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Abstract
In the manufacturing sector, the section that has attained the most demand is metal forming. Most traditional methods in

the manufacturing industry are not flexible, thus opted for the single point incremental forming (SPIF) method. However, it

encompasses a geometric deviation issue. The prediction of geometric deviation and optimal parameter selection is more

tedious in the existing works. In order to trounce these issues, this paper proposes a modified adaptive neuro-fuzzy

inferences system (MANFIS)-centred geometric deviation prediction and enhanced squirrel search algorithm (ESSA)-

centred optimal parameter selection for SPIF in AA2024-O aluminium alloy sheets. The proposed methodology encom-

passes ’3’ sections. Initially, the SPIF designing is performed in which truncated cone shape is chosen and inputted into

Computer-Aided Designs/Computer-Aided Manufacturing software. Next, the designed shape is constructed and coordi-

nate-measuring machines gauges the geometric metrics. Therefore, to envisage the geometric deviations, the measured

geometric values are rendered as the input to the MANFIS. If the deviation is presented, then the ESSA algorithm chooses

the optimal initial parameters, and that selected parameters are suggested to the SPIF design. The minimum roundness

deviation together with the position deviation is fixed as the Fitness Function in ESSA. The AA2024-O aluminium alloy

sheet is taken for the experimental investigation. In addition, the proposed method’s performance is contrasted with

prevailing methods centred on statistical metrics and MSE, which exhibits that the proposed methods outweigh the

prevailing methods. A better result is attained by the proposed works when analogized to the existent methods by obtaining

values of 97.90%, 96.78%, 95.84%, 96.23%, and 0.017% for accuracy, precision, recall, F-measure along with mean error.

Keywords Modified adaptive neuro-fuzzy inference system (MANFIS) � Enhanced squirrel search algorithm (ESSA) �
Roundness deviation � Position deviation � AA2024-O aluminium alloy sheet

Abbreviations
SPIF Single point incremental forming

MANFIS Modified adaptive neuro-fuzzy inferences

system

CAD/

CAM

Computer-aided designs/computer-aided

manufacturing

CMM Coordinate measuring machines

FF Fitness function

ESSA Enhanced squirrel search algorithm

GE Geometric error

ANN Artificial neural networks

MSE Mean squared errors

FEA Finite elements analysis

GA Genetics algorithm

BPNNs Backpropagation neural networks

GBRT Gradient boosting regression tree

Al/SUS Aluminium or stainless steel

RSM Response surface methodology

CV Cross-validation

NN Neural networks

ANFIS Adaptive neuro-fuzzy inferences system

MF Membership functions

SSA Squirrel search algorithms

HT Hickory tree

CNN Convolutional neural network

SVR Support vectors regressions

PSO Particle swarms optimization
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1 Introduction

The major component of the contemporary manufacturing

industry is metal forming (Panjwani et al. 2017). On

account of the large competition in the market, the demand

aimed at minimized manufacturing time along with costs

has brought forth the commencement of new technologies

and processes. Various advanced forming technologies,

like SPIF, that is the kind of incremental sheet forming

(ISF) techniques have come out to tackle the requirement

for flexible and small production batches (Azevedo et al.

2015). The SPIF is basically a extremely flexible process

that utilizes a single generic tool for an unlimited variety of

shapes with huge potential for the generation of new or

replacement parts that are short lived (Li et al. 2015a).

Recently, owing to the decrease in the product life cycle,

high demand, and customization, flexibility in sheet metal

forming (SMF) has received attention (Li et al. 2014). The

ISF is disparate from the traditional SMF process like

pressing, drawing, stamping process, etc. Centred on the

localized deformation’s characteristics and the mechanism

of the fracture or damage behaviours (Said et al. 2017), ISF

has top-level advantages, namely low cost with simple

along with economical tooling configuration and a short

leading time (Dai et al. 2019). Moreover, the time, eco-

nomic cost for fabrication, storage, along with maintenance

of the dies/punches are fairly high in the traditional SMF

techniques (Amino et al. 2014; Cao et al. 2012).

One among the important features of the metal forming

industries is the geometric accuracy of the last parts.

Nevertheless, the ISF technique’s key drawback is bad

geometric accuracy (Lu et al. 2015; Li et al. 2015b). The

lack of tooling causes the raise in geometric deviations

from the design shape that deters the prevalent industrial-

ization start-up process (Khan et al. 2014). Sheet spring

back causes the geometric error (GE) between the target

and the formed shape (Fu et al. 2012). The major issues in

every sheet manufacturing technology are the spring back

which indicates the changed shape of the formed part when

the tool is free or the part is unclamped (Zhang et al. 2016).

