2057e-10 1.6980e-08

F23 1.3289e-10 3.5923e-05 3.0199e-11 9.7555e-10 1.6947e-09 1.6062e-06

F24 0.0434 0.0061 3.0199e-11 0.9470 1.4294e-08 3.5708e-06

F25 3.5905e-05 0.0615 3.0199e-11 4.5043e-11 0.0013 0.3953

F26 0.1018 1.4932e-04 6.0658e-11 1.1567e-07 3.2555e-07 0.0421

F27 3.8249e-09 1.4298e-05 3.0199e-11 2.1947e-08 5.5329e-08 3.0811e-08

F28 3.9389e-05 0.0013 3.3876e-11 0.0023 0.0319 0.0043

F29 0.1154 0.0339 3.6897e-11 0.1154 0.1907 0.0163

F30 0.1809 0.0025 3.0180e-11 1.8492e-08 0.0011 0.0070

Hunter–prey optimization: algorithm and applications 1299

123

Fig. 11 Convergence curve of the methods on the CEC2017 test function

1300 I. Naruei et al.

123

HPO should be equipped with a constraints control method

to optimize such problems.

The performance of the algorithm in dealing with con-

strained optimization problems is significantly influenced

by the employed constraint handling technique (CHT). In

recent decades, many constraint control methods have been

developed for optimization algorithms. Some popular

CHTs among them are death penalty, co-evolutionary,

adaptive, annealing, dynamic and static (Coello Coello

2002). The death penalty function is the simplest method,

which assigns a big objective value. This method elimi-

nates impossible solutions by optimization algorithms

during optimization process. The advantages of this

method are low computational cost and simplicity (Mir-

jalili and Lewis 2016). To compare the methods, we used

the death penalty method because most of the algorithms

used the same. The results of the HPO algorithm were

compared with the algorithms that previously solved these

problems. For all problems, the number of search agents

are set to 30, and the maximum number of iterations are set

to 500. Details of these problems are given in Table 14.

Real-world problems have been used by many

researchers, and any researcher may have tested these

problems under different conditions, so only the best

solution obtained by algorithms is reported.

5.1 Three-bar truss design problem

In general, one of the most important issues in the field of

civil engineering is truss design. The goal in this problem is

to design a truss with the least weight so that it does not

violate any of the constraints of buckling, deflection and

stress. The structure of this problem and its parameters are

shown in Fig. 13.
The formula for this problem and its constraints are in

the form of Eq. (13).

1.
4

4.
2

7

5.
8

4.
5

3.
5

1.
6 2

4.
5

7

4.
7 5.

2

3.
4

1.
2

2.
2

3.
6

7

4.
2

5.
1

4

1.
9

0

1

2

3

4

5

6

7

PSO WOA ALO LFD TSA HHO HPO

Av
er

ag
e

Ra
nk

Algorithm

unimodal-multimodal Hybrid Composition

Fig. 12 Friedman mean rank

(CEC2017)

Table 14 Details of the nine constrained problems. h is the number of

equality constraints, g is the number of inequality constraints, and D

is the number of problem variables

No Name h g D Objective

1 Three-bar truss 0 3 2 Minimize

2 Reducer design problem 0 11 7 Minimize

3 Cantilever beam design 1 1 5 Minimize

4 Welded beam design 0 7 4 Minimize

5 Tension/compression spring 0 4 3 Minimize

6 Step-cone pulley problem 0 1 4 Minimize

7 Multi-plate disk clutch brake 0 8 5 Minimize

8 Pressure vessel design 0 4 4 Minimize

9 Rolling element bearing problem 1 9 10 Maximize

Fig. 13 Three-bar truss design problem (Mirjalili et al. 2016)

Hunter–prey optimization: algorithm and applications 1301

123

Minimize : f ðA1;A2Þ ¼ ð2
ffiffiffiffiffiffiffiffi
2A1

p
þ A2Þ � l

Subject to :

g1 ¼
ffiffiffiffiffiffiffiffi
2A1

p
þ A2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r	 0

g2 ¼ A2ffiffiffi
2

p
A2

1 þ 2A1A2

P� r	 0

g3 ¼ 1

A1 þ
ffiffiffi
2

p
A2

P� r	 0

where

0	A1 	 1 and 0	A2 	 1; l ¼ 100 cm;

P ¼ 2KN=cm2; r ¼ 2KN=cm2:

ð13Þ

The performance of the proposed HPO algorithm on this

problem was compared with cuckoo search algorithm (CS)

(Gandomi et al. 2013), differential evolution with dynamic

stochastic selection (DEDS) (Zhang et al. 2008),

grasshopper optimization algorithm (GOA) (Saremi et al.

2017), Harris hawks optimizer (HHO) (Heidari et al. 2019),

mine blast algorithm (MBA) (Sadollah et al. 2013), moth-

flame optimization (MFO) algorithm (Mirjalili 2015c),

multi-verse optimizer (MVO) (Mirjalili et al. 2016), poor

and rich optimization (PRO) algorithm (Samareh Moosavi

and Bardsiri 2019), particle swarm optimization with dif-

ferential evolution (PSO-DE) (Liu et al. 2010), Ray and

Sain (RAY and SAINI 2001), sine cosine gray wolf opti-

mizer (SC-GWO) (Gupta et al. 2020) and salp swarm

algorithm (SSA) (Mirjalili et al. 2017). The comparison

results are shown in Table 15. The results in Table 15 show

that the proposed HPO algorithm offers competitive results

with the HHO, SSA, DEDS and PSO-DE algorithms. The

HPO algorithm also performs better than other compared

methods.

5.2 Speed reducer design problem

The speed reducer design problem has seven design vari-

ables (Gandomi et al. 2013), as shown in Fig. 14. This test

problem’s objective is to minimize the weight of a speed

reducer with subject to different constraints on surfaces

stress, bending stress, stresses in the shafts and transverse

deflections of the shafts (Mezura-Montes and Coello,

2005). The formula for this problem and its constraints are

in the form of Eq. (14)

Table 15 Results for the three-

bar truss design problem
Algorithm Optimal values for variables Optimal weight

X1 X2

HPO 0.788643655 0.4083373345 263.895844104

CS 0.78867 0.40902 263.9716

DEDS 0.78867513 0.40824828 263.8958434

GOA 0.788897555578973 0.407619570115153 263.8958814

HHO 0.788662816 0.408283133832900 263.8958434

MBA 0.7885650 0.4085597 263.8958522

MFO 0.788244771 0.409466905784741 263.8959797

MVO 0.78860276 0.408453070000000 263.8958499

PRO 0.7886475 0.4083262 263.8958439

PSO-DE 0.7886751 0.4082482 263.8958433

Ray and Sain 0.795 0.395 264.3

SC-GWO 0.78941 0.40617 263.8963

SSA 0.788665414 0.408275784444547 263.8958434

Fig. 14 Speed reducer design (Hassan et al. 2005)

