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Abstract
The prediction of river sediment load is an essential issue in water resource engineering problems. In this study, artificial

neural network employed in order to estimate the daily sediment load on rivers. Two different algorithms, multi-layer

perceptron (MLP) and hybrid MLP-FFA (MLP integrated with the FFA) were used for this purpose in the Lake Mahabad,

Iran. For this purpose, nine different scenarios are considered as inputs of the models. Performance of selected models was

evaluated on basis of performance criterion namely root mean square error (RMSE), mean absolute error (MAE), coef-

ficient of determination (R2) for choosing best fit model. The results indicated that the new hybrid model MLP-FFA is

successful in estimating sediment load with high accuracy as compared with its alternatives with RMSE = 2018 ton/day,

MAE = 1698 and R2 = 0.95, which were much lower than those of MLP-based model with RMSE = 3044 ton/day,

MAE = 2481 and R2 = 0.90. The results of the present study confirmed the suitability of proposed methodology for precise

modeling of suspended sediment load.
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1 Introduction

Sediment load information is useful for problems in the

design of reservoirs and dams, transport of sediment and

pollutants in rivers, lakes and estuaries, design of

stable channels and dams, protection of fish and wildlife

habitats, determination of the effects of watershed man-

agement and environmental impact assessment (Cigizoglu

2004). Water quality and sediment modeling have been a

challenging task in the field of computational hydrology

(Kişi 2009). Traditionally used methods (e.g., Ahmad et al.

2009, 2010) to determine runoff often do not take into

account sediment load. Estimation of sediment load has

been approached through empirical relationships, numeri-

cal simulations, physically-based models and using remote

sensing and Geographic Information Systems (GIS)

techniques.

Precise simulation of sediment load is important for

sustainable water supplies and environmental systems,

because it plays a major role in any decision-making pro-

cess on water availability. In recent years (Lohani et al.

2007; Boukhrissa et al. 2013; Yadav et al. 2018; Ampomah
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et al. 2010), the use of data-driven modeling techniques to

produce improved sediment yield rating curves has

attracted substantial attention. Previously, multiple sedi-

ment prediction models were developed by hydrology

researchers, ranging from empirical, i.e., USLE/RUSLE

(Wischmeier and Smith 1978; Fu et al. 2006; Arekhi et al.

2012; Borrelli et al. 2017) and mathematical, i.e., kine-

matic/ diffusion wave theory (Liu et al. 2004; Singh and

Tayfur 2008; Schneider 2018) or linear/nonlinear pro-

gramming optimization (Nicklow and Mays 2000; Dutta

2015; Wang et al. 2020) to physically dependent. Physi-

cally process-based models such as SWAT (Asres and

Awulachew 2010; Chandra et al. 2014; Dutta and Sen

2018; Liu and Jiang 2019), WEPP (Yuksel et al. 2008;

Saghafian et al. 2014; Singh et al. 2017; Ahmadi et al.

2020), and many others have shown better understanding

of sediment yield modeling, yet their data hunger is often

very large, and even watersheds intensively monitored lack

adequate input data for these models. Therefore, alternative

methods for forecasting runoff and yield of sediments need

to be searched for. Soft computing methodology is one of

the solutions to solving such problems.

Soft computing (SC) techniques such as the artificial

neural network (ANN) model have successfully been used

extensively for the prediction of suspended sediment load.

The major advantage of such SC techniques is that these

models are fully nonparametric and do not require a priori

concept of the relations between the input variables and the

output data (Gocić et al. 2015; Fahimi et al. 2017). Various

researchers have used ANNs for hydrologic studies

including time series predictions of runoff or streamflow

(Hsu et al. 1995; Govindaraju 2000; Rajaee et al.

2009, 2010; Melesse et al. 2011; Lafdani et al. 2013; Khan

et al. 2018; Meshram et al. 2019a, 2019b, 2020, 2021a,

2021b, 2021c; Iraji et al. 2020). Sudheer et al. (2003) used

radial-based neural networks for partial weather data;

Trajkovic (2005) used radial-based neural networks using

temperature-based models; Kisi (2007) applied a neural

computing technique using climatic data; and Aytek (2008)

applied a co-active neuro-fuzzy interpretation system.

Cobaner et al. (2009) used neural networks and adaptive

neuro-fuzzy interference system techniques.

The rainfall–runoff correlation is positively modeled

using ANNs (Raid and Mania 2004; Maier et al. 2010;

Patel and Joshi 2017). ANNs were also measured as a

dominant instrument to use in monthly river flow predic-

tion and various groundwater problems (Coulibaly et al.