Moreover, the vital factor that causes the GE is the position

deviation and roundness deviation (Dabwan et al. 2020),

and also pillow effect is another factor that increases the

GE (Alinaghian and Honarpisheh 2019). SPIF parts with

low wall angle geometry characteristically give a con-

structed geometry, which efficiently varies from the model

surface, caused by the unnecessary bulging deformation.

The development of bulge on the base part may result in

the sheet wrinkles at the bulged area that causes high

generating forces and also could even end the forming

procedure (Mohammadi et al. 2014). To trounce the geo-

metric inaccuracy problems, various researches in SPIF

have been performed over the last some decennium (Fis-

cher et al. 2019), along with that various strategies were

executed to conquer such issues (Kumar and Belokar

2019).

To examine the prediction, optimization, and formabil-

ity of parameters in SPIF of disparate sheet metals by

various approaches, namely soft computing, numerical, and

analytical techniques, the research work is conducted (Maji

and Kumar 2019). Few prevailing research methods

directly choose the optimal parameter, and later, design the

chosen shape. However, when the chosen shape is already

precise, the parameters were not needed mostly. Whilst

designing the selected shape, selecting the parameters by

optimization method draws maximum time. Earlier pre-

diction and then selecting the optimal parameters draws

minimum time and ameliorates geometric accuracy. Thus,

the paper proposed a MANFIS-centred geometric deviation

and selection of optimal parameters by ESSA for SPIF in

the material of aluminium.

The contribution of the presented work is proffered as

follows:

• The issues of geometric prediction are easily solved by

a MANFIS which is proposed with the utilization of the

triangular membership functions when contrasted to the

bell membership function.

• Utilizing the enhanced squirrel search algorithm

(ESSA), the optimal input parameters, namely tool

path, tool diameter, sheet thickness, tool shape, wall

angle, step size, along with spindle speed are chosen.

The paper’s structure is given as follows:

The contemporary artworks linked with the geometric

deviation prediction and optimal parameters selection and

their shortcomings are elucidated in the second sec-

tion. The designing of the SPIF, MANFIS-based deviation

prediction, and the optimal parameter selection by the

usage of ESSA algorithm is given in the third section. The

proposed technique’s performance is analogized with the

existent method in the fourth section. Lastly, the fifth

section deduces the proposed work and also elucidates

future improvement.

2 Literature survey

Amrut Mulay et al. (2019) formed a prediction design to

calculate the maximal forming angle and average surface

roughness centred upon artificial neural networks (ANN)

whilst forming SPIF in AA5052-H32 substances. To con-

struct the ANN, a feed-forward backpropagation network

utilizing the Levenberg–Marquardt was created. To sub-

stantiate the concurrence among the ANN experimentation

and envisage outcomes, the confirmation runs were
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executed. The ANN was efficient in envisaging the process

response with good precision and brought about a mean

absolute percentage error, mean squared errors (MSE), and

R-value of 5.96, 0.0209, together with 0.99807% for mean

surface roughness; whereas for the maximal forming angle,

it was 0.003, 0.0281, 0.99913, respectively. ANN algo-

rithm was utilized by this framework. Usually, the ANN

had random weight updation that took further time to

implement the process.

Isidore et al. (2016) concentrated on finite elements

analysis (FEA) to envisage along with control pillowing by

changing the tool shape and size in SPIF. Since the tool-

ends geometry altered to flat as of spherical, the in-plane

stresses on the transverse directions changed its nature to

tensile from compressive. Moreover, as the equipment

radius augmented, the magnitude of suitable in-plane

stresses reduced. It was determined that both the flat end

tool and large radius delayed the pillow formation centred

on the measurement as of FEA design. Nevertheless, it was

discovered that the impact of differing end tool shapes

from hemispherical to the flat was more vital than the

differing tool radius as in the transversal direction since the

deformation zones persisted in tension when forming by

end flat tools. Thickness, size, and angle parameters were

not pondered by the study, and thus, the geometric devia-

tion was not wholly estimated.

Sbayti et al. (2019) proffered an enhancement

scheme aimed at the geometric accuracy, centred on the

recent grasshopper optimization, genetics algorithm (GA)

together with global optimum determination by employing

the linking together with interchanging kindred evaluator

solver (GODLIKE) algorithm. It was verified and exam-

ined. The possibility to attain the sound components having

fewer geometric errors, namely bending, pillow effect, and

spring back errors using an appropriate selection of optimal

parameters was showed by concurrently manufactured and

simulated denture plate parts. The reduction of defects in

shape among the target design and the attained geometry

by CAD was completed by coupling the numerical simu-

lation, and improvement methods were exhibited by the

results. This method utilized the usual grasshopper algo-

rithm that had a downside of convergence rates. Thus, the

system goes via the convergence rate issue.

