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Abstract
In the absence of failure data, to use the inaccurate empirical data given by experts to evaluate the reliability of the system,

the inaccurate empirical data are regarded as uncertain variables, and the parameters in uncertainty distribution function are

also uncertain variables. This paper studies an extreme shock model with dependent competitive failure, both internal

natural degradation and external shock can cause system failure, the external shock will cause a sudden increase in the

amount of degradation. The degradation process is a linear uncertain process, and the external shock is described by an

uncertain renewal reward process. The reliability and the mean time to failure of the system are calculated by employing

uncertainty theory. Using micro-electro-mechanical systems (MEMS) as an example, the sensitivity of the system relia-

bility is simulated, and the reliability of the system under uncertain parameters and constants is compared, as well as the

reliability of the system under the dependent competitive failure model and the independent competitive failure model.

Keywords Dependent competing failure model � Uncertainty theory � Uncertain parameter � Uncertain variable �
Uncertainty distribution

1 Introduction

A complex system may experience gradual degradation

and random external shocks. The gradual degradation and

random shocks may be independent or dependent on each

other. Anyone who fails first will cause the system to fail,

which is called a competitive failure mechanism. Many

scholars have studied the situation where gradual degra-

dation and external random shock are independent (Li and

Pham 2005; Chien et al. 2006; Weidea et al. 2010). In

engineering practice, they are often dependent on each

other. Wang and Pham (2012) proposed a more flexible

dependence structure using time-varying copulas. Jiang

et al. (2012) presented a model for dependent competing

failure processes with shifting failure threshold, in which

software failure is composed of two parts: the continuous

gradual degradation and the sudden increase in the amount

of degradation caused by external shock. The shock pro-

cess affects the critical value of hardware failure, which

can be changed. In MEMS, the degradation rate could

change due to external shocks (Rafiee et al. 2014). Rafiee

et al. (2017) considered the shock process contained fatal

shocks and nonfatal shocks, fatal shock could cause hard

failure instantaneously, and nonfatal shocks effected on the

system in three ways: increasing the degradation threshold,

accelerating the degradation rate and reducing the hard

failure threshold. Hao et al. (2017) considered the mutual

dependence is competing for failure processes, soft fail-

ure’s stress effects on hard failure’s strength such as the

threshold of the hard failure decreases as the system

deteriorates, and hard failure’s stress effects on soft fail-

ure’s stress such as an abrupt increase caused by random

shocks. Wang et al. (2020a, 2020b) proposed an age-and

state-dependent competing risks model and a general dis-

crete degradation model. Gao et al. (2020) studied random

jumps exist at the change points of the degradation process

based on a Wiener process.

The above articles are all based on the probability the-

ory. In fact, in engineering practice, there are many newly
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developed products or mature products due to cost, tech-

nology and other reasons, their failure data are little, then

use probability theory is not appropriate to calculate the

distribution function of products lifetime based on the

frequency close probability of a large number of samples.

In this situation, we often refer to the expert experience

data to calculate the uncertainty distribution function of the

product lifetime. The uncertainty theory was first estab-

lished by Liu in 2007a and perfected in 2010b. After more

than ten years, uncertainty theory has been effectively used

to portray a powerful mathematic tool that considers

human cognitive uncertainty. It is widely used in many

fields, including uncertain programming (Liu 2009; Ding

and Zeng 2018), uncertain risk analysis (Liu 2010a),

uncertain differential equation (Yao 2015; Yang et al.

2017), uncertain reliability analysis (Yao and Zhou 2016;

Zhang et al. 2018; Liu et al. 2019; Sheng and Ke 2020),

uncertain statistics (Yao and Liu 2018; Liu 2019; Yang and

Liu 2019; Liu and Yang 2020; Tang 2020) and so on.

For products with few failure data, we can only refer to

expert experience data, which is subjective and inaccurate.

For such inaccurate data, to better characterize the distri-

bution function of the product lifetime, the inaccurate data

are regarded as uncertain variables, parameters in uncer-

tainty distributions as uncertain variables, called by bi-

uncertain variables (Liu et al. 2020). To our best knowl-

edge, no scholar has used bi-uncertain variables to describe

the competitive failure model so far. Therefore, this paper

proposes a dependent competitive failure model with

uncertain parameters. Both natural degradation and exter-

nal shock will lead to system failure. Any external shock

will cause a sudden increase in natural degradation. The

reliability and the mean time to failure of the system in the

extreme shock model is studied under the framework of

uncertainty theory.

