
Soft Computing (2022) 26:725–747
https://doi.org/10.1007/s00500-021-06223-0

OPTIMIZAT ION

A novel solver for multi-objective optimization: dynamic
non-dominated sorting genetic algorithm (DNSGA)

Qiang Long1 · Guoquan Li2 · Lin Jiang3

Accepted: 22 August 2021 / Published online: 3 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Non-dominated sorting is a critical component of all multi-objective evolutionary algorithms (MOEAs). A large percentage
of computational cost of MOEAs is spent on non-dominated sorting. So, the complexity of non-dominated sorting method in
a large extent decides the efficiency of the MOEA. In this paper, we present a novel non-dominated sorting method called the
dynamic non-dominated sorting (DNS). It is based on the sorting of real number sequence instead of dominance comparisons.
The computational complexity of DNS is O(mN log N) (m is the number of objectives, N is the population size), which
equals to the best record so far. In the numerical experiments, we verify the outperformance of DNS comparing with other
non-dominated sorting methods. Based on DNS, we introduce a novel multi-objective genetic algorithm called the dynamic
non-dominated sorting genetic algorithm (DNSGA). Numerical experiments on DNSGA are also given. The results show
that DNSGA outperforms some other MOEAs on both general-scale and large-scale multi-objective problems.

Keywords Dynamic non-dominated sorting genetic algorithm · Multi-objective optimization · Multi-objective evolutionary
algorithm · Test problems

1 Introduction

Multi-objective optimization has extensive application in
engineering and management. Many optimization problems
in the real-world can be modeled as multi-objective opti-
mization problems (MOPs) (Guo et al. 2019; Passos et al.
2019; Zhang et al. 2019). However, due to the theoretical
and computational challenges, it is not easy to solve MOPs.
Therefore, numerical multi-objective optimization attracts a
wide range of research over the last decades.

B Qiang Long
longqiang@swust.edu.cn

Guoquan Li
ligq@cqnu.edu.cn

Lin Jiang
lydiajianglin@gmail.com

1 School of Science, Southwest University of Science and
Technology, Mianyang 621010, China

2 School of Mathematical Science, Chongqing Normal
University, Chongqing 400047, China

3 School of Engineering, Computing and Mathematics, Curtin
University, Bentley 6102, Australia

One popular way to solve MOP is to reformulate it
into a single-objective optimization problem. We call this
technique the indirect method. Typical indirect methods
are weighted sum method (Wang et al. 2016), ε-constraint
method (Du et al. 2014) and their variations (Gutjahr and
Pichler 2016). One difficulty for the weighted summethod is
the selection of proper weights so as to satisfy the decision-
maker’s preference. Since the weighted sum is a linear
combination of the objective functions, the concave part of
the Pareto frontier cannot be obtained using the weighted
sum method. The ε-constraint method converts multiple
objectives, except one, to constraints. However, it is dif-
ficult to determine the upper bounds of these objectives.
On the one hand, small upper bounds could exclude some
Pareto solutions; on the other hand, large upper bounds could
enlarge the searching area, which yields some sub-Pareto
solutions. Additionally, indirect method can only obtain a
single Pareto solution in each run, but in the real-world appli-
cation, decision-makers often prefer a number of optional
strategies so that they can choose one according to their pref-
erence.

Another strategy to solve MOP is to explore the entire
objective function value space directly in order to obtain
its Pareto frontier. We call this strategy the direct method.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06223-0&domain=pdf
http://orcid.org/0000-0002-9672-5895

726 Q. Long et al.

Population-based heuristic methods are ideal direct meth-
ods, because their iterative units are populations instead of
a single point, so they can obtain a set of solutions in a sin-
gle run. In the past few years, many heuristic methods were
applied to solveMOP, such as the evolutionary algorithm (Ma
et al. 2016; Ruiz et al. 2015; Zhang et al. 2015), genetic algo-
rithm (Yang et al. 2017) and differential evolution (Mlakar
et al. 2015; Qiu et al. 2016). Among them, genetic algorithm
attracted a great deal of attention and lots of good methods
has been presented (Deb et al. 2002; Hei et al. 2019; Long
2014; Long et al. 2015).

A combination of direct and indirect methods is another
strategy to solve MOP. We call this type the hybrid method
(Nikhil et al. 2017, 2018, 2019, 2020). A representative of
this type is MOEA/D (Zhang and Li 2007). It combines the
evolutionary algorithm and three scalarization methods.

When solving MOP using direct methods, two important
issues (Zitzler et al. 2000) need to be addressed:

– Elitism: In the process of multi-objective evolutionary
algorithm (MOEA), we always prefer solutions whose
function values are closer to the real Pareto frontier. In the
selection procedure, these solutions should be selected
as parents for the next generation, which leads the task
of non-dominated sorting in each iteration. According
to the definition of efficient point, numerous amount of
comparisons are needed to identify the non-dominated
state of each point. Therefore, reasonably reducing the
computational cost is one of the key research issues in
designing MOEA.

– Diversity:Diversity reflects the distributionof theobtained
Pareto frontier. Obviously, a uniformly distributed Pareto
frontier is preferred than a unevenly distributed one. In
other words, a good algorithm should avoid obtaining
solutions which are excessively concentrate on one or
two isolated areas.

Among them, elitism is realized by non-dominated sorting
whose core operation is comparison. Since non-dominated
sorting is needed in each iteration, the efficiency of non-
dominated sorting method is very important for the perfor-
mance of MOEA. In this paper, we first propose a novel
non-dominated sorting method called the dynamic non-
dominated sorting (DNS) and then a new multi-objective
genetic algorithm (MOGA) based on DNS.

The rest of the paper is organized as follows: In Sect. 2, we
review some existing non-dominated sortingmethods and the
framework of genetic algorithm. In Sect. 3, we propose DNS
and a new MOGA based on DNS. In Sect. 4, we compare
DNS with other existing non-dominated sorting methods. In
Sect. 5, we test the proposed MOGA using some numerical
benchmarks and compare its numerical performance with
other MOEAs. Section 6 concludes the paper.

2 Related works

In this section,wefirst review somebasic definitions ofmulti-
objective optimization, then some existing non-dominated
sorting methods, and finally propose the framework of
genetic algorithm.

2.1 Some basic definitions of MOP

The general mathematical model of MOP is

(MOP)

{
Minimize F(x)

Subject to x ∈ X .
(1)

Here F : R
n �→ R

m is a vector function and X ⊆ R
n is

a box constraint. In this paper, we also call X the decision
variable space, and its image set F(X) = {F(x)|x ∈ X} the
objective function value space.

Given two vectors y = (y1, y2, . . . , ym)T and z =
(z1, z2, . . . , zm)T ∈ R

m, define:

(1) y = z ⇔ yi = zi for all i = 1, 2, . . . ,m;
(2) y ≺ z ⇔ yi < zi for all i = 1, 2, . . . ,m;
(3) y � z ⇔ yi ≤ zi for all i = 1, 2, . . . ,m, and y
= z.

Obviously, if y ≺ z, then y � z. In this paper, if y � z,
we say y dominates z or z is dominated by y; if y � z and
z � y, we say y and z are non-dominated.

Let Y ⊆ R
m and y∗ ∈ Y , if there is no y ∈ Y such that

y � y∗ (or y ≺ y∗), then y∗ is called an efficient point (or
weakly efficient point) of Y . Suppose that x∗ ∈ X , if there
is no x ∈ X such that F(x) � F(x∗) (or F(x) ≺ F(x∗)),
i.e., F(x∗) is an efficient point (or weakly efficient point) of
the objective function value space F(X), then x∗ is called
an efficient solution (or weakly efficient solution) of Problem
(1).

Efficient andweakly efficient solutions can also be defined
using cone or partial order. Another name of the efficient
solution is Pareto solution. The meaning of Pareto solution
is that, if x∗ is a Pareto solution, there is no feasible solution
x ∈ X , such that fi (x) ≤ fi (x∗) for all i ∈ {1, 2, . . . ,m}
and there is at least one i0 ∈ {1, 2, . . . ,m} such that fi0(x) <

fi0(x
∗). In other words, x∗ is the best solution in the sense of

“�”. Another intuitive interpretation of Pareto solution is that
it cannot be improved with respect to any objective without
worsening at least one of the others.Weakly efficient solution
means that if x∗ is a weakly efficient solution, then there is
no feasible solution x ∈ X , such that any fi (x) of F(x)

is strictly better than that of F(x∗). In other words, x∗ is
the best solution in the sense of “≺”. Obviously, an efficient
solution is also aweakly efficient solution. The set of efficient
solutions is denoted by P∗; its image set F(P∗) is called the
Pareto frontier, denoted by PF∗.

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 727

2.2 Existing non-dominated sortingmethods

Non-dominated sorting is a critical step in MOEAs. A large
percentage of computational cost is spent on non-dominated
sorting for it involves numerous comparisons. Until now,
there are more than ten different non-dominated sorting
methods (Long et al. 2020). The earliest one is the naive non-
dominated sorting (Srinivas and Deb 1994). In this method,
in order to find whether a solution is dominated, the solution
has to do dominance comparisons with all the other solu-
tions, which leads a numerical complexity of O(mN 3) in
the worst case. Here, m stands for the number of objectives,
N stands for the population size, the same below. The naive
approach does not record any dominance comparison result,
which in return cause a lot of repeated computation. The
fast non-dominated sorting (Deb et al. 2002) overcomes this
drawback by calculating two entities for each solution p: (1)
domination count n p, the number of solutions which domi-
nate the solution p; and (2) dominate set Sp, a set of solutions
that the solution p dominates. This modification reduces the
computational complexity of the naive non-dominated sort-
ing to O(mN 2).

McClymont andKeedwell (2012) proposed climbing sort-
ing and deductive sorting. The climbing sorting is similar
to the bubble sorting for real number sequence. In order to
locate a non-dominated solution, the candidate is shifted from
dominated solution to the dominating one until all the solu-
tions in the current population are visited. The final candidate
must be a non-dominated solution. The deductive sorting is
similar to the selection sorting for real number sequence. In
the deductive sorting, one successively check each solution;
once the current solution is found to be dominated, abandon
it. If the current solution dominates all the other solutions,
or is non-dominated with the others, then it is identified as
a non-dominated solution. The climbing sorting works well
on populations with large number of Pareto frontiers. On the
contrary, the deductive sorting is good at sorting population
with small number of Pareto frontiers. The average compu-
tational complexity of the climbing sorting and deductive is
both O(mN 2).

Another idea to save dominance comparisons is to dis-
card the identified non-dominated solutions, Corner sorting
(Wang and Yao 2013) applies this idea. Some of the non-
dominated sorting method consider the partial order of the
solutions in the populations. For example, the efficient non-
dominated sorting (Zhang et al. 2014) first sorts solutions
using the common partial order of m-dimensional vec-
tor. This sorted population has a very important feature:
solution pm will never be dominated by a solution pn if
m < n. As shown in Table (III) in Zhang et al. (2014),
computational complexity of the efficient non-dominated
sorting is O(mN 2) in the worst case, while O(mN

√
N) or

O(mN log N) in the best case (depends on the differentmeth-
ods used in partial order.)

In order to avoid repeated dominance comparisons, one
can record the results of dominance comparisons in a matrix.
This idea is applied in the dynamic non-dominated sorting
(Long et al. 2020)where a N×N matrixwith entries 1,−1, 0
is used to record the dominance relationships between
solutions. The computational complexity of the dynamic
non-dominated sorting is O(mN 2). Another method apply-
ing this idea is the dominance degree sorting (Zhou et al.
2017). This method first calculates a comparison matrix for
each objective, then builds a dominance degree matrix by
adding these comparison matrices together. The dominance
relationship can be found in the dominance degree matrix. In
the dominance degree sorting, only the real number sequence
sorting is needed. This makes it much faster than the method
based on dominance comparison. In this paper, we improve
the dynamic non-dominated sorting by hybridizing itwith the
dominance degree sorting. The computational complexity of
the improved dynamic non-dominated sorting will decrease
to O(mN log N).

2.3 Genetic algorithm

In computer science and operations research, genetic algo-
rithm (GA), which is inspired by the process of natural
selection, is one of themost popular evolutionary algorithms.
It is introduced by JohnHolland in 1960s, and then developed
by his students and colleagues at the University of Michigan
between 1960s and 1970s (Goldberg 1989). Over the last
two decades, GA was increasingly enriched by plenty of lit-
eratures (Harik et al. 1999; Mirjalili 2019; Whitley 1994).
Nowadays, GA are applied in a wide range of areas, such
as mathematical programming, combinational optimization,
automatic control, image processing, etc..

Suppose P(t), O(t) and S(t) represent parents, offsprings
and selection pool of the t th generation, respectively. The
general structure of GA is described in Algorithm 1.

The implementation of GAmay be various in different sit-
uations. For example, some implementation generate Oc(t)
and Om(t) independently based on P(t), while some imple-
mentation first generates Oc(t) based on P(t) and then yields
Om(t) based on Oc(t). Furthermore, crossover, mutation and
selection operators are alterable in GA. Different designs of
these operators lead to different numerical performance of
GA.

It is worth to notice that, for notation P(t), O(t) and
S(t), we do not specify whether they are decision variables
(i.e., P(t)/O(t)/S(t) ⊂ X) or objective function values (i.e.,
P(t)/O(t)/S(t) ⊂ F(X)) since they are bijection through
objective function F(x). One can distinguish them accord-
ing to the contexts. For example, when calculating the Pareto
frontier, they are seen as objective function values; when

123

728 Q. Long et al.

Algorithm 1: Genetic algorithm
Input: Population size Np , crossover rate αc, mutation rate αm ,

maximal generation number tmax and problem
parameters.