1302 I. Naruei et al.

123

Consider z ¼ ½z1 z2 z3 z4 z5 z6 z7� ¼ ½bm p l1 l2 d1 d2�;
Minimize f ðzÞ ¼ 0:7854z1z

2
2ð3:3333z2

3 þ 14:9334z3 � 43:0934Þ
� 1:508z1ðz2

6 þ z2
7Þ þ 7:4777ðz3

6 þ z3
7Þ þ 0:7854ðz4z

2
6 þ z5z

2
7Þ;

Subject to :

g1ðzÞ ¼
27

z1z2
2z3

� 1	 0;

g2ðzÞ ¼
397:5

z1z2
2z

2
3

� 1	 0;

g3ðzÞ ¼
1:93z3

4

z2z4
7z3

� 1	 0;

g4ðzÞ ¼
1:93z3

4

z2z4
7z3

� 1	 0;

g5ðzÞ ¼
½ð745ðz4=z2z3ÞÞ2 þ 16:9 � 106�1=2

110z3
6

� 1	 0;

g6ðzÞ ¼
½ð745ðz5=z2z3ÞÞ2 þ 157:5 � 106�1=2

85z3
7

� 1	 0;

g4ðzÞ ¼
1:93z3

4

z2z4
7z3

� 1	 0;

g7ðzÞ ¼
z2z3

40
� 1	 0;

g8ðzÞ ¼
5z2

z1

� 1	 0;

g9ðzÞ ¼
z1

12z2

� 1	 0;

g10ðzÞ ¼
1:5z6 þ 1:9

z4

� 1	 0;

g11ðzÞ ¼
1:1z7 þ 1:9

z5

� 1	 0;

where;

2:6	 z1 	 3:6; 0:7	 z2 	 0:8; 17	 z3 	 28; 7:3	 z4 	 8:3;

7:3	 z5 	 8:3; 2:9	 z6 	 3:9; 5:0	 z7 	 5:5:

ð14Þ

The proposed HPO algorithm was tested on this prob-

lem, and the results were compared with artificial ecosys-

tem-based optimization (AEO) (Zhao et al. 2020), chaotic

multi-verse optimization (CMVO) (Sayed et al. 2018),

Coot optimization algorithm (COOT) (Naruei and Keynia

2021b), emperor penguin optimizer (EPO) (Dhiman and

Kumar 2018), genetic algorithm (GA), gray prediction

evolution algorithm based on accelerated even (GPEAae)

(Gao et al. 2020), gray wolf optimizer (GWO) (Mirjalili

et al. 2014), sine cosine gray wolf optimizer (SC-GWO)

(Gupta et al. 2020), artificial bee colony with enhanced

food locations (I-ABC) (Sharma and Abraham 2020),

spotted hyena optimizer (SHO) (Dhiman and Kumar 2017)

and tunicate swarm algorithm (TSA) (Kaur et al. 2020).

The compared results are shown in Table 16. As it is clear

from the results, the proposed HPO algorithm has shown a

very good performance for this problem. The HPO algo-

rithm has found a better optimal value than other compared

methods.

5.3 Cantilever beam design problem

Cantilever beams are one of the most important problems

in the field of mechanics and civil engineering. The pur-

pose of this problem is to minimize the weight of the beam.

As shown in Fig. 15, a cantilever beam consists of five

hollow elements with a square cross section. Each element

is defined by a variable, and the thickness of all of them is

constant. This problem has a constraint that should not be

violated. The formula for this problem and its constraints

are in the form of Eq. (15)

Minimize :

x ¼ ½x1x2x3x4x5�;
f ðxÞ ¼ 0:6224ðx1 þ x2 þ x3 þ x4 þ x5Þ;

gðxÞ ¼ 61

x3
1

þ 37

x3
2

þ 19

x3
3

þ 7

x3
4

þ 1

x3
5

	 1;

0:01	 x1; x2; x3; x4; x5 	 100:

ð15Þ

The performance of the proposed HPO algorithm on this

problem was compared with AEO, ALO, COOT, CS,

GPEAae, MVO, interactive autodidactic school (IAS)

(Jahangiri et al. 2020) and symbiotic organisms search

(SOS) (Cheng and Prayogo 2014). The comparison results

are shown in Table 17. The results of Table 17 show that

the proposed HPO algorithm offers a better solution to

solve this problem at the lowest cost.

5.4 Welded beam design

This test problem’s objective is to minimize the welded

beam’s fabrication cost shown in Fig. 16. This problem has

four constraints such as end deflection of the beam (d),

buckling load on the bar (Pc), bending stress in the beam

(r), shear stress in weld (s) and side constraints.

Problem variables are thickness of the bar (b), the height

of the bar (t), length of the attached part of the bar (l) and

the thickness of weld (h). The formula for this problem and

its constraints are in the form of Eq. (16)

Hunter–prey optimization: algorithm and applications 1303

123

x~¼ ½x1 x2 x3x4� ¼ ½hltb�;
f ðx~Þ ¼ 1:10471x2

1x2 þ 0:04811x3x4ð14:0 þ x2Þ;
g1ðx~Þ ¼ sðx~Þ � smax 	 0;

g2ðx~Þ ¼ rðx~Þ � rmax 	 0;

g3ðx~Þ ¼ dðx~Þ � dmax 	 0;

g4ðx~Þ ¼ x1 � x4 	 0;

g5ðx~Þ ¼ P� Pcðx~Þ	 0;

g6ðx~Þ ¼ 0:125 � x1 	 0;

g7ðx~Þ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0 þ x2Þ � 5:0	 0

0:1	 x1 	 2;

0:1	 x2 	 10;

0:1	 x3 	 10;

0:1	 x4 	 2

sðx~Þ ¼
ffi
ðs0Þ2 þ 2s0s

x2

2R
þ ðsÞ2

r
;

s0 ¼ p
ffiffiffi
2

p
x1x2

; s ¼ MR

J
;M ¼ PðLþ x2

2
Þ;

R ¼
ffi
x2

2

4
þ x1 þ x3

2

� �2
r

;

J ¼ 2
ffiffiffi
2

p
x1x2

x2
2

4
þ x1 þ x3

2

� �2

 �	 �

;

rðx~Þ ¼ 6PL

x4x
2
3

; dðx~Þ ¼ 6PL3

Ex2
3x4

Pcðx~Þ ¼
4:013E

ffiffiffiffiffiffi
x2

3
x6

4

36

q

L2
ð1 � x3

2L

ffiffiffiffiffiffi
E

4G

r

Þ;

P ¼ 6000 lb;L ¼ 14 in:; dmax ¼ 0:25 in: ;

E ¼ 30 � 16 psi; G ¼ 12 � 106 psi;

smax ¼ 13600 psi; rmax ¼ 30000 psi:

ð16Þ

The optimal results of HPO versus those attained by

AEO, an effective co-evolutionary differential evolution

(CDE) (Huang et al. 2007), CMVO, GPEAae, GSA, HHO,

HS, I-ABC, IAS, LFD, SHO and TSA are given in

Table 18. The results showed that the proposed HPO

algorithm found a better optimal value than other compared

methods. It is noteworthy that the optimal value found by

the HPO algorithm is very different from the optimal val-

ues found by other methods.

