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Abstract
Sleep is important part for human health and quality of life in the daily routine basis. However, numerous individuals face

sleep problems due to rapid changes occurred in both social and professional lifestyles. These problems can lead to several

neurological and physical disorder diseases, and therefore, decrease their overall life quality. Machine learning methods for

automated sleep stage classification (ASSC) are a fundamental approach to evaluate and treat this public health challenge.

The main objective of this study is to propose a high-effective and high-accuracy based multiple sleep staging classification

model based on single-channel electroencephalogram (EEG) signals using machine learning (ML) model. The proposed

automated sleep staging system followed four basic stages: signal preprocessing, feature extraction and screening, clas-

sification algorithms, and performance evaluation. In this research work, a novel method is applied for signal prepro-

cessing, feature screening and classification models. In signal preprocessing we obtain the wiener filter techniques for

removing the different types of artifacts from input sleep recordings. In feature extraction, we obtain a total of 28 features

based on both time and frequency domain features and non-linear features. The relevant features are screened through

ReliefF weight feature selection algorithm, and eliminating the redundant features using Pearson correlation coefficients.

The important contribution of this research work is establishes two layers an ensembling learning stacking model for

classifying the multiple sleep stages. Three different subgroups of ISRUC-Sleep (SG-I/SG-II/SG-III) subjects sleep

recordings having different health condition obtained for our proposed experimental work. Comparing with the recent

contributions on sleep staging performances using single-channel EEG signals, it has found that our proposed ensemble

learning stacking model was reported excellent in sleep staging classification accuracy performance for five sleep stages

classification task (CT-5). The overall classification accuracy reported as 99.34%, 90.8%, and 98.50% for SG-I, SG-II, and

SG-III dataset, respectively.
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1 Introduction

Each and individual human needs to have proper sleep at

night and it is the basic requirement for the human being

and proper sleep quality plays a direct role in our day-to-

day life. Sometimes its impact is reflected in our physio-

logical activities such as the quality of learning ability,

physical activity, mental ability, and performance of the

overall activities (Aboalayon et al. 2016). In general

complete sleep, duration is covering through sleep stages at

regular interval time and which is related to our brain

neuron system (Chung et al. 2009). With the modern digital

generation, the lifestyle of the human being is complicated

and ultimately it has resulted that millions of people get a

poor quality of sleep during night time. This problem is

seen across the world with all age groups of people, and

this is a global challenge in the health care sector because it

has found from the different research that poor quality of

sleep is the major responsibility of creating critical diseases

such as bruxism (Heyat et al. 2019), insomnia (Lai et al.

2019), narcolepsy (Rahman et al. 2016), obstructive sleep

apnea (Kim et al. 2018) and rapid eye movement behav-

ioral disorder (Siddiqui et al. 2016). Finally, it creates
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damages to various parts of our body such as heart failure,