Taherkhani et al. (2018) aimed to choose the appropriate

forming parameters to make metal sheet parts, which

encompassed dimensional precision and enhanced surface

quality in a short period. Sheet thickness, tool diameter,

feed rate together with tool step depth were the ’4’

parameters chosen as design variables. These parameters

were wielded for the process design using the group

technique of data handling ANN. Using SPIF experimen-

tation executed on the computers numerical control milling

machine through central composite design, the necessary

data for creating the empirical designs were attained. The

design variables of a trade-off point in the experimental

study were examined, and thus, the analysis showed the

model’s efficiency and precision. It may give bad outcomes

because this method had not resolved the issue of weight

value selection in ANN.

Sbayti et al. (2017) proffered enhancement features of

SPIF parameters aimed at titanium denture plates. The

numerical simulation centred on the Box–Behnken exper-

imental design along with the response surface methods

determined the enhancement strategy. The application to

discover the optimal result was offered by the multiple-

objective genetic algorithm together with the GODLIKE

algorithm. Maximum forming force, reducing the sheet

thickness along with the final attained depth, was pondered

as objectives. The denture plate was built by SPIF with

optimum parameters for results assessment. Centred on the

system of optical measurement, the analogy of final

geometry with the target geometry had been performed. It

was exhibited that the implemented techniques gave a

robust method aimed at the optimum parameters selection

in SPIF. Straightly applied optimization algorithm took

added time to do the process.

Hartmann et al. (2016) suggested an ANN for the pro-

duction of tool paths in ISF. Proper network output and

input structure were designed for the ISF. For suit-

able training, balanced sample data sets were created. The

impact of several training algorithms, training sets, and

network configurations was studied related to a feed-for-

wards network structure by backpropagation. At last, by

employing the production of automated sheet part, the

computer incorporated manufacturing method was sub-

jected to verification. This method had stability issues,

which happened on account of the architecture structure

unless the ANN was not capable of generalizing as of the

training set.

Liu and Li (2019) propounded a virtual data generation

approach centred on megatrend diffusion function along

with particle swarm optimization algorithm for improving

the SPIF force prediction’s accuracy given in small

experimental data problems. Utilizing a small amount of

force data attained as of pyramidal shape forming, the

proposed modelling method was confirmed. It was estab-

lished that by including the produced virtual data in real

experimental small datasets, the established prediction

model’s accuracy could be enhanced that proffered a good

predictive capability in designing the forming force of

SPIF under disparate process circumstances. The proposed

model’s performance with the augment in the size of the

training dataset was affected by the Slowness and the

unreliable nature of the feed-forward backpropagation

neural networks (BPNNs).
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Ali et al. (2019) introduced a study in which gradient

boosting regression tree (GBRT) was utilized for deter-

mining the relationship betwixt operating parameters and

the formability along with the quality of aluminium or

stainless steel (Al/SUS) bimetal sheets in different layer

configurations. For creating a precise and quick prediction

model, the GBRT was used, which was a machine learning

technique. The D-Optimal design centred on response

surface methodology (RSM) was utilized for establishing

the training dataset owing to the design’s good qualities,

which fit the present work’s criteria. For implementing this

design that comprised a truncated pyramidal component

with changeable wall angles, the SPIF technique was

employed. After that, for tuning the GBRT’s parameters,

the grid search cross-validation (CV) approach was

applied. Lastly, centred on disparate operating parameters

along with layer arrangements of truncated pyramid parts,

the microstructure observation for the contact and non-

contact surfaces was examined. After a specific level, the

augment in the number of trees did not augment the

model’s performance because of the way of construction of

GBRT.

It could be recognized from the above addressed pre-

ceding works that the previous work has several limita-

tions. The issue of random weight updation along with

generalization error affected the neural network approaches

whilst optimization algorithms implied in the existent

works suffered from the convergence problem along with

longer execution time. Apart from these limitations, due to

the non-consideration of significant parameters, numerous

methods were not capable of producing good results. For

solving these issues, a MANFIS-centred geometric devia-

tion prediction along with optimal parameter selection for

SPIF is proposed in the subsequent section.