The main contributions of this paper in theory and

practice are as follows: (1) When considering the empirical

data of experts with human cognition, the method of

uncertainty theory is used; (2) For products without failure

data, the life of the product is regarded as a bi-uncertain

variable; (3) The time interval of external shock arrival is

independent and non-identical uncertain variables, and the

parameters in the distribution functions are uncertain

variables. (4) The damage caused by external shocks is

independent and non-identical uncertain variables, and the

parameters in the distribution functions are uncertain

variables.

The structure of this paper is as follows: In Sect. 2, a

dependent competitive failure model with uncertain

parameters is developed. In Sect. 3, the reliability function

and mean time to failure of the system are calculated in

extreme shock model according to uncertainty theory. To

illustrate the established models, the reliability of MEMS is

simulated in Sect. 4. Finally, a brief conclusion is made in

Sect. 5.

2 System description

2.1 Notation

H The threshold level for software

failure.

D The threshold level for hardware

failure.

a The initial level of uncertain

degradation.

b The uncertain degradation rate.

nk The uncertain time interval of

the k � 1th uncertain shock and

the kth uncertain shock.

gk The damage size caused by the

kth uncertain shock.

XðtÞ The amount of continuous

degradation at time t.

XsðtÞ The total degradation due to

continuous degradation and

shock degradation at time t.

NðtÞ Number of uncertain shocks that

have arrived by time t.

ukðkk1; kk2; . . .; kknk ; xÞ The uncertainty distribution of

the uncertain time interval nk.
/kðlk1; lk2; . . .; lknk ; xÞ The uncertainty distribution of

the uncertain shock gk.
Kijðhi1; hi2; . . .; himi

; xÞ The uncertainty distribution of

the uncertain variable kij.
!ijðxi1;xi2; . . .;ximi

; xÞ The uncertainty distribution of

the uncertain variable lij.

hij Parameters in the uncertainty

distribution Kij of uncertain

variable kij.
xij Parameters in the uncertainty

distribution !ij of uncertain

variable lij.
caða1; a2; . . .; as; xÞ The uncertainty distribution of

the initial level of uncertain

degradation a.

cbðb1; b2; . . .; bl; xÞ The uncertainty distribution of

the uncertain degradation rate b.

c�1
ai
ðaÞ The inverse uncertainty distri-

bution of uncertain variable ai.

c�1
bi
ðaÞ The inverse uncertainty distri-

bution of uncertain variable bi.
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w�1ðaÞ The inverse uncertainty distri-

bution of uncertain variable

Pkþ1

i¼1

ni.

W�1ðaÞ The inverse uncertainty distri-

bution of uncertain variable

Pk

i¼1

gi.

RðtÞ Reliability function by time t.

NHFt The hardware failure does not

occur by time t.

NSFt The software failure does not

occur by time t.

2.2 Preliminaries

Here we introduce some definitions and results of uncer-

tainty theory, which will be used in the following section.

Definition 1 (Liu 2010b) Let n be an uncertain variable

with regular uncertainty distribution UðxÞ. Then the inverse
function U�1ðaÞ is called the inverse uncertainty distribu-

tion of n.

Theorem 1 (Liu 2010b) Let n1; n2; . . .; nn be independent

uncertain variables with regular uncertainty distributions

U1;U2; . . .;Un, respectively. If f ðn1; n2; . . .; nnÞ is a strictly

increasing with respect to n1; n2; . . .; nm and strictly

decreasing with respect to nmþ1; nmþ2; . . .; nn, then.

n ¼ f ðn1; n2; . . .; nnÞ

has an inverse uncertainty distribution

w�1ðaÞ ¼ f ðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;U�1

n ð1
� aÞÞ

ð1Þ

Definition 2 (Liu 2007) Let n be an uncertain variable,

then the expected value of n is defined by.

EðnÞ ¼
Z 1

0

Mfn� xgdx�
Z 0

�1
Mfn� xgdx; ð2Þ

provided that at least one of the integrals is finite.