brain stroke, and several neurological disorders. Normally,

sleep behavior is characterized by changes in activities in

our body such as respiration and heartbeat rate, brain-be-

havior, and muscle movements. Currently, there are two

important sleep standards followed during sleep staging

analysis. According to both standards the whole sleep

stages are divided into three basic categories: (1) wake-

fulness (W), (2) rapid eye movement (REM), (3) non-

REM. The first sleep handbook was edited by

Rechtschaffen and kales (R&K) in 1968 (Rechtschaffen

1968) and under this sleep scoring rule, the NREM sleep

stage is further divided into four sub-sleep stages: S1, S2,

S3, and S4. These sleep standards followed all clinicians

during the analysis of sleep irregularities of the patients,

but in the year 2008, another recognized sleep recom-

mendation was proposed by the American Academy of

Sleep Medicine (AASM) (Iber 2007) and defined a new

sleep handbook through small modification on the R&K

rules. As per AASM rules, the non-rapid eye movement is

further segmented into three sub-sleep stages such as

N-REM1, N-REM2, and N-REM3 (Iber 2007). The sleep

cycle generally repeated at regular intervals of time

between NREM stages to REM stages and each duration of

the sleep cycle is around 90–110 min (Carskadon and

Dement 2017). The quality of sleep ratio is individually

different from person to person according to their age.-

Stage1 of N-REM sleep (N-REM1) is light, where the

subject’s eye movements are slow and the muscle move-

ments slow, in the N-REM2 sleep stage, the eye move-

ments completely stop and the response of the brain

becomes slower. So both N-REM1 and N-REM2 sleep

stages are categorized as light sleep stages. Similarly, the

N-REM3 and N-REM4 are called deep sleep, in which no

eye movements have occurred and some muscle move-

ments are appeared (Nagabushanam et al. 2019). Finally, in

the REM stage, breathing is increased and the physical

movements have been seen rapidly. Sleep staging is nor-

mally examined using polysomnographic (PSG) recordings

from the admitted subject in the clinic.

Basically during the PSG test, different physiological

recordings are collected from the subjects to measure the

sleep quality during nighttime. The major recordings

included during the assessment of sleep quality are elec-

troencephalogram (EEG), electromyogram (EMG), elec-

trooculogram (EOG), and electrocardiogram (ECG)

(Holland et al. 1974). Among these, major researchers the

priority toward an analysis of sleep pattern abnormality

through EEG signal because the EEG signal provides the

information on brain activities and behavior of subjects

during sleep. It can help to characterize the behavior of

whole sleep stages through different frequency ranges of

EEG signal which were segmented into d band (\ 3.5 Hz),

h band (4–7 Hz), a (8–13 Hz), b (14–30 Hz) and c
(30–80 Hz), ultimately it can support during the demon-

stration of the characteristics of different stages of sleep

(Acharya et al. 2015). To correctly predict the sleep

behaviors of the subjects, most of the clinicians used

electroencephalogram, which directly provides information

about brain activities. EEG recordings, its hectic situation

for sleep experts to monitoring within the 30 s framework

and fix the labeling of sleep stages (O’Reilly and Nielsen

2014; Hassan and Bhuiyan 2016a). This approach con-

sumed more time and required more manpower for hours

of sleep recordings. To overcome the difficulty of the

manual approach, nowadays automated sleep scoring sys-

tem is obtained to analyze the recorded EEG signals (Lei

et al. 2018; Sharma et al. 2017; Zhu et al. 2014; Ronzhina

et al. 2012) with subject to treatments various types of

sleep and neurological disorders in real-time diagnosis.

Some of these sleep scoring systems are based on

polysomnographic signals recordings (Sharma et al. 2019a;

Spriggs 2014; Hassan and Bhuiyan 2016b).

1.1 Literature review

The main aims of the literature study are analysis the

existing contributions with subject to different method-

ologies and models used in recent sleep staging studies.

Various computational methodologies were proposed by

researchers to support sleep experts for assisting sleep

staging. Those carried steps were on the information

extraction (Polysomnography channel selection), on the

preprocessing (removing the data artifacts and data nor-

malization), on the feature extraction step (transformation

of linear and nonlinear features), on the feature selection

technique (identifying the most relevant features) and

finally on the classification algorithm. These entire litera-

ture reviews are divided into two sections. In the first

section, we discussed the different types of features

extracted, and in the second part, we briefly discuss the

different classification models used during sleep staging,

which used recently sleep staging studies proposed for

characterization the sleep-related abnormalities under sleep

standards recommended by R&K and AASM manuals.

Here we have presented some comparative studies

regarding sleep staging.
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Different Signal segmentation and feature extraction

techniques used during Sleep staging

Zhu et al. (2014) proposed graph-based features for the

analysis of the sleep patterns from EEG signals. The

required sleep recordings were obtained from eight sub-

jects having 14,963 epochs and the proposed SVM model

achieved 87.5% classification accuracy.

Hassan and Bhuiyan (2016b) obtained wavelet trans-

form concepts for decomposing the signal into different

signal sub-bands using tunable Q-factor and extracted the

spectral features. The entire experimental work conducted

using 15,188 epochs from 28 subjects.

In Hassan and Bhuiyan (2016a), the author has intro-

duced an empirical mode of decomposition for signal

decomposition and extracted high order statistical features

for sleep staging analysis.

