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Abstract
Defect prediction is a technique introduced to optimize the testing phase of the software development pipeline by predicting
which components in the software may contain defects. Its methodology trains a classifier with data regarding a set of features
measured on each component from the target software project to predict whether the component may be defective or not.
However, suppose the defective information is not available in the training set. In that case, we need to rely on an alternate
approach that uses the training set of external projects to train the classifier. This approached is called cross-project defect
prediction. Bad code smells are a category of features that have been previously explored in defect prediction and have been
shown to be a good predictor of defects. Code smells are patterns of poor development in the code and indicate flaws in its
design and implementation. Although they have been previously studied in the context of defect prediction, they have not
been studied as features for cross-project defect prediction. In our experiment, we train defect prediction models for 100
projects to evaluate the predictive performance of the bad code smells. We implemented four cross-project approaches known
in the literature and compared the performance of 37 smells with 56 code metrics, commonly used for defect prediction. The
results show that the cross-project defect prediction models trained with code smells significantly improved 6.50% on the
ROC AUC compared against the code metrics.

Keywords Cross-project defect prediction ·Defect prediction · Code smell ·Mining software repositories · Software quality ·
Software engineering

1 Introduction

In the software development process, assuring software
quality is a crucial requirement to accommodate today’s
expectations of software delivery. Within the proposed tech-
niques to optimize the delivery time of software while
maintaining its quality, defect prediction was shown to be a
promising approach, considering its application to test case
prioritization and selection (Paterson et al. 2019). Defect pre-
diction uses the historical information of software, such as
the source code in its previous versions and the defective
information through the reported bugs, to make predictions
about the location of bugs in the code. This is made using
classification algorithms, which, when given a training set,
learn to label each software component as defective or not.
This is called within-project defect prediction.
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Beyond the traditional application of defect prediction,
which assumes natural access to the past information of
the software, in a practical industrial scenario, this informa-
tion may not be available. It is common for companies not
to maintain a clear historical data record of defects or not
contain sufficient data from previous versions of a project
(Kitchenham et al. 2007). In addition, historical data are not
available for new projects. This limits the creation of a train-
ing set capable of building a classifier fit to predict which
components in the software may be defective. Therefore,
research accommodated this problem by introducing a vari-
ant approach to defect prediction, called cross-project defect
prediction, that builds the training set from external sources
to the project (Goel et al. 2017).

Several studieswereproposed, introducingnewapproaches
for cross-project defect prediction. They leverage the training
set from other projects, for instance, by either homogeniz-
ing the respective training set or target set (Watanabe et al.
2008), or selecting the training instances closest to the tar-
get project (Turhan et al. 2009). Moreover, the categories of
metrics used to build the cross-project models were based
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on source code metrics, commonly studied in the classical
problem of within-project defect prediction (Herbold et al.
2018).

A particular category of code metrics are bad code smells,
which are patterns of bad code design and implementation
that increase the technical debt of software; thus, they lead
to defects and high-cost maintenance tasks (Suryanarayana
et al. 2015). Although there is a considerable study on the
application of cross-project defect prediction for code met-
rics, the respective evaluation for bad code smells has not
been deeply explored. Therefore, the goal of this study is to
evaluate the impact of bad code smells for cross-project
defect prediction, compared with the code metrics already
studied in the literature in this context.

For evaluation, we implemented four cross-project defect
prediction approaches and built cross-project models using
those approaches on five classifiers. Then, we trained them
using bad code smells and code metrics as the features
extracted fromfiveversions of 100open-source projectswrit-
ten in Java.All projectswere used as target projects, aswell as
training projects for the other respective projects. We exam-
ine whether the performance of both sets of features—bad
code smells and code metrics—when used together to build
the models improves the performance of the cross-project
defect prediction.

We conclude that cross-project defect prediction models
trained with code smells outperform the models trained with
code metrics, with an average improvement of 6.50% on
the ROC AUC. Therefore, by evaluating the improvement
of each individual project, we observed that in 76% of the
projects, there was an improvement for the code smells com-
pared with code metrics. Moreover, we observed that the
combination of both sets of features does not produce higher
predictive models than the models trained with only code
smells.