Theorem 2 (Liu 2007) Let n be an uncertain variable with

regular uncertainty distribution U. Then,

EðnÞ ¼
Z 1

0

U�1ðaÞda: ð3Þ

Theorem 3 (Liu and Ha 2010) Assume n1; n2; . . .; nn are

independent uncertain variables with regular uncertainty

distributions U1;U2; . . .;Un, respectively. If

f ðn1; n2; . . .; nnÞ is a strictly increasing with respect to

n1; n2; . . .; nm and strictly decreasing with respect to

nmþ1; nmþ2; . . .; nn, then the uncertain variable.

n ¼ f ðn1; n2; . . .; nnÞ

has an expected value

EðnÞ ¼
Z 1

0

f ðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;U�1

n ð1

� aÞÞda:
ð4Þ

Definition 4 (Liu et al. 2020) Let n be an uncertain vari-

able with uncertainty distribution function

uðk1; k2; . . .; kn; xÞ, whose parameters ki; i ¼ 1; 2; . . .; n are

independent uncertain variables with uncertainty distribu-

tions Ki; i ¼ 1; 2; . . .; n. Then, n is called a bi-uncertain

variable.

Theorem 4 Let n be a nonnegative bi-uncertain variable

defined on the uncertainty space ðC; L;MÞ, uncertainty

distribution function of n is uðk1; k2; . . .; kn; xÞ, parameters
ki; i ¼ 1; . . .; n are uncertain variables which have uncer-

tainty distributions Kiðhi1; hi2; . . .; himi
; xÞ; i ¼ 1; 2; . . .; n;

and parameters hij; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; ni are con-

stants. Assume uðk1; k2; . . .; kn; xÞ is a strictly increasing

with respect to k1; . . .; kpðp\nÞ and strictly decreasing

with respect to kpþ1; . . .; kn: Then, we have.

Mfn� xg ¼
Z 1

0

uðK�1
1 ðaÞ; . . .;K�1

p ðaÞ;K�1
pþ1ð1� aÞ; . . .;

K�1
n ð1� aÞ; xÞda:

ð5Þ

Proof Assume n is the lifetime of the component,

according to Theorem 5 in literature Liu et al. 2020, we

have

RðtÞ ¼ Mfn[ tg

¼
Z 1

0

ð1� uðK�1
1 ðaÞ; . . .;K�1

p ðaÞ;K�1
pþ1ð1� aÞ;

. . .;K�1
n ð1� aÞ; tÞÞda;

ð6Þ

So
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Mfn� xg ¼ 1�Mfn[ xg
¼ 1� RðxÞ

¼ 1�
Z 1

0

ð1� uðK�1
1 ðaÞ; . . .;K�1

p ðaÞ;

K�1
pþ1ð1� aÞ; . . .;K�1

n ð1� aÞ; xÞÞda

¼
Z 1

0

uðK�1
1 ðaÞ; . . .;K�1

p ðaÞ;K�1
pþ1ð1� aÞ;

. . .;K�1
n ð1� aÞ; xÞda:

ð7Þ

The proof is complete.

2.3 Uncertain shocks model

The system is suffered an external shock, the size of shock

was described as a random variable in the traditional reli-

ability model. In practical engineering application, some

components in the system are newly developed products,

with little data. In this situation, we use expert experience

data to assess the size of external shocks. Expert experi-

ence data are often inaccurate, and sometimes the data

given are in a wider range rather than specific values (Liu

2012). To describe the size of external shocks more

accurately, expert data can be regarded as bi-uncertain

variables. That is, the magnitude of the shock is regarded as

an uncertain variable, and the parameters in the uncertainty

distribution function are not constant but uncertain

variables.

Assume the time interval of shock arrival is a nonneg-

ative bi-uncertain variable nk, nk is the uncertain time

interval of the k � 1th uncertain shock and the kth uncer-

tain shock, n1; n2; . . . are independent variables and non-

identical distributions with different uncertain parameters.