5.5 Tension/Compression spring design problem

The engineering test problem used is the tension/ com-

pression spring design problem. The goal is to minimize

the cost of building a spring with three parameters, namely

number of active loops (N), average coil diameter (D) and

wire diameter (d) (Arora 2017). Figure 17 shows the

details of the spring and its parameters. The spring design

problem has a number of inequality constraints, which are

given in Eq. (17)

x~¼ ½x1 x2 x3� ¼ ½dDN�;
f ðx~Þ ¼ ðx3 þ 2Þx2x

2
1;

g1ðx~Þ ¼ 1 � x3
2x3

71785x4
1

	 0;

g2ðx~Þ ¼
4x2

2 � x1x2

12566ðx2x
3
1 � x4

1Þ
þ 1

5108x2
1

	 0;

g3ðx~Þ ¼ 1 � 140:45x1

x2
2x3

	 0;

g4ðx~Þ ¼
x1 þ x2

1:5
� 1	 0;

0:05	 x1 	 2:00;

0:25	 x2 	 1:30;

2:00	 x3 	 15:0:

ð17Þ

Table 16 Comparison results

for speed reducer design

problem

Algorithm Optimum variables Optimum cost

b m p L1 L2 D1 D2

HPO 3.241297 0.7 17 7.3 7.7153199 3.350215 5.28665 2892.7292

AEO 3.5 0.7 17 7.3 7.7153199 3.3502146 5.2866545 2994.471066

CMVO 3.5 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471

COOT 3.24132 0.7 17 7.3 7.715336 3.350215 5.28665 2892.7461

EPO 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472

GA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

GPEAae 3.499997 0.7 17 7.300001 7.715311 3.350214 5.286653 2994.468240

GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288

I-ABC greedy 3.50021 0.7 17 7.3 7.71531189 3.3502147 5.2866554 2994.4710315

PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763

SC-GWO 3.50064 0.7 17 7.30643 7.80617 3.35034 5.28694 2996.9859

SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507

TSA 3.50120 0.7 17 7.3 7.8 3.33410 5.26530 2990.9580

1304 I. Naruei et al.

123

The problem of spring design has been solved by many

researchers. The proposed HPO algorithm was tested to

solve this problem and compared with popular and new

methods such as AEO, BA, COOT, co-evolutionary parti-

cle swarm optimization (CPSO) (He and Wang 2007a),

GPEAae, GSA, GWO, HHO, stochastic fractal search

(SFS) (Salimi 2015), SHO, SSA, water cycle algorithm

(WCA) (Eskandar et al. 2012), water evaporation opti-

mization (WEO) (Kaveh and Bakhshpoori 2016) and

WOA. Table 19 shows the comparison results of different

methods to solve the spring design problem. The proposed

HPO algorithm was able to solve this problem better than

all the compared methods and find better values for the

problem variables with the least weight.

5.6 Step-cone pulley problem

One of the important problems in the field of engineering is

the problem of step-cone pulley. The goal is to minimize

the weight of the four step-cone pulleys. Figure 18 shows

Fig. 15 Cantilever beam design

problem (Mirjalili et al. 2016)

Table 17 Comparison results

for the cantilever design

problem

Algorithm Optimal values for variables Optimal weight

X1 X2 X3 X4 X5

HPO 6.0055233569 5.30591367 4.49474956 3.51336235 2.154234 1.33652825

AEO 6.028850 5.316521 4.462649 3.508455 2.157761 1.339965

ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995

COOT 6.02743657 5.3385748 4.4904867 3.483437 2.134591 1.3365745

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

GPEAae 6.014808 5.306724 4.493232 3.505168 2.153781 1.339982

IAS 5.99140 5.30850 4.51190 3.50210 2.16010 1.34000

MVO 6.0239402 5.3060112 4.4950113 3.496022 2.1527261 1.3399595

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

Fig. 16 Welded beam design

(Khalilpourazari and

Khalilpourazary 2019)

Hunter–prey optimization: algorithm and applications 1305

123

the structure and parameters of this problem. As shown in

Fig. 18, this problem has five variables, four of which are

related to the diameter of the pulley, and one variable is the

width of the pulley. The step-cone pulley is to be designed

for transmitting a power of at least 0.75 hp. The formula for

this problem and its constraints are in the form of Eq. (17)

Minimize:

f ðxÞ ¼ qx d2
1 11 þ N1

N

� �2
()

þ d2
2 1 þ N2

N

� �2
()"

þd2
3 1 þ N3

N

� �2
()

þ d2
4 1 þ N4

N

� �2
()#

Subject to:

h1ðxÞ ¼ C1 � C2 ¼ 0;

h2ðxÞ ¼ C1 � C3 ¼ 0;

h3ðxÞ ¼ C1 � C4 ¼ 0;

gi¼1;2;3:4ðxÞ ¼ �Ri 	 2;

gi¼1;2;3:4ðxÞ ¼ ð0:75 � 745:6998Þ � Pi 	 0

where;

Ci ¼
pdi
2

1 þ Ni

N

� �
þ

Ni

N � 1
 �2

4a
þ 2a; i ¼ ð1; 2; 3; 4Þ;

Ri ¼ exp l p� 2 sin�1 Ni

N
� 1

� �
di
2a

	 �	 �� �
; i ¼ ð1; 2; 3; 4Þ;

Pi ¼ stxð1 � RiÞ
pdiNi

60
; i ¼ ð1; 2; 3; 4Þ;

t ¼ 8mm; s ¼ 1:75MPa; l ¼ 0:35;

q ¼ 7200kg=m3; a ¼ 3mm:

ð18Þ

A schematic view of this problem is shown in Fig. 18.

The proposed HPO algorithm was tested on this problem

and the results were compared with artificial electric field

algorithm (AEFA) (Anita and Kumar 2020), passing

vehicle search (PVS) (Savsani and Savsani 2016), artificial

bee colony (ABC) (Rao et al. 2011) and Coot optimization

algorithm (COOT). The results are shown in Table 20. As

shown in Table 20, the HPO algorithm has discovered

better optimal values than other algorithms and has been

able to rank first.