Output: Obtained population and their corresponding evaluation.
Step 1: Initialization

Step 1.1: Generate the initial population P(0),
Step 1.2: Evaluate P(0),
Step 1.3: Let t ← 1.

Step 2: While t has not reached tmax , do

Step 2.1: Crossover operator: generate crossover offspring
Oc(t),

Step 2.2: Mutation operator: generate mutation offspring Om(t),
Step 2.3: Evaluation: evaluate Oc(t) and Om(t) and build the

selection pool by

S(t) = P(t) ∪ Oc(t) ∪ Om(t).

Step 2.4: Selection operator: select P(t + 1) from S(t),
Step 2.5 Let t ← t + 1, go back to Step 2.

running crossover and mutation, they are seen as decision
variables.

3 Dynamic non-dominated sorting genetic
algorithm

In this section, we first propose an improved dynamic non-
dominated sorting; then based on the improved dynamic
non-dominated sorting, we design a novel multi-objective
optimization genetic algorithm titled the dynamic non-
dominated sorting genetic algorithm.

3.1 Dynamic non-dominated sorting

According to thedefinitionof efficient point, in order to detect
the non-dominated points in a selection pool, each solution
must compare with the others in the selection pool to find
if it is dominated. In the naive sorting (Deb 1999), the non-
dominated points in different Pareto frontiers are detected
one by one, so there exist numerous repetitive dominance
comparisons between some candidate pairs, which in a large
extent increases the computational complexity of native sort-
ing. In this subsection, we tackle this shortage by recording
the result of dominance comparison between each candidate
pairs, which in return, avoids any repeated comparison. This
idea is inspired by the dynamic programming, so we call it
the dynamic non-dominated sorting, abbreviated as DNS.

Suppose S(t) is the current selection pool who has N solu-
tions. The aim of non-dominated sorting is to identify all the
Pareto frontiers in S(t). We denote the i th Pareto frontier
li (1 ≤ i ≤ imax). Obviously, we have 1 ≤ imax ≤ N ,

imax = 1 means that all the solutions in S(t) are non-
dominated, imax = N means that each Pareto frontier has
only one solution. We use a N × N matrix D to record the
dominance relationship in S(t), where

di j(i
= j) =
⎧⎨
⎩
1, if yi dominates y j , i.e., yi � y j ;
−1, if yi is dominated by y j , i.e., yi � y j ;
0, if yi and y jare non-dominated.

(2)

The diagonal entries of D are set to be 0, i.e., dii = 0, i =
1, 2, . . . , N . The non-dominated solutions can be detected
using D. Each row of D stands for a solution. If there is no
−1 in the i th row, that means yi is not dominated by any
other solution, i.e., yi is non-dominated. Finding all rows
with this feature, we can detect all the non-dominated solu-
tions. These solutions consist the first Pareto frontier of the
selection pool S(t). Assign li = 1 to these points. When
detecting the second Pareto frontier, solutions on the first
Pareto frontier (already identified) should not be involved any
more. So, we shrink D by discarding the rows and columns
whose solutions are already identified as in the first Pareto
frontier. Then, repeat the same process to detect the second
Pareto frontier and so forth, until all the solutions are identi-
fied, i.e., the matrix D becomes empty.

The procedure of the dynamic non-dominated sorting is
presented in Algorithm 2. The input is the current selection
pool S(t); its size is N ; the output is the Pareto frontier index
li , i = 1, 2, . . . , N . Step 1 computes the N × N dynamic
matrix D. Step 2 detects the current non-dominated solu-
tion using the current D. Step 3 shrinks the matrix D by
ignoring rows and columns corresponding to the detected
non-dominated solutions in Step 2. Then if D is not empty,
go back to Step 2 to detect non-dominated solution in the
next Pareto frontier; otherwise, the process of non-dominated
detection finishes.

Algorithm 2: Dynamic non-dominated sorting
Input: Selection pool S(t) and its size N = |S(t)|, an index set

I = {1, 2, . . . , N }, a counter k = 0.
Output: Pareto frontier index li , i = 1, 2, . . . , N .
Step 1: Compute a N × N dynamic matrix D whose element is

di j(i
= j) =
⎧⎨
⎩
1, if yi dominates y j , i.e., yi � y j ;
−1, if yi is dominated by y j , i.e., yi � y j ;
0, others .

If i = j , then di j = 0.
Step 2: Let k := k + 1, search by rows, find set

Ik = {i ∈ I | di j
= −1, ∀ j ∈ I },
then yi (i ∈ Ik) are non-dominated solutions. Set li = k, i ∈ Ik .

Step 3: Shrink the index set I by removing indexes Ik , i.e., I = I \ Ik .
Step 4: If I is not empty, go back to Step 2; otherwise, stop the loop.

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 729

The index li is called thePareto frontier index. The smaller
li is, the better elitism yi is, i.e., the solution with smaller
Pareto frontier index is closer to the real Pareto frontier.

In Algorithm 2, computing the dynamic matrix D (Step 1)
is a key step. We present a novel efficient method to address
this issue in the next subsection.

3.2 Dynamic matrix

The computation of the dynamic matrix D is the core step
of the dynamic non-dominated sorting; most of the compu-
tational cost is spent on this step. If we use the dominance
comparison to calculate the dynamic matrix D, N (N − 1)/2
times of dominance comparisons are needed, which makes
the computational complexity of the dynamic non-dominated
sorting O(mN 2). Through the transitivity of dominating can
be used in practice, it still cannot reduce the computational
complexity dramatically. In this subsection,we apply the idea
presented in the dominance degree sorting (Zhou et al. 2017),
introducing a faster method to calculate the dynamic matrix.

The process of calculating the dominance matrix is as
follows. Firstly, for each objective, we calculate a N × N
comparison matrix C fk (1 ≤ k ≤ m) which records the
comparison relationship of solutions on this objective. Take
the first objective, for example; suppose vector w f1 =
(p f1

1 , p f1
2 , . . . , p f1

N), where p f1
j is the first objective value

of solution pi (0 ≤ i ≤ N), then the entry of C f1 is

C f1
i j =

{
1, if p f1

i < p f1
j ,

0, otherwise.

C f1 can be obtained very fast by sorting the entries of w f1 .
Here, w f1 is a real number sequence; we can use any real
number sortingmethod, such as quick sorting, to sort it.With-
out loss of generality, supposew f1 = (p f1

1 , p f1
2 , . . . , p f1

N) is
already sorted in ascending order, then all the entries except
the first one in the first row (when i = 1) are 1, since
p f1
j > p f1

1 holds for all j = 2, 3, . . . , N . Similarly, entries
except the first and second ones in the second row (when
i = 2) are all 1. Inferring in this way, we will finally obtain

C f1 =

⎛
⎜⎜⎝
0 1 1 · · · 1
0 0 1 · · · 1

· · · · · ·
0 0 0 · · · 0

⎞
⎟⎟⎠ .

Secondly, adding all the comparisonmatrix together to get
a dominance degree matrix C , i.e.,

C = C f1 + C f2 + · · · + C fm .

To eliminate the effect of these solutionswith identical values
for all objectives, we set the corresponding element of C to

be zero. For example, if pi and p j are identical respect to all
objectives, we setCi j = 0. Obviously, according to this rule,
Cii = 0 for all i = 1, 2, . . . , N .

Thirdly, the elements of C reflect the dominance rela-
tionship between solutions. For example, pi dominates p j

means p fk
i ≤ p fk

j (i.e., C fk
i j = 1) for any k ∈ {1, 2, . . . ,m},

which yields Ci j = m. So, we have pi dominates p j if
and only if Ci j = m. The dynamic matrix can be directly
obtained according to the dominance degree matrix C . That
is, if Ci j = m, set Di j = 1 and Dji = −1; otherwise, reset
Di j = 0.

The pseudocode of calculating the dynamic matrix is pre-
sented in Algorithm 3

Algorithm 3: Dynamic matrix
Input: Selection pool S(t) and its size N = |S(t)|, number of

objectives m, an iteration counter k = 1.
Output: Dynamic matrix D.
Step 1: Let C fk be a N × N zero matrix, let

w fk = (p fk
1 , p fk

2 , . . . , p fk
N),

then let

C fk
i j =

{
1, if p fk

i < p fk
j ,

0, otherwise.

Step 2: If k + 1 ≤ m, then let k = k + 1, go back to step 1; otherwise,
let

C = C f1 + C f2 + · · · + C fm .

Step 3: Build dynamic matrix D. If Ci j = m, then let Di j = 1 and
Dji = −1; otherwise, let Di j = 0.

Step 4: Output the dynamic matrix D.

The main computational effort of the dynamic matrix is
on the computation of the comparison matrices C fk (k =
1, 2, . . . ,m). Intuitively, for each objective, function val-
ues are compared with each other, so N (N − 1)/2 real
number comparisons are needed, which makes the numer-
ical complexity of dynamic matrix O(mN 2). However,
this process can be improved by applying a real number
sequence sorting method, such as quick sort (Zhou et al.
2017). The computational complexity of the quick sort is
O(N log N), so the computational complexity of dynamic
matrix is O(mN log N).

3.3 Dynamic non-dominated sorting genetic
algorithm (DNSGA)

In this subsection, we present a novel multi-objective genetic
algorithm. Non-dominated sorting in this algorithm applies
the dynamic non-dominated sorting presented above, so

123

730 Q. Long et al.

we call this algorithm the dynamic non-dominated sorting
genetic algorithm, abbreviated as DNSGA. The process of
DNSGA is presented in Fig. 1.

In the step of crossover and mutation, self-adaptive sim-
ulated binary crossover operator (SSBX) (Deb et al. 2007)
and power mutation operator (PM) (Deep and Thakur 2007)
are applied. The SSBX operator is a real-parameter recombi-
nation operator which is commonly used in the evolutionary
algorithm (EA) literature. The operator involves a parameter
which dedicates the spread of offspring solutions vis-a-vis
that of the parent solutions. The PM operator is based on the
power distribution. It is proved to have the same performance
as the widely used non-uniformmutation operator (Deep and
Thakur 2007).

For the selection step, the binary tournament selection
operator used in NSGA-II is still applied in DNSGA. The
binary tournament selection operator ismainly constituted by
the fast non-dominated sorting and the crowded-comparison
operator. InDNSGA,we replace the fast non-dominated sort-
ing by the dynamic non-dominated sorting proposed above.

4 Comparison of non-dominated sorting
methods

In order to clarify the improvement of the dynamic non-
dominated sorting (DNS), this subsection compares it with
other non-dominated sorting methods. Except DNS pro-
posed in this paper, four other referential non-dominated
sorting methods are considered: the fast non-dominated
sorting (FNS) (Deb et al. 2002), climbing sorting (CS)
(McClymont and Keedwell 2012), deductive sorting (DS)
(McClymont and Keedwell 2012) and the dominance degree
non-dominated sorting (DDNS) (Zhou et al. 2017). FNS is
one of the earliest Pareto sorting approaches. It is updated
from the naive non-dominated sorting (Deb 1999). The
computational complexity of FNS is O(mN 2). CS follows
dominating relationships between solutions and climbs up
the graph toward the Pareto frontier. The key process of CS
is to change the considering solution from any dominated
one to dominating one until a non-dominated solution (at
the current Pareto frontier) has been identified. The com-
putational complexity of CS is O(mN 2). DS accesses each
solution based upon the natural order of the population. The
candidate solution compares with all its following solutions
but not with its previous ones. The average numerical com-
plexity of DS is O(mN 2), but in the best case that each
Pareto frontier has only one solution, it decreases to O(mN).
DDNS is one of the state-of-the-art non-dominated sorting
algorithms. Differently from the other non-dominated sort-
ing algorithms, DDNS does not compare two solutions to
identify dominating relationship. Instead, it constructs a com-
parison matrix which stores the relationship of all solutions

with respect to each objective. Then a dominance degree
matrix can be obtained by adding these comparison matri-
ces together. Finally, Pareto ranking of the population can be
obtained by analyzing the dominance degree matrix. If we
use quick sort in ranking each objective, the computational
complexity of DDNS is O(mN log N).

We compare DNS with these referential non-dominated
sorting methods introduced above. For metrics of numerical
performance, time consumption and number of comparisons
are considered. Experiments are divided into three groups:
(1) performance with respect to the variation of the popula-
tion size, (2) performance with respect to the variation of the
number of Pareto frontiers and (3) performance with respect
to the variation of the number of objectives. We use the fixed
features population generator (Long et al. 2020) to generate
test populations. This generator can generate test popula-
tions with certain features, such as having prefixed number
of points, prefixed number of Pareto frontier and prefixed
number of points in each Pareto frontier. The generated test
populations are listed in Table 1 wherem stands for the num-
ber of objectives, k stands for the number of Pareto frontiers
and N is a vector standing for the number of points in each
Pareto frontiers. In the series (1) test populations, the number
of objectives and Pareto frontiers is fixed, while the number
of points in each Pareto frontier is even and increases from
12 to 30 with a step of 2. In the series (2) test populations,
the number of objectives is fixed, while the number of Pareto
frontiers increases from 1 to 10 with step of 1, each test
population has 150 points in total evenly distributed in each
Pareto frontier. In the series (3) test populations, the number
of Pareto frontiers and number of points in each Pareto fron-
tier are fixed, while the number of objectives arises from 2
to 10 with step of 1.