Let uncertainty distributions of uncertain variables

n1; n2; . . . are u1ðk11; k12; . . .; k1n1 ; xÞ;u2ðk21; k22; . . .; k2n2 ;
xÞ; . . .; where parameters kij; i ¼ 1; 2; . . .; j ¼ 1; 2; . . . are

uncertain variables which have uncertainty distributions

Kijðhi1; hi2; . . .; himi
; xÞ; i ¼ 1; 2; . . .; j ¼ 1; 2; . . ., and param-

eters hij; i ¼ 1; 2; . . .; j ¼ 1; 2; . . . are constants. Assume

uiðki1; ki2; . . .; kini ; xÞ is a strictly increasing with respect to

ki1; . . .; kip and strictly decreasing with respect to

kiðpþ1Þ; . . .; kini :
According to Theorem 4, we have

Mfni � xg ¼ uiðki1; . . .; kip; kiðpþ1Þ; . . .; kini ; xÞ

¼
Z 1

0

uiðK�1
i1 ðaÞ; . . .;K�1

ip ðaÞ;

K�1
iðpþ1Þð1� aÞ; . . .;K�1

ini
ð1� aÞ; xÞda

,Di1ðxÞ:

ð8Þ

The damage size of shock is a nonnegative bi-uncertain

variable gk, gk is the size of kth uncertain shock, g1; g2; . . .
are independent variables and nonidentical distributions

with uncertain parameters. Let uncertainty distributions of

uncertain variables g1; g2; . . . are /1ðl11; l12; . . .; l1n1 ; xÞ;
/2ðl21; l22; . . .; l2n2 ; xÞ; . . .; where parameters lij; i ¼
1; 2; . . .; j ¼ 1; 2; . . . are uncertain variables which have

uncertainty distributions !ijðxi1;xi2; . . .;ximi
; xÞ; i ¼

1; 2; . . .; j ¼ 1; 2; . . ., parameters xij; i ¼ 1; 2; . . .; j ¼
1; 2; . . . are constants. Assume /iðli1; li2; . . .; lini ; xÞ is a

strictly increasing with respect to li1; . . .; lip and strictly

decreasing with respect to liðpþ1Þ; . . .; lini : According to

Theorem 4, we have

Mfgi\xg ¼ /iðli1; li2; . . .; lini ; xÞ

¼
Z 1

0

/ið!�1
i1 ðaÞ; . . .;!�1

ip ðaÞ;

!�1
iðpþ1Þð1� aÞ; . . .;!�1

ini
ð1� aÞ; xÞda

,Di2ðxÞ:

ð9Þ

2.4 Uncertain degradation model

In practical engineering applications, the damage size of

the shock often affects degradation. External shock will

accelerate the degradation of the system, and the shock

causes a sudden increase in degradation. Software failure

occurs when the total degradation exceeds the threshold

level H. The continuous uncertain degradation path is

assumed

XSðtÞ ¼ XðtÞ þ SðtÞ;

where XðtÞ ¼ aþ bt is the natural degradation, SðtÞ ¼
PNðtÞ

i¼1 cgi is the sudden increase in the amount of degra-

dation caused by the shock, called shock degradation. The

magnitude of shock degradation and the damage size of

shock are positively and linearly related, and cð0\c\1Þ is
a constant.

The initial degradation a and the degradation rate b were

described as two different constants in the traditional reli-

ability model. In the absence of data or limited informa-

tion, using the empirical data given by experts to replace

the failure data, it is often estimated a wider range than the

specific value (Liu 2012). Here, we assume that a and b are

two different nonnegative bi-uncertain variables, let

uncertainty distribution of uncertain variable a is

caða1; a2; . . .; as; xÞ, where parameters ai; i ¼ 1; 2; . . .; s are
uncertain variables which have uncertainty distributions

caiðai1; ai2; . . .; aiqi ; xÞ; i ¼ 1; 2; . . .; s, and parameters

aij; i ¼ 1; 2; . . .; s; j ¼ 1; 2; . . .; qs are constants. Assume

caða1; a2; . . .; as; xÞ is a strictly increasing with respect to
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a1; . . .; ap and strictly decreasing with respect to

aðpþ1Þ; . . .; as: Let uncertainty distribution of uncertain

variable b is cbðb1; b2; . . .; bl; xÞ, where parameters bi; i ¼
1; 2; . . .; l are uncertain variables which have uncertainty

distributions cbiðbi1; bi2; . . .; biqi ; xÞ; i ¼ 1; 2; . . .; l, and

parameters bij; i ¼ 1; 2; . . .; l; j ¼ 1; 2; . . .; ql are constants.