5.7 Multiple disk clutch brake

The purpose of this test problem is to minimize the multi-

disk clutch brake mass. This problem has five discrete

decision variables, namely friction levels (Z), inner radius

(ri), disk thickness (t), driving force (F) and outer radius

(r0). The structure and parameters of this problem are

shown in Fig. 19. The formula for this problem and its

constraints are in the form of Eq. (19)

Minimize :

f ðxÞ ¼ pðx2
2 � x2

1Þx3ðx5 þ 1Þq
subject to :

g1ðxÞ ¼ �pmax þ prz 	 0;

g2ðxÞ ¼ przvsr � vsr;maxPmax 	 0;

g3ðxÞ ¼ DRþ x1 � x2 	 0;

g4ðxÞ ¼ �Lmax þ ðx5 þ 1Þðx3 þ dÞ	 0;

g5ðxÞ ¼ sMs �Mh 	 0;

g6ðxÞ ¼ T
 0;

g7ðxÞ ¼ �vsr;max þ vsr 	 0;

g8ðxÞ ¼ T � Tmax 	 0;

where

Mh ¼
2

3
lx4x5

x3
2 � x3

1

x2
2 � x2

1

N:mm;

x ¼ pn
30

rad=s;

A ¼ pðx2
2 � x2

1Þmm2;

prz ¼
x4

A
N=mm2;

vsr ¼
pRsrn

30
mm=s;

Rsr ¼
2

3

x3
2 � x3

1

x2
2x

2
1

mm;

T ¼ Izx
Mh þMf

;

DR ¼ 20mm; Lmax ¼ 30mm; l ¼ 0:6;

Vsr;max ¼ 10m=s; d ¼ 0:5mm; s ¼ 1:5;

Tmax ¼ 15s; n ¼ 250rpm; Tz ¼ 55Kg:m2;

Ms ¼ 40Nm;Mf ¼ 2Nm; and pmax ¼ 1:

with bounds :

60	 x1 	 80; 90	 x2 	 110; 1	 x3 	 3;

0	 x4 	 1000; 2	 x5 	 9:

ð19Þ

The proposed HPO algorithm was tested on this prob-

lem, and the results were compared with AEO, CMVO,

flying squirrel optimizer (FSO) (Azizyan et al. 2019),

HHO, I-ABC greedy, PVS, quantum-behaved simulated

annealing algorithm-based moth-flame optimization

(QSMFO) (Yu et al. 2020), TLBO and WCA. The com-

pared results are shown in Table 21. As it is clear from the

results, the proposed HPO algorithm has shown a very

good performance for this problem. The HPO algorithm

has found a better optimal value than other compared

methods, while other algorithms have performed almost

similarly.

1306 I. Naruei et al.

123

5.8 Pressure vessel design

The problem of designing pressure vessels is another

common engineering test problem in the optimization

algorithm design. As shown in Fig. 20, one side of the dish

is hemispherical, while the other side is flat. Problem

parameters for optimization are length of cylindrical

section without considering head (L), internal radius (R),

head thickness (Th) and shell thickness (Ts). The problem

of designing pressure vessels is formulated in Eq. (20)

Table 18 Results for the welded

beam
Algorithms s r Pc d Optimal cost

HPO 0.198811887 3.3377539 9.1920155 0.1988326 1.670240392337

AEO 0.2057296 3.4704886 9.0366239 0.2057296 1.7248520

CDE 0.203137 3.542998 9.033498 0.206179 1.733462

CMVO 0.20573 3.4705 9.03662 0.20573 1.724852

GPEAae 0.205731 3.470467 9.036624 0.205730 1.724851

GSA 0.182129 3.856979 10 0.202376 1.879952

HHO 0.204039 3.531061 9.027463 0.206147 1.73199057

HS 0.2442 6.2231 8.2915 0.2443 2.3807

I-ABC greedy 0.2057294 3.47048861 9.03662389 0.20572876 1.7248210

IAS 0.2057 3.4705 9.0366 0.2057 1.7249

LFD 0.1857 3.9070 9.1552 0.2051 1.77E ? 00

SHO 0.205563 3.474846 9.035799 0.205811 1.725661

TSA 0.203290 3.471140 9.035100 0.201150 1.721020

Fig. 17 Tension/compression

spring design problem (Mirjalili

2015b)

Table 19 Results for

tension/compression spring
Algorithms N D d Weight

HPO 11.21536452893 0.3579796674 0.0517414615 0.012665282823723

AEO 10.879842 0.361751 0.051897 0.0126662

BA 11.2885 0.35673 0.05169 0.012665

COOT 11.34038 0.35584 0.05165 0.012665293

CPSO 11.244543 0.357644 0.051728 0.012674

GPEAae 11.294000 0.356631 0.051685 0.012665

GSA 13.525410 0.323680 0.050276 0.012702

GWO 11.28885 0.356737 0.05169 0.012666

HHO 11.138859 0.359305355 0.051796393 0.012665443

SFS 11.288966 0.356717736 0.051689061 0.012665233

SHO 12.09550 0.343751 0.051144 0.012674000

SSA 12.004032 0.345215 0.051207 0.0126763

WCA 11.30041 0.356522 0.05168 0.012665

WEO 11.294103 0.356630 0.051685 0.012665

WOA 12.004032 0.345215 0.051207 0.0126763

Hunter–prey optimization: algorithm and applications 1307

123

x~¼ ½x1 x2 x3x4� ¼ ½TsThRL�;
f ðx~Þ ¼ 0:6224x1x3x4 þ 1:7781x2x

2
3 þ 3:1661x2

1x4 þ 19:84x2
1x3;

g1ðx~Þ ¼ �x1 þ 0:0193x3 	 0;

g2ðx~Þ ¼ �x3 þ 0:00954x3 	 0;

g3ðx~Þ ¼ �px2
3x4 �

4

3
px3

3 þ 1296000	 0;

g4ðx~Þ ¼ x4 � 240	 0;

0	 x1 	 99;

0	 x2 	 99;

10	 x3 	 200;

10	 x4 	 200:

ð20Þ

The proposed HPO algorithm was tested to solve the

pressure vessel design problem. The results of this exper-

iment were compared with methods such as AEO, BA,

charged system search (CSS) (Kaveh and Talatahari 2010),

GA, GPEAae, Gaussian quantum-behaved particle swarm

optimization (G-QPSO) (dos Santos Coelho 2010), GWO,

HHO, hybrid particle swarm optimization (HPSO) (He and

Wang 2007b), MFO, SC-GWO,WEO and WOA. Table 22

shows the results of this comparison. As can be seen from

the results, the proposed HPO algorithm has found better

values for the variables of this problem and solved it better

than other methods.

5.9 Rolling element bearing design problem

Rolling element bearings have different geometric shapes

that are optimized for different applications. The main goal

of this problem is to maximize the dynamic load capacity

by considering ten geometric design variables and nine

constraints based on geometric and assembly constraints.

Out of ten design variables, one design variable (number of

balls in the bearing) is required to obtain the correct value.