3 Proposed geometric deviation prediction
and optimal parameter selection for SPIF
in aluminium material

Propitious flexible manufacturing technology in the pro-

duction of sheet elements in smaller batches without any

requirement for exorbitant dies or tools is the ISF. In the

last decennium, several studies were performed based on

disparate strategies to ameliorate the geometric accuracy,

but the crucial issue of ISF is the low geometric accuracy

which considerably restricts the industrial application of

this flexible forming technology as a result of the issues

namely weight updation in numerous machine learning

techniques. For enhancing the geometric accuracy, resear-

ches were performed by the prevailing research methods.

However, optimal parameters were directly chosen by the

methods. Owing to the premature convergence along with

the trapping of solution into local minima, this sort of

process requires more time. That is the chief reason that

this paper proposed MANFIS-centred geometric deviation

prediction as well as optimal parameter selection by uti-

lizing the ESSA in SPIF. The proposed work encompasses

’3’ steps: (i) SPIF design, (ii) deviation prediction, and (iii)

optimal parameter selection. First, the design is performed

by means of the CAD/CAM software. And then, it is

designed in the milling machine. After manufacturing, the

CMM gauges the deviation factors. Secondly, to ensure

whether the gauged values have deviated or not, the

deviation factors are inputted to the MANFIS. The optimal

input parameters, namely tool path, tool diameter, sheet

thickness, tool shape, wall angle, step size, along with

spindle speed, are chosen by employing the proposed

ESSA if the deviation took place in the third step. And that

selected parameter is suggested to the SPIF design for

additional manufacturing (i.e. mainly suggested to CAM).

If it has not deviated, there is not any need for choosing the

optimal parameters. Selecting and utilizing this technique

in-turn makes the system quicker and lessens the GE. The

proposed study’s design is exhibited in Fig. 1.

3.1 SPIF design

The SPIF designing method is explicated in this initial

stage. The geometric accuracy of a part attained using SPIF

rely on various factors, namely the spring back, deforma-

tion mechanism as well as residual stresses. Five phases

were followed to perform a test sequence in SPIF relying

on the state and experimental arrangement and the intricacy

of the process. At first, the design’s shape is selected. Here,

the truncated cone is selected as standard geometry and

SPIF experiments were done on the AA2024-O aluminium

alloy sheets that find applications in the automobile as well

as aerospace industries. 250 mm 9 250 mm is the sheet’s

size. The shape is produced with various wall angles,

namely 60�, 65�, and 70�. Next, the model is done on the

CAD software. After that, the program is run by the CAM

tool in the machining phase. Once the simulation process is

over, controlling and designing are transferred to the real-

time manufacturing machine, and the machine was equip-

ped with a steel tool. Grounded on the designed shape by

the CAD, the inputted parameters were formed by the

CAM. The sheet thickness, tool path, spindle speed on the

forming depth, wall angle, tool diameter, tool shape as well

as step size are the input parameters. After completing the

construction, the control of the parts was obtained utilizing

the CMM tool, i.e. the geometric associated metric, namely

position and roundness were determined. Centred on these

metrics, the spring back together with the pillow effects

were attained; thus, these metrics are significant.
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3.2 Deviation prediction

The input given to the MANFIS is the geometric metrics

that are attained, namely roundness measurement s1,
position measurements s2. Alteration of the conventional

neural networks (NN) by integrating it with fuzzy logic is

termed the adaptive neuro-fuzzy inferences system

(ANFIS) (Ibrahim et al. 2015). Takagi–Sugeno fuzzy sys-

tem, which is the commonest sort of fuzzy inference sys-

tems, can well be integrated into an adaptive network. A

linear relationship is its output. Assessment of its param-

eters can well be performed utilizing the amalgamation of

gradient descent-centred error backpropagation together

with the least squared error method. The network contains

2 parts: (i) antecedent, which is the first part, and (ii)

conclusion part which is connected by rules on the network

form is the second part. The ANFIS encompasses ’5’ lay-

ers. A fuzzification process is performed by the first layer;

the fuzzy AND operation of the antecedent of the fuzzy

rules are executed in the second layer, the membership

functions (MF) is normalized by the third layer, the

resultant part of the fuzzy rules is performed by the fourth

layer; and at last, by the summation of the fourth layer’s

outputs, the fuzzy system’s output is computed via the fifth

layer. The normal ANFIS employs the bell MF in the first

layer, and this function renders a better outcome. The tri-

angular-MF outnumbers the bell MF by easily solving

issues. Thus, it is considered, and the range interval is fixed

for the MF values as error might arise if it is not fixed.

Figure 2 showcases the MANFIS’s structure, and in it, the

ui, along with uiþ1 determines fuzzy sets.