The rest of the paper is outlined as follows. In Sect. 2, we
discuss the related work. In Sect. 3, we introduce the prob-
lem definition concerning cross-project defect prediction,
and bad code smells. In Sect. 4, we describe the evaluation
methodology to evaluate the impact of the bad code smells.
Lastly, in Sect. 5, we present and discuss the results from this
study.

2 Related work

This section discusses the related work for within and cross-
project defect prediction and its application using bad code
smells as features.

Defect prediction is an active research topic in software
engineering. It is commonly used to select and prioritize test
cases to optimize the software testing phase while maintain-
ing its quality. As shown by Paterson et al. (2019), to produce

good results when the test cases are prioritized using within-
project defect prediction, i.e., the defect prediction model is
trained using resources from the same project.

Over the years, several models and implementations were
introduced for defect prediction research. In a broad view,
Arpitha Kotte (2021) published a very recent study with a
comprehensive survey of the different models proposed for
defect prediction.

Several studies were published for within-project defect
prediction that thoroughly evaluate the impact of different
metrics as predictors for defects classification (Li et al. 2018);
for instance, code and processmetrics. Codemetrics aremea-
sured directly from the source code, e.g., size or complexity,
and process metrics are extracted from the historical infor-
mation of the software repositories (Radjenović et al. 2013).

A different set of metrics that has also been thoroughly
studied in the literature is the set of bad code smells.
Piotrowski and Madeyski (2020) did a systematic literature
review of 27 papers from 2006 to 2019 that analyze the
relationship between smells and defects and their impact on
defect prediction. In the end, they identify an overall posi-
tive correlation between code smells and defects; hence, bad
code smells are a good indicator of defect prediction.

However, these studies only focus on models for within-
project defect prediction. When we remove the assumption
that the project contains a clear historical record of defect
data or enough information from its previous versions, we do
not have enough information to build models with enough
capability to perform defect prediction (Kitchenham et al.
2007).

Therefore, a new class of defect prediction models was
created that uses information from other projects to com-
plement the missing information of the target project. Porto
et al. (2019) perform a systematic review, and experimen-
tal comparison of 31 CPDP methods of cross-project defect
prediction, and Herbold et al. (2018) propose a bench-
mark for cross-project defect prediction, thus replicating
24 approaches and experimentally comparing their perfor-
mance. They observed that the standardization approaches
performed significantly well, particularly the ones proposed
by Cruz and Ochimizu (2009) and Watanabe et al. (2008).
Moreover, Turhan et al. (2009) propose an approach that also
reports good performances; it builds the training set by select-
ing the instances from the cross-projects that are closer to
each instance of the target project.

Due to their good performance, these were the approaches
we applied to evaluate the impact of bad code smells as pre-
dictors for cross-project defect prediction. Furthermore, we
also considered one approach proposed by Guo et al. (2016),
called best-of-breed, that uses the training set of the project
with higher F2-score classification when evaluated with the
target project. We also considered the approach from Bal
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(2018), that introduces an extreme learning approach to train
the cross-project defect prediction model.

Beyond the use of code metrics for cross-project defect
prediction, only one project studied the application of bad
code smells as predictors for classification. Taba et al. (2013)
proposed metrics based on code smells to study the effect
of code smells on the density of defects in files and study
the impact of those metrics on traditional defect prediction
models. This study was the only one we identified that uses
code smells as predictors for cross-project defect prediction.
They used a straightforward approach of training the model
with the other cross-projects and then testing with the target
project. AlthoughTaba et al. (2013) evaluate the performance
of smells, it is limited to evaluating only four metrics based
on the frequency and entropy of smells, which, by no means,
equates to the metrics used in our study. Moreover, we apply,
in addition to the approach used by the authors, three cross-
project approaches, thus providing additional robustness for
the results from the cross-project defect prediction evalua-
tion.