The formula for this problem and its constraints are in the

form of Eq. (21)

Maximize:

f ðxÞ ¼ fcZ
2=3D1:8

b ; if Db 	 25:4mm
3:647fcZ

2=3D1:4
b ; otherwise

	 �

Subject to:

Fig. 18 Step-cone pulley

problem (Savsani and Savsani

2016)

1308 I. Naruei et al.

123

With bounds:

0:5ðDþ dÞ	Dm 	 0:6ðDþ dÞ;
0:15ðD� dÞ	Db 	 0:45ðD� dÞ;
4	 Z	 50;

0:515	 fi 	 0:6;

0:515	 f0 	 0:6;

0:4	KDmin 	 0:5;

0:6	KDmax 	 0:7;

0:3	 e	 0:4;

0:02	 e	 0:1;

0:6	 f	 0:85:

Table 20 Comparison of results

for step-cone pulley problem
Algorithm X1 X2 X3 X4 X5 Optimal weight

HPO 38.414146 52.858892 70.473035 84.496123 90 16.09042816

AEFA 39.25346 54.01469 72.01386 86.34195 89.03809 16.6218705

PVC 40 54.76430219 73.013177 88.428419 85.98624 16.63450513

ABC NAN NAN NAN NAN NAN 16.634655

TLBO 40 54.7643 73.01318 88.42842 85.98624 16.63451

COOT 38.58523 53.09449 70.78712 84.87239 89.82746 16.203291

Fig. 19 Multiple disk clutch brake (Azizyan et al. 2019)

g1ðxÞ ¼ Z � /0

2 sin�1ðDb=DmÞ
� 1	 0;

g2ðxÞ ¼ 2Db � KDminðD� dÞ[0;

g3ðxÞ ¼ KDmaxðD� dÞ � 2Db
 0;

g4ðxÞ ¼ fBx � Db 	 0;

g5ðxÞ ¼ Dm � 0:5ðDþ dÞ
 0;

g6ðxÞ ¼ ð0:5 þ eÞðDþ dÞ � Dm\0;

g7ðxÞ ¼ 0:5ðD� Dm � DbÞ � eDb
 0;

g8ðxÞ ¼ fi
 0:515;

g9ðxÞ ¼ f0
 0:515;

where

fc ¼ 37:91 1 þ 1:04
1 � c
1 þ c

� �1:72
fið2f0 � 1Þ
f0ð2fi � 1Þ

� �0:41
()10=3

2

4

3

5

�0:3

;

c ¼ Db

Dm
; fi ¼

ri
Db

; f0 ¼ r0

Db
;

/0 ¼ 2p� 2

� cos�1 ðD� dÞ=2 � 3ðT=4Þf g2þ D=2 � ðT=4Þ � Dbf g2� d=2 þ ðT=4Þf g2

2 ðD� dÞ=2 � 3ðT=4Þf g D=2 � ðT=4Þ � Dbf g

 !

T ¼ D� d � 2Db; D ¼ 160; d ¼ 90; Bw ¼ 30:

ð21Þ

Hunter–prey optimization: algorithm and applications 1309

123

Table 21 Comparison of

optimized designs for multi-

plate disk clutch brake

Algorithm ri(x1) r0(x2) t(x3) F(x4) Z(x5) Optimal cost

HPO 70 90 1 907.769 2 0.23524245

AEO 70 90 1 810 3 0.3136566

CMVO 70 90 1 910 3 0.313656

FSO 70 90 1 870 3 0.313657

HHO 69.9999999992493 90 1 1000 2.3128 0.259768993

I-ABC greedy 70 90 1 900 3 0.313766

PVS 70 90 1 980 3 0.31366

QSMFO 80 101.3002 3 600 9 0.2902

TLBO 70 90 1 810 3 0.313656

WCA 70 90 1 910 3 0.313656

Fig. 20 Pressure vessel design

(Khalilpourazari and

Khalilpourazary 2019)

Table 22 Results for the

pressure vessel
Algorithms Ts Th R L Weight

HPO 0.778168 0.384649 40.3196187 200 5885.33277

AEO 0.8374205 0.413937 43.389597 161.268592 5994.50695

BA 0.812500 0.437500 42.098445 176.636595 6059.7143

CSS 0.812500 0.437500 42.103624 176.572656 6059.0888

GA 0.812500 0.437500 42.097398 176.654050 6059.9463

GPEAae 0.812500 0.437500 42.098497 176.635954 6059.708025

G-QPSO 0.812500 0.437500 42.0984 176.6372 6059.7208

GWO 0.8125 0.4345 42.089181 176.758731 6051.5639

HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259

HPSO 0.812500 0.437500 42.0984 176.6366 6059.7143

MFO 0.8125 0.4375 42.098445 176.636596 6059.7143

SC-GWO 0.8125 0.4375 42.0984 176.63706 6059.7179

WEO 0.812500 0.437500 42.098444 176.636622 6059.71

WOA 0 .812500 0.437500 42 .0982699 176 .638998 6059 .7410

1310 I. Naruei et al.

123

The structure and parameters of the rolling element

bearing design problem are shown in Fig. 21.

The proposed HPO algorithm was tested to solve the

rolling element bearing design problem, which is a maxi-

mization problem. The results of this experiment were

compared with methods such as Harris hawks optimizer

(HHO), passing vehicle search (PVS), teaching–learning-

based optimization (TLBO), genetic algorithm (GA) and

sine cosine algorithm (SCA). The results of this compar-

ison are shown in Table 23. As can be seen from the

results, the proposed HPO algorithm was able to provide

the best solution to solve this problem.

As mentioned before, in real-world problems, the best

solutions obtained by different algorithms are reported.

However, many of these algorithms achieved these results

in better conditions, including more iterations, more pop-

ulation and number function evaluations (NFE). Despite all

this, the proposed HPO algorithm still performed better in

solving these problems. In summary, the best optimal value

obtained by the proposed HPO algorithm for real-world

problems is given in Table 24.

6 Conclusion

In this paper, a new population-based optimization algo-

rithm is proposed that is inspired by hunters’ behavior such

as lions and leopards and prey such as deer and gazelle.

Fig. 21 Rolling element bearing

problem (Heidari et al. 2019)

Table 23 Comparison of optimized designs for rolling element bearing design problem

Algorithm SCA PVS TLBO GA4 HHO HPO

e 0.3 0.300000 0.300000 0.300043 0.300000 0.3000

e 0.02778 0.079990 0.068858 0.022300 0.050474 0.0290

f 0.62912 0.700000 0.799498 0.751000 0.600000 0.6000

Db 21.14834 21.425590 21.42559 21.423000 21.000000 21.8750

Dm 125 125.719060 125.7191 125.717100 125.000000 125.0000

F0 0.515 0.515000 0.515000 0.515000 0.515000 0.5150

Fi 0.515 0.515000 0.515000 0.515000 0.515000 0.5150

KDmax 0.7 0.680160 0.633948 0.651000 0.600000 0.7000

KDmin 0.5 0.400430 0.424266 0.415900 0.400000 0.4000

Z 10.92928 11.000000 11.000000 11.000000 11.092073 10.7770

Maximum cost 83,431.117 81,859.741210 81,859.74 81,843.30 83,011.88329 83,918.4925