Assume cbðb1; b2; . . .; bl; xÞ is a strictly increasing with

respect to b1; . . .; bp ðp\lÞ and strictly decreasing with

respect to bðpþ1Þ; . . .; bl: According to Theorem 4, we have

Mfa� xg ¼ caða1; . . .; as; xÞ

¼
Z 1

0

caðc�1
a1 ðaÞ; . . .; c�1

ap ðaÞ; c�1
aðpþ1Þð1� aÞ;

. . .; c�1
as ð1� aÞ; xÞda

,FðxÞ:
ð10Þ

Mfb� xg ¼ cbðb1; . . .; bl; xÞ

¼
Z 1

0

cbðc�1
b1 ðaÞ; . . .; c�1

bp ðaÞ; c�1
bðpþ1Þð1� aÞ;

. . .; c�1
bl ð1� aÞ; xÞda

,GðxÞ:
ð11Þ

3 Reliability analysis in extreme shock
model

Because the system suffers continuous uncertain degrada-

tion and external uncertain shock, uncertain degradation

and the external uncertain shock are dependent. External

uncertain shock will cause a sudden increase in degrada-

tion. The magnitude of shock degradation and the damage

size of uncertain shock are positively and linearly related.

The system reliability is defined as the uncertain measure

that the uncertain degradation does not exceed a threshold

value H, and the uncertain shocks do not cause the system

fails by time t,

RðtÞ ¼ MfNHFt \ NSFtg: ð12Þ

In the extreme shock model, hardware failure occurs

when the first shock damage size exceeds a hard failure

threshold D.

3.1 Hardware failure model duo to uncertain
shock

Hardware fails if the damage size of the uncertain shock

exceeds the threshold value D in the extreme shock model.

Theorem 5 The uncertain measure of hardware failure

does not occur by time t is.

MfNHFtg ¼ ð1� D11ðtÞÞ _max
k� 1

MfNðtÞ� kg

^ min
1� i� k

Mfgi\Dg

¼ð1� D11ðtÞÞ _max½
k� 1

ð1�WtðkÞÞ ^ min
1� i� k

D2iðDÞ�:

Proof

MfNHFtg ¼ M
\NðtÞ

i¼1

ðgi\DÞ
( )

: ð13Þ

Since the uncertain events
TNðtÞ

i¼1 ðgi\DÞ
n o

and the

uncertain events
S1

k¼0 ðNðtÞ ¼ kÞ;
Tk

i¼1 ðgi\DÞ
n o

are

equivalent, then, we have

M
\NðtÞ

i¼1

ðgi\DÞ
( )

¼ M
[1

k¼0

NðtÞ ¼ k;
\k

i¼1

ðgi\DÞ
( )

¼ MfNðtÞ ¼ 0g _M
[1

k¼1

NðtÞ ¼ k;
\k

i¼1

ðgi\DÞ
( )

¼ MfNðtÞ ¼ 0g _max
k� 1

M NðtÞ ¼ k;
\k

i¼1

ðgi\DÞ
( )

¼ ð1� D11ðtÞÞ _max
k� 1

½MfNðtÞ� kg ^ min
1� i� k

Mfgi\Dg�:

ð14Þ

NðtÞ is the number of uncertain shock by time t, which

has an uncertainty distribution (Liu 2010b)

MfNðtÞ� kg ¼ M
Xkþ1

i¼1

ni [ t

( )

¼ 1�M
Xkþ1

i¼1

ni � t

( )

:

ð15Þ

According to Theorem 1,
Pkþ1

i¼1 ni has inverse uncer-

tainty distribution

w�1ðaÞ ¼
Xkþ1

i¼1

u�1
i ðaÞ: ð16Þ
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According to Theorem 4, we have

M
Xkþ1

i¼1

ni � t

( )

¼ wðk11; . . .; k1m1
; k21; . . .; kðkþ1Þmðkþ1Þ ; tÞ

¼
Z 1

0

wðK�1
11 ðaÞ; . . .;K

�1
1m1

ð1� aÞ;

K�1
21 ðaÞ; . . .;K

�1
ðkþ1Þmðkþ1Þ

ð1� aÞ; tÞda:
ð17Þ

MfNðtÞ� kg ¼ 1�
Z 1

0

wðK�1
11 ðaÞ; . . .;K

�1
1m1

ð1� aÞ;

K�1
21 ðaÞ; . . .;K

�1
ðkþ1Þmðkþ1Þ

ð1� aÞ; tÞda
,1�WtðkÞ:

ð18Þ

So

M
\NðtÞ

i¼1

gi\D

( )

¼ ð1� D11ðtÞÞ _max
k� 1

MfNðtÞ� kg

^ min
1� i� k

Mfgi\Dg

¼ð1� D11ðtÞÞ _max½
k� 1

ð1�WtðkÞÞ

^ min
1� i� k

D2iðDÞ�:

ð19Þ

The proof is complete.