3 Problem definition andmethodology

In this section, we introduce the application of bad code
smells as predictors for cross-project defect prediction. We
start by formally defining defect prediction and its process,
from the extraction and construction of the data sets to the
training and evaluation of the defect prediction classifiers
(Sect. 3.1). Then, we extend the definition to accommodate
the cross-project use case; thus, in Sect. 3.2 we define the
problem that motivates the cross-project defect prediction
approach and the approaches we applied in our study. Last,
we describe the bad code smells and their contribution to the
cross-project defect prediction (Sect. 3.3).

3.1 Defect prediction

The goal of defect prediction is to predict the location
of defects in the succeeding version of a specific project.
Viewed formally, given a software repository with n ver-
sions V = {v1, ..., vn}, each composed by a discrete number
of components defined in our study by every file f j in a par-
ticular version vk ; the classification problem is to determine
whether the state of that particular component f j is defec-
tive or not. This state is described as a label assigned to each
instance of the data set. Moreover, it is dependent on the fea-
tures extracted from the source code, which are used to train
the classifier. Thereupon, the selection of the features is a
crucial step for achieving good performance while predict-
ing the target state (Moser et al. 2008).

Product and process metrics are the categories of met-
rics most widely studied in defect prediction; thus, they have

Table 1 Cross-project defect prediction approaches applied in this
study

Approach

Standard Taba et al. (2013)

KNN Turhan et al. (2009)

ELM Bal (2018)

Best Of Breed Guo et al. (2016)

generally shown positive results (Li et al. 2018). The product
metrics measure the design and behavior of the current state
of the software, for example, the CK metrics (Chidamber
and Kemerer 1994) and McCabe’s cyclomatic complexity
(McCabe 1976). The process metrics measure the histor-
ical information stored in the software repositories, using
both version control systems and issue tracking systems. For
example, the churn metrics (Nagappan and Ball 2005) and
entropy metrics (Hassan 2009).

The usual approach for defect prediction classification is
the application of supervisedmachine learning algorithms on
the data. It startswith the generation of data sets accrued from
the features extracted in each component of the versions in
the software repository, additionally attached with the label
describing whether the component is defective. Then, the
data set is processed. It deals with missing values, scales
abnormalities, and splits the data into training and testing
sets. The training set is used as input to a learning algo-
rithm that outputs a classificationmodel capable of predicting
whether a new unlabeled instance is defective. The testing set
is used tomeasure themodel’s performance by comparing the
predicted classification with the true classification to evalu-
ate the outputmodel. Altogether, the goal of the classification
model is to define a mapping between the feature and target
label.

3.2 Cross-project defect prediction

From the definition of defect prediction, the dependent vari-
able, i.e., the target label we aim to predict, has a critical
role in the learning process. To such a degree that learning
is only possible if the defective data are available. However,
in a practical scenario, it is not guaranteed that the historical
defective data are correctly maintained, and it is available
from the project history (Kitchenham et al. 2007). A solu-
tion is to build the training set from features extracted from
external projects with known defect information to handle
this adversity. This approach is called cross-project defect
prediction, and it solves the lack of historical defective data.
Nevertheless, it introduces heterogeneity on the data, leading
to a decrease in the efficiency of the defect prediction models
(Zimmermann et al. 2009). However, we accounted for this
in our methodology and we selected four approaches that
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were reported to produce good results (Herbold et al. 2018;
Porto et al. 2019; Bal 2018; Taba et al. 2013). In Table 1, we
list the approaches applied in this study.

