
FUZZY SYSTEMS AND THEIR MATHEMATICS

Development of a new hesitant fuzzy ranking model for NTMP ranking
problem
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Abstract
Nontraditional manufacturing processes (NTMPs) bring the processing capabilities such as machining high strength and

hard materials with desired accuracies and surface finish to the manufacturing companies. Therefore, there has been a

significant increase in the use and number of NTMPs. Hence, choosing a particular NTMP for a specific application turns

out to be a complex decision-making problem, which involves conflicting qualitative and quantitative ranking criteria. In

recent NTMP ranking literature, it is noted that fuzzy approaches are better suited for handling uncertainties and

incomplete information that exist within the NTMP ranking environment. This paper introduces such a fuzzy approach

using the hesitant fuzzy preference selection index (PSI) method for the assessment of the criteria weights and the hesitant

fuzzy correlation coefficient principle for ranking and recommending the most appropriate NTMP for a specific appli-

cation. The proposed methodology and its efficiency in dealing with incomplete information under the fuzzy decision-

making environment are explored with a case study. As a result of the study, the proposed model preferred the electron

beam machining (EBM) as the most suitable nontraditional manufacturing process. On the other hand, triangular fuzzy

TOPSIS methods offered the electrochemical machining (ECM) as the best choice among the alternatives. The differences

among the ranking decisions are also analyzed in the paper. It can be concluded from the authors’ various applications of

the proposed hesitant fuzzy PSI method that it is extremely effective in representing fuzzy decision-making environments

in NTMP ranking decisions.

Keywords Nontraditional manufacturing process (NTMP) � Hesitant fuzzy sets � Hesitant fuzzy PSI � Hesitant fuzzy
correlation coefficient � Hesitant fuzzy NTMP ranking model

1 Introduction

This study proposes a fuzzy ranking model based on the

hesitant fuzzy set theory for ranking and selection of the

most appropriate NTMP among the alternatives for a given

manufacturing application. Hesitant fuzzy set theory can

deal the most extreme uncertainty and vagueness level that

exists in a decision-making environment (Torra and Nar-

ukawa 2009; Liao et al. 2020; Naz and Akram 2019;

Lalotra and Singh 2020). In the proposed application of the

hesitant fuzzy model, the weights of ranking criteria are

determined first, and then the alternatives are ranked. The

highest ranked NTMP is recommended for the specified

machining application.

Traditional and nontraditional manufacturing processes

(NTMP) are both in use in today’s manufacturing indus-

tries. Roy et al. (2014) provide the reasoning for the

selection of the nontraditional over traditional machining

processes as

‘…with the growing applications of hard and diffi-

cult-to-machine materials with high precision and

surface finish in turbine, aviation, tool and die

& Yusuf Tansel İç
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making industries. Traditional machining involves

direct interaction of tool and work-piece. As such,

this technique cannot be utilized to machining of

difficult-to-cut materials, since hardness becomes the

limiting factor. Moreover, the traditional machining

processes involve chip formation so their accuracy

and surface finish get deteriorated. Therefore, the

option left with is nontraditional machining (NTM)

process. Thus, NTM processes turn out to be extre-

mely useful for such applications as there is no direct

contact of tool and the work-piece...’

Most of the nontraditional manufacturing processes will

produce parts with small heat-affected zones and clean

edges with fewer burns (Nestic et al., 2019). Moreover,

NTMPs can machine high strength and brittle materials and

generate complicated, impracticable, or inaccessible shapes

in a cost-effective way (Jain, 2009). As a result, over the

last four decades, there has been a significant increase in

the number of NTMPs and machines sold. Today, NTMPs

with different capabilities and specifications are available

for a wide range of manufacturing applications. More than

30 different nontraditional manufacturing processes are

reported by Jain (2009) and Davim (2013).

In the literature, nontraditional manufacturing processes

are recommended in situations where traditional machining

processes are unsatisfactory or uneconomical. Examples of

such situations include ‘(1) Work-piece material is too

hard, strong, or tough; (2) Work-piece is too flexible to

resist cutting forces or too difficult to clamp; (3) Part shape

is very complex with internal or external profiles or small

holes; (4) Requirements for surface finish and tolerances

are very high; and (5) Temperature rise or residual stresses

are undesirable or unacceptable.’1

The specifications of the nontraditional manufacturing

machines can take a wide range of values. Therefore, it is

not possible to evaluate widely distributed values with

currently popular fuzzy numbers. Each fuzzy number type

requires determination of a membership function. For

example, a triangular fuzzy number is specified with only

three values namely, lower, middle, and upper values and

straight lines between lower and middle values and

between middle and upper values. Using the same fuzzy

number type for all different specifications relevant to the

NTMP ranking environment may lead to incorrect NTMP

ranking results. On the other hand, hesitant fuzzy number

type proposed in this study does not have a strict mem-

bership function and is adaptable to specific characteristics

for each specification. The authors are not aware of any

application of NTMP ranking model based on hesitant

fuzzy numbers in the literature. The model developed in

this paper contributes the NTMP ranking literature by

using hesitant fuzzy numbers in its ranking model espe-

cially where high levels of uncertainties and differences

exist in representing and comparisons among the NTMP

specifications. In the developed model, preference selec-

tion index (PSI) method and the hesitant fuzzy correlation

coefficient principle are used for the assessment of the

specifications’ hesitant fuzzy membership functional

expressions and NTMP ranking process, respectively. The

main contributions of the presented study can be summa-

rized as follows:

• Applicability of the integrated fuzzy approach using the

hesitant fuzzy preference selection index (PSI) method

and the hesitant fuzzy correlation coefficient principle

for NTMP ranking decisions is shown.