Table 24 Results of the proposed HPO algorithm in solving real-

world engineering problems

No Name Optimal value Rank

1 Three-bar truss 263.895844104 7

2 Reducer design problem 2892.7292 1

3 Cantilever beam design 1.33652825 1

4 Welded beam design 1.670240392337 1

5 Tension/compression spring 0.012665282823723 1

6 Step-cone pulley problem 16.09042816 1

7 Multi-plate disk clutch brake 0.23524245 1

8 Pressure vessel design 5885.33277 1

9 Rolling element bearing problem 83,918.4925 1

Hunter–prey optimization: algorithm and applications 1311

123

The unique characteristics, such as hunting a prey out of

the group and moving the prey toward the leader in front of

the group, are the main motivation to create this opti-

mization algorithm. In order to evaluate the algorithm in

terms of exploration, exploitation and scalability, 43 test

functions including seven unimodal test functions to eval-

uate algorithm exploitation, six multi-modal test functions

to evaluate algorithm exploration, and CEC2017 test

functions containing 30 functions which at least half of the

functions are among the challenging hybrid and composi-

tion functions, to evaluate escape from the local optimal

and the evaluation of the balance between the exploration

phase and exploitation phase were used. The results

showed that the proposed HPO algorithm has sufficient

exploration and exploitation power to solve unimodal and

multi-modal problems and establishes a good balance

between these two phases. The HPO algorithm presented

very competitive results compared to the well-known and

new optimization algorithms. To further evaluate, the

proposed algorithm was tested on nine real-world prob-

lems. The results showed that the proposed algorithm

provided better solutions to solve these problems, while

some algorithms were tested with better conditions. For

future work, the proposed algorithm can be used to solve

problems in different fields of study. The development of

binary and the multi-objective versions is also proposed.

Funding No funding is provided for the preparation of manuscript.

Data availability We used own data and we used own coding.

Declarations

Conflict of interest I. Naruei, Dr. F. Keynia and A. Sabbagh Mola-

hosseini declared that they have no conflict of interest.

References

Aljarah I, Mafarja M, Heidari AA et al (2018) Asynchronous

accelerating multi-leader salp chains for feature selection. Appl

Soft Comput 71:964–979. https://doi.org/10.1016/j.asoc.2018.

07.040

Anita YA, Kumar N (2020) Artificial electric field algorithm for

engineering optimization problems. Expert Syst Appl

149:113308. https://doi.org/10.1016/j.eswa.2020.113308

Arora JS (2017) Introduction to optimum design. Elsevier,

Amsterdam

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-

rithm: An algorithm for optimization inspired by imperialistic

competition. In: 2007 IEEE Congress on Evolutionary Compu-

tation. IEEE, pp 4661–4667

Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem

definitions and evaluation criteria for the CEC 2017 special

session and competition on single objective real-parameter

numerical optimization. In: 2017 IEEE Congress on Evolution-

ary Computation (CEC)

Azizyan G, Miarnaeimi F, Rashki M, Shabakhty N (2019) Flying

squirrel optimizer (FSO): a novel SI-based optimization algo-

rithm for engineering problems. Iran J Optim 11:177–205

Basturk B, Karaboga D (2006) An artificial bee colony (ABC)

algorithm for numeric function optimization. In: Proceedings of

the IEEE swarm intelligence symposium, Indianapolis, IN, USA.

In: May. pp 12–14

Berryman A (2002) Population cycles: the case for trophic interac-

tions. Oxford University Press, Oxford

Berryman AA (1992) The orgins and evolution of predator-prey

theory. Ecology 73:1530–1535. https://doi.org/10.2307/1940005

Boussaı̈d I, Lepagnot J, Siarry P (2013) A survey on optimization

metaheuristics. Inf Sci (ny) 237:82–117. https://doi.org/10.1016/

j.ins.2013.02.041

Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new

metaheuristic optimization algorithm. Comput Struct

139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

Cdos Santos Coelho LS (2010) Gaussian quantum-behaved particle

swarm optimization approaches for constrained engineering

design problems. Expert Syst Appl 37:1676–1683. https://doi.

org/10.1016/j.eswa.2009.06.044

Coello Coello CA (2002) Theoretical and numerical constraint-

handling techniques used with evolutionary algorithms: a survey

of the state of the art. Comput Methods Appl Mech Eng

191:1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-

1

Colorni A, Dorigo M, Maniezzo V (1991) Distributed Optimization

by Ant Colonies. In: European Conference on artificial life.

Cambridge, MA, pp 134–142

Crawford B, Soto R, Astorga G et al (2017) Putting continuous

metaheuristics to work in binary search spaces. Complexity

2017:1–19. https://doi.org/10.1155/2017/8404231

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on

the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms.

Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.

2011.02.002

Deuflhard P (2011) Newton methods for nonlinear problems.

Springer, Berlin

Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-

inspired algorithm for engineering problems. Knowledge-Based

Syst 159:20–50. https://doi.org/10.1016/j.knosys.2018.06.001

Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-

inspired based metaheuristic technique for engineering applica-

tions. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.

advengsoft.2017.05.014

Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on

new generation metaheuristic algorithms. Comput Ind Eng

137:106040. https://doi.org/10.1016/j.cie.2019.106040

Dorigo M, Stützle T (2004) Ant Colony Optimization. Bradford

Company, Scituate, MA, USA

Eberhart R, Kennedy J (2002) A new optimizer using particle swarm

theory. In: MHS’95. In: Proceedings of the sixth international

symposium on micro machine and human science. IEEE,

pp 39–43

Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water

cycle algorithm—a novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput

Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.

2012.07.010

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through

simulated evolution. Wiley, Oxford

Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm:

a metaheuristic approach to solve structural optimization

1312 I. Naruei et al.

123

https://doi.org/10.1016/j.asoc.2018.07.040
https://doi.org/10.1016/j.asoc.2018.07.040
https://doi.org/10.1016/j.eswa.2020.113308
https://doi.org/10.2307/1940005
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.eswa.2009.06.044
https://doi.org/10.1016/j.eswa.2009.06.044
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1155/2017/8404231
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.knosys.2018.06.001
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.compstruc.2012.07.010

problems. Eng Comput 29:17–35. https://doi.org/10.1007/

s00366-011-0241-y

Gao C, Hu Z, Xiong Z, Su Q (2020) Grey prediction evolution

algorithm based on accelerated even grey model. IEEE Access

8:107941–107957. https://doi.org/10.1109/ACCESS.2020.

3001194

Garcı́a S, Molina D, Lozano M, Herrera F (2009) A study on the use

of non-parametric tests for analyzing the evolutionary algo-

rithms’ behaviour: a case study on the CEC’2005 Special

Session on Real Parameter Optimization. J Heuristics

15:617–644. https://doi.org/10.1007/s10732-008-9080-4

Gupta S, Deep K, Moayedi H et al (2020) Sine cosine grey wolf

optimizer to solve engineering design problems. Eng Comput.

https://doi.org/10.1007/s00366-020-00996-y

Han L, Ma Z, Hethcote HW (2001) Four predator prey models with

infectious diseases. Math Comput Model 34:849–858. https://

doi.org/10.1016/S0895-7177(01)00104-2

Hassan R, Cohanim B, de Weck O, Venter G (2005) A Comparison of

Particle Swarm Optimization and the Genetic Algorithm. In:

46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics and Materials Conference. American Institute of

Aeronautics and Astronautics, Reston, Virigina

He Q, Wang L (2007a) An effective co-evolutionary particle swarm

optimization for constrained engineering design problems. Eng

Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.