Results of the numerical experiments are illustrated in
Figs. 2, 3 and 4. In Fig. 2b, FNS needs much more compar-
isons than the other four methods, CS and DS need exact the
same amount of comparisons, DDNS and DNS too but less
than CS and DS. As with the increase of population size, the
number of comparisons for FNS increases much faster than
the other four methods, then DS and CS, the increasing trend
of DDNS and DNS is relatively gentle. The same features
demonstrated in Fig. 2a for time consumption. It is worth to
note that DDNS spent slightly less time than DNS.

Figure3 shows that, as the number of Pareto frontiers
increases, the time consumption and the number of com-
parisons decrease for CS and DS. DDNS and DNS stay in a
lower level stably, while FNS stably appears in a very high
level.

It is shown in Fig. 4 that the time consumption and the
number of comparisons increase with the rise in the number
of objectives. This is reasonable because the increase in the
number of objectives must increase the number of compar-
isons, which in return increases the time consumption. But

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 731

Fig. 1 DNSGA algorithm

the increase rates are different. FNS has the steepest trend,
CS and DS are less, and DDNS and DNS only have a slight
increase.

In summary, the computation complexity of DNS keeps
stable if the population size is fixed, and has a slight increase
if the population size and number of objectives increase. This
statement agrees with the theoretical complexity analysis of
DNS. DNS outperforms FNS, CD and DS and performs the
same as DDNS which is considered as the most efficient
non-dominated sorting method (Zhou et al. 2017).

5 Numerical experiments

In this section, we investigate the numerical performance of
DNSGA. Firstly, we further compare the sorting methods
FNS and DNS by embedding them into the same MOEA
(NSGAII Deb et al. 2002). Secondly, we compare DNSGA

with some of the other popular MOEAs, includingMOEA/D
(Zhang and Li 2007), SparseEA (Tian et al. 2019a), PPS
(Fan et al. 2019) and LSMOF (Tian et al. 2019b). Finally,
we investigate the numerical performance of DNSGA when
scaling the number of variables.

5.1 Test problems

We use five series of test problems in the numerical experi-
ments. They are ZDT series (Zitzler et al. 2000), DTLZ series
(Deb et al. 2005), UF series (Zhang et al. 2008), BT series
(Li et al. 2016) and LSMOP series (Cheng et al. 2016). Fea-
tures of these test problems including number of objective
functions m, number of dimensions n, variable bounds X
and references are demonstrated in Table 2. All test prob-
lems are scalable respect to the number of dimensions; the
DTLZ series is also scalable respect to the number of objec-
tive functions. Numbers in the brackets are the number of

123

732 Q. Long et al.

Table 1 Three series of test
populations

Series No. Description m k N

Series (i) fixed m 3 5 N = (12, 12, 12, 12, 12)

Fixed k 3 5 N = (14, 14, 14, 14, 14)

Various N 3 5 N = (16, 16, 16, 16, 16)

3 5 N = (18, 18, 18, 18, 18)

3 5 N = (20, 20, 20, 20, 20)

3 5 N = (22, 22, 22, 22, 22)

3 5 N = (24, 24, 24, 24, 24)

3 5 N = (26, 26, 26, 26, 26)

3 5 N = (28, 28, 28, 28, 28)

3 5 N = (30, 30, 30, 30, 30)

Series (ii) fixed m 3 1 N = (150)

Various k 3 2 N = (75, 75)∑
N = 150 3 3 N = (50, 50, 50)

3 4 N = (37, 37, 37, 39)

3 5 N = (30, 30, 30, 30, 30)

3 6 N = (25, 25, 25, 25, 25, 25)

3 7 N = (21, 21, 21, 21, 21, 21, 24)

3 8 N = (18, 18, 18, 18, 18, 18, 18, 24)

3 9 N = (16, 16, 16, 16, 16, 16, 16, 16, 22)

3 10 N = (15, 15, 15, 15, 15, 15, 15, 15, 15, 15,)

Series (iii) various m 2 5 N = (30, 30, 30, 30, 30)

Fixed k 3 5 N = (30, 30, 30, 30, 30)

Fixed N 4 5 N = (30, 30, 30, 30, 30)

5 5 N = (30, 30, 30, 30, 30)

6 5 N = (30, 30, 30, 30, 30)

7 5 N = (30, 30, 30, 30, 30)

8 5 N = (30, 30, 30, 30, 30)

9 5 N = (30, 30, 30, 30, 30)

10 5 N = (30, 30, 30, 30, 30)

dimensions or the number of objectives we set in our exper-
iments. Details of the objective functions, referential Pareto
frontiers and Pareto solutions refer to the references.

5.2 Referential algorithms and parameter setting

We use five referential MOEAs in the numerical exper-
iments. They are NSGAII (Deb et al. 2002), MOEA/D
(Zhang and Li 2007), SparseEA (Tian et al. 2019a), PPS
(Fan et al. 2019) and LSMOF (Tian et al. 2019b). Among
them, NSGAII is one of the most popular MOEAs based on
genetic algorithm. In the past decades, NSGAII got thou-
sands of citations. MOEA/D is a successful multi-objective
optimizationmethod based on decomposition; it is often used
as a standard in numerical experiments. SparseEA, PPS and
LSMOF are three of the latest MOEAs; note that SparseEA
and LSMOF are originally designed for solving large-scale
multi-objective optimization problems.Among thefive refer-

ential algorithms, NSGAII is used to verify the improvement
of the sorting method DNS comparing with the traditional
one FNS, while the other four referential algorithms are used
to investigate the numerical performance of the proposed
method DNSGA. The implementation of these algorithms is
based on the PlatEMO (Tian et al. 2017).

For the sake of fair comparison, parameters for all algo-
rithms are uniformly set as far as possible. To be specific,
the population size is set to be 100, the maximum num-
ber of objective function evaluations is set to be 100,000,
and the maximum number of iterations is set to be 500. The
maximum number of objective function evaluations and iter-
ations is taken as stop criteria for all algorithms. In order to
achieve statistic performance, all the test are run 30 times
independently, and the mean and standard deviation of the
performance metrics are recorded. The other parameters for
certain algorithms are set as the default in PlatEMO.

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 733

60 70 80 90 100 110 120 130 140 150

Population size

0

0.02

0.04

0.06

0.08

0.1

0.12
Ti

m
e

co
ns

um
pt

io
n

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(a) Time consumptions

60 70 80 90 100 110 120 130 140 150

Population size

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r o

f c
om

pa
ris

on
s

104

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(b) Number of comparisons

Fig. 2 Numerical performance with respect to the variation of population size. In this test, the number of objectives m = 3, the number of Pareto
frontiers k = 5, the population size is from 60 to 150 with increment 10, and each Pareto frontier has the same number of solutions

1 2 3 4 5 6 7 8 9 10

Population size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ti
m

e
co

ns
um

pt
io

n

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(a) Time consumptions

1 2 3 4 5 6 7 8 9 10

Population size

0

0.5

1

1.5

2

2.5

3

3.5
N

um
be

r o
f c

om
pa

ris
on

s
104

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(b) Number of comparisons

Fig. 3 Numerical performance with respect to the variation of Pareto frontiers. In this test, the number of objectives m = 3, the number of Pareto
frontiers increases from 1 to 10, the population size N = 150, and each Pareto frontier has almost the same number of solutions

5.3 Performancemetrics

Many performance metrics have been proposed to evaluate
the numerical performance of MOGAs (Zhou et al. 2011).
There are two goals for evaluation metrics: (1) measure the
convergence of the obtained Pareto frontier, and (2) measure
the diversity of the obtained Pareto frontier.

We use the performance metric IGD (Long et al. 2015) to
evaluate the numerical performance. Suppose that P∗ is a set
of uniformly distributed points belonging to the real Pareto
frontier. It can be taken as a standard representation of the

real Pareto frontier. Let A be a set of solutions obtained by
a certain solver, then IGD is defined as the average distance
from P∗ to A:

IGD(A, P∗) =
∑

v∈P∗ d(v, A)

|P∗| ,

where d(v, A) is the minimum Euclidean distances between
v and the points in A, i.e.,

d(v, A) = min
y∈A

‖ v − y ‖ v ∈ P∗.

123

734 Q. Long et al.

2 3 4 5 6 7 8 9 10

Population size

0

0.05

0.1

0.15

0.2

0.25

0.3
Ti

m
e

co
ns

um
pt

io
n

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(a) Time consumptions

2 3 4 5 6 7 8 9 10

Population size

0

2

4

6

8

10

12

N
um

be
r o

f c
om

pa
ris

on
s

104

Climbing sorting
Deductive sorting
Fast non-dominanted sorting
Dominance degree sorting
Dynamic non-dominated sorting

(b) Number of comparisons

Fig. 4 Numerical performance with respect to the variation of objectives. In this test, the number of objectives increases from 2 to 10, the number
of Pareto frontiers k = 5, the population size is N = 150, and each Pareto frontier has the same number of solutions

In fact, P∗ is a sample set of the real Pareto frontier. If |P∗|
is large enough to approximate the Pareto frontier very well,
IGD(A, P∗) could measure both the diversity and conver-
gence of A. This is also the reason that we choose IGD as
the evaluation metric for this paper. A smaller IGD(A, P∗)
means the set A is closer to the real Pareto frontier and has
better diversity.

5.4 NSGAII with FNS and DNS

In this subsection, we compare FNS and DNS by embedded
them into the same MOEA. Since FNS is originally used
in NSGAII, we replace FNS in NSGAII by DNS to build
a new MOEA. In the following, we call the NSGAII with
FNSNSGAII-FNS, and call theNSGAIIwithDNSNSGAII-
DNS. Note that NSGAII-FNS and NSGAII-DNS are only
different in the non-dominated sorting method.

In order to achieve fair competition and statistical perfor-
mance, all the tests are run for 30 times independently, and
the mean and standard deviation of two performance met-
rics, CPU time and IGD value, are recorded. In the following
tables, the best record for a certain performance metric is
marked as in gray cell. Besides, the Wilcoxon rank sum test
with a significant level of 0.05 is adopted to perform statis-
tical analysis of the experimental results, where the symbols
“+”,“-” and “=” indicate that the result by NSGAII-FNS are
significantly better, significantly worse and statistically sim-
ilar to that obtained by NSGAII-DNS, respectively.

As shown in Table 3, NSGAII-DNS spends significantly
less CPU time thanNSGAII-FNS on all test problems, which
further verifies that DNS is faster than FNS. As for the

IGD value, Table 3 shows that 38 out of the total 39 test
problems are statistically similar. This is reasonable for that
NSGAII-FNS and NSGAII-DNS are only different in the
non-dominated sorting method, which affects the CPU time
but not the final solutions.

In Fig. 5, we demonstrate the decrease curve of IGD of
the first test problem in each series. Because inside a series,
the test problems have more or less the same structure, the
IGD curve of one problem can represent the others. For each
test problem, 10 samples of IGD value are taken evenly from
1000 to 10,000 times of objective function evaluations. From
Fig. 5, the IGD value of NDGAII-DNS and NSGAII-FNS
converges to almost the same value for problems ZDT1 and
DTLZ1. Figs. 5d, e shows that NSGAII-DNS outperforms
NSGAII-FNS for problems BT1 and LSMOP1. For problem
UF1, Fig. 5c shows that NSGAII-FNS outperformsNSGAII-
DNS.

In order to verify whether the numerical results of 30 runs
are normally distributed, Chi-square test with confidential
level α = 0.1 is applied. The results is positive; normal
distribution of the numerical results of 30 runs holds for all
test problems.We also useKruskal–Wallis test (H-test) to see
whether the difference between NSGAII-FNS and NSGAII-
DNS is significant. Results show that the difference with
respect to CPU time is significant, but not significant respect
to IGD value.

5.5 Compare DNSGAwith other MOEAs

In this subsection, we compare the numerical performance of
the proposed method DNSGA with other existing MOEAs.