• The application results of the proposed model exhibited

excellent performance against crisp, triangular and

intuitionistic fuzzy multi-criteria decision-making

(MCDM) models.

• A well-structured case study has been proposed in detail

basis on the nontraditional manufacturing process

ranking problem.

• Concerning the case study proposed in this paper, a

critical review of existing NTMP fuzzy MCDM ranking

models has been presented.

• The comparisons of the proposed and existing fuzzy

NTMP ranking models are provided within the case

study.

The remaining of this paper is organized as follows:

Sect. 2 briefly reviews the relevant NTMP ranking litera-

ture. Section 3 illustrates the application of the proposed

hesitant fuzzy NTMP ranking model. In Sect. 4, the pro-

posed model is compared with other NTMP ranking

models and conclusions are presented.

2 Literature review

In the last few decades, the field of NMTP ranking attracts

the attention of researchers, since the emerging need for

newly introduced materials feeds the development of

newer manufacturing techniques. These new and advanced

processes make use of certain properties of such materials.

This working principle makes them the most appropriate

for some applications and at the same time, puts some

limitations on their use. Therefore, with the consideration

of productivity and economic aspects of them, the ranking

of the most suitable NTMP consists of a complex decision-

making problem, and researchers have generally applied

distinct decision-making models according to the examined

situations. Yurdakul and Çoğun, (2003) simultaneously

applied two multi-criteria decision-making (MCDM)

1 (https://www.me.iitb.ac.in/*ramesh/courses/ME338/non_trad.

pdf).
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methods; analytic hierarchy process (AHP) and technique

for order preference by similarity to ideal solution (TOP-

SIS), to determine the suitable NTMPs and make a ranking

among the feasible set, for a specific manufacturing

application. The compatibility of the shape feature of the

working material and the process capabilities of feasible

NTMPs was used in the ranking phase of the proposed

model. Chakraborty and Dey (2006, 2007) developed

expert systems with graphical user interfaces, designed

with MATLAB GUI, for NTMP ranking under constrained

material and manufacturing conditions. Edison et al. (2008)

developed a web-based expert system for identification of

the suitable NMTPs. This tool enables transparent infor-

mation propagation and the establishment of a consensus

among the differently geographically located process

engineers. In the same year, Chakladar and Chakraborty

(2008) presented an MCDM based expert system, con-

sisting of AHP and TOPSIS, which considers any number

of quantitative and qualitative criteria. The performance of

the model was explored with different materials coupled

with distinct operational requirements. Another digraph-

based expert system, which can deal with qualitative as

well as quantitative data, was also proposed by Chakladar

et al. (2009). The proposed system identifies and considers

different evaluation criteria and their interrelations for a

given NTMP ranking problem. Sugumaran et al. (2010)

developed a feed forward multi-user perceptron structure,

‘Neuralyst,’ for ranking of the optimal NTMP capable of

generating the desired product features. Chakraborty

(2011) applied multi-objective optimization based on ratio

analysis (MOORA) method in a real-time manufacturing

environment, by selecting the most appropriate NTMP for

a given work material and shape feature combination. In

another study, a well-structured two-phase decision model

was proposed by Sadhu and Chakraborty (2011). The

model consisted of data envelopment analysis (DEA) for

the identification of the most efficient NTMPs and a

MCDM approach to rank the efficient alternatives. A

hybrid preference ranking organization method for

enrichment evaluation (PROMETHEE) and geometrical

analysis for interactive aid (GAIA) method was used to

solve the NMTP ranking problem by Karande and Chak-

raborty (2012). Chatterjee and Chakraborty (2013a, 2013b)

investigated the applicability and efficiency of two deci-

sion-making tools: ORESTE (the abbreviation for the

French propositional phrase organization, rangement et

synthèse de donnés relationnelles) and evaluation of mixed

data (EVAMIX) method. Both methods had different

advantages; ORESTE did not require any precise infor-

mation about criteria weights or formulation of any pref-

erence function, and EVAMIX minimized the chance of

loss of information. Prasad and Chakraborty (2014)

developed a decision-making model that was enhanced

with a graphical user interface and visual decision aids to

automate the NTMP ranking procedure. The proposed

model was integrated with the QFD technique to correlate

customers’ requirements (product characteristics) with

technical requirements (process capabilities). An almost

unexplored MCDM method, operational competitiveness

ratings analysis (OCRA) method was introduced by Madić

et al. (2015). In that work, the computational procedure of

the OCRA method has been demonstrated and its appli-

cability was scrutinized while solving various case studies.