3.2 Software failure model duo to uncertain
degradation

Software failure occurs when the total degradation exceeds

the threshold level H.

Theorem 6 The uncertain measure of software does not

failure by time t is.

MfNSFtg ¼ sup
z1þz2 �H

Fðz1Þ ^ Gðz2
t
Þ ^ ð1� D11ðtÞÞ

� �

_ sup
z1þz2þz3 �H

Fðz1Þ ^ Gðz2
t
Þ

�

^max
k� 1

ð1�WtðkÞ ^ Ykð
z3
c
ÞÞ

h i�

:

Proof

Since the uncertain events
PNðtÞ

i¼1 gi\
z3
c ;NðtÞ 6¼ 0

n o

and the uncertain event
S1

k¼1 NðtÞ ¼ k;
Pk

i¼1 gi\
z3
c

n o
are

equivalent, then, we have

MfNSFtg ¼ MfXSðtÞ\Hg

¼ Mfaþ bt þ
XNðtÞ

i¼1

cgi\Hg

¼ M aþ bt þ
XNðtÞ

i¼1

cgi\H;NðtÞ ¼ 0

 !

[ aþ bt þ
XNðtÞ

i¼1

cgi\H;NðtÞ 6¼ 0

 !( )

¼ Mfaþ bt\H;NðtÞ ¼ 0g _Mfaþ bt þ
XNðtÞ

i¼1

cgi\H;NðtÞ 6¼ 0g

¼ sup
z1þz2 �H

Mfða� z1Þ \ ðbt� z2Þ \ ðNðtÞ ¼ 0Þg

_ sup
z1þz2þz3 �H

M ða� z1Þ \ ðbt� z2Þ \
XNðtÞ

i¼1

cgi � z3;NðtÞ 6¼ 0

 !( )

¼ sup
z1þz2 �H

Mfa� z1g ^Mfb� z2
t
g ^MfNðtÞ ¼ 0g

� �

_ sup
z1þz2þz3 �H

Mfa� z1g ^Mfb� z2
t
g ^M

XNðtÞ

i¼1

gi �
z3
c
;NðtÞ 6¼ 0

( )" #

:

ð20Þ
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M
XNðtÞ

i¼1

gi\
z3
c

( )

¼ M
[1

k¼1

NðtÞ ¼ k;
Xk

i¼1

gi\
z3
c

( )

¼ max
k� 1

M NðtÞ ¼ k;
Xk

i¼1

gi\
z3
c

( )

¼ max
k� 1

MfNðtÞ� kg ^M
Xk

i¼1

gi\
z3
c

( )

:

ð21Þ

Assume the time interval of uncertain shock arrival and

the damage size of uncertain shock are independent, the

shock model is an uncertain renewal reward process
PNðtÞ

i¼1 gi. According to Theorem 1,
Pk

i¼1 gi has inverse

uncertainty distribution

W�1ðaÞ ¼
Xk

i¼1

/�1
i ðaÞ: ð22Þ

According to Theorem 4, we have

M
Xk

i¼1

gi\
z3
c

( )

¼ W l11; . . .; l1n1 ; l21. . .; lknk ;
z3
c

� �

¼
Z 1

0

W !�1
11 ðaÞ; . . .;!

�1
1n1

ð1� aÞ;
�

!�1
21 ðaÞ; . . .;!

�1
knk

ð1� aÞ; z3
c

�
da

,Yk
z3
c

� �
:

ð23Þ

Then

M
XNðtÞ

i¼1

gi\
z3
c

( )

¼ max
k� 1

ð1�WtðkÞÞ ^ Yk
z3
c

� �h i
: ð24Þ

So

MfNSFtg ¼ sup
z1þz2 �H

Fðz1Þ ^ G
z2
t

� �
^ ð1� D11ðtÞÞ

� �

_ sup
z1þz2þz3 �H

Fðz1Þ ^ Gðz2
t
Þ ^max

k� 1
1�WtðkÞ ^ Yk

z3
c

� �� �h i� �

:

ð25Þ

The proof is complete.