The trivial approach to cross-project defect prediction
is the direct application of the cross-project (i.e., external
project) data set as the training set for the target project
(i.e., the project that is missing the defective information).
Therefore, it is a simple variation of the process described
in the Defect Prediction definition (Sect. 3.1), where the
data set generation is accrued from an external project. We
designated this approach the Standard Approach. Another
approach is the Best-Of-Breed Approach. Instead of being
manually attributed to a specific cross-project, it applies a
majority voting on a set of candidate cross-projects, select-
ing the project with the highest F2-score (Guo et al. 2016).
This approach aims to identify the projects with the highest
similarity to the target project. Then, Turhan et al. (2009)
proposed the KNN Approach which, also from a set of can-
didate cross-projects, selects the instances from all projects
that are most similar to each instance from the data set of the
target project. This approach uses the K-nearest neighbors
algorithm to identify the K closest cross-project instances to
each instance of the target project. Last, the ELM Approach
is a variant of the Standard Approach, where instead of using
common classifiers used in defect prediction, it uses extreme
learning machines (Bal 2018). These are feed-forward net-
works reported to produce good generalization performances
and learn thousands of times faster than back-propagation
networks (Huang et al. 2006).

3.3 Bad code smells

Bad code smells are patterns in the code that indicate
underlying problems in the design and implementation of a
system (Fowler and Beck 1999). The process of code smells
detection is based on the violation of fundamental design
principles that undermine the quality of a system. There-
fore, they draw out weaknesses in the system’s design and
implementation to which, although not technically incorrect,
may cause a slower development and increase the likeliness
of introducing defects. Consequently, it leads to an accu-
mulation of technical debt, which may cause a technical
bankruptcy of the project, rendering it unmaintainable; there-
fore, having to be abandoned at the end (Suryanarayana et al.
2015).

The set of code smells commonly studied as predictors
for defect prediction are the ones proposed by Fowler and
Beck (1999) and Brown (1998). As identified in the litera-
ture review published by Piotrowski and Madeyski (2020),
the authors collect published studies relating bad code smells
as predictors for defect prediction and draw conclusions to
the correlation between code smells and defects. Most of the
reviewed studies featured the code smells proposed by the

two previously cited sources. Fowler and Beck (1999) intro-
duce the notion of code smells and define them as the trigger
to the application of code refactoring. One example is the
Shotgun Surgery smell which occurs when a single change
leads to several minor changes on different components. This
hinders the software development and maintenance tasks, as
the locations of the new changes are hard to keep track of.
Moreover, Brown (1998) define a list of anti-patterns that
are the source of development roadblocks and categorize
them for the different roles of software development: man-
agement, architectural, and development. For example, the
Swiss ArmyKnife is amanagement anti-pattern that describes
the over-design of interfaces. It is detected when objects with
numerous methods attempt to anticipate every possible need,
thus causing the construction of designs that are hard to com-
prehend, use, and debug.

Beyond these code smells another set of smells pro-
posed by Suryanarayana et al. (2015) tackle code issues
in the perspective of four fundamental design principles
of object-oriented programming introduced by Booch and
Booch (2007): abstraction, encapsulation, modularity, and
hierarchy. These smells were formulated from the general-
ization of smells proposed in the literature. In particular, to a
framework that follows the violation of those design princi-
ples.One example of these smells isDeficient Encapsulation.
It occurs when the accessibility of one or more members of
an abstraction is more permissive than required, for instance,
a class that sets its fields as public.

In our study, we evaluate the impact of bad code smells
for cross-project defect prediction. We used 37 code smells,
from the three different-sources: Fowler and Beck (1999),
Brown (1998), and Suryanarayana et al. (2015). Moreover,
to evaluate the performance of the cross-project models, we
compared the smell-based models with cross-project defect
prediction models trained with product metrics which from
now on we will designate as code metrics. Henceforth, we
used 56 code metrics. In Table 2, we list the bad code smells
evaluated in this study, and in Table 3 we list the codemetrics
we used to compare our cross-project models.

4 Evaluationmethodology

Our research goal is to evaluate the impact of bad code smells
as predictors for cross-project defect prediction. We set up
our study to empirically compare cross-project defect predic-
tion classifiers’ performance with bad code smells against
those trained with code metrics, commonly used in cross-
project defect prediction research (Herbold et al. 2018).
Therefore, we compare the performance of the bad code
smells to the performance of code metrics. We reason to
whether the combination of both features’ sets improves the
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Table 2 Listing of the bad code smells utilized in this study

Code smells

Imperative abstraction Multifaceted abstraction

Unnecessary abstraction Unutilized abstraction

Deficient encapsulation Unexploited encapsulation

Broken modularization Cyclic-dependent modul.