Sharma et al. (2019a) used wavelet function and IIR

filters for signal segmentation and artifact removals. To

analysis, the sleep patterns of the subjects, three different

categories of features were extracted such as time and

frequency domain features and non-linear features.

Sharma et al. (2017) introduced the iterative filtering

techniques for EEG signal segmentation. The obtained

amplitude and frequency modulated components from

iterative filtering decomposition used to extract the higher-

order statistical features for discriminating the sleep

characteristics.

Şen et al. (2014) proposed discrete wavelet transform

techniques for signal enhancement and extracted four dif-

ferent categories of features such as time, nonlinear, fre-

quency, and entropy-based features. The entire study was

executed from 5160 epochs of 30 s length.

Memar and Faradji (2018) extracted the time-domain,

non-linear, and entropy features from eight EEG signal

sub-bands such as alpha, delta, theta, gamma, beta1, beta2,

gamma1, and gamma2. The total study was conducted with

142,391 epochs of three different sleep datasets.

Tian et al. (2017) extracted multi-scale entropy proper-

ties from EEG signal for characterizing the signal in mul-

tiple temporal scales manner. The study was implemented

with total epochs of 18,248 of 30 s length from 10 sleep

disordered and 10 healthy subjects.

Alickovic and Subasi (2018) used multi-scale principal

component analysis and the informative features are

extracted from signal sub-bands using discrete wavelet

transform techniques. Twenty subjects participated in this

ensembling sleep staging analysis.

Different classification models obtained during sleep

staging

Obayya and Abou-Chadi (2014) considered single-

channel EEG signal as input to identifying sleep disorders

and selected subjects for this experiment work limited

between 35 and 50. Here authors have obtained wavelet

concept techniques for feature extraction and classified the

selected features using the fuzzy algorithm. The classifi-

cation model provided 85% accuracy.

Zhu et al. (2014) introduced sleep analysis through

horizontal and difference visibility graphs from input sig-

nals and finally, extracted properties from the input signals

are forwarded to SVM classifiers for classifying multiple

stages of sleep stages and their final accuracy was 87.50%

for two-state sleep stage classification problems.

Diykh et al. (2016) introduced the concept of structural

graph similarity and the experimental work completely

based on EEG signals. The model obtained a classification

accuracy of 95.93% using the SVM classifier.

Sriraam et al. (2016) obtained multiple-channel of EEG

signals from ten healthy subjects. The extracted features

processed through a multilayer perceptron feedforward

neural network and the overall accuracy with 20 hidden

units were reported as 92.9% and subsequently for

40,60,80 and 100 hidden units in MLP, it was reported as

94.6,97.2,98.8, and 99.2, respectively.

Silveira et al. (2016) used Discrete Wavelet Transform

(DWT) for signal segmentation. The extracted features

were applied to a random forest classifier and overall

accuracy was reported as 90%.

In Hassan and Subasi (2017) the author obtained the

bootstrap aggregating concept for classifying the sleep

stages. The proposed model obtained two public sleep

datasets such as the PhysioNet Sleep-EDF dataset and

Dreams Subjects dataset and the model reported accuracy

of 92.43% for two-class sleep stages classification.

Gunnarsdottir et al. (2018) have designed an automated

sleep stage scoring system with overnight PSG data and the

extracted properties were classified through DT classifiers.

The overall accuracy for test set data was reported as

80.70%.

Memar and Faradji (2018) considered 25 sleep sus-

pected subjects and 20 healthy subjects for experimental

purposes. The extracted features validated through the

Kruskal–Wallis test and applied random forest classifier

and achieved an overall accuracy of 95.31%.

In Braun et al. (2018) the author proposed a portable and

effective sleep scoring system, in which he has experi-
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mented on the combination of features extracted from EEG

signal and classifiers. He designed the system in such a

manner that, the proposed research achieved the best

classification accuracy by considering fewer frequency

domain features, and the overall accuracy reported as

97.1% for the two-state classification problem.

In Huang et al. (2019), the author considered combinations

ofmulti-variate signals for sleep scoring and extractedmultiple

features from both time and frequency domain features. The

selected features are forwarded into SVM classifier and the

reported accuracy with input single-channel EEG is 92.04%.