2001; Singh et al. 2013). Other applications of ANNs

comprise unit hydrograph (Bhunya et al. 2011), regional

drought analysis/flood frequency analysis (Adamowski

et al. 2012; Adamowski et al. 2012; Belayneh et al. 2016),

estimation of sanitary flows (Donovan et al. 2016), river

basins classification (Fang et al. 2017), assessment of

agricultural vulnerability (Ettinger et al. 2016), modeling

hydraulic characteristics of severe contraction (Qiwei et al.

2016). Inside the entire work, the term MLPs (multi-layer

perceptron) is favored over the common ANN explanation

in light of the fact that there are different ANN algorithms,

and MLPs are only one of them.

In the various water resource data, the MLPs establish

the popular algorithm in the ANN application. Other

algorithm such as RBFs (radial basis functions) (Heddam

2016; Nourani et al. 2017), Conjugate gradient algorithms

(Yu-hong and Cai-xia 2013) cascade correlation algorithm

(Schetinin 2003; Kaladhar et al. 2011) and recurrent neural

networks (Graves et al. 2006) have also been active in

some studies. However, these algorithms suffer from the

capability of finding optimal parameters. Therefore, dif-

ferent optimization algorithms incorporate into the

arrangement to improve the prediction accuracy. One of

the popular optimization algorithms is Firefly Algorithm

(FFA) (Kayarvizhy et al. 2014). FFA is a multimodal

nature inspired metaheuristic optimization algorithm based

on flashing behavior of fireflies (Yang 2009). A model that

integrates the MLP with firefly algorithm (FFA) is devel-

oped to predict sediment load (Yang 2010). In another

study by Ghorbani et al. (2017), a hybrid SVM-FFA

arrangement has been developed to forecast the field

capacity and permanent wilting point of soils in East

Azerbaijan province, North-west Iran.

In this study, a hybrid model incorporating the firefly

algorithm (FFA) into MLP is advanced to forecast sedi-

ment load. An ANN-based method developed to forecast

the daily sediment load for Mahabad River in Iran. To find

the optimal values for MLP parameters, the FFA algorithm

incorporated to the model architecture. The model feasi-

bility investigated further by making a comparison between

the hybrid MLP-FFA approach and isolated MLP tech-

nique. The purpose of this study is, for the first time, to

examine the application of MLP-FFA algorithm to predict

sediment load data sets in Mahabad River, Iran.

2 Material and methods

2.1 Study area

Mahabad River passes through the city and is composed of

three branches. The river after passing through various

villages and farmland irrigation and channel their way

through the swamps South of the lake sheds. Mahabad river

basin is located South of Lake Urmia in West Azarbaijan

province. The basin covered 1524.53 km2 area about 3% of

the total area is included the catchment basin of the lake.

The locations of Mahabad river of its recording station

used in this study are East Longitude 45�250900 to 46�4505100

912 S. G. Meshram et al.

123



and North Latitude 36�2305100 to 37�0301100 (Fig. 1). The
basin is roughly oval that the large diameter is the North–

South, and the small diameter is East–West. This water-

shed is shared the Little Zab watershed basins in the South

West, Gadr in West and Siminehroodin Southeast also in

North borders the Lake Urmia.

2.2 Statistical specifications of data

In this study, the daily suspended sediment load (SSL) and

streamflow data in Mahabad River were used. For this

study, the observed streamflow and sediment data are

5 years (60 months) from 2011 to 2016 (Fig. 2). The sta-

tistical properties of the streamflow and sediment load data

are given in Table 1. The maximum, mean and minimum

values (Xmax, Xmean and Xmin), standard deviation (rx) and
variation of coefficient (Cv) of the data are provided in

Table 1. It is seen that the sediment load has a high stan-

dard deviation (3895.65). The statistics results evidence the

highly stochastic between the streamflow and the sediment

load. For both analysis (MLP and MLP-FFA), the first 70%

of the whole data set is used for training, and the remaining

30% is used for testing. In the current study, it is aimed to

model the daily SSL using the streamflow data based on the

scenarios illustrated in Table 2. One-day, two-day, three-

day and four-day streamflow and SSL delays are consid-

ered in this study. In fact, it evaluates the dynamic memory

of streamflow for estimation of the SSL, and also, it is a

way for identifying the best input variables to achieve the

best results.