2006.03.003

He Q, Wang L (2007b) A hybrid particle swarm optimization with a

feasibility-based rule for constrained optimization. Appl Math

Comput 186:1407–1422. https://doi.org/10.1016/j.amc.2006.07.

134

Heidari AA, Ali Abbaspour R, Rezaee Jordehi A (2017) An efficient

chaotic water cycle algorithm for optimization tasks. Neural

Comput Appl 28:57–85. https://doi.org/10.1007/s00521-015-

2037-2

Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks

optimization: Algorithm and applications. Futur Gener Comput

Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

Hillier MS, Hillier FS (2003) Conventional optimization techniques.

In: Evolutionary optimization. Kluwer Academic Publishers,

Boston, pp 3–25

Holland JH (1967) Genetic algorithms understand genetic algorithms.

Surprise 96(1):12–15. https://doi.org/10.2307/24939139

Holland JH, Reitman JS (1977) Cognitive systems based on adaptive

algorithms. ACM SIGART Bull. https://doi.org/10.1145/

1045343.1045373

Houssein EH, Saad MR, Hashim FA et al (2020) Lévy flight

distribution: A new metaheuristic algorithm for solving engi-

neering optimization problems. Eng Appl Artif Intell 94:103731.

https://doi.org/10.1016/j.engappai.2020.103731

Huang F, Wang L, He Q (2007) An effective co-evolutionary

differential evolution for constrained optimization. Appl Math

Comput 186:340–356. https://doi.org/10.1016/j.amc.2006.07.

105

Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2018) Metaheuristic

research: a comprehensive survey. Artif Intell Rev. https://doi.

org/10.1007/s10462-017-9605-z

Jahangiri M, Hadianfard MA, Najafgholipour MA et al (2020)

Interactive autodidactic school: a new metaheuristic optimiza-

tion algorithm for solving mathematical and structural design

optimization problems. Comput Struct 235:106268. https://doi.

org/10.1016/j.compstruc.2020.106268

Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm

Algorithm: A new bio-inspired based metaheuristic paradigm for

global optimization. Eng Appl Artif Intell 90:103541. https://doi.

org/10.1016/j.engappai.2020.103541

Kaveh A, Bakhshpoori T (2016) Water Evaporation Optimization: A

novel physically inspired optimization algorithm. Comput Struct

167:69–85. https://doi.org/10.1016/j.compstruc.2016.01.008

Kaveh A, Dadras A (2017) A novel meta-heuristic optimization

algorithm: Thermal exchange optimization. Adv Eng Softw

110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin

echolocation. Adv Eng Softw 59:53–70. https://doi.org/10.1016/

j.advengsoft.2013.03.004

Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray

optimization. Comput Struct 112–113:283–294. https://doi.org/

10.1016/j.compstruc.2012.09.003

Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: A novel

meta-heuristic method. Comput Struct 139:18–27. https://doi.

org/10.1016/j.compstruc.2014.04.005

Kaveh A, Motie Share MA, Moslehi M (2013) Magnetic charged

system search: a new meta-heuristic algorithm for optimization.

Acta Mech 224:85–107. https://doi.org/10.1007/s00707-012-

0745-6

Kaveh A, Talatahari S (2010) A novel heuristic optimization method:

charged system search. Acta Mech 213:267–289. https://doi.org/

10.1007/s00707-009-0270-4

Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid

algorithm based on Water Cycle and Moth-Flame Optimization

algorithms for solving numerical and constrained engineering

optimization problems. Soft Comput 23:1699–1722. https://doi.

org/10.1007/s00500-017-2894-y

Krebs CJ (2009) Ecology: the experimental analysis of distribution

and abundance. Pearson Benjamin Cummings

Krohne DT (2000) Ie General Ecology. Cengage Learning, Inc

Kumar A, Wu G, Ali MZ et al (2020) A test-suite of non-convex

constrained optimization problems from the real-world and some

baseline results. Swarm Evol Comput 56:100693. https://doi.org/

10.1016/j.swevo.2020.100693

Mafarja M, Aljarah I, Heidari AA et al (2018a) Evolutionary

population dynamics and grasshopper optimization approaches

for feature selection problems. Knowl-Based Syst 145:25–45.

https://doi.org/10.1016/j.knosys.2017.12.037

Mafarja M, Aljarah I, Heidari AA et al (2018b) Binary dragonfly

optimization for feature selection using time-varying transfer

functions. Knowle-Based Syst 161:185–204. https://doi.org/10.

1016/j.knosys.2018.08.003

Manjarres D, Landa-Torres I, Gil-Lopez S et al (2013) A survey on

applications of the harmony search algorithm. Eng Appl Artif

Intell 26:1818–1831. https://doi.org/10.1016/j.engappai.2013.05.

008

Masadeh R, Mahafzah BA, Sharieh A (2019) Sea Lion Optimization

Algorithm. Int J Adv Comput Sci Appl. https://doi.org/10.14569/

IJACSA.2019.0100548

Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving

optimization problems. Knowl-Based Syst 96:120–133. https://

doi.org/10.1016/j.knosys.2015.12.022

Mirjalili S (2015a) The ant lion optimizer. Adv Eng Softw 83:80–98.

https://doi.org/10.1016/j.advengsoft.2015.01.010

Mirjalili S (2015b) Moth-flame optimization algorithm: A novel

nature-inspired heuristic paradigm. Knowl-Based Syst

89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm

Algorithm: A bio-inspired optimizer for engineering design

problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/

j.advengsoft.2017.07.002

Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv

Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.

01.008

Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer:

a nature-inspired algorithm for global optimization. Neural

Hunter–prey optimization: algorithm and applications 1313

123

https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1109/ACCESS.2020.3001194
https://doi.org/10.1109/ACCESS.2020.3001194
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1007/s00366-020-00996-y
https://doi.org/10.1016/S0895-7177(01)00104-2
https://doi.org/10.1016/S0895-7177(01)00104-2
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.amc.2006.07.134
https://doi.org/10.1016/j.amc.2006.07.134
https://doi.org/10.1007/s00521-015-2037-2
https://doi.org/10.1007/s00521-015-2037-2
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.2307/24939139
https://doi.org/10.1145/1045343.1045373
https://doi.org/10.1145/1045343.1045373
https://doi.org/10.1016/j.engappai.2020.103731
https://doi.org/10.1016/j.amc.2006.07.105
https://doi.org/10.1016/j.amc.2006.07.105
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1016/j.compstruc.2020.106268
https://doi.org/10.1016/j.compstruc.2020.106268
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.compstruc.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1016/j.knosys.2017.12.037
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008

Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-

1870-7

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv

Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.

12.007

Naruei I, Keynia F (2021a) Wild horse optimizer: a new meta-

heuristic algorithm for solving engineering optimization prob-

lems. Eng Comput. https://doi.org/10.1007/s00366-021-01438-z

Naruei I, Keynia F (2021b) A new optimization method based on

COOT bird natural life model. Expert Syst Appl 183:115352.

https://doi.org/10.1016/j.eswa.2021.115352

Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Meta-

heuristic optimization frameworks: a survey and benchmarking.