Furthermore, in the literature, Chakraborty et al. (2019)

proposed a design of experiment (DoE) based TOPSIS

model to select the optimal parametric mixes for different

NTM processes. Gürgen et al. (2019) investigated different

turning operations (conventional, ultrasonic-assisted, and

hot ultrasonic-assisted operations) of Ti6Al4V alloy using

the TOPSIS and VIKOR methods via experimental design

principles. Shastri et al. (2020) demonstrated real-world

applications of variations of cohort and multi-cohort

intelligent CI algorithms in the nontraditional manufac-

turing processes area by solving nonlinear, non-separable,

and multimodal problems.

In recent years, the use of fuzzy numbers instead of

exact or crisp numbers is promoted by many researchers,

because of the limitations of crisp decision-making

approaches in handling the uncertainties that exist in per-

sonal judgments. In the literature, fuzzy set theory was first

proposed by Zadeh (1965) to overcome the limits of clas-

sical set theory by assigning a membership degree ranging

between 0 and 1 to a given element. The mathematics

related to fuzzy set theory is still in progress with proposed

extensions in the literature (Atanassov 1999; Torra and

Narukawa 2009; Zimmermann 2010).

There are various fuzzy NTMP ranking models avail-

able in the literature. Temuçin et al. (2013), Temuçin et al.

(2014)) conducted a comparative study applying TOPSIS,

fuzzy TOPSIS, ELECTRE I, and PROMETHEE II meth-

ods to rank the alternative NTMPs for cutting operation of

carbon structural steel. Roy et al. (2014) employed fuzzy

AHP and QFD methods to calculate the relative ranking

scores of various NTMPs. Khandekar and Chakraborty

(2016) developed an approach based on fuzzy axiomatic

design (FAD) principles for the ranking of proper NTMPs

for various manufacturing applications. In another study

performed by Yurdakul and İç (2019), they demonstrated

the advantages of including fuzziness in NTMP ranking

decisions in applications of fuzzy AHP and fuzzy TOPSIS

approaches together. Finally, Yurdakul et al. (2020) pro-

posed intuitionistic and triangular fuzzy NTMP ranking

models and compared their ranking results with the crisp

ranking model. Their comparisons show that there are

statistically significant differences among all three ranking

models’ NTMP ranking results.
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The authors’ literature search indicates that a hesitant

fuzzy NTMP ranking model despite its compatibility in

expressing people’s hesitancy is not available in the liter-

ature. This paper aims to fill this gap by developing a

complete hesitant fuzzy NTMP ranking model. A first step

in development of such a model is dealing with incomplete

and vague evaluation information by applying the hesitant

fuzzy PSI method (Maniya and Bhatt 2010). The hesitant

fuzzy PSI method is used as an objective weighting method

to overcome incomplete information related to the evalu-

ation criteria in this paper. Then, the hesitant fuzzy cor-

relation coefficient is utilized between each alternative and

positive ideal alternative to rank the alternative NTMPs.

3 Implementation of the proposed hesitant
fuzzy NTMP ranking model

The concepts and operational laws for hesitant fuzzy sets

are provided in ‘Appendix 1.’ On the other hand, the

developed implementation steps of the proposed model are

made available in ‘Appendix 2.’ In this section, the

application of the proposed model is illustrated with an

example. In a specific NTMP application, the NTMPS that

satisfy technical requirements of the specific application

are accepted as feasible (alternative) and they are ranked

using the developed hesitant fuzzy model.

In the illustrative example, the alternative NMTPs are

electrochemical manufacturing (ECM), electrical discharge

manufacturing (EDM), electron beam manufacturing

(EBM), and laser beam manufacturing (LBM). Six ranking

criteria are tolerance (C1Þ, surface finish (C2Þ, surface

damage (C3Þ, hole diameter (C4Þ, width of cut (C5Þ and

depth/diameter ratio (for cylindrical holes) and depth/width

ratio (for blind cavity) (C6Þ. C1,C3,C4, C5, and C6 are cost-

type criteria, and C2 is a benefit-type criterion. Hence, the

proposed hesitant fuzzy NTMP ranking model given in

‘Appendix 2’ is applied step by step as follows.

Step 1 Determine the measurement intervals for each

alternative NTMP.

The decision maker provides the lower and upper limits

that constitute the range of values that the specified criteria

can take for each process regarding the requirements of the

application. The measurements intervals are constructed

accordingly and are given in Table 1.

Step 2 Generate random numbers to construct the set of

possible measurement values for each alternative NTMP.

According to the sensitivity of the variability of the

criterion values, the decision maker determines k value for

each criterion. A high k value is interpreted as a high

degree of sensitivity for the corresponding criterion. The

decision maker sets multiple k values as 2, 3, 3, 1, 2, and 2,

respectively, for each criterion. Random numbers are

generated based on the uniform distribution and are given

in Table 2.

Step 3 Construct the hesitant fuzzy decision matrix.

The corresponding triangular fuzzy numbers with left

and right limit values and the most preferable value cor-

responding to each criterion are provided in Table 3. Then,

using the related triangular membership functions and the

measurements values in Table 2, as it is indicated in the

remark the hesitant fuzzy decision matrix ~R is constructed.
~R is given in Table 4.