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 735

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

5

10

15

20

25

30

35

40

45

IG
D

 v
al

ue

NSGAII-DNS
NSGAII-FNS

(a) IGD of ZDT1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

2

4

6

8

10

12

14

IG
D

 v
al

ue

NSGAII-DNS
NSGAII-FNS

(b) IGD of DTLZ1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IG
D

 v
al

ue

NSGAII-DNS
NSGAII-FNS

(c) IGD of UF1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

IG
D

 v
al

ue

NSGAII-DNS
NSGAII-FNS

(d) IGD of BT1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IG
D

 v
al

ue

NSGAII-DNS
NSGAII-FNS

(e) IGD of LSMOP1

Fig. 5 The decreasing trend of IGD

123

736 Q. Long et al.

Table 2 Test problems

Pro. m n X References

ZDT1 2 n(30) [0, 1]n Deb et al. (2002) and Zitzler et al. (2000)

ZDT2 2 n(30) [0, 1]n Deb et al. (2002) and Zitzler et al. (2000)

ZDT3 2 n(30) [0, 1]n Deb et al. (2002) and Zitzler et al. (2000)

ZDT4 2 n(30) [0, 1]n Deb et al. (2002) and Zitzler et al. (2000)

ZDT6 2 n(30) [0, 1]n Deb et al. (2002) and Zitzler et al. (2000)

DTLZ1 m(2) m + 4(6) [0, 1]n Deb et al. (2005)

DTLZ2 m(2) m + 9(11) [0, 1]n Deb et al. (2005)

DTLZ3 m(2) m + 9(11) [0, 1]n Deb et al. (2005)

DTLZ4 m(2) m + 9(11) [0, 1]n Deb et al. (2005)

DTLZ5 m(2) m + 9(11) [0, 1]n Deb et al. (2005)

DTLZ6 m(2) m + 9(11) [0, 1]n Deb et al. (2005)

DTLZ7 m(2) m + 19(21) [0, 1]n Deb et al. (2005)

UF1 2 n(30) [0, 1] × [−1, 1]n−1 Zhang et al. (2008)

UF2 2 n(30) [0, 1] × [−1, 1]n−1 Zhang et al. (2008)

UF3 2 n(30) [0, 1]n Zhang et al. (2008)

UF4 2 n(30) [0, 1] × [−2, 2]n−1 Zhang et al. (2008)

UF5 2 n(30) [0, 1] × [−1, 1]n−1 Zhang et al. (2008)

UF6 2 n(30) [0, 1] × [−1, 1]n−1 Zhang et al. (2008)

UF7 2 n(30) [0, 1] × [−1, 1]n−1 Zhang et al. (2008)

UF8 3 n(30) [0, 1]2 × [−2, 2]n−2 Zhang et al. (2008)

UF9 3 n(30) [0, 1]2 × [−2, 2]n−2 Zhang et al. (2008)

BT1 2 n(30) [0, 1]n Li et al. (2016)

BT2 2 n(30) [0, 1]n Li et al. (2016)

BT3 2 n(30) [0, 1]n Li et al. (2016)

BT4 2 n(30) [0, 1]n Li et al. (2016)

BT5 2 n(30) [0, 1]n Li et al. (2016)

BT6 2 n(30) [0, 1]n Li et al. (2016)

BT7 2 n(30) [0, 1] × [−1, 1]n−1 Li et al. (2016)

BT8 2 n(30) [0, 1]n Li et al. (2016)

BT9 3 n(30) [0, 1]n Li et al. (2016)

LSMOP1 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP2 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP3 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP4 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP5 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP6 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP7 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP8 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

LSMOP9 m(2) n(30) [0, 1] × [−1, 1]n−1 Jiang and Yang (2016)

The referential MOEAs are MOEA/D, SparseEA, PPS and
LSMOF. We investigate average and standard deviation of
CPU time and IGD value. Each test problem runs 30 time
independently. The statistical results are shown in Tables 4
and 5. Gray cell represents the best values of a certain per-
formance metric.

Table 4 illustrates the CPU time of comparing DNSGA
with other MOEAs. It can be seen that DNSGA outperforms
the other MOEAs on all test problems except LSMOF on
problem ZDT2. This indicates that DNS indeed accelerates
the speed of non-dominated sorting. Table 5 illustrates the
IGD value of comparing DNSGA with other MOEAs. It can

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 737

Table 3 Numerical comparison between NSGAII-FNS and NSGAII-DNS

Pro. CPU time IGD

NSGAII-FNS NSGAII-DNS NSGAII-FNS NSGAII-DNS

ZDT1 1.5586e+0 (9.35e–2) – 6.1376e–1 (2.74e–2) 2.1861e–1 (1.28e–1) = 1.8775e–1 (1.04e–1)

ZDT2 2.2492e+0 (1.31e–1) – 7.6010e–1 (4.65e–2) 5.1763e–1 (1.51e–1) = 5.3278e–1 (1.30e–1)

ZDT3 1.4290e+0 (1.08e–1) – 6.1202e–1 (4.46e–2) 1.6500e–1 (1.01e–1) = 1.4404e–1 (1.05e–1)

ZDT4 2.0416e+0 (1.17e–1) – 7.0622e–1 (4.60e–2) 1.5368e+1 (3.24e+0) = 1.5371e+1 (3.90e+0)

ZDT6 1.7983e+0 (7.56e–2) – 6.7817e–1 (4.39e–2) 3.7633e+0 (3.69e–1) = 3.7927e+0 (3.27e–1)

DTLZ1 1.8721e+0 (6.99e–2) – 6.0092e–1 (4.22e–2) 5.5622e–2 (1.09e–1) = 6.6503e–2 (1.26e–1)

DTLZ2 9.4927e–1 (6.63e–2) – 5.5882e–1 (5.62e–2) 5.1195e–3 (1.86e–4) = 5.0904e–3 (1.30e–4)

DTLZ3 1.8266e+0 (9.17e–2) – 6.3956e–1 (4.41e–2) 5.2642e+0 (2.78e+0) = 6.1121e+0 (3.33e+0)

DTLZ4 1.3209e+0 (5.86e–1) – 6.0191e–1 (1.54e–1) 1.7712e–1 (3.17e–1) = 1.5251e–1 (3.00e–1)

DTLZ5 9.4323e–1 (6.21e–2) – 5.2869e–1 (4.75e–2) 5.0690e–3 (1.55e–4) = 5.1468e–3 (1.71e–4)

DTLZ6 1.1294e+0 (3.61e–2) – 5.0044e–1 (2.78e–2) 5.7473e–3 (3.52e–4) = 6.5599e–3 (5.22e–3)

DTLZ7 1.1807e+0 (1.35e–1) – 5.3100e–1 (1.90e–2) 7.5917e–3 (8.00e–4) = 7.3846e–3 (8.12e–4)

UF1 1.4560e+0 (1.99e–1) – 6.5256e–1 (1.17e–1) 1.1816e–1 (2.58e–2) = 1.3276e–1 (3.72e–2)

UF2 1.1261e+0 (5.45e–2) – 5.4319e–1 (2.94e–2) 6.4574e–2 (9.35e–3) = 6.7811e–2 (1.81e–2)

UF3 1.0534e+0 (5.06e–2) – 5.5701e–1 (4.76e–2) 7.4628e–2 (3.19e–3) = 7.4178e–2 (3.33e–3)

UF4 1.5129e+0 (1.07e–1) – 6.0604e–1 (3.55e–2) 3.7298e–1 (5.60e–2) = 3.7393e–1 (4.95e–2)

UF5 1.7999e+0 (1.25e–1) – 6.2569e–1 (4.05e–2) 6.8505e–1 (1.75e–1) = 6.9100e–1 (2.15e–1)

UF6 1.6990e+0 (1.28e–1) – 6.7698e–1 (6.86e–2) 3.6041e–1 (1.18e–1) = 3.8024e–1 (1.34e–1)

UF7 1.4960e+0 (2.59e–1) – 5.7436e–1 (2.11e–2) 2.2450e–1 (1.43e–1) = 2.0384e–1 (1.51e–1)

UF8 1.0871e+0 (8.33e–2) – 6.2884e–1 (2.60e–2) 3.0100e–1 (3.12e–2) = 2.9188e–1 (2.31e–2)

UF9 1.2634e+0 (1.11e–1) – 6.6747e–1 (3.65e–2) 4.3603e–1 (8.85e–2) = 4.0026e–1 (5.97e–2)

BT1 1.1270e+0 (6.22e–2) – 5.6646e–1 (3.22e–2) 3.0879e+0 (1.59e–1) = 3.0515e+0 (1.05e–1)

BT2 1.2267e+0 (5.93e–2) – 6.0572e–1 (3.66e–2) 6.9969e–1 (4.03e–2) = 6.8137e–1 (3.77e–2)

BT3 1.3580e+0 (1.26e–1) – 5.9054e–1 (4.20e–2) 2.2955e+0 (1.51e–1) = 2.3211e+0 (1.49e–1)

BT4 1.2578e+0 (7.16e–2) – 5.7150e–1 (3.69e–2) 2.1949e+0 (1.69e–1) = 2.1776e+0 (1.83e–1)

BT5 1.1971e+0 (6.07e–2) – 5.7392e–1 (3.52e–2) 3.0398e+0 (2.06e–1) = 3.0689e+0 (1.68e–1)

BT6 1.8117e+0 (7.17e–2) – 6.5935e–1 (3.27e–2) 4.1243e–1 (2.69e–1) = 4.9615e–1 (3.53e–1)

BT7 1.8247e+0 (1.04e–1) – 6.2203e–1 (5.81e–2) 4.6484e–1 (3.09e–1) = 4.3477e–1 (2.36e–1)

BT8 2.0006e+0 (2.18e–1) – 8.5726e–1 (3.58e–2) 2.6431e+0 (4.86e–1) = 2.8699e+0 (5.37e–1)

BT9 1.2621e+0 (7.13e–2) – 8.5001e–1 (4.10e–2) 2.5291e+0 (1.16e–1) = 2.4768e+0 (1.14e–1)

LSMOP1 1.7803e+0 (7.96e–2) – 7.8256e–1 (4.81e–2) 2.9050e–1 (6.35e–2) = 2.8214e–1 (4.96e–2)

LSMOP2 1.4015e+0 (5.97e–2) – 7.8288e–1 (6.04e–2) 1.6666e–1 (1.13e–2) = 1.6229e–1 (1.28e–2)

LSMOP3 1.8770e+0 (8.89e–2) – 8.0653e–1 (5.16e–2) 2.7901e+0 (1.51e+0) = 3.1558e+0 (2.00e+0)

LSMOP4 1.5460e+0 (5.81e–2) – 7.6719e–1 (4.12e–2) 2.1587e–1 (5.48e–2) = 2.1142e–1 (5.21e–2)

LSMOP5 1.8922e+0 (1.45e–1) – 7.9718e–1 (3.78e–2) 6.4383e–1 (1.25e–1) = 6.0490e–1 (1.68e–1)

LSMOP6 1.4741e+0 (7.61e–2) – 8.1068e–1 (1.07e–1) 3.4260e–1 (3.36e–2) = 3.4841e–1 (2.96e–2)

LSMOP7 2.3373e+0 (1.87e–1) – 9.7543e–1 (5.06e–2) 1.6921e+1 (1.64e+1) = 1.8387e+1 (1.74e+1)

LSMOP8 1.8467e+0 (1.05e–1) – 8.2289e–1 (4.58e–2) 5.4191e–1 (1.44e–1) = 5.5080e–1 (1.14e–1)

LSMOP9 1.8192e+0 (1.39e–1) – 8.3844e–1 (4.11e–2) 2.0432e+0 (7.00e–1) + 2.4735e+0 (7.29e–1)

+/–/= 0/39/0 1/0/38

The bold numbers indicate that one method (column table header) perform best among all referential methods on one test problem (row table
header)

123

738 Q. Long et al.

be observed that SparseEA performs the best on the ZDT
series and PPS performs the best on most problems of the
LSMOP series. The proposed DNSGA outperforms the oth-
ers on DTLZ6, UF1-2, UF6-7, BT1-5 and BT9. Statistically,
in terms of the Wilcoxon rank sum test, the proportion of the
test instances where DNSGA performs significantly better
thanMOEA/D, SparseEA, PPS and LSMOF is 25/39, 25/39,
26/39 and 19/39, respectively.

H tests of CPU time and IGD value show the same con-
clusion as the above analysis. For CPU time, DNSGA has
significant difference with the other methods, but for IGD
value, the difference is not significant.

For further observation, Fig. 6 depicts the decrease tra-
jectory of IGD value on the first case of each test problem
series. Ten samples are recorded after every 1000 times of
objective function evaluation. It can be seen from the figures
that the IGD value of DNSGA may start at a high value, but
can dramatically decrease to a promising zone. For all the
test problems, IGD value obtained by DNSGA can converge
to a competitively small value. For problem BT1, DNSGA
outperforms the other MOEAs.

5.6 Scalability with respect to the number of
variables

In this subsection,we investigate the performance ofDNSGA
with respect to the scaling of decision variables. In this exper-
iment, only SparseEA and LSMOF are selected as referential
algorithms for they are originally designed for large-scale
multi-objective optimization, test problems are also restricted
in the LSMOP series (Cheng et al. 2016). There are 9 prob-
lems in the LSMOP series, the number of subcomponent in
each variable group nk is set to be 5, the number of objec-
tives is set to be 2 and 3, and the number of decision variables
is set to be 10, 30, 50, 100, 300, 500, and 1000. Test prob-
lems in the LSMOP series can be categories into three groups
(LSMOP 1-4, LSMOP5-8 and LSMOP9) according to their
structure of Pareto frontiers. So, for the sake of saving space,
we demonstrate the performance of LSMOP1, LSMOP5 and
LSMOP9 for 2 objectives and the performance of LSMOP2,
LSMOP6 and LSMOP9 for 3 objectives.

Table 6 illustrates the CPU time of SparseEA, LSMOF
andDNSGAon solving 2-objective LSMOP1, LSMOP5 and
LSMOP9. From the table, DNSGA outperforms SparseEA
on all cases except LSMOP9 with 10 decision variables.
Comparing between LSMOF and DNSGA, for LSMOP1
and LSMOP9, DNSGA is faster when dimension is small
and LSMOF is faster when dimension becomes large. How-
ever, for LSMOP5, DNSGA is always faster than LSMOF
except when dimension is 10. Statistically, the proportion of
test instances where DNSGA performs significantly faster
than SparseEA and LSMOF is 20/21 and 14/21, respec-
tively. Table 8 illustrates the CPU time of the three compared

MOEAs on solving 3-objective LSMOP2, LSMOP6 and
LSMOP9. From the table, DNSGA is still faster than
SparseEA for all cases except when dimension is 10. Except
LSMOP9with dimension equals 100, 500 and1000,DNSGA
is also faster thanLSMOF. In terms of theWilcoxon rank test,
the proportion of test cases where DNSGA performs sig-
nificant faster than SparseEA and LSMOF are both 18/21.
Tables6 and 8 verify that DNSGA outperforms SparseEA
and LSMOF in terms of CPU time.