1.2 Contribution

It has been observed from the literature review that most of

the researchers focused on accurate identification of dif-

ferent deployed sleep staging algorithms (O’Reilly and

Nielsen 2014; Sharma et al. 2019b; Memar and Faradji

2018; Tian et al. 2017; Huang et al. 2019). The major

influence to achieve high accuracy on sleep staging is

selecting suitable feature parameters. It has been noticed

that many of the papers did not specify this subject in

detail, most of the sleep staging studies are based on signal

characteristics parameters. It has been found that most of

the sleep studies have been executed based on only one

health conditioned subject so that sometimes it has been

seen that the model may not be perfect for different cate-

gories of subjects. All these above-mentioned challenges

we have addressed in our proposed sleep staging study.

In the present research on sleep staging, we propose an

artificial intelligence-based automated sleep staging system

using EEG signals from the subject with different health

conditions subjects. The main important part of this work is

the designed ensemble learning stacking model algorithm for

improvement on the sleep staging classification accuracy for

the five-to-two sleep states classification tasks. The proposed

research completed majorly in five stages such as signal pre-

processing, feature extraction, feature screening, classifica-

tion algorithm, and finally the comparative analysis in

between obtained different categories of subjects. The novelty

of the proposed is the analysis of the sleep behavior of the

subjects through proper feature screening techniques, which

determines the statistically significant difference among the

sleep states. Those features are selected further in the classi-

fication task, which is successfully screened through obtained

feature selection techniques. The most important part of this

research contribution is to propose a new ensembling learning

classification model, called a stackingmodel for sleep staging

analysis. The performance of the proposed methodology

performed well for the multi-class sleep stages classification

task incomparable to the existing sleep studies related to

various performance evaluation metrics.

1.3 Structure of the paper

Section 2 presents briefly the proposed methodology

including experimental data preparation, data preprocess-

ing, feature extraction, and feature screening. In Sect. 3, we

describe the classification algorithms used in this paper for

sleep staging evaluation. Section 4 discusses the obtained

experimental results from the proposed methodology from

three subgroups of subjects’ sleep recordings. In Sect. 5,

we briefly discuss our proposed methodology results,

advantages, and limitations and make a result analysis with

the existing the published methods. Section 6 ends with

concluding remarks with future work descriptions.

2 Materials and methodology

In this part, we presents the complete layout of the pro-

posed multiple sleep staging classification tasks using

ensemble learning stacking model. The main idea of this

research work is to improvement on sleep staging accuracy

with input of suitable screened features for multiple-class

sleep states classification. The complete flowchart of this

proposed methodology is shown in Fig. 1.

The complete and integrated implementation process of

the proposed ensemble learning stacking model (Fig. 1) is

described in Algorithm 1. In this algorithm, we briefly

presents the individual procedure for each experimental

phases such as (1) data prepartion, (2) data pre-processing,

(3) feature extraction, (4) feature selection, and finally (5)

proposed ensemble learning stacking model.
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Algorithm 1: Ensemble learning Stacking Model Algorithm

Input: Three independent subgroups of sleep dataset are considered for input from a ISRUC-Sleep dataset
Output: Final predictions from the meta-layer of stacking model
# Data Preparation
Input: Raw Sleep_Dataset
Output: Prepared Sleep_Dataset

// Split Sleep dataset according to the different session recordings
Procedure Split_Dataset (Sleep_Dataset)

For each Samples in Sleep_Dataset do
IF (Subject condition=sleep disorder and session recordings=one)

Create file called as SG-1
End IF
IF (Subject condition=sleep disorder and session recordings=two)

Create file called as SG-2
End IF
IF (Subject condition=Healthy controlled and session_recordings=one)

Create file called as SG-3
End IF

End For
// Treatment of different missing session recordings
For each row in Prepared Sleep_Dataset

For each column in Prepared Sleep_Dataset
If column value=NAN

Delete the row and its corresponding column
End if

End for
End for
Return (Prepared Sleep_Dataset)