Insufficient modularization Hub-like modularization

Broken hierarchy Cyclic hierarchy

Deep Hierarchy Missing hierarchy

Multi-path hierarchy Rebellious hierarchy

Wide hierarchy God class

Class data should be private Complex class

Lazy class Refused bequest

Spaghetti code Speculative generality

Data class Brain class

Large class Swiss army knife

Anti singleton Feature envy

Long method Long parameter list

Message chain Dispersed coupling

Intensive coupling Shotgun surgery

Brain method

cross-project models’ performance. With this in mind, we
defined the following research questions.

RQ.1:Do bad code smells outperform code metrics for
cross-project defect prediction?
RQ.2: Does combining bad code smells and code met-
rics improve the performance of cross-project defect
prediction?

The remainder of this section is organized following the
approach to generate the data sets, build the models and eval-
uate them. We start by measuring the code smells and the
metrics, and we gather the defective information from the
source code, thus constructing the data sets. Then, we pro-
cess the data sets and use them for training the classifiers on
each approach and building the cross-project models. Last,
we evaluate the models, comparing the sets of each category
of features. Figure 1 shows an overview of the methodology
applied in this study.

4.1 Data sets construction

The goal of the first step of our approach is to obtain the
data sets required for the classification. It is composed of a
data collection step, followed by the extraction of the fea-
tures and the defects. Lastly, it pre-processes the data sets
for training, thus accounting for missing information, data
inconsistencies, and data imbalance.

Table 3 Listing of the product code metrics utilized in this study

Code metrics

# Of fields # Of public fields

# Of methods # Of public methods

# Of children Depth of inheritance

LOC class LOC method

LCOM Fan-In

Fan-out Total # Of operators

# Of distinct operators Length

Vocabulary Volume

Difficulty Effort

NCSS for this file Nested if else depth

Boolean expr. complexity Cyclomatic complexity

NCSS Method NCSS Class

N Path complexity # of throws

# of executable statement Method length

File length # Of methods

# Of public methods RFC

CBO CDAC

Returns # Of variables

# Of parameters # Of Loops

# Of comparisons # Of Try Catch

# Of parenthesized expressions # Of string literals

# Of #s # Of assignments

# Of math operations Max # Of nested blocks

# Of anonymous classes # Of inner classes

# Of lambdas # Of unique words

# Of modifiers # Of log statements

4.1.1 Data collection

We considered 100 Apache projects written in Java whose
repository have Git as the version control system and Jira
as the issue tracking system. Moreover, for each project, we
manually selected five versions whose percentage of defects
fall within 10–30% and contain the highest amount of com-
ponents, i.e., files. Since it composes a good representation
of defects, the ratio is high enough that reduces the class
imbalance and is low enough not to select outlier versions
(e.g., a version that was created only to fix issues).

4.1.2 Features extraction

In this step, we go over each file of the selected versions and
extract the features into the respective sets: code smells, code
metrics, and code smells + metrics. The first one contains
the 37 bad code smells that we considered for this study.
We collected the design smells proposed by Suryanarayana
et al. (2015) using Designite (Sharma 2018). In addition,
the Fowler and Beck (1999) and Brown (1998) smells were
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Fig. 1 Overview of the methodology applied in this study

extracted using a variant of the Organic tool (Cedrim and
Sousa 2018), extended by the authors of this manuscript.
The second set contains 56 code metrics, which we use to
compare the smells. We extract metrics using the Designite
metrics extractor functionality and Checkstyle (Ivanov et al.
2021). Moreover, we used a tool developed by the authors of
this manuscript to collect the CK (Chidamber and Kemerer
1994), Mood (Brito e Abreu and Carapuça 1994), and Hal-
stead (Halstead 1977) metrics from the source code. The last
set contains the combination of all features, consisting of 93
features.