Soft Comput 16:527–561. https://doi.org/10.1007/s00500-011-

0754-8

Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft

Comput 11:5508–5518. https://doi.org/10.1016/j.asoc.2011.05.

008

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravita-

tional search algorithm. Inf Sci (ny) 179:2232–2248. https://doi.

org/10.1016/j.ins.2009.03.004

Rizk-Allah RM (2018) An improved sine–cosine algorithm based on

orthogonal parallel information for global optimization. Soft

Comput. https://doi.org/10.1007/s00500-018-3355-y

Salimi H (2015) Stochastic Fractal Search: A powerful metaheuristic

algorithm. Knowl-Based Syst 75:1–18. https://doi.org/10.1016/j.

knosys.2014.07.025

Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation

algorithm: theory and application. Adv Eng Softw 105:30–47.

https://doi.org/10.1016/j.advengsoft.2017.01.004

Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel

metaheuristic algorithm. Appl Math Model 40:3951–3978.

https://doi.org/10.1016/j.apm.2015.10.040

Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic multi-

verse optimization algorithm for solving engineering optimiza-

tion problems. J Exp Theor Artif Intell 30:293–317. https://doi.

org/10.1080/0952813X.2018.1430858

Sharma TK, Abraham A (2020) Artificial bee colony with enhanced

food locations for solving mechanical engineering design

problems. J Ambient Intell Humaniz Comput 11:267–290.

https://doi.org/10.1007/s12652-019-01265-7

Shen L, Chen H, Yu Z et al (2016) Evolving support vector machines

using fruit fly optimization for medical data classification.

Knowl-Based Syst 96:61–75. https://doi.org/10.1016/j.knosys.

2016.01.002

Simon D (2008) Biogeography-based optimization. IEEE Trans Evol

Comput 12:702–713. https://doi.org/10.1109/TEVC.2008.

919004

Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms

compared to other techniques for pipe optimization. J Water

Resour Plan Manag 120:423–443. https://doi.org/10.1061/

(ASCE)0733-9496(1994)120:4(423)

Spall JC (2003) Introduction to stochastic search and optimization.

Wiley, Hoboken

Storn R, Price K (1995) Differential Evolution- A Simple and

Efficient Adaptive Scheme for Global Optimization over Con-

tinuous Spaces. Tech Rep TR-95–012 11:1–12. https://doi.org/

10.1023/A:1008202821328

Talbi E-G (2009) Metaheuristics: from design to implementation.

Wiley, Hoboken

Turchin P (2003) Complex population dynamics: a theoretical/

empirical synthesis. Princeton University Press, Princeton

van den Bergh F, Engelbrecht AP (2006) A study of particle swarm

optimization particle trajectories. Inf Sci (Ny) 176:937–971.

https://doi.org/10.1016/j.ins.2005.02.003

Wang M, Chen H, Yang B et al (2017) Toward an optimal kernel

extreme learning machine using a chaotic moth-flame optimiza-

tion strategy with applications in medical diagnoses. Neurocom-

puting 267:69–84. https://doi.org/10.1016/j.neucom.2017.04.060

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/

10.1109/4235.585893

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster.

IEEE Trans Evol Comput 3:82–102. https://doi.org/10.1109/

4235.771163

Yang X-S, Deb S (2009) Cuckoo Search via Lévy flights. In: 2009

World Congress on Nature & Biologically Inspired Computing

(NaBIC). IEEE, pp 210–214

Yang X-S, Deb S (2010) Engineering Optimisation by Cuckoo Search

Yang X, Hossein Gandomi A (2012) Bat algorithm: a novel approach

for global engineering optimization. Eng Comput 29:464–483.

https://doi.org/10.1108/02644401211235834

Yang XS (2010) Firefly algorithm, stochastic test functions and

design optimisation. Int J Bio-Inspired Comput 2:78. https://doi.

org/10.1504/IJBIC.2010.032124

Yu C, Heidari AA, Chen H (2020) A quantum-behaved simulated

annealing algorithm-based moth-flame optimization method.

Appl Math Model 87:1–19. https://doi.org/10.1016/j.apm.2020.
04.019

Zhang M, Luo W, Wang X et al (2008) Differential evolution with

dynamic stochastic selection for constrained optimization. Inf

Sci Int J 178(15):3043–3074. https://doi.org/10.1016/j.ins.2008.

02.014

Zhang Q, Chen H, Luo J et al (2018) Chaos Enhanced Bacterial

Foraging Optimization for Global Optimization. IEEE Access

6:64905–64919. https://doi.org/10.1109/ACCESS.2018.2876996

Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based

optimization: a novel nature-inspired meta-heuristic algorithm.

Neural Comput Appl 32:9383–9425. https://doi.org/10.1007/

s00521-019-04452-x

Zhou A, Qu B-Y, Li H et al (2011) Multiobjective evolutionary

algorithms: A survey of the state of the art. Swarm Evol Comput

1:32–49. https://doi.org/10.1016/j.swevo.2011.03.001

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1314 I. Naruei et al.

123

https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00366-021-01438-z
https://doi.org/10.1016/j.eswa.2021.115352
https://doi.org/10.1007/s00500-011-0754-8
https://doi.org/10.1007/s00500-011-0754-8
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.asoc.2011.05.008
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s00500-018-3355-y
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.apm.2015.10.040
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1007/s12652-019-01265-7
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.771163
https://doi.org/10.1109/4235.771163
https://doi.org/10.1108/02644401211235834
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1016/j.apm.2020.04.019
https://doi.org/10.1016/j.apm.2020.04.019
https://doi.org/10.1016/j.ins.2008.02.014
https://doi.org/10.1016/j.ins.2008.02.014
https://doi.org/10.1109/ACCESS.2018.2876996
https://doi.org/10.1007/s00521-019-04452-x
https://doi.org/10.1007/s00521-019-04452-x
https://doi.org/10.1016/j.swevo.2011.03.001

	Hunter--prey optimization: algorithm and applications
	Abstract
	Introduction
	Related works
	Hunter--prey optimization algorithms
	Inspiration
	Mathematical model and algorithm
	Assumptions of the HPO algorithm
	Computational complexity analysis

	Results and discussion
	Experimental setup
	Convergence analysis of the proposed HPO algorithm
	HPO algorithm exploitation analysis
	HPO algorithm exploration analysis
	Scalability analysis of the HPO algorithm
	The performance of the hunter and prey optimizer on the CEC2017

	Performance of HPO algorithm on constrained problems
	Three-bar truss design problem
	Speed reducer design problem
	Cantilever beam design problem
	Welded beam design
	Tension/Compression spring design problem
	Step-cone pulley problem
	Multiple disk clutch brake
	Pressure vessel design
	Rolling element bearing design problem

	Conclusion
	Data availability
	References