Step 4 Construct the normalized hesitant fuzzy decision

matrix.

As mentioned, C1,C3,C4, C5, and C6 are cost-type cri-

teria, and C2 is a benefit-type criterion. Hence, the nor-

malized hesitant fuzzy decision matrix is constructed and is

given in Table 5.

Step 5 Determine the preference variation value for each

criterion.

Preference variation value, PVj, for each criterion is

calculated by using either Hamming distance or Euclidean

distance which are derived from Eq. (7) in ‘Appendix 1.’

The distance expresses the deviation from the mean, hj.

The mean is found for each criterion separately, regarding

all membership degrees using Eq. (18) in ‘Appendix 2.’

PVj values, which are calculated with distance measures,

are given in Table 6.

Step 6 Determine the overall weight of each criterion.

The weight of each criterion is calculated considering

either Eq. (19) or Eq. (20) (see ‘Appendix 2’) depending

on the selected distance measure. The ranking criteria

weights are given in Table 7.

Step 7 Construct the weighted hesitant fuzzy decision

matrix.

The weighted hesitant fuzzy decision matrix, ~Rw is

obtained for each weight vector. As a demonstration,

Hamming weighted hesitant fuzzy decision matrix is

introduced in Table 8.

Note that the same procedure is followed to find the

Euclidean weighted hesitant fuzzy decision matrix.

Step 8 Calculate the correlation coefficient between each

alternative and the ideal alternative.

The correlation coefficient between each alternative and

the ideal alternative A� is calculated by using either mea-

sure in Eq. (8) or Eq. (9) (see ‘Appendix 1’). In Table 9,

the two correlation coefficients are given for Hamming

weighted alternatives. Same calculations are also done with

Euclidean weighted hesitant fuzzy decision matrix.

Step 9 Rank the alternatives in accordance with the

values of correlation coefficients.

Correlation coefficients are ranged in decreasing order

and a complete ranking is obtained. The most suit-

able manufacturing process is selected to be the one with
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Table 1 The measurement intervals of each alternative NTMP under each criterion

C1 C2 C3 C4 C5 C6

ECM [0.025, 0.100] [0.200, 1.500] [0.004, 0.006] [0.400, 0.600] [0.090, 0.110] [25.000, 35.000]

EDM [0.010, 0.100] [0.300, 3.000] [0.010, 0.030] [0.140, 0.160] [0.040, 0.060] [25.000, 35.000]

EBM [0.010, 0.030] [1.000, 4.000] [0.025, 0.030] [0.035, 0.100] [0.035, 0.100] [12.000, 18.000]

LBM [0.010, 0.030] [0.400, 1.500] [0.050, 0.150] [0.040, 0.060] [0.090, 0.110] [17.000, 23.000]

Table 2 The random numbers for each alternative under each criterion

C1 C2 C3 C4 C5 C6

ECM {0.045, 0.084} {0.385,0.610, 0.877} {0.0043, 0.0046, 0.0050} {0.547} {0.091, 0.104} {26.638, 34.441}

EDM {0.029, 0.071} {0.826, 1.423, 2.902} {0.0230, 0.0268, 0.0299} {0.157} {0.050, 0.057} {28.991, 32.320}

EBM {0.012, 0.027} {2.176, 2.514, 3.864} {0.0287, 0.0295, 0.0297} {0.065} {0.039, 0.074} {12.591, 16.516}

LBM {0.018, 0.026} {0.938, 0.944, 1.374} {0.0786, 0.0820, 0.1208} {0.044} {0.102, 0.104} {17.248, 19.847}

Table 3 The triangular fuzzy numbers related to each alternative under each criterion

C1 C2 C3 C4 C5 C6

ECM (0.025; 0.050;

0.100)

(0.200; 1.000;

1.500)

(0.004; 0.005;

0.006)

(0.400; 0.500;

0.600)

(0.090; 0.100;

0.110)

(25.000; 30.000;

35.000)

EDM (0.010; 0.025;

0.100)

(0.300; 2.000;

3.000)

(0.010; 0.020;

0.030)

(0.140; 0.150;

0.160)

(0.040; 0.050;

0.060)

(25.000; 30.000;

35.000)

EBM (0.010; 0.020;

0.030)

(1.000; 3.000;

4.000)

(0.025; 0.025;

0.030)

(0.035; 0.040;

0.100)

(0.035; 0.040;

0.100)

(12.000; 15.000;

18.000)

LBM (0.010; 0.020;

0.030)

(0.400; 1.000;

1.500)

(0.050; 0.100;

0.150)

(0.040; 0.050;

0.060)

(0.090; 0.100;

0.110)

(17.000; 20.000;

23.000)