3.3 The reliability of the system in the extreme
shock model

Theorem 7 If the continuous uncertain degradation pro-

cess XsðtÞ for the system follows XsðtÞ ¼ aþ bt þ
PNðtÞ

i¼1 cgi; for t� 0. The external uncertain shock is an

uncertain renewal reward process
PNðtÞ

k¼1 gk, and the shock

pattern is an extreme shock model, then the system relia-

bility is.

RðtÞ ¼ ½ð1� D11ðtÞÞ _max
k� 1

ðð1�WtðkÞÞ ^ min
1� i� k

D2iðDÞÞ�

^ sup
z1þz2 �H

Fðz1Þ ^ G
z2
t

� �
^ ð1� D11ðtÞÞ

� ��

_ sup
z1þz2þz3 �H

Fðz1Þ ^ G
z2
t

� �
^max

k� 1
ð1�WtðkÞÞ ^ Yk

z3
c

� �h i� ��

:

Proof

RðtÞ ¼ MfNHFt \ NSFtg

¼ M
\NðtÞ

i¼1

gi\D

 !

\ ðXsðtÞ\HÞ
( )

¼ M
\NðtÞ

i¼1

ðgi\DÞ
( )

^M XsðtÞ\Hf g:

ð26Þ

So

RðtÞ ¼ ð1� D11ðtÞÞ _max
k� 1

ðð1�WtðkÞÞ ^ min
1� i� k

D2iðDÞÞ
� �

^
n

sup
z1þz2 �H

Fðz1Þ ^ Gðz2
t
Þ ^ ð1� D11ðtÞÞ

� �

_ sup
z1þz2þz3 �H

Fðz1Þ ^ Gðz2
t
Þ ^max

k� 1
ð1�WtðkÞÞ ^ Ykð

z3
c
Þ

h i� �o
:

ð27Þ

Let T be the lifetime of the system, according to Defi-

nition 2, the mean time to failure of the system is

ET ¼
Z 1

0

MfT [ tgdt ¼
Z 1

0

RðtÞdt: ð28Þ

4 Numerical examples and results

In this section, some numerical examples are given to

explain the proposed model. Using MEMS as an example,

assume the uncertain degradation process is

XsðtÞ ¼ aþ bt þ
PNðtÞ

i¼1 cgi, where a; bða[ 0; b[ 0Þ are

bi-uncertain variables, c ð0\c\1Þ is a constant. Assume

a� Lða1; a2Þ; a1 � Lð0; 0:1Þ; a2 � Lð0:3; 0:4Þ; ð29Þ
b� Lðb1; b2Þ; b1 � Lð0; 10Þ; b2 � Lð20; 30Þ; ð30Þ

the time interval of shock arrival is a nonnegative bi-

uncertain variable ni, the size of shock is a nonnegative bi-

uncertain variable gi, assume

ni �Nðki; 1Þ; ki � Lð0; 1Þ; i ¼ 1; 2; . . .; ð31Þ
gi �Nðli; 1Þ; li � Lð1; 2Þ; i ¼ 1; 2; . . . ð32Þ
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and the above distributions are independent, other param-

eters in the system are as follows in Table 1.

4.1 Reliability analysis for extreme shock model

Firstly, we introduce the numerical function graphs of the

gear under the extreme shock model as shown in Fig. 1.

From Fig. 1, we can see the reliability function changes

when the soft failure threshold increases from H ¼ 90 to

H ¼ 110. In general, the reliability function increases with

the increase of H. The reason for this phenomenon is that

the greater the soft failure threshold, the smaller the

uncertain measure of software failure, so the reliability

increases. The reliability function changes very little at

first, and drops rapidly after the first change point until it

reaches 0. This is because the gear is affected by both the

uncertain gradual degradation and the uncertain shock.

With the increase in time, the internal uncertain degrada-

tion also increases, the greater the uncertain measure of

gradual degradation leading to gear failure, at the same

time, the number of external shocks also increases with

time, and the shock accelerates the degradation of the gear.

In this way, the reliability of the gear decreases rapidly

with time.