End Procedure
#Data Pre-processing
Input: Raw Sleep recordings from different medical conditioned sleep disordered and healthy subjects from the 
different subgroups of the sleep dataset
Output: Filtered Sleep_Recordings
Initialization: FS: Sampling frequency, NE: Number of epochs, SE: Samples per epoch, SL: Study length, 
FD=Filtered data, SS=Sleep stages, CE=Current epoch
Procedure Preprocessing (Prepared Sleep_Dataset)

For all the subjects from the Prepared Sleep_Dataset do
Extract the C3-A2 of EEG signal
FD=wiener filter (EEGC3-A2@0.3-35Hz)
SS=Sleep experts scores
NE=SL (secs) 30 seconds/epoch
SE=FS 30

For i=1 to NE do
Get CE using SE and i
[EEGC3-A2, SS]=FD (CE)

End For
End For

Return (FD)
End Procedure

#Feature Extraction
Input: Filtered data
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2.1 Experimental data

In this study, the authors use three categories of subjects

with different medical conditions. The recorded data were

collected from the ISRUS-Sleep dataset, which was

specifically for sleep studies. The data collection has been

done at the Sleep Medicine Centre of the Hospital of

Coimbra University (CHUC) (Khalighi et al. 2016). The

first subsection includes 100 subjects, the second subsec-

tion includes 8 subjects, and finally, the third subsection

includes information from 10 healthy subjects’ sleep

recordings. The data acquisition process is conducted in an

8–9 h full night PSG test at healthcare facilities. Signals

are sampled at 200 Hz, and each epoch length is considered

a timeframe of 30 s according to the AASM standard.

In this study, the authors used the C3–A2 channel for

computing sleep stage classification. We considered 4

subjects one session sleep recordings from subgroup-I

(SG1), 4 subject’s two-session recordings from subgroup-II

(SG2), and 4 subjects from subgroup-III (SG3) with one

session recordings. The SG1 (Subgroup-I) consists of 3000

epochs, while SG2 (Subgroup-II) contained 6000 epochs,

and finally SG3 (Subgroup-III) consists of 3000 epoch and

each epochs size is 30 s length. The entire sleep staging

process was executed with all these epochs according to

AASM standards. The numbers of epochs distributed
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among into the different sleep stages are presented in

Table 1.

2.2 Signal preprocessing

This process starts with the segmentation of the raw signal

from the three different medical conditioned subjects from

the ISRUC-Sleep dataset. Each epoch of length is the 30 s

and each 30 s epochs contains 6000 sample points, as the

sampling frequency is 200 Hz. As we have already dis-

cussed that sleep recordings are highly complicated and

random, sometimes it has found that some of the irrelevant

signal information is overlapped with the brain EEG sig-

nals. Majorly, the artifacts like eye blinks and muscle

Fig. 1 Proposed flowchart of multiple sleep staging classification tasks using ensemble learning stacking model
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movements signals are composition within the originally

recorded signals. These contaminated signals give inaccu-

rate analysis toward sleep staging classifications. To

remove these artifacts from the original sleep recorded

signals, we have proposed wiener filter techniques

(Borowicz 2017). It is one of the parametric techniques,

which supports removing the unwanted forms of noises

from the original brain EEG signal. This filter mechanism

is completely based on statical approaches, and it mini-

mizes the mean square error between the estimated

recording signals and the desired signals.

2.3 Feature extraction

It is one of the important step during the automated sleep

staging analysis based on the EEG signals because the

recorded signals are the compositions of various signal sub-

bands. To analysis the changes sleep behavior from each

sub-bands, extracting the features has been the best way

toward recognizing the changes sleep characteristics over

the individual sleep stages. The extracted signal properties

may easier during discrimination the sleep patterns and

alternatively it also put impacts upon the sleep staging

classification performances. In the recent research progress,

most of the contributions majorly focused on the three

different categories of feature for signal analysis such as

time domain, frequency domain, and nonlinear features

(Yasoda et al. 2020; Ahmad et al. 2018; Gupta et al. 2015;

Al Ghayab et al. 2019; Al-Janabi et al. 2019; Souri et al.