Tables7 and 9 illustrate the IGD value of solving 2-
objective LSMOP1, LSMOP5, LSMOP9 and 3-objective
LSMOP2, LSMOP6, LSMOP9, respectively. From Table
7, DNSGA outperforms the other two MOEAs on prob-
lem LSMOP1 with dimension of 30 and 50 and problem
LSMOP5 with dimensions of 30, 50 and 100. From Table
9, DNSGA outperforms the other two MOEAs only on
problem LSMOP2. Tables7 and 9 reveal that, for solving
large-scale MOPs, the solution obtained by DNSGA is not
as good as LSMOF and SparseEA. This is reasonable for
LSMOF and SparseEA which are originally designed for
large-scale MOPs. So, some modifications need to be made
before NSGA can be used to efficiently solve large-scale
MOPs.

Finally, Fig. 7 depicts the trend of CPU time and IGD
value for DNSGA solving LSMOP9 with different numbers
of decision variables. It is obvious that both CPU time and
IGD value increase with the rise in dimensions. The CPU
time spent on 2-objective problems and 3-objective problems
is very close, while the IGDvalues are dramatically different,
and the gap increases as the number of dimension rises. This
means that, for scaling the number of objectives, DNSGA is
not sensitivity on CPU time but on IGD value.

6 Conclusion

In this work, we have proposed a novel non-dominated sort-
ing method, and based on it, a novel multi-objective genetic
algorithm. The computational complexity of the proposed
non-dominated sortingmethod is O(mN log N), which is the
same as the current best. The numerical comparison between
the proposed non-dominated sorting method and some other
existing ones still shows its efficiency and outperformance.
The novel multi-objective genetic algorithm is obtained by
embedding the proposed non-dominated sorting method into
the framework ofNSGAII. Numerical experiments show that
the proposed multi-objective genetic algorithm is efficient
and promising.

For large-scale multi-objective optimization problem, the
proposed method has no obvious advantage comparing with
some methods specially designed for large-scale multi-
objective optimization problem. The future work of the

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 739

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

10

20

30

40

50

60

IG
D

 v
al

ue

MOEAS
SparseEA
PPS
LSMOF
DSGA

(a) IGD of ZDT1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

5

10

15

20

25

30

35

40

45

50

IG
D

 v
al

ue

MOEAS
SparseEA
PPS
LSMOF
DSGA

(b) IGD of DTLZ1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

0.2

0.4

0.6

0.8

1

1.2

IG
D

 v
al

ue

MOEAS
SparseEA
PPS
LSMOF
DSGA

(c) IGD of UF1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

2.5

3

3.5

4

4.5

5

5.5

6

IG
D

 v
al

ue

MOEAS
SparseEA
PPS
LSMOF
DSGA

(d) IGD of BT1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of objective function value evaluations

0

0.5

1

1.5

2

2.5

IG
D

 v
al

ue

MOEAS
SparseEA
PPS
LSMOF
DSGA

(e) IGD of LSMOP1

Fig. 6 The decreasing trajectory of IGD

123

740 Q. Long et al.

Ta
bl
e
4

C
PU

tim
e
of

co
m
pa
ri
ng

D
N
SG

A
w
ith

ot
he
r
M
O
E
A
s

Pr
o.

M
O
E
A
/D

Sp
ar
se
E
A

PP
S

L
SM

O
F

D
N
SG

A

Z
D
T
1

2.
42
48
e+

0
(3
.7
1e
–1
)
–

1.
26
06
e+

0
(3
.1
7e
–1
)
–

2.
44
44
e+

0
(2
.4
0e
–1
)
–

1.
03
26
e+

0
(1
.6
0e
–1
)
-

8.
07
45
e–
1
(1
.6
9e
–1
)

Z
D
T
2

2.
22
01
e+

0
(6
.3
6e
–2
)
–

1.
10
76
e+

0
(6
.2
4e
–2
)
–

2.
16
64
e+

0
(8
.2
1e
–2
)
–

7.
95
64
e–
1
(5
.7
1e
–2
)
+

9.
21
81
e–
1
(1
.2
3e
–1
)

Z
D
T
3

2.
19
49
e+

0
(6
.3
3e
–2
)
–

1.
19
77
e+

0
(1
.6
6e
–1
)
–

2.
25
56
e+

0
(6
.1
0e
–2
)
–

7.
65
36
e–
1
(6
.3
6e
–2
)
-

7.
54
82
e–
1
(3
.1
2e
–1
)

Z
D
T
4

2.
23
48
e+

0
(5
.4
8e
–2
)
–

9.
85
76
e–
1
(4
.8
5e
–2
)
–

2.
25
87
e+

0
(4
.4
6e
–2
)
–

7.
80
26
e–
1
(8
.3
9e
–2
)
-

6.
92
13
e–
1
(4
.2
1e
–2
)

Z
D
T
6

2.
21
69
e+

0
(5
.6
7e
–2
)
–

1.
01
64
e+

0
(4
.6
5e
–2
)
–

2.
19
28
e+

0
(5
.8
0e
–2
)
–

7.
44
97
e–
1
(9
.1
1e
–2
)
-

6.
46
45
e–
1
(3
.2
9e
–2
)

D
T
L
Z
1

2.
36
53
e+

0
(2
.2
9e
–1
)
–

8.
00
46
e–
1
(4
.3
7e
–2
)
–

2.
44
02
e+

0
(2
.1
6e
–1
)
–

9.
86
58
e–
1
(7
.3
3e
–2
)
-

5.
81
28
e–
1
(4
.7
5e
–2
)

D
T
L
Z
2

2.
22
10
e+

0
(5
.9
4e
–2
)
–

6.
96
56
e–
1
(3
.7
6e
–2
)
–

2.
29
47
e+

0
(6
.6
8e
–2
)
–

1.
04
73
e+

0
(7
.9
9e
–2
)
-

5.
45
38
e–
1
(8
.1
5e
–2
)

D
T
L
Z
3

2.
29
14
e+

0
(1
.0
6e
–1
)
–

1.
06
59
e+

0
(1
.2
6e
–1
)
–

2.
28
98
e+

0
(6
.2
1e
–2
)
–

9.
23
39
e–
1
(6
.8
9e
–2
)
-

6.
21
79
e–
1
(3
.9
0e
–2
)

D
T
L
Z
4

2.
27
67
e+

0
(9
.8
1e
–2
)
–

7.
90
15
e–
1
(1
.0
8e
–1
)
–

2.
27
70
e+

0
(6
.1
1e
–2
)
–

9.
69
59
e–
1
(1
.8
6e
–1
)
-

5.
48
53
e–
1
(1
.2
9e
–1
)

D
T
L
Z
5

2.
29
00
e+

0
(5
.6
0e
–2
)
–

6.
95
04
e–
1
(3
.7
1e
–2
)
–

2.
33
32
e+

0
(5
.6
5e
–2
)
–

1.
00
34
e+

0
(1
.3
9e
–1
)
-

5.
07
13
e–
1
(4
.0
8e
–2
)

D
T
L
Z
6

2.
33
38
e+

0
(7
.3
4e
–2
)
–

9.
26
24
e–
1
(5
.1
3e
–2
)
–

2.
38
97
e+

0
(7
.5
0e
–2
)
–

7.
58
26
e–
1
(1
.0
0e
–1
)
-

4.
70
41
e–
1
(2
.9
4e
–2
)

D
T
L
Z
7

2.
27
49
e+

0
(6
.0
5e
–2
)
–

9.
67
61
e–
1
(4
.2
7e
–2
)
–

2.
30
28
e+

0
(6
.7
5e
–2
)
–

9.
04
87
e–
1
(5
.7
0e
–2
)
-

5.
29
03
e–
1
(2
.7
5e
–2
)

U
F1

2.
36
82
e+

0
(6
.6
4e
–2
)
–

1.
37
97
e+

0
(9
.5
0e
–2
)
–

2.
36
12
e+

0
(5
.5
9e
–2
)
–

8.
13
20
e–
1
(1
.0
5e
–1
)
-

5.
67
27
e–
1
(3
.7
6e
–2
)

U
F2

2.
52
70
e+

0
(8
.5
8e
–2
)
–

1.
31
13
e+

0
(3
.1
6e
–2
)
–

2.
54
16
e+

0
(5
.1
0e
–2
)
–

6.
80
92
e–
1
(7
.6
5e
–2
)
-

5.
80
93
e–
1
(3
.5
4e
–2
)

U
F3

2.
37
83
e+

0
(4
.9
5e
–2
)
–

1.
28
20
e+

0
(4
.3
2e
–2
)
–

2.
40
21
e+

0
(4
.7
8e
–2
)
–

9.
70
97
e–
1
(5
.2
9e
–2
)
-

5.
20
81
e–
1
(2
.1
2e
–2
)

U
F4

2.
43
70
e+

0
(8
.2
6e
–2
)
–

1.
43
66
e+

0
(7
.2
6e
–2
)
–

2.
49
18
e+

0
(1
.0
2e
–1
)
–

8.
78
97
e–
1
(6
.4
4e
–2
)
-

6.
16
93
e–
1
(4
.2
2e
–2
)

U
F5

2.
49
28
e+

0
(2
.0
0e
–1
)
–

1.
54
69
e+

0
(9
.4
0e
–2
)
–

2.
52
22
e+

0
(1
.4
4e
–1
)
–

9.
25
92
e–
1
(1
.1
4e
–1
)
-

6.
75
07
e–
1
(5
.9
0e
–2
)

U
F6

2.
39
63
e+

0
(7
.6
8e
–2
)
–

1.
43
99
e+

0
(9
.1
2e
–2
)
–

2.
38
26
e+

0
(5
.4
1e
–2
)
–

8.
41
92
e–
1
(1
.4
9e
–1
)
-

6.
91
99
e–
1
(1
.3
6e
–1
)

U
F7

2.
37
51
e+

0
(6
.0
8e
–2
)
–

1.
44
88
e+

0
(1
.3
6e
–1
)
–

2.
38
81
e+

0
(5
.7
6e
–2
)
–

8.
62
74
e–
1
(1
.3
2e
–1
)
-

5.
75
45
e–
1
(2
.5
5e
–2
)

U
F8

2.
44
17
e+

0
(6
.0
2e
–2
)
–

1.
35
27
e+

0
(5
.0
2e
–2
)
–

2.
47
61
e+

0
(6
.2
9e
–2
)
–

2.
32
28
e+

0
(6
.0
6e
–1
)
-

6.
65
78
e–
1
(4
.4
4e
–2
)

U
F9

2.
52
73
e+

0
(7
.7
0e
–2
)
–

1.
46
67
e+

0
(5
.6
6e
–2
)
–

2.
46
47
e+

0
(5
.9
9e
–2
)
–

2.
83
12
e+

0
(9
.4
1e
–1
)
-

7.
74
31
e–
1
(6
.5
2e
–2
)

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 741

Ta
bl
e
4

co
nt
in
ue
d

Pr
o.

M
O
E
A
/D

Sp
ar
se
E
A

PP
S

L
SM

O
F

D
N
SG

A

B
T
1

2.
45
54
e+

0
(1
.6
7e
–1
)
–

1.
06
35
e+

0
(1
.1
9e
–1
)
–

2.
33
87
e+

0
(5
.6
5e
–2
)
–

6.
86
18
e–
1
(5
.9
4e
–2
)
-

5.
84
12
e–
1
(3
.8
7e
–2
)

B
T
2

2.
56
40
e+

0
(1
.3
3e
–1
)
–

1.
13
09
e+

0
(1
.2
4e
–1
)
–

2.
51
24
e+

0
(8
.9
7e
–2
)
–

7.
24
81
e–
1
(6
.5
8e
–2
)
-

6.
00
53
e–
1
(2
.4
9e
–2
)

B
T
3

2.
38
23
e+

0
(5
.5
4e
–2
)
–

1.
20
20
e+

0
(1
.2
4e
–1
)
–

2.
45
68
e+

0
(9
.4
3e
–2
)
–

7.
85
20
e–
1
(7
.9
7e
–2
)
-

6.
41
99
e–
1
(4
.5
0e
–2
)

B
T
4

2.
63
59
e+

0
(9
.4
0e
–2
)
–

1.
13
43
e+

0
(1
.2
4e
–1
)
–

2.
59
62
e+

0
(4
.9
4e
–2
)
–

7.
62
98
e–
1
(8
.0
4e
–2
)
-

6.
20
17
e–
1
(4
.0
3e
–2
)

B
T
5

2.
37
08
e+

0
(6
.0
3e
–2
)
–

1.
09
90
e+

0
(1
.1
9e
–1
)
–

2.
34
74
e+

0
(5
.9
9e
–2
)
–

7.
12
19
e–
1
(6
.5
6e
–2
)
-

5.
85
93
e–
1
(3
.9
3e
–2
)

B
T
6

2.
53
23
e+

0
(8
.6
5e
–2
)
–

1.
44
19
e+

0
(4
.8
6e
–2
)
–

2.
43
47
e+

0
(6
.8
2e
–2
)
–

1.
23
08
e+

0
(4
.5
8e
–2
)
-

6.
41
98
e–
1
(3
.0
7e
–2
)

B
T
7

2.
37
62
e+

0
(8
.8
3e
–2
)
–

1.
46
30
e+

0
(5
.3
8e
–2
)
–

2.
38
37
e+

0
(9
.3
1e
–2
)
–

9.
15
21
e–
1
(6
.9
1e
–2
)
-

6.
33
49
e–
1
(3
.4
8e
–2
)