Table 4 The hesitant fuzzy decision matrix

C1 C2 C3 C4 C5 C6

ECM {0.512, 0.811} {0.231, 0.512, 0.846} {0.289, 0.580, 0.965} {0.531} {0.113, 0.633} {0.112, 0.328}

EDM {0.381, 0.945} {0.098, 0.309, 0.660} {0.012, 0.320, 0.702} {0.251} {0.271, 0.982} {0.536, 0.798}

EBM {0.204, 0.349} {0.136, 0.588, 0.757} {0.055, 0.102, 0.251} {0.589} {0.430, 0.838} {0.197, 0.495}

LBM {0.377, 0.820} {0.252, 0.897, 0.906} {0.572, 0.583, 0.639} {0.369} {0.639, 0.766} {0.083, 0.949}

Table 5 The normalized hesitant fuzzy decision matrix

C1 C2 C3 C4 C5 C6

ECM {0.189, 0.488} {0.231, 0.512, 0.846} {0.035, 0.420, 0.711} {0.469} {0.367, 0.887} {0.672, 0.888}

EDM {0.055, 0.619} {0.098, 0.309, 0.660} {0.298, 0.680, 0.988} {0.749} {0.018, 0.729} {0.202, 0.464}

EBM {0.651, 0.796} {0.136, 0.588, 0.757} {0.749, 0.898, 0.945} {0.411} {0.162, 0.570} {0.505, 0.803}

LBM {0.180, 0.623} {0.252, 0.897, 0.906} {0.361, 0.417, 0.428} {0.631} {0.234, 0.361} {0.051, 0.917}
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the highest correlation coefficient. The results are shown in

Table 10. According to the results in Table 10, the alter-

natives are ranked as follows: A3�A1�A4�A2 and the most

suitable manufacturing alternative is A3ðEBMÞ.

4 Discussion and conclusions

The ranking results of the proposed hesitant fuzzy model

and the ones of the crisp model (Yurdakul and Coğun

2003), triangular fuzzy TOPSIS models available in Chang

1996 and Chen and Hwang 1992 and intuitionistic fuzzy

TOPSIS model (Yurdakul et al. 2020) are compared Rank

the alternatives in accordance with the values of correlation

coefficients.by analyzing the differences among their

rankings. The differences in the rankings of alternative

NTMPs are provided in Table 11 and Fig. 1. It can be

observed from Table 11 and Fig. 1 that not only the

ranking order but also the recommended NTMP change

when the hesitant fuzzy model is applied. The analysis also

shows that the ranking results in terms of the scores and

order differ significantly for all five ranking models.

It can be concluded that when the uncertainty level in

decision makers’ preferences and decisions increases, the

hesitant fuzzy ranking model provides a more thorough

representation of the decision environment by comparing

the ranges for the criteria (Table 12 and Fig. 2). Each

number within the range is considered at the same

importance level. On the other hand, other crisp and fuzzy

NTMP ranking approaches models the fuzziness with

specific numbers. For example, the triangular fuzzy NTMP

approach assigns lower, middle, and upper values for each

criterion and represents the fuzziness using these three

values. The middle value of the triangular fuzzy number is

considered as the most likely value to occur. The impor-

tance level decreases with movement closer to the upper or

lower value. Assigning the same importance level within a

range provides a more complete representation of uncer-

tainties for relative importance values and prevents loss of

comparison data within the decision environment. The

proposed model is a better model to capture and reflect the

process parameter differences in the hesitant fuzzy envi-

ronment in the appropriate nontraditional manufacturing

process selection studies.

Appendices

Appendix 1: Basic concepts and operational
laws for hesitant fuzzy sets

Definition 1. (Torra and Narukawa 2009; Naz and Akram 2019;

Lalotra and Singh 2020; Xia and Xu 2011; Garmendia et al. 2017) A

hesitant fuzzy set (HFS) on the reference set X is defined in terms of a

function A that returns a subset of 0; 1½ � when it is applied to X.

A ¼ \x; h xð Þ[ jx 2 Xf g ð1Þ

where h xð Þ is a set of different values in 0; 1½ �, expressing
the possible membership degree of an element x 2 X to A.

For convenience, Xu and Xia (2011) called h xð Þ ¼

Table 6 The preference variation values of the evaluation criteria

C1 C2 C3 C4 C5 C6

PVHamming 0.316 0.441 0.506 0.345 0.294 0.381

PVEuclidean 0.336 0.519 0.549 0.345 0.312 0.387

Table 7 The overall weights of the ranking criteria

C1 C2 C3 C4 C5 C6

wHamming 0.184 0.150 0.133 0.176 0.190 0.166

wEuclidean 0.187 0.135 0.127 0.184 0.194 0.173

Table 8 The Hamming weighted normalized hesitant fuzzy decision matrix

C1 C2 C3 C4 C5 C6

ECM {0.038, 0.116} {0.049, 0.102, 0.245} {0.005, 0.070, 0.152} {0.106} {0.083, 0.339} {0.170, 0.306}

EDM {0.010, 0.163} {0.015, 0.054, 0.150} {0.046, 0.141, 0.444} {0.216} {0.003, 0.220} {0.037, 0.099}

EBM {0.176, 0.253} {0.022, 0.125, 0.192} {0.168, 0.262, 0.320} {0.089} {0.033, 0.148} {0.111, 0.237}

LBM {0.036, 0.164} {0.043, 0.289, 0.300} {0.058, 0.069, 0.072} {0.161} {0.049, 0.082} {0.009, 0.340}

Table 9 The correlation coeffi-

cient between Hamming

weighted alternatives and the

ideal alternative

Corr1 Corr2

ECM 0.818 0.139

EDM 0.755 0.128

EBM 0.883 0.155

LBM 0.781 0.130
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l1; l2; . . .; llf g a hesitant fuzzy element (HFE), which

denotes a basic component of the HFS with li
i ¼ 1; 2; . . .; lð Þ being the possible membership degrees of

an element x to a given set. The complement of A is defined

as Ac ¼ x; hc xð Þh ijx 2 Xf g, where hc ¼ [
l2h

1� lf g.