2020; Schetinin and Schult 2006). In this work, we obtain

both time and frequency domain features. In this work, we

obtain both time and frequency domain features. The time-

domain analysis helps to retrieve information of fluctuating

sequences of the signal and detects the epileptiform dis-

charges. It’s very important for extracting the frequency

domain features for sleep scoring to discriminate the sleep

characteristics related to the individual sleep stages from

EEG signal because it provides the changes of delta (d)
rhythm, theta (h) alpha (a) rhythm, sigma (r) rhythm, and

beta (b) rhythm patterns in the EEG signals in a different

frequency ranges. In this proposed research work, we

extracted 28 features which include (1) 13 time-domain

based features, (2) 15 frequency domain based features.

The extracted different features in this proposed study and

their descriptions are summarized in Table 2, was per-

formed an epochs of 30-s length of the filtered EEG

signals.

After extraction of features from respective input

channels, we have applied normalization techniques before

being obtained to feature selection techniques, and here we

use to zero mean and unit variance, and a normalized

feature vector is generated. Generally, it supports to

increase the performance of the system.

2.4 Feature screening algorithms

Next to feature extraction, it is also important to select the

suitable features because it has found that sometimes all the

extracted features may not be relevant for all the subject

cases and alternatively it directly also affects the perfor-

mance of the classification models. The main intention

behind considering the feature screening is to find out the

most commendable features which help to discriminate the

changes in sleep characteristics in the different sleep

stages. Here we obtained the ReliefF feature selection

algorithm for identifying the relevant features. It is one of

the individual feature filtering selection methods, in which

the quality and relevance of the features to be measured

(Robnik-Šikonja and Kononenko 2003). The essential

concept behind this algorithm is to select highly com-

mendable features which help to discriminate the sleep

behavior of the subject. As an output, this algorithm

assigned a weight to individual input features according to

their relevance. It determines how far the features are most

discriminate to different instances amounts to different

sleep stages. It generates a weight for each feature which is

in the ranges from - 1(worst) to ? 1(best) score. The

larger the weight of the feature, the higher the association

between the features and sleep stages. The main advantage

of this algorithm is well managed with noisy and unknown

data.

2.5 Proposed ensemble stacking model

Ensemble techniques are one of the ML approaches for

improving the model by combining several models (He

Table 1 Number of 30 s epochs

from each sleep stage of

ISRUC-sleep dataset records

Sleep stages No. of SG1 epochs No. of SG2 epochs No. of SG3 epochs

Wake 657 1305 648

N1 471 1122 349

N2 1064 1710 942

N3 485 1038 674

REM 323 825 387

Total 3000 6000 3000
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Table 2 Short explanation of the extracted features for this proposed study

Time-domain based features

Feature No. Extracted feature equation Feature descriptions

1
Mean xð Þ ¼ 1

N

PN

i¼1

xi

with N = the length of the data sample x and x is

the mean of the data sample

The mean electrical potential of an epoch is calculated. It also measures the

central tendency in the data points

2 Maximum ¼ Max xi½ � It is used to quantify the range of data and it helps to find the magnitude of

signal baseline

3 Minimum ¼ min xi½ �
4

Variance Varð Þ ¼
PN

i¼1
xi�xð Þ2

N�1

It helps to determine how the data is dispersion with respect to the value of

the mean

5 Standrad deviation SDð Þ

¼ 1

N � 1

XN

i¼1

xi �xð Þ2
 !2

It is used to calculate the quantity of variation and dispersion of the data

6 Median ¼ Nþ1
2

� �th It helps to get the information about the center and spread of the signal data

7 75th percentile 75thP
� �

¼ Max xið Þ\P 75f g
xi is the signal data

p 75f g = the 75th percentile of the signal data

The percentile analysis provides amplitude information of the signal, which

helps to discriminating the sleep stages. It defines the value below which

75% of the random variables values data is located

8
Signal Skewness skewð Þ ¼

PN

i¼1

E xi�xð Þ3ð Þ
r3 ;

where N is the length of the signal data xi

r is the standard deviation of the sample data for

all i

E is the expected mean value

E xð Þ ¼
PN

i¼1

pixi

pi presents the probabilities with associated to the

signal data xi

The skewness helps to measure the symmetry of the signals distribution

with respect to the mean value. The normal distribution of the signal is

zero, while the positive and negative skewness indicates that the data are

skewed in to the right and left hand sides. It is a higher-order statistic

measure (third moment)