2.3 Model descriptions

2.3.1 Multi-layer perceptron neural networks (MLP)

Multi-layer feed-forward perceptron (MLP) is a multi-

layered architecture of Neural Network including hidden

layer besides input and output layer with Levenberg–

Marquardt back propagation learning algorithm (Fig. 3). In

each layer, the neurons are linked via a weight to the

neurons in the following layer throughout training. The

activation functions determined to be sigmoid and linear

function for hidden layer and output layer, respectively.

More details description about MLP structure is accessed

in (Ghorbani et al. 2013).

2.3.2 Firefly algorithm (FFA)

The FFA algorithm is a bio-inspired, swarm intelligence

optimization technique motivated by flashing behavior of

fireflies, introduced by Yang (2010) for the first time. In

this technique, the arrangement of an optimization subject

is established as operator i.e., firefly which beams in extent

to its value. Therefore for every sunnier firefly pulls in its

accomplices, paying little mind to their gender, makes the

search for the pursuit space more operative (Lukasik and

Zak 2009; Hemalatha et al. 2016; Al-shammari et al.

2016).

Fire flies are paying attention in to the brightness. The

whole swarm transfers toward the sunniest firefly. Thus, the

fireflies are attracted by the amount of their brilliance

Fig. 1 Location map of the

study area (Mahabad River)

A multi-layer perceptron (Mlp)-fire fly algorithm (Ffa)-based model for sediment prediction 913
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(Kayarvizhy et al. 2014; Fateen et al. 2012; Sudheer et al.

2014). Moreover, the brilliance lean on the concentration

of the agent. For the development of FFA, the major issues

are the objective function formulation and the light inten-

sity variation. The light intensity I(L), the attraction (a) and
the Cartesian distance among every two fireflies j and k can

be represented as:

I Lð Þ ¼ IO exp �cL2
� �

ð1Þ

a Lð Þ ¼ aO exp �cL2
� �

ð2Þ

Ljk ¼ xj þ xk
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

xj;i � xk;i
� �

vuut ð3Þ

where I(L) and Io are the light concentration at distance L

and the initial light concentration from a firefly, respec-

tively. c is the coefficient for the light absorption; a(L) and
ao are the attraction at a distance L and L = 0, respectively.

The subsequent movement of firefly j is exemplified as:

xjþ1
j ¼ xj þ Dxj ð4Þ

Dxj ¼ aOe
�cL2 xk � xj

� �
þ l�j ð5Þ
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Fig. 2 Observed streamflow and

sediment load in Mahabad River

Table 1 Statistical characteristics of the data

Data Data set N Xmax Xmin Xmean Standard deviation (m3/s) Coefficient of variation

Sediment Training 1238 2359.61 302.4465 7232.58 3875.68 0.53

Testing 530 14,645.33 44.90 4335.34 3111.09 0.71

Total 1768 23,593.61 44.90 6364.07 3895.65 0.61

Streamflow Training 1238 42.18 0.0518 10.23 8.82 0.86

Testing 530 31.38 0.074 3.57 4.98 1.31

Total 1768 42.18 0.0518 8.23 8.39 1.02

914 S. G. Meshram et al.
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The initial part in the Eq. (5) corresponds to the attraction

between fireflies, and the second part is related to the

randomization parameters, wherein l is the randomization

coefficient varies from 0 to 1, and � i represents the ran-

dom number vector resulted from Gaussian distribution.

In this research, optimum values of c, e and C for the

weights of the MLP architecture were computed. Firstly,

we divided data: 70% of data for training and 30% of data

for testing in FFA, ANN. Then, the data for ANN model

should be normalized, and the range of input data within

0–1 has been used. Figure 4 indicates the structure of the

MLP-FFA (Lukasik and Zak 2009).

2.4 Performance criteria

In this study, three statistically criteria namely, coefficient

of efficiency (R2), root mean square error (RMSE) and

mean absolute error (MAE) were applied in order to

evaluate the models performances. The criteria are defined

as follows:

R2 ¼
Pi¼1

N xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼1

N xi � xð Þ2:
Pi¼1

N yi � yð Þ2
q

2

64

3

75

2

0�R2 � 1 ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 xi � yið Þ2

N

s

ð7Þ

MAE ¼ 1

N

XN

i¼1

xi � yið Þj j ð8Þ

where N is the total of observed data, xi and yi are the

experimental and expected suspended sediment, individu-

ally. x and y are the averaged experimental and expected

suspended sediment, respectively.