In the first layer, the inputs are transformed into a lin-

guistic type utilizing MF, which is expressed as:

L1 ¼ gPi
s1ð Þ ð1Þ

L1 ¼ gQi
s2ð Þ ð2Þ

wherein L1 implies the first layer’s output, gPi
and gQi

signifies the membership value of ’g’ MF which determines

degree to which the given input satisfies the quantifier.

Here, the triangular MF is regarded, and also, the range

interval is fixed. The g is derived as follows:

Fig. 1 Design of the presented study

Fig. 2 Structure of the MANFIS
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g ¼

0 si �w
si � w

mm � si
w\si �mm

y� si
y� mm

mm\ si\y

0 si � y

8
>>>>>><

>>>>>>:

ð3Þ

wherein w and y implies the lower as well as upper limit,si
signifies the inputted metrics i ¼ 1; 2 together with mm

specifies the range values. Computing each node’s output

in the second layer (Firing Strength (FS) of a rule) is the

subsequent process in ANFIS, which is done by Eq. (4):

L2 ¼ gPi
s2ð Þ � gPi

s2ð Þ ð4Þ

wherein L2 implies the second layer’s output. Subse-

quently, the third layer normalizes the rule’s FS, and it is

mathematically written as Eq. (5):

L3 ¼ xi ¼
xi

Pn

i¼1

xi

ð5Þ

wherein L3 signifies the third layer’s output, xi implies the

normalized FS of ith rule together with xi signifies the

rules’ FS which is the product of all input signals. In the

fourth layer, the adaptive nodes gauge the output relying on

L3 as:

L4 ¼ xi ri ¼ xi aiDi þ biDiþ1 þ cið Þ ð6Þ

wherein L4 signifies the fourth layer’s output, ri implies the

IF–THEN rules, ai, bi, and ci ascertain the resultant

parameter of the ’ith’ node. Lastly, the output is attained in

the fifth layer, which is derived as:

L5 ¼ fi ¼
Xn

i¼1

xi ri ð7Þ

wherein L5 signifies the output layer and fi implies the

output. This last layer implies that whether the designed

truncated code has deviated or not. If the deviation is

present, the optimal inputted parameters are selected via

the successive section.

3.3 Optimal Parameter Selection using ESSA

Here, the ESSA selects the optimal input parameters say

tool path, tool diameter, sheet thickness, tool shape, wall

angle, step size, together with spindle speed. Squirrel

Search Algorithms (SSA) (Jain et al. 2017) commences

with an arbitrary initial location of flying squirrels (d) close
to other populace-centred algorithms. Here, the input

parameters are considered as squirrels. The d’s location is

signified by means of a vector, on d dimensional search

space. Thus, the d can slide in 1D, 2D, 3D, or hyper-

dimensional search space as well as modify their location

vectors.

3.3.1 Random initialization

There are n flying squirrels (d) within a forest. In addition,

those d are taken as the input parameters. The ith flying

squirrel’s location on the ith tree is signified via a vector,

di ¼ di1; di2; di3; . . .; dimð Þ; i ¼ 1; 2; 3; . . .; n ð8Þ

wherein dij signifies the jth dimension of the ith flying

squirrel together with m implies the number of dimensions.

A uniform distribution is used to allocate the initial loca-

tion of each flying squirrel in the forest which is given as

follows

di ¼ d# þ n 0; 1ð Þ � d" � d#
� �

ð9Þ

wherein d# and d" implied lower as well as upper bounds in

jth dimension of ith flying squirrel, correspondingly, and

c 0; 1ð Þ signifies a uniformly distributed arbitrary number in

the gamut [0,1].

After that, the FF value ’v ¼ v1; v2; v3; . . .; vps
� �

’ of an

individual d’s location is computed. The FF is derived as:

vi ¼ min s1; s2ð Þ ð10Þ

wherein ps signifies the number of populace size, and vi
signifies the FF. Subsequent to calculating the FF value, the

fitness values of position for every d is sorted out in

ascending order. The d on the Hickory Tree (HT) stated

that it had the least fitness. The Acorn Tree (AT) is

regarded as the subsequent r best d; from which also, they

were deliberated to be moving in the direction of the HT.

The remaining d should be on the normal trees, some of

which are also regarded to be moving on the way to the HT

by means of arbitrary selection subsequent to meeting their

everyday energy requirements, and also the remaining d
will move in the direction of the AT to satisfy their

everyday energy requirements.