4.1.3 Defects extraction

The following step is to attach a target label to each instance
of the created data sets. In particular, to set whether each
extracted file is defective or not. Therefore, to extract the
defects, we applied a variant of the SZZ algorithm (Borg et al.
2019) that accounts for the vulnerabilities in the algorithm
(Herbold et al. 2018). We collected the issues assigned as
closed bug reports for the selected versions from the Jira Issue
Tracker of each project. Then,we applied amapping between
the collected issues and the commits in that specific version,
thus connecting them by the issue id. Since Jira contains a
unique ID of the format <PROJECT>–<NUMBER>, the
matching of the id in the title and commit message becomes
less ambiguous than the id format of the Bugzilla (only a
number), which is a vulnerability reported by (Herbold et al.

2018). Then, we associated each issue with the changes that
fixed it and, by pinpointing the files involved in the changing
commit, we collected the defective files. Another reported
issue was the absence of filtering for the files involved in
the change and consequently were responsible for the defect.
Therefore,wefiltered thefiles in each commit to only account
for Java files that were not tests.

4.1.4 Data sets pre-processing

The pre-processing step resolves the missing values in the
data sets, handles the values inconsistencies and the data
imbalance. Therefore, we start by removing the missing val-
ues from the data sets. Then, we standardize the range of
values of the data sets by applying a min-max scaling to
values between 0 and 1000. The goal was to have a consis-
tent range, broad enough to facilitate the calculations for the
k-neighbors approach. Last, since there is a higher ratio of
non-defective files, which is a common occurrence in defect
prediction, we applied the Synthetic Minority Oversam-
pling Technique (SMOTE) to increase the ratio of defective
instances in the training sets (Chawla et al. 2002).

4.2 Cross-project defect predictionmodel training

Following the generation of the data sets, we trained
the defect prediction models based on the Cross-Project
approaches we refer to in Sect. 3.2. For all the approaches,
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except the Extreme Learning Approach, we build the models
by training five classifiers commonly used in defect predic-
tion. We used the sci-kit learn tool (Pedregosa et al. 2011)
and set the parameters as the default ones for each classifier.
The classifiers are the following.

– Random Forest
– Support Vector Machine
– Multilayered Perceptron
– Decision Tree
– Gaussian Naive Bayes

Moreover, for the ELM approach, we used the extreme
learning machine classifier from the extended sci-kit learn
library (McGinnis 2015).

The StandardApproach is the trivial approach forCross-
Project defect prediction. The approach is used in the single
study that evaluates specific code smells in Cross-Project
defect prediction (Taba et al. 2013). We trained the model
for a specific target project using the data set of one project
from the remaining 99 projects. Then, we tested the model
using the data set of the target project. In total, we evaluated
the performance for the 100 target projects. Therefore, using
the Standard Approach, we evaluated 49,500 models (100
target projects × 99 train projects × 5 classifiers).

TheBest-of-BreedApproach applies amajority voting to
identify the best overall performing defect prediction model.
Considering a particular cross-project, the algorithm trains
99 models using the remaining projects. For each model,
it then tests with the data sets of the 98 other projects and
evaluates the F2-score of each test. In the end, for each of
the 99 models, it calculates the average of the 98 evaluations;
then, it selects the model with the higher average F2-score.

The KNN Approach builds a training set from the
instances closest to each instance of the data set of the cross-
project.We iterate through all instances of the cross-project’s
data set and, to optimize the search, we first apply a Mini
Batch K-Means clustering algorithm to reduce the search
space of the complete set of instances from the 99 projects.
Then, within the cluster closest to the target instance, we cal-
culate the euclidean distance between each vector of those
instances and the vector of the target instance. Thus,we select
the k instances with the smallest distance. In our scenario, we
selected the ten closest instances from each target instance;
therefore, if the cross-project has 100 instances, the training
set will have 1000 (100× 10) instances.