Table 2 Performance of MLP and MLP-FFA model for daily sediment load prediction

No Model structure Training Testing

Models Input combination Output Model

Structure

R2 RMSE

(ton/day)

MAE

(ton/day)

R2 RMSE

(ton/day)

MAE

(ton/day)

1 MLP1 St-1 St (1,12,1) 0.912 1147 637 0.901 3449 2946

2 MLP2 Qt, St-1 St (2,10,1) 0.932 1011 628 0.865 3162 2730

3 MLP3 St-1, St-2 St (2,8,1) 0.913 1143 654 0.912 3415 2902

4 MLP4 Qt, St-1, St-2 St (3,17,1) 0.934 995 625 0.831 3103 2572

5 MLP5 Qt, Qt-1, St-1 St (3,19,1) 0.926 1053 645 0.874 3419 2897

6 MLP6 Qt, Qt-1, St-1, St-2 St (4,16,1) 0.908 1188 755 0.887 3422 3089

7 MLP7 Qt, Qt-1, Qt-3, St-1, St-2 St (5,13,1) 0.925 1065 637 0.872 3211 2628

8 MLP8 Qt, Qt-1, Qt-3, St-1, St-2, St-3 St (6,11,1) 0.929 1033 632 0.852 3074 2504

9 MLP9 Qt, Qt-1, Qt-3, Qt-4, St-1, St-2,

St-3, St-4

St (8,20,1) 0.987 440 102 0.901 3044 2481

1 MLP-

FFA1

St-1 St (1,12,1) 0.957 800 452 0.949 2289 1957

2 MLP-

FFA2

Qt, St-1 St (2,10,1) 0.97 674 419 0.926 2108 1820

3 MLP-

FFA3

St-1, St-2 St (2,8,1) 0.96 776 449 0.95 2277 1934

4 MLP-

FFA4

Qt, St-1, St-2 St (3,17,1) 0.971 663 417 0.906 2069 1715

5 MLP-

FFA5

Qt, Qt-1, St-1 St (3,19,1) 0.967 758 477 0.929 2279 1931

6 MLP-

FFA6

Qt, Qt-1, St-1, St-2 St (4,16,1) 0.96 792 503 0.939 2281 2059

7 MLP-

FFA7

Qt, Qt-1, Qt-3, St-1, St-2 St (5,13,1) 0.966 710 424 0.931 2118 1747

8 MLP-

FFA8

Qt, Qt-1, Qt-3, St-1, St-2, St-3 St (6,11,1) 0.969 688 421 0.91 2098 1699

9 MLP-

FFA9

Q t, Qt-1, Qt-3, Qt-4, St-1,

St-2, St-3, St-4

St (8,20,1) 0.989 72 25 0.95 2028 1698

Bold values indicate the best model

A multi-layer perceptron (Mlp)-fire fly algorithm (Ffa)-based model for sediment prediction 915
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Fig. 3 Typical arrangement of multi-layer perceptron neural network

Fig. 4 Structure of the MLP-

FFA
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3 Results and discussion

In order to model a river’s suspended sediment load, his-

torical streamflow and suspended sediment load data are

essential. The seasonality of rainfall has an impact on

discharge and suspended sediment load. In this study,

multi-layer perceptron (MLP) model was employed to

calculate suspended sediment load. In order to enhance the

robustness of the MLP model, a hybrid algorithm was

developed by combining the MLP with FFA optimization

technique. The performance of the two developed models

was compared in terms of accurate suspended sediment

load prediction.

In current study, the daily streamflow and sediment load

data of current and prior days are used as inputs to the

multi-layer perceptron (MLP) models and MLP-FFA

models to estimate current sediment load value. These

models evaluated by the RMSE, MAE and R2 criteria. The

two different steps are employed here. In the first step,

various input combination consisting of different number

of antecedent and current sediment and streamflow data are

tried using an MLP and MLP-FFA models. The best input

combination is selected according to the performance cri-

teria. In the second step, the MLP model compared with the

MLP-FFA model.

The various input combinations used in the MLP and

MLP-FFA model to estimate suspended sediment load for

the Mahabad River are (i) St-1 (ii) Qt, St-1 (iii) St-1, St-2

(iv) Qt, St-1, St-2 (v) Qt, Qt-1, St-1 (vi) Qt, Qt-1, St-1, St-2

(vii) Qt, Qt-1, Qt-3, St-1, St-2 (viii) Qt, Qt-1, Qt-3, St-1,

St-2, St-3 (ix) Qt, Qt-1, Qt-3, Qt-4, St-1, St-2, St-3, St-4

where Qt is the streamflow at day t, and St is the sediment

load at day t. In all cases, the output layer had only one

neuron, i.e., the sediment loads (St).