3.3.2 Generate new locations

For selecting the locations, ’3’ scenarios are followed,

Scenario 1: The d on the AT might move in the direc-

tions of the HT. The d’s new location can well be updated

as:

dtþ1
ct ¼ dtct þ gd : Sc : dtkt � dtot

� �
if ; rand1 �Pb

Rl otherwise

�

ð11Þ

wherein dtct and dtþ1
ct signifies the flying squirrel’s location

on the AT at t and t þ 1 iteration, gd indicates the gliding

distance, Sc signifies the sliding constant, dkt implies the
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flying squirrel on the HT, dtot implies the d on a normal tree,

rand1 signifies the random number in the gamut of [0, 1],

Pb implies the predator presence probabilities together

with Rl signifies the random location.

Scenario 2: Some d on the normal tree might move in

the directions of AT to fulfill their everyday energy

requirements. The new location of d can well be updated

as:

dtþ1
ot ¼ dtot þ gd : Sc : dtct � dtot

� �
if ; rand2 �Pb

Rl otherwise

�

ð12Þ

wherein dtþ1
ot signifies the flying squirrel’s location on the

normal tree at t and t þ 1 iteration, and rand2 implies the

random number 2 that is exhibited in the gamut [0, 1].

Scenario 3: Some d that are on the normal trees, which

have satisfied their everyday energy requirement, might go

to HT for storing hickory nuts that can well be consumed

during food shortages. Their new locations can well be

attained as follows:

dtþ1
ot ¼ dtot þ gd � Sc � dtkt � dtot

� �
if ; rand3 �Pb

Rl otherwise

�

ð13Þ

wherein rand3 signifies the random number 3 exhibited in

the gamut [0, 1].

3.3.3 Seasonal Monitoring

This step is done on SSA to escape as of local optimum

solutions, which is exhibited in the subsequent steps:

In the first steps, the seasonal constant Wc is computed

as:

Wt
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

dtct;j � dtkt;j

� �2

v
u
u
t ð14Þ

wherein Wt
c signifies the seasonal constant at iteration t,

dtkt;j along with dtct;j implies the squirrel on the HT as well

as AT at jth dimension and m implies the total dimension.

Subsequently, in the second step, seasonal monitoring

condition is verified via Wt
c\Wmin wherein Wmin stands as

the minimal value of seasonal constant calculated as

follows:

Wmin ¼
10 e�6

365ð Þt= tmax=2:5ð Þ ð15Þ

wherein tmax signifies the maximal number of iteration. The

winter season is over if the specified condition is true, and

again for food searching, the flying squirrels that lose their

abilities to probe the forest will arbitrarily relocate their

searching positions.

dtþ1
ot ¼ d# þ ly � d" � d#

� �
ð16Þ

wherein ly implies the Cauchy distribution function. The

levy distribution function is engaged in the normal SSA,

which is not well fitting for the mechanical parameters, and

it also has the over selection issue. Thus, here, the Cauchy

distribution is employed, which is derived as:

ly ¼
1

p
hw

xa � smð Þ þ hw
ð17Þ

wherein sm signifies the statistical mean, xa implies the axis

direction, and hw signifies the half-width at half maximum.

3.3.4 Stopping criteria

If the maximal number of iterations is fulfilled, then the

algorithm winds up. If not, generating new locations and

checking seasonal monitoring conditions should be re-

done.

Figure 3 illustrates the proposed ESSA’s pseudo-code.

Here, the squirrel is regarded as the inputted parameter.

The squirrel’s new locations are generated grounded on the

’3’ scenario, which is changed by means of the arbitrary

number along with predator presence probability. The SPIF

is designed by this ESSA.

4 Result and discussion

The performance assessment of the proposed geometric

deviation prediction and optimal parameter selection

approach in the SPIF metal forming method is exhibited. In

the functioning platform of MATLAB, the proposed work

is employed. The inputted and outputted values of the

previously modelled truncated cone are regarded as the

dataset. 80% of data is wielded for the intention of training

as well as 20% is tested. Figure 4 showcases the structure

of CAD/CAM simulation together with real-time manu-

factured truncated cone.

4.1 Performance analysis for geometric
deviation prediction

Grounded on the accuracy, recall, precision, along with

F-Measure, the analogy of the MANFIS’s performance

with the prevailing ANFIS, ANN, convolutional neural

network (CNN) along with support vectors regressions

(SVR) is performed here. Hence, centred on false positives,

false negatives, true positives together with true negative

metrics, the computation of metrics are performed. Table 1
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demonstrates the performance assessment of the disparate

methods.