4.2 Comparison of the reliability between the bi-
uncertain variable and uncertain variable

To compare the reliability of the bi-uncertain variable

system (parameters with uncertain variables) with that of

the uncertain variable system (parameters with constants),

assume the uncertain degradation process in the uncertain

variable system is

XsðtÞ ¼ a� þ b�t þ
XNðtÞ

i¼1

cg�i ; ð33Þ

the time interval of shock arrival is a nonnegative

uncertain variable n�i , the size of shock is a nonnegative

uncertain variable g�i , assume

n�i �Nð0:5; 1Þ; i ¼ 1; 2; . . . ð34Þ

g�i �Nð1:5; 1Þ; i ¼ 1; 2; . . . ð35Þ

a� � Lð0; 0:35Þ; b� � Lð5; 25Þ; ð36Þ

other parameters are the same as in Table 1.

In the extreme shock model, the reliability function

graphs of the bi-uncertain variable system and uncertain

variable system are shown in Fig. 2. From Fig. 2, it is easy

to see that the reliability function of the system is different

Table 1 Model Parameter

Values
Parameters Values

H 100

D 30

c 0.03

Fig. 1 The sensitivity analysis

of RðtÞ on H for extreme shock

model
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under the parameters with uncertain variables and con-

stants. It’s worth mentioning that the reliability of the

system under the bi-uncertain variables are greater than

that of the uncertain variables. This is because the

parameters are uncertain variables, that is, the parameters

are considered to have many values, and the parameters

with constants is one of the parameter values, so the reli-

ability of the parameters with uncertain variables are

greater than that of constants. In the model with constant

parameters, the system lifetime is shortened.

Fig. 2 The belief reliability

curves of the bi-uncertain

variable and uncertain variable

Fig. 3 The reliability curves of

the dependent and independent

competing failure model
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4.3 Comparison the reliability
between the dependent and independent
competing failure model

It can be seen from Fig. 3 that the reliability function

curves of gradual degradation and external shock under

independent and dependent situations. In an independent

situation, the gradual uncertain degradation process is

XsðtÞ ¼ aþ bt: ð37Þ

From the function graph, the reliability function under

the dependent of gradual degradation and external shock is

smaller than under the independent at some time. This is

because of the gradual degradation and external shock

depend on each other. Any external shock will accelerate

the gradual degradation of the MEMS, which will reduce

the reliability of the MEMS. This is because the failure of

the MEMS is mainly caused by gradual degradation. The

external shock has less effect on the MEMS than the

gradual degradation. Therefore, shock degradation has less

impact on the reliability of the system.

5 Conclusions and discussions

The causes of system failure can be divided into two parts,

software failure caused by uncertain degradation, and

hardware failure caused by external uncertain shock.

Software failure is divided into gradual uncertain degra-

dation caused by natural wear, weathering, corrosion and

shock degradation caused by external shock. The magni-

tude of shock degradation and the damage size of shock are

positively and linearly related. The extreme shock model

has two remarkable features: (1) The amount of damage

caused by external uncertain shock to the system exceeds

the critical value D, causing hardware failure. (2) If the

amount of degradation exceeds the critical value H, the

software fails. Whether it is software failure or hardware

failure, it will cause a system failure. The following con-

clusions can be drawn.

(1) The reliability is sensitive to the threshold value of

software failure H. However, the threshold value of

hardware failure D is not sensitive to reliability.

Explain that the main reason for MEMS failure is

uncertain natural degradation rather than external

uncertain shock. Although external uncertain shock

affects the reliability of MEMS, it has a small effect.

(2) In the case expert empirical data are regarded as

uncertain variables, and the parameters in the

uncertainty distribution functions are uncertain vari-

ables and constants are comparable. With constant

parameters will underestimate the reliability of the

system and shorter system lifetime.

(3) The magnitude of the shock degradation has impacts

on reliability. A shock degradation results in a minor

uncertain measure of system failure. Ignoring the

shock degradation will overestimate the reliability of

the system.

In the proposed model, we considered the impact of

external shocks on degradation, and external shocks cause

an instantaneous increase in the amount of degradation. In

practical applications, external shocks may also change the

degradation rate and failure threshold. The article assumes

that the failure thresholds are constants values, and the

failure thresholds will vary due to different users and

environments, all of which can be considered in our future

research.
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