B
T
8

2.
41
96
e+

0
(7
.8
3e
–2
)
–

1.
43
12
e+

0
(5
.0
3e
–2
)
–

2.
39
87
e+

0
(5
.6
7e
–2
)
–

1.
21
99
e+

0
(5
.5
6e
–2
)
-

6.
53
02
e–
1
(3
.2
7e
–2
)

B
T
9

2.
45
13
e+

0
(6
.7
9e
–2
)
–

1.
32
06
e+

0
(8
.9
6e
–2
)
–

2.
43
79
e+

0
(5
.7
2e
–2
)
–

2.
36
21
e+

0
(4
.1
0e
–1
)
-

6.
46
92
e–
1
(3
.9
5e
–2
)

L
SM

O
P1

2.
76
58
e+

0
(1
.0
9e
–1
)
–

1.
58
13
e+

0
(2
.1
2e
–1
)
–

2.
71
76
e+

0
(7
.9
9e
–2
)
–

7.
23
89
e–
1
(8
.1
0e
–2
)
-

6.
15
31
e–
1
(4
.2
0e
–2
)

L
SM

O
P2

2.
89
77
e+

0
(1
.0
7e
–1
)
–

1.
41
51
e+

0
(6
.9
1e
–2
)
–

2.
96
39
e+

0
(2
.1
6e
–1
)
–

1.
10
36
e+

0
(7
.5
1e
–2
)
-

6.
07
59
e–
1
(3
.8
0e
–2
)

L
SM

O
P3

2.
97
89
e+

0
(1
.0
8e
–1
)
–

1.
78
69
e+

0
(9
.2
7e
–2
)
–

2.
79
87
e+

0
(7
.0
2e
–2
)
–

1.
23
56
e+

0
(1
.0
9e
–1
)
-

6.
38
25
e–
1
(4
.9
2e
–2
)

L
SM

O
P4

2.
88
90
e+

0
(1
.3
2e
–1
)
–

1.
46
09
e+

0
(6
.7
4e
–2
)
–

2.
85
95
e+

0
(7
.3
3e
-2
)
–

1.
10
99
e+

0
(7
.5
2e
–2
)
-

5.
89
99
e–
1
(4
.0
0e
–2
)

L
SM

O
P5

2.
68
80
e+

0
(6
.4
6e
–2
)
–

1.
51
53
e+

0
(2
.7
7e
–1
)
–

2.
73
29
e+

0
(8
.2
6e
–2
)
–

7.
54
87
e–
1
(9
.4
5e
–2
)
-

6.
27
68
e–
1
(4
.3
6e
–2
)

L
SM

O
P6

3.
09
01
e+

0
(8
.4
3e
–2
)
–

1.
10
73
e+

0
(7
.8
6e
–2
)
–

3.
20
46
e+

0
(9
.8
9e
–2
)
–

9.
21
10
e–
1
(7
.9
9e
–2
)
-

6.
51
20
e–
1
(6
.7
2e
–2
)

L
SM

O
P7

3.
13
35
e+

0
(2
.1
9e
–1
)
–

1.
65
41
e+

0
(8
.4
6e
–2
)
–

2.
89
12
e+

0
(9
.7
0e
–2
)
–

1.
32
53
e+

0
(7
.1
7e
–2
)
-

7.
10
27
e–
1
(3
.8
2e
–2
)

L
SM

O
P8

2.
85
19
e+

0
(1
.0
3e
–1
)
–

1.
52
42
e+

0
(2
.4
9e
–1
)
–

2.
84
18
e+

0
(6
.7
1e
–2
)
–

7.
52
33
e–
1
(8
.4
6e
–2
)
-

6.
45
70
e–
1
(3
.5
6e
–2
)

L
SM

O
P9

2.
79
27
e+

0
(7
.6
3e
–2
)
–

1.
69
72
e+

0
(9
.7
3e
–2
)
–

2.
74
83
e+

0
(8
.0
1e
–2
)
–

1.
29
63
e+

0
(7
.0
9e
–2
)
-

6.
45
67
e–
1
(3
.9
4e
–2
)

+
/–
/=

0/
39

/0
0/
39

/0
0/
39

/0
1/
38

/0

T
he

bo
ld

nu
m
be
rs
in
di
ca
te
th
at
on
e
m
et
ho
d
(c
ol
um

n
ta
bl
e
he
ad
er
)
pe
rf
or
m

be
st
am

on
g
al
lr
ef
er
en
tia
lm

et
ho
ds

on
on
e
te
st
pr
ob
le
m

(r
ow

ta
bl
e
he
ad
er
)

123

742 Q. Long et al.

Ta
bl
e
5

IG
D
va
lu
e
of

co
m
pa
ri
ng

D
N
SG

A
w
ith

ot
he
r
M
O
E
A
s

Pr
o.

M
O
E
A
/D

Sp
ar
se
E
A

PP
S

L
SM

O
F

D
N
SG

A

Z
D
T
1

1.
61
39
e–
1
(5
.9
6e
–2
)
=

9.
50
40
e–
3
(3
.2
6e
–3
)
+

3.
87
89
e+

0
(2
.4
0e
+
0)

–
2.
30
86
e–
1
(1
.1
9e
–1
)
=

1.
85
61
e–
1
(1
.0
8e
–1
)

Z
D
T
2

3.
30
19
e–
1
(1
.7
3e
–1
)
+

1.
06
62
e–
2
(3
.8
3e
–3
)
+

5.
53
48
e+

0
(2
.9
8e
+
0)

–
3.
27
81
e–
1
(9
.8
0e
–2
)
+

5.
72
52
e–
1
(9
.7
2e
–2
)

Z
D
T
3

2.
44
46
e–
1
(1
.1
9e
–1
)
–

2.
75
50
e–
2
(2
.2
1e
–2
)
+

5.
83
57
e+

0
(3
.6
4e
+
0)

–
3.
16
81
e–
1
(1
.4
8e
–1
)
–

1.
72
68
e–
1
(8
.6
9e
–2
)

Z
D
T
4

1.
33
34
e+

1
(3
.5
3e
+
0)

+
1.
74
67
e–
2
(5
.5
1e
–3
)
+

5.
43
97
e+

1
(1
.0
7e
+
1)

–
4.
04
93
e+

0
(9
.9
0e
+
0)

+
1.
61
25
e+

1
(3
.8
6e
+
0)

Z
D
T
6

2.
84
77
e+

0
(6
.4
4e
–1
)
+

5.
50
24
e–
3
(1
.7
2e
–3
)
+

9.
07
31
e+

0
(1
.3
6e
+
0)

–
1.
56
15
e+

0
(4
.0
7e
–e
–1
)
+

3.
96
38
e+

0
(3
.1
2e
–1
)

D
T
L
Z
1

2.
09
06
e–
1
(2
.5
7e
–1
)
–

7.
38
19
e–
1
(4
.6
2e
–1
)
–

1.
14
16
e+

0
(1
.7
0e
+
0)

-
1.
25
00
e–
2
(9
.3
6e
–3
)
=

9.
56
71
e–
2
(1
.9
6e
–1
)

D
T
L
Z
2

4.
34
93
e–
3
(1
.7
7e
–4
)
+

5.
53
88
e–
3
(4
.0
8e
–4
)
–

8.
05
84
e–
3
(7
.3
0e
–4
)
–

5.
61
33
e–
3
(4
.5
4e
–4
)
–

5.
11
00
e–
3
(1
.6
5e
–4
)

D
T
L
Z
3

1.
13
37
e+

1
(6
.1
0e
+
0)

–
1.
83
69
e+

1
(7
.8
2e
+
0)

–
3.
06
84
e+

1
(2
.7
6e
+
1)

-
1.
18
89
e–
1
(9
.1
7e
–2
)
+

6.
29
62
e+

0
(3
.6
3e
+
0)

D
T
L
Z
4

2.
50
36
e–
1
(3
.5
4e
–1
)
–

2.
26
49
e–
1
(3
.4
3e
–1
)
–

3.
42
81
e–
2
(1
.3
4e
–1
)
+

5.
22
31
e–
3
(1
.9
1e
–4
)
=

1.
03
37
e–
1
(2
.5
5e
–1
)

D
T
L
Z
5

4.
36
31
e–
3
(1
.9
6e
–4
)
+

5.
47
35
e–
3
(2
.6
2e
–4
)
–

7.
97
85
e–
3
(8
.3
2e
–4
)
–

5.
64
03
e–
3
(4
.0
3e
–4
)
-

5.
08
87
e–
3
(1
.7
1e
–4
)

D
T
L
Z
6

1.
37
88
e–
2
(4
.7
1e
–2
)
–

9.
56
49
e–
3
(5
.3
4e
–3
)
–

7.
36
30
e–
3
(8
.1
7e
–4
)
–

2.
64
55
e–
2
(2
.4
9e
–2
)
–

5.
59
24
e–
e–
3
(2
.2
7e
–4
)

D
T
L
Z
7

1.
76
15
e–
1
(1
.9
4e
–1
)
–

5.
52
59
e–
3
(6
.9
1e
–4
)
+

4.
08
18
e–
1
(1
.3
2e
–1
)
–

2.
10
81
e–
1
(2
.2
3e
–1
)
=

7.
37
61
e–
3
(7
.7
5e
–4
)

U
F1

3.
24
05
e–
1
(1
.1
5e
–1
)
–

1.
56
32
e–
1
(5
.3
7e
–2
)
–

1.
54
24
e–
1
(4
.2
0e
–2
)
–

1.
49
25
e–
1
(1
.4
3e
–2
)
–

1.
21
48
e–
1
(2
.6
9e
–2
)

U
F2

1.
64
33
e–
1
(5
.3
7e
–2
)
–

8.
88
92
e–
2
(5
.6
5e
–3
)
–

7.
45
96
e–
2
(2
.8
0e
–2
)
=

7.
54
69
e–
2
(6
.1
3e
–3
)
–

6.
77
64
e–
2
(1
.4
1e
–2
)

U
F3

1.
25
48
e–
1
(5
.5
2e
–3
)
–

8.
93
63
e–
2
(4
.5
5e
–3
)
–

9.
66
03
e–
2
(7
.5
9e
–3
)
–

6.
68
13
e–
2
(2
.2
7e
–3
)
+

7.
50
17
e–
2
(3
.3
7e
–3
)

U
F4

3.
26
37
e–
1
(1
.8
0e
–2
)
+

8.
40
30
e–
1
(5
.6
5e
–1
6)
–

2.
81
88
e–
1
(2
.9
0e
–2
)
+

3.
30
30
e–
1
(6
.3
8e
–3
)
+

3.
83
24
e–
1
(4
.5
3e
–2
)

U
F5

1.
28
35
e+

0
(2
.1
9e
–1
)
–

1.
01
31
e+

0
(3
.8
3e
–1
)
–

1.
72
82
e+

0
(2
.7
4e
–1
)
–

1.
06
84
e+

0
(2
.0
1e
–1
)
–

6.
80
80
e–
1
(1
.8
8e
–1
)

U
F6

6.
86
74
e–
1
(3
.1
0e
–1
)
–

8.
18
65
e–
1
(2
.9
2e
–1
)
–

6.
47
07
e–
1
(1
.2
9e
–1
)
–

7.
68
42
e–
1
(1
.5
5e
–1
)
–

3.
53
87
e–
1
(9
.9
9e
–2
)

U
F7

4.
87
10
e–
1
(1
.4
3e
–1
)
–

1.
53
21
e–
1
(5
.7
4e
–2
)
=

2.
06
17
e–
1
(1
.1
5e
–1
)
=

3.
58
33
e–
1
(1
.5
4e
–2
)
–

1.
79
53
e–
1
(1
.3
0e
–1
)

U
F8

4.
74
23
e–
1
(2
.0
4e
–1
)
–

2.
69
22
e–
1
(4
.8
9e
–3
)
+

3.
29
78
e–
1
(3
.0
8e
–2
)
–

4.
57
87
e–
1
(3
.5
5e
–2
)
–

2.
93
41
e–
1
(2
.4
2e
–2
)

U
F9

5.
35
22
e–
1
(8
.7
5e
–2
)
–

6.
01
58
e–
1
(7
.9
7e
–2
)
–

4.
19
53
e–
1
(5
.4
7e
–2
)
=

4.
73
84
e–
1
(3
.6
7e
–2
)
–

4.
20
90
e–
1
(6
.6
9e
–2
)

B
T
1

3.
81
55
e+

0
(1
.3
0e
–1
)
–

3.
59
59
e+

0
(1
.9
0e
–1
)
–

3.
86
77
e+

0
(5
.8
3e
–2
)
–

3.
91
17
e+

0
(1
.1
1e
–1
)
–

3.
00
33
e+

0
(1
.5
5e
–1
)

B
T
2

1.
22
34
e+

0
(1
.0
5e
–1
)
–

1.
18
31
e+

0
(1
.5
4e
–1
)
–

1.
78
06
e+

0
(1
.1
6e
–1
)
–

1.
64
37
e+

0
(1
.1
9e
–1
)
–

6.
92
30
e–
1
(3
.9
2e
–2
)

B
T
3

3.
37
78
e+

0
(2
.3
3e
–1
)
–

3.
09
74
e+

0
(1
.9
6e
–1
)
–

3.
91
99
e+

0
(1
.1
8e
–1
)
–

3.
72
13
e+

0
(1
.1
2e
–1
)
–

2.
27
65
e+

0
(1
.5
7e
–1
)