A program code was written in MATLAB for the MLP

and MLP-FFA model simulations. Different architectures

were tried using this code, and the appropriate model

structures were determined for each input combination.

Then, the MLP and MLP-FFA models were tested, and the

results were compared by means of RMSE, MAE and R2

statistics (Table 2).

The number of neurons in the hidden layer was deter-

mined using the trial and error procedure and for each

scenario the best network architecture was selected based

on the three performance criteria (RMSE, MAE, R2).

Table 2 shows the best architecture and their related per-

formance criteria for each scenario. It is also showed that

adding streamflow and sediment load of the previous day

have a significant effect on the results. Hence, the MLP-9

and MLP-FFA-9 model with 8 inputs, 20 hidden and 1

output was selected as the most optimum model.

The results of MLP modeling at training and testing

stages in Table 2 show that according to the results of the

test period in all scenarios, it is pointed out that the MLP

provides the best results in the 9th scenario where Qt, Qt-1,

Qt-3, Qt-4, St-1, St-2, St-3, St-4 are used as input of the

model to estimate SSL. It is found that the model error is

lower, with 8 input where value of RMSE, MAE and R2 are

found as 3044 (ton/day), 2481 (ton/day) and 0.901,

respectively. The model error is also lower for the training

data set where value of RMSE, MAE and R2 are found as

440 (ton/day), 102 (ton/day) and 0.987, respectively. The

most accurate estimation is related to the 9th scenario

called MLP9. Figure 5 shown observed and predicted daily

sediment load for training and testing period.

The performances of proposed models of MLP-FFA in

the current study are examined in terms of RMSE, MAE

and R2 in Table 2. It is seen that the hybrid models (MLP-

FFA) have a better performance than the MLP models. The

MLP-FFA model has been able to estimate SSL with better

accuracy than that of MLP models. The MLP-FFA hybrid

model has the best performance with inputs combination of

Qt, Qt-1, Qt-3, Qt-4, St-1, St-2, St-3, St-4 in terms of

different evaluation criteria of RMSE, MAE and R2 with 72

ton/day, 25 ton/day and 0.989 respectively for training

period. The most accurate estimation with the least error is

related to the 9th scenario called MLP-FFA9. This scenario

has the best correlation between observed values and

estimated SSL value. This is a sign of the proper func-

tioning of the FFA algorithm in optimizing the MLP to

estimate SSL values.

Figure 5 and 6 depicts the observed and predicted sed-

iment load values for the training and testing phase. The

estimation of the hybrid model MLP-FFA9 is more closer

to the observed data in contrast to the MLP9 model.

Finally, it is concluded that the MLP-FFA model (hybrid)

provides a very accurate simulation compared with MLP

model (standalone). These outcomes are in consistent with

the findings of Olatomiwa et al. (2015); Ghorbani et al.

(2017); Moazenzadeh et al. (2018); Mohammadi et al.

(2021); Darabi et al. (2021).

4 Conclusion

The prime aim of this research was to predict the sediment

load for Mahabad River, by employing the two soft com-

puting techniques i.e., MLP and MLP-FFA. The prediction

accuracy of these models was estimated using statistical

measures (RMSE, MAE and R2) and graphical examina-

tion. Daily streamflow and sediment load data of one-four

antecedent historical records are used for the modeling.

Different input combinations were examined on all studied

models to select the best scenario for further analysis.

A multi-layer perceptron (Mlp)-fire fly algorithm (Ffa)-based model for sediment prediction 917
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According to the result, MLP9 and MLP-FFA9 models

which consist of four antecedent values of streamflow and

sediment load have been selected as the best fit forecasting

model. Comparison of the developed models based on the

variety of statistical error measurement indices showed that

the MLP-FFA9 model provide better performance than the

MLP9 models for estimating the daily sediment load. In

order to implement appropriate measures of soil conser-

vation in the watershed to reduce the sediment load in the

river, predicting the sediment yield is very necessary to

maximize the life of the structure.
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Fig. 5 Observed and predicted daily sediment load by MLP and MLP-FFA models for training period

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

Se
di

m
en

t l
oa

d 
(t

on
/d

ay
)

Time(day)

Observed
MLP
MLP-FFA

Fig. 6 Observed and predicted daily sediment load by MLP and MLP-FFA models for testing period
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