Definition 2. (Torra 2010; Xu and Xia 2011; Liao et al. 2020) Let h,
h1 and h2 be three HFEs, then the following relations and operations

are defined:

h1 � h2 ¼
[

l12h1;l22h2
l1 þ l2 � l1l2f g ð2Þ

kh ¼
[

l2h
1� 1� lð Þk
n o

; k[ 0: ð3Þ

In the following works, Liao et al. (2014) gave the

generalized form of operation in Eq. (2). Let

hp p ¼ 1; 2; :::; rð Þ be a collection of HFEs, and then the

generalized operation is defined as in Eq. (4).

�r
p¼1hp ¼

[

lp2hp
1�

Yr

p¼1

1� lp
� �

( )
: ð4Þ

Table 11 Comparison of NTMP rankings

Crisp model (TOPSIS)

(Yurdakul and Çoğun

2003))

Triangular fuzzy

TOPSIS model of

Chang, 1996

Triangular fuzzy TOPSIS

model of Chen and Hwang

1992

Intuitionistic fuzzy

model (Yurdakul et al.

2020)

Proposed (hesitant

fuzzy) model

Ranking A3[A4[A1[A2 A1[A4[A3[A2 A4[A3[A1[A2 A3[A1[A2[A4 A3[A1[A4[A2

A1: ECM, A2: EDM, A3: EBM, A4: LBM

Table 10 The results and the rankings

Distance

Measure

Correlation

Coefficient Measure

Criteria Weights Results Ranking

Hamming Corr1 (0.1840, 0.1504, 0.1330,

0.1762, 0.1899, 0.1665)

q1 ¼ 0:8179; q2 ¼ 0:7549; q3 ¼ 0:8828; q4 ¼ 0:7810 A3�A1�A4�A2

Euclidean Corr1 (0.1869, 0.1354, 0.1270,

0.1844, 0.1936, 0.1726)

q1 ¼ 0:8146; q2 ¼ 0:7570; q3 ¼ 0:8854; q4 ¼ 0:7832 A3�A1�A4�A2

Hamming Corr2 (0.1840, 0.1504, 0.1330,

0.1762, 0.1899, 0.1665)

q1 ¼ 0:1392; q2 ¼ 0:1275; q3 ¼ 0:1551; q4 ¼ 0:1296 A3�A1�A4�A2

Euclidean Corr2 (0.1869, 0.1354, 0.1270,

0.1844, 0.1936, 0.1726)

q1 ¼ 0:1395; q2 ¼ 0:1275; q3 ¼ 0:1541; q4 ¼ 0:1286 A3�A1�A4�A2

A1: ECM, A2: EDM, A3: EBM, A4: LBM

1
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2
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2

1
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4

1
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4
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1
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5

EBM LBM ECM EDM

Ranking

Crisp Model (TOPSIS)

Triangular Fuzzy TOPSIS
(Chang, 1996)

Triangular Fuzzy TOPSIS
(Chen and Hwang 1992)

Intui�onis�c fuzzy ranking
model (Yurdakul et al. 2020)

Proposed Model

NTMPs

Fig. 1 Ranking results of the

compared ranking models for

the illustrative example

Development of a new hesitant fuzzy ranking model for NTMP ranking problem 14543

123



It should be noted that the number of values, denoted by

lhp , may be different from HFE to HFE. Then, based on the

above operational law, they also proved the following.

(Liao et al. 2014) Let h1 and h2 be two HFEs, and lh1 and

lh2 denote the number of values in h1 and h2, respectively.

The number of values in the sum of h1 and h2, denoted by

lh1�h2 , is calculated according to Eq. (5).

lh1�h2 ¼ lh1 � lh2 : ð5Þ

When there are r different HFEs, it still holds. The

number of values in the sum of r HFEs, denoted by l�r
p¼1

hp ,

is calculated based on Eq. (6).

l�r
p¼1

hp ¼
Yr

p¼1

lhp : ð6Þ

Definition 3. The existing distance measures are all defined under a

strict assumption that the compared HFEs are of equal length. If the

two HFEs are not the same length, the one which has fewer elements,

should be extended accordingly to either optimistic or pessimistic

extension approach. However, the preferred extension technique

directly affects the comparison result. Therefore, to overcome this

limitation a new distance measure is introduced. Let h1 and h2 be two
HFEs, the generalized hesitant fuzzy Hausdorff distance measure

(Wang et al. 2016) is given in Eq. (7).

d h1; h2ð Þ ¼ 1

2
max
lh12h1

min
lh22h2

lh1 � lh2
�� ��kþ max

lh22h2
min
lh12h1

lh2 � lh1
�� ��k

 !" #1
k

:

ð7Þ

If k ¼ 1, then Eq. (7) is reduced to the hesitant fuzzy Hamming–

Hausdorff distance and if k ¼ 2, then Eq. (7) is reduced to the hesi-

tant fuzzy Euclidean–Hausdorff distance. Throughout the work,

Hamming distance and Euclidean distance are referred to measures

introduced in above.