B
T
4

3.
44
45
e+

0
(1
.6
3e
–1
)
–

2.
98
80
e+

0
(3
.1
0e
–1
)
–

3.
79
74
e+

0
(1
.1
3e
–1
)
–

3.
50
29
e+

0
(1
.0
7e
–1
)
–

2.
21
87
e+

0
(1
.7
1e
–1
)

B
T
5

3.
84
04
e+

0
(1
.2
5e
–1
)
–

3.
52
16
e+

0
(1
.5
8e
–1
)
–

3.
91
31
e+

0
(8
.4
8e
–2
)
–

3.
85
25
e+

0
(9
.4
7e
–2
)
–

3.
08
48
e+

0
(1
.7
3e
–1
)

B
T
6

9.
16
04
e–
1
(2
.7
7e
–1
)
–

8.
40
30
e–
1
(5
.6
5e
–1
6)
–

1.
72
67
e+

0
(3
.0
5e
–1
)
-

3.
76
00
e–
1
(1
.1
8e
–2
)
=

4.
37
09
e–
1
(2
.0
6e
–1
)

B
T
7

5.
17
84
e–
1
(1
.2
1e
–1
)
–

7.
82
20
e–
1
(1
.8
1e
–1
)
–

9.
56
64
e–
1
(1
.9
0e
–1
)
–

1.
67
63
e–
1
(4
.3
0e
–2
)
+

4.
26
70
e–
1
(2
.7
2e
–1
)

B
T
8

4.
85
02
e+

0
(9
.6
5e
–1
)
–

8.
40
30
e–
1
(5
.6
5e
–1
6)
+

4.
34
88
e+

0
(4
.4
8e
–1
)
–

3.
91
41
e–
1
(2
.7
9e
–2
)
+

2.
68
72
e+

0
(4
.1
1e
–1
)

B
T
9

2.
67
62
e+

0
(2
.9
2e
–1
)
–

2.
76
72
e+

0
(1
.1
4e
–1
)
–

3.
42
69
e+

0
(1
.4
0e
–1
)
–

2.
96
56
e+

0
(7
.8
7e
–2
)
-

2.
51
05
e+

0
(9
.4
6e
–2
)

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 743

Ta
bl
e
5

co
nt
in
ue
d

Pr
o.

M
O
E
A
/D

Sp
ar
se
E
A

PP
S

L
SM

O
F

D
N
SG

A

L
SM

O
P1

3.
11
36
e–
1
(9
.0
2e
–2
)
=

5.
74
31
e–
1
(1
.8
3e
–1
)
–

1.
47
48
e–
1
(6
.0
3e
–2
)
+

3.
32
15
e–
1
(4
.0
4e
–2
)
=

3.
16
27
e–
1
(5
.3
9e
–2
)

L
SM

O
P2

1.
87
87
e–
1
(2
.6
8e
–2
)
–

1.
99
61
e–
1
(1
.5
4e
–2
)
–

1.
93
79
e–
1
(2
.7
3e
–2
)
–

1.
16
89
e–
1
(7
.2
9e
–3
)
+

1.
70
49
e–
1
(1
.1
1e
–2
)

L
SM

O
P3

8.
13
04
e–
1
(2
.6
5e
–1
)
+

1.
23
85
e+

0
(1
.9
7e
–1
)
+

7.
15
23
e–
1
(1
.1
3e
–1
)
+

1.
13
67
e+

0
(1
.7
0e
–1
)
+

3.
40
84
e+

0
(2
.0
1e
+
0)

L
SM

O
P4

2.
54
93
e–
1
(5
.5
2e
–2
)
–

2.
22
18
e–
1
(6
.1
2e
–2
)
=

7.
39
70
e–
2
(2
.0
9e
–2
)
+

2.
21
75
e–
1
(3
.9
6e
–2
)
=

2.
16
24
e–
1
(3
.6
9e
–2
)

L
SM

O
P5

5.
99
36
e–
1
(1
.7
4e
–1
)
=

6.
35
29
e–
1
(1
.6
4e
–1
)
=

2.
43
16
e–
1
(1
.3
1e
–1
)
+

7.
21
99
e–
1
(6
.3
2e
–2
)
–

5.
99
72
e-
1
(1
.3
6e
–1
)

L
SM

O
P6

2.
35
45
e–
1
(3
.8
6e
-2
)
+

3.
82
26
e–
1
(3
.2
6e
–2
)
–

6.
36
29
e–
2
(2
.8
2e
–2
)
+

3.
28
75
e–
1
(3
.7
6e
–2
)
+

3.
51
23
e–
1
(3
.5
7e
–2
)

L
SM

O
P7

1.
05
88
e+

1
(1
.5
6e
+
1)

+
1.
28
63
e+

0
(9
.1
3e
–3
)
+

1.
89
19
e+

0
(1
.9
3e
+
0)

+
1.
23
53
e+

0
(1
.1
8e
–2
)
+

1.
48
44
e+

1
(1
.4
1e
+
1)

L
SM

O
P8

4.
58
22
e–
1
(2
.2
3e
–1
)
+

6.
57
50
e–
1
(1
.5
6e
–1
)
–

1.
21
83
e–
1
(5
.3
8e
–2
)
+

7.
23
58
e–
1
(6
.0
2e
–2
)
–

5.
70
27
e–
1
(1
.4
8e
–1
)

L
SM

O
P9

1.
40
42
e+

0
(9
.5
8e
–1
)
+

8.
10
04
e–
1
(3
.3
9e
–1
6)
+

6.
37
53
e–
1
(1
.5
5e
–1
)
+

8.
10
71
e–
1
(6
.8
2e
–4
)
+

2.
35
17
e+

0
(9
.1
0e
–1
)

+
/-
/=

11
/2
5/
3

11
/2
5/
3

10
/2
6/
3

13
/1
9/
7

T
he

bo
ld

nu
m
be
rs
in
di
ca
te
th
at
on
e
m
et
ho
d
(c
ol
um

n
ta
bl
e
he
ad
er
)
pe
rf
or
m

be
st
am

on
g
al
lr
ef
er
en
tia
lm

et
ho
ds

on
on
e
te
st
pr
ob
le
m

(r
ow

ta
bl
e
he
ad
er
)

123

744 Q. Long et al.

Table 6 CPU time for scaling the
number of decision variables (2
objectives)

Pro. n SparseEA LSMOF DNSGA

LSMOP1 10 1.6756e+0 (1.13e–1) – 1.4891e+0 (6.49e–2) – 1.3700e+0 (2.57e–1)

30 1.3630e+0 (2.09e–1) – 6.5839e–1 (4.37e–2) – 5.6764e–1 (2.77e–2)

50 3.1239e+0 (4.29e–1) – 1.3927e+0 (8.89e–2) – 1.1716e+0 (2.72e–2)

100 7.1544e+0 (6.94e–1) – 3.0502e+0 (1.20e–1) – 2.6010e+0 (4.95e–2)

300 2.0307e+1 (7.52e–1) – 8.9744e+0 (3.17e–1) – 8.4156e+0 (2.77e–1)

500 3.2891e+1 (1.40e+0) – 1.3682e+1 (3.54e–1) = 1.3755e+1 (1.06e–1)

1000 1.1773e+2 (4.11e+0) – 5.1296e+1 (3.72e+0) = 5.2163e+1 (2.80e+0)

LSMOP5 10 1.7186e+0 (5.08e–2) – 1.3452e+0 (7.12e–2) = 1.3478e+0 (3.57e–2)

30 1.5262e+0 (1.48e–1) – 6.9653e–1 (5.28e–2) – 6.3113e–1 (2.35e–2)

50 3.1625e+0 (2.69e–1) – 1.4638e+0 (8.09e–2) – 1.2823e+0 (3.32e–2)

100 7.0126e+0 (2.71e–1) – 3.4452e+0 (1.50e–1) – 2.8021e+0 (4.37e–2)

300 2.0736e+1 (4.92e–1) – 1.0508e+1 (6.20e–1) – 8.4338e+0 (7.92e–2)

500 3.4321e+1 (6.17e–1) – 1.7277e+1 (1.20e+0) – 1.5228e+1 (4.31e–1)

1000 1.2604e+2 (5.53e+0) – 5.9962e+1 (2.31e+0) – 5.1496e+1 (5.08e–1)

LSMOP9 10 1.1714e+0 (6.09e–2) + 1.2573e+0 (6.23e–2) = 1.2950e+0 (9.69e–2)

30 1.5531e+0 (6.53e–2) – 1.2077e+0 (6.33e–2) – 6.6127e–1 (8.41e–2)

50 3.2256e+0 (1.28e–1) – 2.4059e+0 (1.95e–1) – 1.2758e+0 (4.76e–2)

100 6.9683e+0 (1.72e–1) – 3.3972e+0 (1.04e+0) – 2.8765e+0 (6.90e–2)

300 1.9441e+1 (5.01e–1) – 5.2587e+0 (4.74e–1) + 8.5197e+0 (8.48e–2)

500 3.2716e+1 (5.57e–1) – 8.4073e+0 (1.95e–1) + 1.4727e+1 (1.06e–1)

1000 1.1948e+2 (1.71e+0) – 3.0912e+1 (7.62e–1) + 5.1153e+1 (3.33e–1)

+/–/= 1/20/0 3/14/4

The bold numbers indicate that one method (column table header) perform best among all referential methods on one test
problem (row table header)

Table 7 IGD value for scaling
the number of decision variables
(2 objectives)

Pro. n SparseEA LSMOF DNSGA

LSMOP1 10 – – –

30 5.0793e–1 (1.93e–1) – 3.2681e–1 (2.22e–2) = 3.1610e–1 (6.66e–2)

50 6.2709e–1 (1.63e–1) – 3.7718e–1 (3.62e-2) = 3.7305e–1 (8.21e–2)

100 6.3945e–1 (1.51e–1) – 4.9600e–1 (5.52e–2) = 5.0090e–1 (1.08e–1)

300 6.7988e–1 (1.04e–1) + 5.9195e–1 (3.99e–2) + 1.0629e+0 (1.63e–1)

500 6.8761e–1 (7.95e–2) + 6.0422e–1 (2.80e–2) + 1.8285e+0 (2.87e–1)

1000 6.2940e–1 (1.57e–1) + 6.2921e–1 (1.82e–2) + 2.5851e+0 (2.15e–1)

LSMOP5 10 – – –

30 2.3685e–1 (6.47e–2) = 2.2017e–1 (4.31e–2) = 2.0672e–1 (3.49e–2)

50 2.9452e–1 (2.62e–2) = 2.2484e–1 (2.32e–2) + 2.9841e–1 (2.76e–2)

100 2.3733e–1 (6.28e–3) – 1.6264e–1 (7.73e–3) + 2.3089e–1 (7.32e–3)

300 1.2592e–1 (3.70e–3) – 7.4986e–2 (1.64e–3) + 1.2223e–1 (2.66e–3)

500 9.5754e–2 (1.23e–3) – 5.1547e–2 (1.01e–3) + 9.3354e–2 (2.05e–3)

1000 5.6494e–2 (7.98e–4) + 3.5781e–2 (1.58e–3) + 5.9110e–2 (6.76e–4)

LSMOP9 10 – – –

30 8.1004e–1 (3.39e–16) + 8.1069e–1 (5.62e–4) + 2.3030e+0 (7.65e–1)

50 8.1004e–1 (3.39e–16) + 8.1004e–1 (3.39e–16) + 1.8156e+0 (5.52e–1)

100 8.1004e–1 (3.39e–16) + 8.1004e–1 (3.39e–16) + 1.9278e+0 (3.20e–1)

300 8.1004e–1 (3.39e–16) + 8.1004e–1 (3.39e–16) + 1.4746e+0 (1.90e–2)

500 8.1004e–1 (3.39e–16) + 8.0953e–1 (6.62e–4) + 1.2331e+0 (8.49e–3)

1000 8.1004e–1 (3.39e–16) + 8.0736e–1 (1.28e–3) + 1.0204e+0 (3.75e–3)

+/-/= 10/6/2 14/0/4

The bold numbers indicate that one method (column table header) perform best among all referential methods
on one test problem (row table header)

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 745

Table 8 CPU time for scaling the
number of decision variables (3
objectives)

Pro. n SparseEA LSMOF DNSGA

LSMOP2 10 1.1971e+0 (4.30e–2) + 3.5560e+1 (1.03e+0) – 1.3906e+0 (3.96e–2)

30 1.3138e+0 (5.05e–2) – 2.0486e+0 (1.94e–1) – 6.4753e–1 (2.37e–2)

50 2.9326e+0 (7.24e–2) – 5.9248e+0 (2.53e–1) – 1.3618e+0 (3.70e–2)

100 6.8740e+0 (1.03e–1) – 1.5550e+1 (3.64e–1) – 2.9988e+0 (5.07e–2)

300 1.9992e+1 (2.69e–1) – 4.0133e+1 (6.56e–1) – 9.3960e+0 (2.88e–1)

500 3.3210e+1 (3.77e–1) – 5.9893e+1 (1.20e+0) – 1.5660e+1 (1.63e–1)

1000 1.1838e+2 (1.01e+0) – 1.7627e+2 (2.10e+0) – 5.3182e+1 (2.62e–1)

LSMOP6 10 1.3651e+0 (5.26e–2) + 3.6867e+1 (8.88e–1) – 1.5633e+0 (3.87e–2)