9
Signal kurtosis kurtð Þ ¼

PN

i¼1

E xi�xð Þ4ð Þ
r4 ;

where

r denotes as standard deviation of the sample data

for all i,and E is the expected mean value

It measures whether the data is peaked or flat relative to the normal

distribution. It is a higher-order statistic measure (fourth moment)

10 Signal Activity ¼ Var xið Þ Among the time-domain features, Hjorth parameters (Activity, Mobility,

and Complexity) are more popular for interpreting the EEG signals, which

directly helps during the sleep stages classification. It provides the

dynamic temporal information of the polysomnography signals. These

parameters are computed based on the variance of the derivatives of the

signal data

11
Signal Mobility ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x0i
� �

=Var xið Þ
q

12

Signal Complexity

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var x00ið ÞXVar xið Þ=Var x0ið Þ2
q
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et al. 2019). The main advantage of this work is to reduce

the variance and bias factor with the proposed stacking

algorithm. It helps to increase the accuracy of the model

and reduce the variability of the prediction. The proposed

ensemble learning stacking model, which is in form of two-

layer architecture. The first layer data and model to be

treated as base-layer data and models, respectively, simi-

larly, the second layer cross-validated data and models to

be considered as meta-layer data and model, respectively.

It adopts the parallel structure since the base-layer models

are trained independently from each other. The base-layer

predictions become input for the meta-layer, and finally,

the meta classifier delivers the final predictions.

The most important advantage of the proposed model

can analyze the complex sleep patterns in the meta-layer

incomparable to the other parallel ensemble learning

approaches. Additionally meta-layer also helps to recog-

nize the consistently mis-predicts samples from the feature

space of the base-layer classifiers due to incorrect learning

and select the suitable base-layer models which are more

suitable for that specific feature space. The same problems

may not possible using bagging and boosting techniques. In

this proposed stacking algorithm, we also use the cross-

validation techniques for preventing the information leak-

age from the base-layer models to the meta-layer model.

3 Experimental results

The entire experiment of this research work is coded and

implemented carried using the MATLAB R2017a software

for signal preprocessing, feature extraction, and feature

screening and also we obtained the Scikit-machine learning

tool for XGBoost and mlxtend library for stacking algo-

rithms [97] in Python running on a personal laptop with an

Intel CoreTM i3-4005U CPU 1.70 GHz, 2 core(s), 4 logical

processors, 4 GB RAM and Windows 10 operating system.

To evaluate the performance of the proposed method, a set

of experiments were conducted using subjects with three

different categories of medical conditions. The first

experiment was conducted with the subject who was

affected with different types of sleep problems and their

one-session recordings considered the experiment, the

second experiment carried with subjects having sleep

problems and includes two different session recordings,

which were recorded on two different dates. Finally, the

third experiment was conducted with subjects who were

completely healthy and no prior types of diseases related to

sleep. In this research work, we have only considered

single-channel of EEG signal as C3–A2 for extracting the

sleep behavior of the subjects, according to recent sleep

staging, it has found that the C3–A2 channel is most

effective in analyzing the brain behavior for sleep studies

in terms of classification accuracy performances because it

provides central part of the brain information with related

to analysis the brain-behavior during sleep (O’Reilly and

Nielsen 2014; Hassan and Bhuiyan 2016a, b; Lei et al.