Definition 4. Correlation is an indicator which measures how well

two variables move together in a linear fashion, and correlation

coefficient is a tool to express this relationship. Therefore, the

correlation coefficient has been integrated into different circum-

stances. Xia and Xu (2011) introduced several correlation coefficients

of HFEs, under the assumption that they all are of the same length.

However, some of these measures are not suitable when there is only

one element in HFEs. Considering the limitations, Chen and Lu

(2015) defined the correlation coefficients of HFSs given in Eqs. (8)

and (9). Let B and C be two HFSs, then

Corr1 B;Cð Þ

¼
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
B xið Þ � hs jð Þ

C xið Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
B xið Þ2

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
C xið Þ2

� �r

ð8Þ
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Corr2 B;Cð Þ

¼
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
B xið Þ � hs jð Þ

C xið Þ
� �� �

max
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
B xið Þ2

� �� �
;
Pn

i¼1
1
lxi

Plxi
j¼1 h

s jð Þ
C xið Þ2

� �� �n o

ð9Þ

where h
s jð Þ
B xið Þ and h

s jð Þ
C xið Þ are the jth largest values in

hB xið Þ and hC xið Þ.

Appendix 2: Hesitant fuzzy correlation
integrated preference selection index
method

In this section, the proposed hesitant fuzzy correlation

integrated preference selection index (PSI) method is

introduced. The algorithm consists of two major steps:

evaluation criteria weighting via the hesitant fuzzy PSI and

ranking of alternatives depending on the correlation

coefficients.

Before introducing the integrated evaluation method,

some definitions are given about a random number gener-

ation procedure which is used at the very beginning of the

method. In addition, a brief review of the triangular fuzzy

numbers is provided.

Definition 1. When there is a lack of measurement; hence,

incomplete information, the following approach can be considered

with tight intervals to generate near measurement results. Let xij be

continuous variables which are measurable, and max xij and min xij be
the maximum and minimum values that xij can attain, respectively.

Mij is defined as a set of numbers being elements of the interval

Iij ¼ min xij;max xij
� 	

. In order to create an appropriate Mij, k many

numbers are randomly generated between the minimum and the

maximum according to uniform distribution.

Example 1.1. Let Iij ¼ 0:50; 1:30½ � be an interval expressing all

possible values that a measurable quantity can take and k be 2. Then,

2 random numbers are generated respecting the boundary values. The

set Mij is shown as in Eq. (10).

Mij ¼ 0:50; 0:79; 0:99; 1:30f g: ð10Þ

Definition 2. ~A ¼ min xij; x
�
ij;max xij

� �
is a triangular fuzzy number.

The membership function of ~A is given in Eq. (11).

l ~A xð Þ ¼

x�min xij
x�ij �min xij

; min xij 	 x	 x�ij

max xij � x

max xij � x�ij
; x�ij 	 x	 max xij

0; otherwise

8
>>>><

>>>>:

: ð11Þ

The membership degrees of the elements of a set Mij are

calculated by using triangular membership function in

Eq. (11). The intermediate value of the corresponding
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Fig. 2 Graphic illustration for

the ranges of the criteria at
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triangular fuzzy number (Eq. 10) is estimated to be 0.90

and the membership function is written as in Eq. (12).

l ~A xð Þ ¼

x� 0:50

0:90� 0:50
; min xij 	 x	 x�ij

1:30� x

1:30� 0:90
; x�ij 	 x	 max xij

0; otherwise

8
>>><

>>>:
: ð12Þ

The membership degree of each element of Mij is

obtained as l ~A 0:50ð Þ ¼ l ~A 1:30ð Þ ¼ 0, l ~A 0:79ð Þ ¼ 0:73

and l ~A 0:99ð Þ ¼ 0:78.

Application steps of the hesitant fuzzy model for an

MCDM problem with m alternatives Ai i ¼ 1; 2; . . .;mð Þ
and n criteria Cj j ¼ 1; 2; . . .; nð Þ is provided below:

Step 1 Determine the measurement intervals for each

alternative.

Measurement intervals, denoted by Iij, are defined as the

interval of reals including possible minimum (min xij) and

maximum (max xijÞ values that a measurable quantity can

take. Then, the data is provided in a matrix, as shown in

Eq. (13).

I ¼ Iij
� 	

m�n
¼

I11 � � � I1n
..
. . .

. ..
.