30 1.3643e+0 (5.54e–2) – 2.1508e+0 (8.22e–2) - 7.1495e–1 (1.90e–2)

50 2.7061e+0 (1.25e–1) – 3.2657e+0 (1.70e–1) – 1.5332e+0 (3.53e–2)

100 6.0081e+0 (1.76e–1) – 6.8277e+0 (6.44e–1) – 3.3545e+0 (4.84e–2)

300 1.8781e+1 (3.89e–1) – 1.3478e+1 (7.01e–1) – 9.6922e+0 (8.30e–2)

500 3.1980e+1 (7.24e–1) – 2.0348e+1 (6.81e–1) – 1.6426e+1 (8.75e–2)

1000 1.1935e+2 (1.01e+0) – 6.2599e+1 (2.15e+0) – 5.5697e+1 (2.52e–1)

LSMOP9 10 1.1299e+0 (4.82e–2) + 7.6870e+0 (1.27e+0) – 1.3464e+0 (4.91e–2)

30 1.2272e+0 (4.47e–2) – 5.3878e+0 (3.70e–1) – 6.7267e–1 (1.83e–2)

50 2.5041e+0 (5.21e–2) – 1.4876e+1 (1.34e+0) – 1.3816e+0 (3.96e–2)

100 5.5634e+0 (1.12e–1) – 1.6984e+1 (1.03e+1) – 3.0713e+0 (6.39e–2)

300 1.7522e+1 (1.53e–1) – 8.0936e+0 (2.01e+0) + 9.9385e+0 (8.66e–1)

500 2.9876e+1 (5.23e–1) – 1.2140e+1 (7.50e–1) + 1.6102e+1 (4.65e–1)

1000 1.1291e+2 (6.44e–1) – 3.7536e+1 (1.10e+0) + 5.4566e+1 (3.29e–1)

+/-/= 3/18/0 3/18/0

The bold numbers indicate that one method (column table header) perform best among all referential methods on one test
problem (row table header)

Table 9 IGD value for scaling
the number of decision variables
(3 objectives)

Pro. n SparseEA LSMOF DNSGA

LSMOP2 10 – – –

30 2.6467e–1 (1.28e–2) – 2.8086e–1 (1.62e–2) – 2.4747e–1 (1.32e–2)

50 2.7427e–1 (1.30e–2) – 2.7517e–1 (1.64e–2) – 2.6095e–1 (1.32e–2)

100 2.1629e–1 (9.56e–3) – 2.3041e–1 (3.75e–3) – 2.0319e–1 (4.24e–3)

300 1.1165e–1 (4.09e–3) – 1.1495e–1 (4.12e–3) – 1.0554e–1 (3.51e–3)

500 8.6117e–2 (4.06e–3) – 8.9909e–2 (5.31e–3) – 8.3681e–2 (4.01e–3)

1000 6.8583e–2 (4.05e–3) = 7.3931e–2 (3.98e–3) – 6.7881e–2 (3.40e–3)

LSMOP6 10 – – –

30 2.3194e-1 (1.35e–1) + 2.9160e–1 (4.61e–2) = 2.8342e–1 (2.56e–2)

50 1.0317e+0 (1.60e–1) + 6.2895e–1 (2.62e–2) + 1.3517e+0 (3.97e–1)

100 1.2679e+0 (1.37e–1) + 6.4945e–1 (1.73e–2) + 4.4071e+0 (5.91e+0)

300 1.5235e+0 (1.45e–1) + 7.2615e–1 (2.51e–2) + 9.2594e+1 (1.46e+2)

500 1.5157e+0 (1.39e–1) + 7.2690e–1 (1.58e–2) + 1.4445e+3 (7.52e+2)

1000 1.6073e+0 (1.25e–1) + 7.4857e–1 (3.04e–2) + 5.7988e+3 (1.18e+3)

LSMOP9 10 – – –

30 1.5368e+0 (2.52e–3) + 1.0931e+0 (1.70e–1) + 4.6722e+0 (1.94e+0)

50 1.5379e+0 (8.92e–5) + 1.4455e+0 (1.69e–1) + 3.8189e+0 (1.45e+0)

100 1.5379e+0 (1.81e–5) + 1.5379e+0 (6.78e–16)+ 4.6685e+0 (5.89e–1)

300 1.5379e+0 (3.69e–6) + 1.5379e+0 (6.78e–16)+ 3.0360e+0 (2.67e–1)

500 1.5375e+0 (1.55e–3) + 1.5117e+0 (9.97e–2) + 3.4895e+0 (3.94e–1)

1000 1.5377e+0 (7.76e–4) + 1.2736e+0 (1.85e–1) + 5.4596e+0 (1.21e+0)

+/-/= 12/5/1 11/6/1

The bold numbers indicate that one method (column table header) perform best among all referential methods
on one test problem (row table header)

123

746 Q. Long et al.

Fig. 7 CPU time and IGD value for scaling decision variables

research is to extend the proposed method to large-scale
multi-objective optimization problems.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (Grants No. 11871128) and the Open
Project Funded by the Chongqing Key Lab on IFBDA, School of Math-
ematical Sciences,Chongqing Normal University, Chongqing China
(Grants No. CSSXKFKTZ201804). The authors of this paper would
like to thank editors and reviews for their constructive comments and
suggestions.

Declarations

Author contributions All authors contributed to the study conception
and design. Material preparation and data collection were performed by
QL and GL. The analysis and code were done by QL. The first draft of
the manuscript was written by LJ and then polished by QL and GL. All
authors read and approved the final manuscript.

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

Cheng R, Jin Y, Olhofer M et al (2016) Test problems for large-
scalemultiobjective andmany-objective optimization. IEEETrans
Cybern 47(12):4108–4121

Deb K (1999) Multi-objective genetic algorithms: problem difficulties
and construction of test problems. Evol Comput 7(3):205–230

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems
for evolutionary multiobjective optimization. In: Abraham A, Jain
L, Goldberg R (eds) Advanced Information and knowledge pro-
cessing. Springer, London

Deb K, Sindhya K, Okabe T (2007) Self-adaptive simulated binary
crossover for real-parameter optimization. In: Proceedings of the
9th annual conference on genetic and evolutionary computation,
pp 1187–1194

Deep K, Thakur M (2007) A new mutation operator for real coded
genetic algorithms. Appl Math Comput 193(1):211–230

Du Y, Xie L, Liu J, Wang Y, Xu Y, Wang S (2014) Multi-objective
optimization of reverse osmosis networks by lexicographic opti-
mization and augmented epsilon constraint method. Desalination
333(1):66–81

Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E (2019)
Push and pull search for solving constrained multi-objective opti-
mization problems. Swarm Evol Comput 44:665–679

Goldberg, D (1989) Genetic algorithms in search, optimization, and
machine learning. In: NN Schraudolph J, vol 3, No. 1

Guo Y, He J, Xu L, Liu W (2019) A novel multi-objective particle
swarm optimization for comprehensible credit scoring. Soft Com-
put 23(18):9009–9023

Gutjahr WJ, Pichler A (2016) Stochastic multi-objective optimization:
a survey on non-scalarizing methods. Ann Oper Res 236(2):475–
499

Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algo-
rithm. IEEE Trans Evol Comput 3(4):287–297

Hei Y, Zhang C, Song W, Kou Y (2019) Energy and spectral efficiency
tradeoff in massive mimo systems with multi-objective adaptive
genetic algorithm. Soft Comput 23(16):7163–7179

Jiang S, Yang S (2016) Evolutionary dynamic multiobjective optimiza-
tion: benchmarks and algorithm comparisons. IEEE Trans Cbern
47(1):198–211

Li H, Zhang Q, Deng J (2016) Biased multiobjective optimization and
decomposition algorithm. IEEE Trans Cybern 47(1):52–66

Long Q (2014) A constraint handling technique for constrained multi-
objective genetic algorithm. Swarm Evol Comput 15:66–79

Long Q, Wu C, Huang T, Wang X (2015) A genetic algorithm for
unconstrained multi-objective optimization. Swarm Evol Comput
22:1–14

Long Q, Wu X, Wu C (2020) Non-dominated sorting methods for
multi-objective optimization: review and numerical comparison.
J Manag Optim 21(1):34–51

Ma X, Liu F, Qi Y, Wang X, Li L, Jiao L, Yin M, Gong M (2016) A
multiobjective evolutionary algorithm based on decision variable
analyses formultiobjective optimization problemswith large-scale
variables. IEEE Trans Evolut Comput 20(2):275–298

McClymont K, Keedwell E (2012) Deductive sort and climbing sort:
newmethods for non-dominated sorting. Evol Comput 20(1):1–26

Mirjalili S (2019) Evolutionary algorithms and neural networks. In:
Studies in computational intelligence, vol 780, Springer

Mlakar M, Petelin D, Tušar T, Filipič B (2015) Gp-demo: differential
evolution for multiobjective optimization based on gaussian pro-
cess models. Eur J Oper Res 243(2):347–361

123

A novel solver for multi-objective optimization: dynamic non-dominated sorting... 747

Nikhil A, Anil K, Varun B (2017) A new design method for stable
iir filters with nearly linear-phase response based on fractional
derivative and swarm intelligence. IEEETrans Emerg TopComput
Intell 1(6):464–477

Nikhil A, Anil K, Varun B (2018) Design of digital iir filter with low
quantization error using hybrid optimization technique. Soft Com-
put 22:2953–2971

Nikhil A, Anil K, Varun B (2019) A newmethod for designing of stable
digital iir filter using hybrid method. Circuits Syst Signal Process
38:2187–2226

Nikhil A, Anil K, Varun B (2020) Design of infinite impulse response
filter using fractional derivative constraints and hybrid particle
swarm optimization. Circuits Syst Signal Process 39:6162–6190

Passos F,González-Echevarría R, RocaE, Castro-LópezR, Fernández F
(2019)A two-step surrogatemodeling strategy for single-objective
and multi-objective optimization of radiofrequency circuits. Soft
Comput 23(13):4911–4925

Qiu X, Xu JX, Tan KC, Abbass HA (2016) Adaptive cross-generation
differential evolution operators for multiobjective optimization.
IEEE Trans Evol Comput 20(2):232–244

RuizAB, SaboridoR, LuqueM (2015)Apreference-based evolutionary
algorithm for multiobjective optimization: the weighting achieve-
ment scalarizing function genetic algorithm. J Global Optim
62(1):101–129

Srinivas N, Deb K (1994) Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms. Evol Comput 2(3):221–248

TianY,ChengR,ZhangX, JinY (2017) PlatEMO: aMATLABplatform
for evolutionarymulti-objective optimization. IEEEComput Intell
Mag 12(4):73–87

Tian Y, Zhang X, Wang C, Jin Y (2019a) An evolutionary algorithm
for large-scale sparse multiobjective optimization problems. IEEE
Trans Evolut Comput 24(2):380–393

Tian Y, Zheng X, Zhang X, Jin Y (2019b) Efficient large-scale multi-
objective optimization based on a competitive swarm optimizer.
IEEE Transa Cybern 50(8):3696–3708

Wang H, Yao X (2013) Corner sort for pareto-based many-objective
optimization. IEEE Trans Cybern 44(1):92-102

Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T (2016) Localized
weighted sum method for many-objective optimization. IEEE
Trans Evolut Comput 22(1):3–18

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
Yang MD, Lin MD, Lin YH, Tsai KT (2017) Multiobjective opti-

mization design of green building envelope material using a non-
dominated sorting genetic algorithm. Appl Therm Eng 111:1255–
1264

Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm
based on decomposition. IEEETrans Evol Comput 11(6):712–731

Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008)
Multiobjective optimization test instances for the CEC 2009 spe-
cial session and competition. University of Essex, Colchester, UK
and Nanyang technological University, Singapore, special session
on performance assessment of multi-objective optimization algo-
rithms, technical report 264

Zhang X, Tian Y, Cheng R, Jin Y (2014) An efficient approach to non-
dominated sorting for evolutionary multiobjective optimization.
IEEE Trans Evol Comput 19(2):201–213

Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algo-
rithm for many-objective optimization. IEEE Trans Evol Comput
19(6):761–776

Zhang Y, Yang GDGZS, Chen D (2019) A novel cacor-svr multi-
objective optimization approach and its application in aerodynamic
shape optimization of high-speed train. Soft Comput 23(13):5035–
5051

Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multi-
objective evolutionary algorithms: a survey of the state of the art.
Swarm Evol Comput 1(1):32–49

Zhou Y, Chen Z, Zhang J (2017) Ranking vectors by means of the
dominance degree matrix. IEEE Trans Evol Comput 21(1):34–51

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolu-
tionary algorithms: empirical results. Evol Comput 8(2):173–195

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A novel solver for multi-objective optimization: dynamic non-dominated sorting genetic algorithm (DNSGA)
	Abstract
	1 Introduction
	2 Related works
	2.1 Some basic definitions of MOP
	2.2 Existing non-dominated sorting methods
	2.3 Genetic algorithm

	3 Dynamic non-dominated sorting genetic algorithm
	3.1 Dynamic non-dominated sorting
	3.2 Dynamic matrix
	3.3 Dynamic non-dominated sorting genetic algorithm (DNSGA)

	4 Comparison of non-dominated sorting methods
	5 Numerical experiments
	5.1 Test problems
	5.2 Referential algorithms and parameter setting
	5.3 Performance metrics
	5.4 NSGAII with FNS and DNS
	5.5 Compare DNSGA with other MOEAs
	5.6 Scalability with respect to the number of variables

	6 Conclusion
	Acknowledgements
	References