The MANFIS’s performance evaluation with the pre-

vailing ANFIS, CNN, ANN, along with SVR with refer-

ence to the ’4’ metrics is demonstrated in Table 1. The

SPIF’s geometric deviation in aluminium material is

97.90% precisely predicted by the proposed prediction

technique. Centred on all the four metrics, the prevailing

SVR comprise the bad result in Table 1. Next, the ANN is

somewhat better when weighed against the SVR; however,

compared to CNN and ANFIS, it has poor results. Finally,

the prevailing methods are defeated by the MANFIS

deviation prediction method. Therefore, it is finalized that

more than the ’4’ prevailing techniques, the proposed

MANFIS attains a greater rate of prediction.

The proposed MANFIS’s accuracy with the prevailing

four methods is depicted in Fig. 5. In present days, for the

Fig. 3 Pseudo-code for the ESSA

Fig. 4 Structure a CAD/CAM, and b manufactured truncated cone
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geometric deviation prediction, machine learning algo-

rithms are utilized. However, each comprises a problem

because of which the prediction’s accuracy is worse.

Grounded on the output, more adjustments are taken, if the

prediction’s output is correct. Thus, the prediction’s accu-

racy is a significant measure. For the existing ANFIS,

CNN, ANN together with SVR techniques, the obtained

accuracy are 91.56%, 87.34%, 84.23%, and 79.90%,

respectively, nevertheless, the proposed MANFIS’s

attained accuracy is 97.90%. Thus, Fig. 5 demonstrates

that the proposed MANFIS achieves greater prediction

accuracy than that of the existent techniques.

The graphical depiction of the MANFIS’s comparative

evaluation with the prevailing four techniques concerning

(a) precision along with (b) recall metrics is showcased n

Fig. 6. Precision stands as the gauge of quality and recall

stands as a gauge of quantity. More pertinent results are

rendered by the method if the prediction technique com-

prises a greater precision value, and most of the pertinent

results are returned by the method if the recall is greater.

The MANFIS comprises the precision of 96.28%, which is

larger than the prevailing ANFIS, CNN, ANN, and SVR

(i.e.) 90.23%, 88.23%, 85.23%, and 80%, respectively.

Likewise, centred on the recall metric, the attained recall

value of the proposed framework is 95.84%, which out-

weighs the recall attained by the prevailing techniques.

Lastly, as of Fig. 6, it is illustrated that the MANFIS

comprises good results than the prevailing method.

The proposed MANFIS’s performance is analysed with

the prevailing ANFIS, CNN, ANN, along with SVR

relating to F-measure metrics in Fig. 7. The F-measure

stands as the gauge of the test’s accuracy and the F-mea-

sure’s outcome are acquired by combining the recall with

precision metrics. Previously, centred on the precision

together with recall metrics, the attained results of the

proposed MANFIS outweighs the prevailing techniques

such that grounded upon the F-measure metric as well, the

greatest F-measure value attained by means of the proposal

is 96.23%. The ANFIS is a lot better than every other

metrics, and its result is 90.21%. Whilst the SVR alone

encompasses bad results (i.e.) 80.89% and CNN together

with ANN methods comprise a bad outcome of 88.24% as

Table 1 Performance analysis

of the proposed MANFIS with

the existing ANFIS, ANN,

CNN, and SVR-based on

statistical metrics

Methods Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Proposed MANFIS 97.90 96.78 95.84 96.23

ANFIS 91.56 90.23 89 90.21

CNN 87.34 88.23 87.45 88.24

ANN 84.23 85.23 85.34 85.24

SVR 79.90 80 81.23 80.89

Fig. 5 Comparative analysis of the proposed and existing deviation

prediction methods based on accuracy metric

Fig. 6 Graphical representation for the comparative analysis of the proposed and existing methods in terms of a precision, and b recall
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well as 85.25%, respectively. Hence, the discussion vali-

dates that the MANFIS comprises the superior result.

Figure 8 analyses the performance of the proposed

MANFIS with the existing ANFIS, CNN, ANN, and SVR

with respect to mean error. The proposed MANFIS attained

mean error of 0.017% whilst other methods showed the

mean error percentage higher than the proposed method.

This means that proposed method showed superior per-

formance in terms of mean error.

Figure 9 analyses the performance of the proposed

MANFIS with the existing deep belief network (DBN)

(Akrichi and Abbassi 2019) with respect to accuracy. The

proposed MANFIS attained the accuracy level of 97.90%

whilst the DBN acquired the accuracy level of 97.8%. This

shows that the proposed method performs well in finding

geometric deviation than other considered method.

4.2 Performance analysis for optimal parameter
selection

The performance analogy of the optimal parameters

selection techniques is performed in this section. Without

employing optimization, it is analogized with the proposed

ESSA-centred optimal parameter selection together with

the existent optimal parameter selection techniques, like

GA, SSA, along with particle swarms optimization (PSO)

concerning the roundness deviation and position deviation.