The ELM Approach uses feed-forward neural networks
to apply several machine learning tasks, including classifica-
tion. We trained each cross-project model with the General
ELM classifier from the sklearn-extensions library (McGin-
nis 2015). We used a feed-forward neural network with 100
hidden layers calculating the radial-based function with a
width of 0.1.

4.3 Data analysis andmetrics

To evaluate the cross-project models and compare the impact
of the different features, we calculated metrics commonly
used in defect prediction. The evaluation metrics we calcu-
lated to measure the performance of each classifier are ROC
AUC, F1-Score, and PR AUC. These were recommended
as evaluation metrics by Rathore and Kumar (2019), in par-
ticular the AUC, to which they recommend as the primary
indicator for evaluation. We discuss their rationale in this
section.

We calculated the Area Under the Curve (AUC) of the
Receiver Operating Characteristic curve (ROC) and the
Precision-Recall curve (PR). AUC summarizes the ability
of the classifier to discriminate between defective and non-
defective classes. As such, the closer the value is to 1, the
higher the classifier’s skill of discerning the classes affected
or not by the defect. Nevertheless, a score closer to 0.5
describes a classifier with lower accuracy, thus having a clas-
sification ability closer to a random classifier.

The ROC curve is based on the relationship between the
true positive rate (TPR) and the false positive rate (FPR). True
positive rate, also known as sensitivity, measures the propor-
tion of components predicted defective that were correctly
identified. The false-positive rate measures the proportion
of non-defective components that were incorrectly labeled
as defective over the total number of actual non-defective
components. Both equations are represented as follows:

T PR = T P

T P + FN
FPR = FP

FP + T N
(1)

The PR curve is based on the relationship between the
precision and the recall. Precision and recall are two widely
used metrics in defect prediction. They measure the relation-
ships between specific parameters in the confusion matrix:

precision = T P

T P + FP
recall = T P

T P + T N
(2)

In both computations, TP is the number of classes con-
taining defects that were correctly predicted as defective. TN
describes the number of non-defective classes that were pre-
dicted as defective.FN is the number of non-defective classes
that the classifier incorrectly predicts as defective. FP is the
number of classes where the classifier fails to predict defec-
tive classes by declaring defective classes as non-defective.

Moreover, we calculated the F1-Score. It is the harmonic
mean of both precision and recall, defined as follows:

F1 = 2× precision × recall

precision + recall
(3)
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Fig. 2 Comparison of the ROC AUC score between classifiers, for the
accumulated score of the three Data Sets

5 Results

To study the impact of cross-project defect prediction using
code smells, we present and discuss the results obtained
according to each research question in this section.

In general, as observed in Fig. 2, the results were con-
sistent among all classifiers. Therefore, to show the results
and discuss the research questions, we selected and used the
Decision Tree as the representative classifier.

The first goal of our research is to evaluate the impact of
code smells against codemetrics as features for cross-project
defect prediction. Therefore, we measured the difference in
performance between the models trained with code smells
for different Cross-Project approaches. Figure 3 displays the
difference in performance between the two categories of fea-
tures for each of the cross-project defect prediction approach
and the statistical significance for each approach.We observe
a significant improvement of the models when using code
smells compared to the code metrics. In particular, there was
an average improvement of 6.50% for all the approaches,
with a significance level of p < 0.01.

Despite the results obtained for the ROC AUC, the per-
formance measured by the F1-Score and the PR AUC were
generally not significant. However, the results obtained for
the Standard Approach were shown to be significant (α <

0.01). They display an increase in performance for the model
trained with smells, compared with metrics (1.6% for the F1-
Score and 0.9% for the PR AUC).

Since the results display an overall improvement of the
cross-project models trained with code smells against tradi-
tional code metrics, it would be interesting to observe the
percentage of projects where there was an improvement and
visualize the individual improvement of each project for the
ROC AUC. We observed that, within the 100 projects con-
sidered in this experiment, 73% showed an improvement.
Therefore, in Fig. 4 we display the individual improvement
of each project, represented by a point on both axes of the

Fig. 3 Comparison of the ROC-AUC score between the code smells
set and the code metrics set, for each cross-project defect prediction
approach

Fig. 4 Improvement for each project where there is an improvement
from code smells to code metrics

Data Set, connected by a line. Moreover, we include half of
a violin plot for each data set, as it shows the scores’ distri-
bution and the box plot, which describes the groups of the
scores in the data considering their quartiles.