Im1 � � � Imn

2
64

3
75

m�n

ð13Þ

where Iij ¼ min xij;max xij
� 	

:
Step 2 Generate random numbers to construct the set of

possible measurement values for each alternative.

According to the sensitivity of the variability of the

criterion value, the decision maker determines how many

values should be generated within the range. In other

words, the k value is declared by the decision maker.

Hence, k many random numbers are generated based on the

uniform distribution, and the set Mij is constituted for each

alternative under each criterion.

Step 3. Construct the hesitant fuzzy decision matrix.

Considering each of the kj many values in the set Mij,

the set of possible membership degrees, hij is calculated

using the membership function given in Eq. (12). hij ¼

l1ij; l
2
ij; . . .; l

kj
ij

n o
is an HFE, expressing kj different mem-

bership degrees assigned to the ith alternative for the jth

criterion. The hesitant fuzzy decision matrix, shown in

Eq. (14) also, denoted by ~R, is constructed by

HFEs,hij i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; nð Þ

~R ¼ hij
� 	

m�n
¼

h11 � � � h1n
..
. . .

. ..
.

hm1 � � � hmn

2

64

3

75

m�n

: ð14Þ

Step 4 Construct the normalized hesitant fuzzy decision

matrix.

The normalized hesitant fuzzy decision matrix, denoted

by ~RN , is shown in Eq. (15).

~RN ¼ hijN
� 	

m�n
¼

h11N � � � h1nN
..
. . .

. ..
.

hm1N � � � hmnN

2
64

3
75

m�n

ð15Þ

where hijN ¼ hij; ifjis a benefit-type criterion

hcij; if j is a cost-type criterion



.

hcij indicates the complement of the corresponding HFE

and is calculated according to Definition 1 in Section 2. It

should be noted that it is assumed that a criterion is either a

benefit criterion or a cost criterion and none of the criteria

excludes the classification.

Step 5 Determine the preference variation value for each

criterion.

Preference variation value, PVj, for each criterion is

determined by using Eq. (16) or Eq. (17). These equations

are derived from distance measures introduced in Defini-

tion 3, in Section 2.

PVj

� �
Hamming

¼ 1

m

Xm

i¼1

dHammingðhijN ; hjÞ; j ¼ 1; 2; . . .; n

ð16Þ

PVj

� �
Euclidean

¼ 1

m

Xm

i¼1

dEuclideanðhijN ; hjÞ; j ¼ 1; 2; . . .; n:

ð17Þ

In Eqs. (16) and (17), hj is the average HFE which is

calculated by using the summation and the product oper-

ators introduced in Eqs. (2) and (3), respectively.

hj ¼
1

kj
� �m �m

i¼1 hijN ; j ¼ 1; 2; . . .; n: ð18Þ

kj
� �m

indicates the length of the HFE found by the

summation of m many HFEs, �m
i¼1hijN and it is calculated

according to Eq. (6) in Section 2.

Step 6 Determine the overall weight of each criterion.

The overall weight, wj, is calculated according to

Eq. (19) or Eq. (20) depending on selected distance mea-

sure. Weights should satisfy the following two:

wj 0; 1½ �; j ¼ 1; 2; :::; n, and
Pn

j¼1 wj ¼ 1.

wj

� �
Hamming

¼
ðujÞHammingPn
j¼1ðujÞHamming

; j ¼ 1; 2; . . .; n ð19Þ

wj

� �
Euclidean

¼
ðujÞEuclideanPn
j¼1ðujÞEuclidean

; j ¼ 1; 2; . . .; n ð20Þ

ðujÞHamming and ðujÞEuclidean are the deviation in prefer-

ence value of each criterion and are calculated with

Eqs. (21) and (22), respectively.
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ðujÞHamming ¼ 1� PVj

� �
Hamming

ð21Þ

ðujÞEuclidean ¼ 1� PVj

� �
Euclidean

ð22Þ

Step 7 Construct the weighted hesitant fuzzy decision

matrix.

The weighted hesitant fuzzy decision matrix is denoted

by ~Rw and depicted in Eq. (23). Each element of ~Rw is

calculated by using Eq. (3).

~Rw ¼ hwij

h i

m�n
¼

hw11 � � � hw1n
..
. . .

. ..
.

hwm1 � � � hwmn

2

64

3

75

m�n

; where hwij

¼ wjhij: ð23Þ

Step 8 Calculate the correlation coefficient between each

alternative and the ideal alternative.

The correlation coefficient between each alternative Ai

and the ideal alternative A�, Corri, is calculated by using

measures in Eqs. (8) and (9). A� is selected to be as in

Eq. (24) since the maximum value of a membership degree

can attain is 1.

A� ¼ h1; h2; . . .; hnf g

¼ 1; 1; . . .; 1f g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k1

; 1; 1; . . .; 1f g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k2

; . . . 1; 1; . . .; 1f g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
kn

8
><

>:

9
>=

>;
:

ð24Þ

Step 9 Rank the alternatives in accordance with the

values of correlation coefficients.

All alternatives are sorted in decreasing order according

to correlation coefficient values, and hence a complete

ranking is obtained. The larger the value of correlation

coefficient, the higher the priority of alternative is Ai.
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