Therefore, the geometric deviations are gauged by means

of computing the mean square error (MSE) betwixt the

actual output and the attained output of the designed

truncated cone shape.

The roundness deviation’s analysis without and with-

selection of optimal parameter utilizing proposed ESSA

with prevailing SSA, PSO, and GA centred on MSE is

showcased in Fig. 10. An imperative geometric metric is

roundness. The geometric accuracy is bad if the roundness

greatly deviates. Hence, the deviation measurement is done

by error. The shape manufactured with optimal parameters

selection comprises low error than that manufactured

without-selection of optimal parameters that encompass

15.34 errors. The selection performed in the with-optimal

parameter selection by proposed ESSA merely comprises

2.4 errors. There is the least error in the with-selection of

the optimal parameter. Greater error is encompassed by the

existent PSO and GA. Therefore, utilizing the proposed

ESSA, the optimal parameter selection delivers values that

are nearer to the actual output than the other techniques.

The optimal parameter selection’s performance by uti-

lizing the proposed ESSA, SSA, PSO, and GA with and

without-selection of the optimal parameter in relation to the

Fig. 7 F-Measure analysis for the proposed and existing methods

Fig. 8 Mean error analysis for the proposed and existing methods

Fig. 9 Accuracy analysis Fig. 10 Analysis of the roundness deviation based on MSE
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position deviation concerning the MSE metric is analysed

in Fig. 11. Selection of optimal parameter by utilizing

ESSA contains 3.2 error of position deviation, SSA

encompasses 8.02 errors, PSO comprises 10.09 errors

together with GA contains 12.88 errors. The position

deviation manufacturer errors of 15.12 are contained by the

without optimal parameters selection. Hence, this explains

that the position deviation encompassed by the with-opti-

mal parameters selection is lesser than that contained by

the without-selection of the optimal parameter. In the

selection of optimal parameter, the proposed ESSA com-

prise good result than the prevailing techniques.

Centred on the number of iterations, the fitness value of

the proposed ESSA, SSA, PSO, and GA algorithm is

scrutinized in Fig. 12. The algorithm is signified as an

effective algorithm for selecting the optimal parameters if

it contains the best fitness value. The fitness values are

incremented as the iteration level is incremented. In all

iteration, the proposed ESSA consists of the largest fitness

value as the GA’s fitness value is the least and the SSA

along with PSO contains the fitness value in the middle.

Lastly, it exhibits that the ESSA has a better outcome than

the prevailing algorithms.

5 Conclusion

An improved flexible manufacturing process that forms the

clamped sheet into the intended shape by a hemispherical

tool’s movement is called the SPIF process. However, it

contains a geometric deviation problem. Therefore, for

solving that problem, initially, the prediction of geometric

deviation is performed grounded on the proposed MAN-

FIS, and next, the selection of optimal parameters is done

by employing the ESSA, and for additional manufacturing,

the optimal parameters are recommended to the SPIF

model. In the designing of SPIF, the CAD/CAM software

is employed for designing the chosen shapes and CMM is

employed for gauging the geometric metrics. By utilizing

the earlier manufactured shape’s inputted and outputted

values, which is regarded as the dataset, the analysis of the

system’s performance is performed. The performance

evaluation is performed in 2 segments, namely examining

the geometric deviation’s performance and performance

analysis of the optimal parameter selection. The proposed

MANFIS’s performance is analogized with the prevailing

ANFIS, CNN, ANN, together with SVR with respect to the

accuracy, precision, recall, along with F-measure, in the

geometrics deviation prediction analysis. The proposed

ESSA’s performance is analogized with the prevailing

SSA, PSO, along with GA, in the optimal parameter

selection analysis part and is also analogized with the

without-optimal parameter selection grounded on MSE. A

better result is attained by the proposed methods when

contrasted to the existent methods by obtaining values of

97.90%, 96.78%, 95.84%, 96.23%, and 0.017% for accu-

racy, precision, recall, F-measure along with mean error.

2.4 roundness deviation and 3.2 position deviation are

possessed by the proposed ESSA-centred manufacturing.

This is because of the alterations performed in the methods

incorporated in the proposed work namely the triangular

membership function in MANFIS. From the entire analy-

sis, it is viewed that the attained results of the proposed

techniques are high than the prevailing techniques. In the

future, by utilizing improved algorithms, the system can

well be protracted, and for fitness function, more metrics

can well be considered, so as to greatly decrease the GE.
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