The secondgoal of our research is to evaluatewhether both
code smells and code metrics can be used in combination as
features for cross-project defect prediction. Therefore, we
compared the performance of models trained with features
against the code smells set.

In Fig. 5, we display the ROC AUC of both sets for each
approach, including the respective statistical significance.We
observe that both features’ categories,whenused in combina-
tion, do not build models with higher performance than those
trainedwith smells.Moreover,we compared the performance
of the models trained with the combination of the features
with the models trained with only metrics. We observed an
improvement of 2% in the AUC ROC; however, the results
were not statistically significant. Furthermore, the F1-Score
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Fig. 5 Comparison of the ROC AUC score between the combination
of code smells + code metrics and the code smells set, for each cross-
project defect prediction approach

and the PR AUC scores were not statistically significant;
therefore, we did not consider their results conclusively.

In the end, we observed the following results concerning
the application of bad code smells to cross-project defect
prediction.

– Bad code smells outperform the performance of the code
metrics in all the evaluated approaches, with an average
difference of the ROC AUC score of 6.50% (α < 0.01).

– Considering each project improvement, 73% of the
projects registered an improvement on the ROC AUC
score when trained with code smells compared against
the code metrics.

– When training the cross-project models with both code
smells + metrics, there was not an improvement in per-
formance compared against the code smells alone.

6 Threats to validity

For our study, we identified the following threats to validity:
In our study,we constrained the comparisonof code smells

to the code metrics. We do not compare the performance
of defect prediction to other extensions of metrics such as
process metrics. However, our study’s scope and research
goal only target the comparison of code smells with code
metrics for cross-project defect prediction.

All of the used projects are Java open-source Apache
projects. This is a threat to the generalization of our results.
However, several defect prediction studies have used projects
from Apache as the software archive Hosseini et al. (2019).
Moreover, projects fromApachewere also integrated into the
Promise data set Jureczko and Madeyski (2010). In addition,
the use of Jira as the issue tracking system is also a threat
to validity toward the results’ generalization. However, it is
coupled to the Apache project management.

Although the use of a specific programming language
could be considered a threat, the code smells and product
metrics studied in this paper are general to object-oriented
programming. Therefore, given an equivalent implemen-
tation of the features’ extraction for other object-oriented
programming languages, the conclusions from these study
are valid.

The authors of this study developed the implementations
of the cross-project defect prediction approaches by fol-
lowing the methodologies proposed by the authors of each
approach. Although unlikely, the approaches’ implementa-
tion may contain defects. However, this manuscript includes
the entire source code and data sets used in our study; there-
fore,weprovide themopen for external validation.Moreover,
this applies equally to the authors’ tools to extract the code
smells and the defects.

To extract the design code smells, we used the tool pro-
vided by the authors. This could be a threat to validity since
we assume the reliability of the tool.

7 Conclusion

In this study, we evaluated the impact of bad code smells
on cross-project defect prediction. Accordingly, we applied
four approaches of cross-project defect prediction on 100
projects; thus trained with three data sets, one with code
smells, one with code metrics and the last with both code
smells + metrics. In the end, we found that the cross-project
defect prediction models trained with bad code smells per-
formed the best compared against code metrics, with an
average improvement of 6.50% for theROCAUC.Moreover,
we observed an improvement on 76% of projects when com-
paring the differences individually for each project. About
the combination of both code smells + metrics to train the
cross-project models, we observed that the code smells alone
still perform better than the combination of both categories
of features.

From these results, future work concerns a deeper analysis
of the impact of each code smell and an application of other
cross-project approaches.Moreover, wewant to expand from
defects to vulnerabilities, thus analyzing the impact of code
smells on cross-project vulnerability prediction.
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