Table 2 (continued)

Time-domain based features

Feature No. Extracted feature equation Feature descriptions

13 Zerocrossing Rate ZCð Þ

¼
XN

i¼1

ZC0 ið Þ

ZC0 ið Þ ¼
1; x ið Þ� 0 \ x iþ 1ð Þ
1; x ið Þ� 0 \ x iþ 1ð Þ
0; otherwise

2

4

3

5

It provides information with regards to the number of instances where the

EEG signal crosses the references line

Frequency domain-based features

14, 15, 16, 17 Relative Spectral ower d; h; a; bð Þ

¼
r
f0
�f1 xi fð Þdf þ r

f1
f0 xi fð Þdf

r
1
�1 xi fð Þdf

It is one of the popular parameter among in the frequency domain features,

which helps to compute the changes behavior in the different stages of the

signal waveform from d; h; a; and b frequency sub-bands

18, 19, 20,

21, 22, 23,

24

Power Ratio d; h; a;bð Þ It is used for computing the power from the current and background of the

epochs with the different frequency ranges for interpreting the behavior of

the sleep stages

25, 26, 27, 28 Power spectrum a; b; h; dð Þ

¼
XN

i¼1

xi

It helps to retrieve the information on how the intensity of a time-series

signal data is distributed in the frequency domain

15454 S. K. Satapathy, D. Loganathan

123



2018; Sharma et al. 2017, 2019a, b; Zhu et al. 2014;

Ronzhina et al. 2012; Spriggs 2014; Şen et al. 2014;

Memar and Faradji 2018; Tian et al. 2017; Alickovic and

Subasi 2018). Hence, we have used the C3–A2 channel of

EEG signal recordings for sleep staging for all the three

categories of subject data in our proposed work.

In this research work, we have conducted four individual

experiments for sleep staging. The first three experiments

were conducted with three different subgroups subjects’

sleep recordings with help of base layers classification

algorithms such as SVM, DT, KNN, and RF. The final

experiment was our proposed ensemble learning stacking

model, where we used another layer for learning the model,

called as meta classification layer. We used the

XGBoosting algorithm in the Meta classifier layer, which

considered input as base layers predictions and made final

decisions on sleep scoring. In the proposed sleep study, we

conducted multi-class sleep stages classification: CT-2

(Wake vs. Sleep), CT-3 (Wake vs. NREM vs. REM), CT-4

(Wake vs. N1 ? N2 vs. N3 vs. REM) and CT-5 (Wake vs.

N1 vs. N2 vs. N3 vs. REM).

3.1 System performance evaluation metrics

The proposed study provides an in-depth analysis based on

a comparative analysis of multiple different subjects with

different session recordings obtained for sleep stage scor-

ing analysis. For that reason, the authors have used mul-

tiple evaluation metrics to analyze the performance of the

proposed sleep stage classification method.

This study considers four criteria such as the classifi-

cation accuracy (Raza et al. 2016), recall (Bajaj and

Pachori 2013), specificity (Hsu et al. 2013), precision

(Zibrandtsen et al. 2016), F1Score (Berry et al. 2014), and

kappa score (Statistic and in Reliability Studies: Use,

Interpretation, and Sample Size Requirements 2005).The

confusion matrix is used to evaluate the results obtained

from classification algorithms. The authors have analyzed

the information about the actual and predict score achieved

by the algorithms used.

3.2 Performance of sleep staging using
Subgroup-I (SG-I) dataset

In this experiment, we considered with single-channel C3–

A2 of EEG signal recordings of four sleep-disordered

subjects. All four subjects have diagnosis with sleep syn-

drome disease along some of them also suffered from

insomnia and other types of sleep problems. The selected

features are forwarded into the obtained four base layers

classifiers such as SVM, DT, KNN, and RF for initial

predictions on sleep staging. The classification accuracies

(CAs) achieved for the two-five sleep states from base

classifiers are observed. Table 3 presents the summary of

the reported classification accuracy results (CAs in %)

from obtained classifiers.

It has observed from Table 3 that, the highest classifi-

cation accuracy reported for CT-2 (99%), CT-3 (97.97%),

CT-4 (97.77%) and CT-5 (96.33%) through RF classifier,

similarly the lowest accuracy for CT-2 (93.87%), CT-3

(89.27%), CT-4 (85.07%) and CT-5 (84%) noticed from

DT classifier. The highest accuracy reported RF classifier

confusion matrix results for CT-5 is presented in Table 4.

3.3 Performance of sleep staging using
Subgroup-II (SG-II) dataset

In this section, we have considered four subjects and their

two different session sleep recordings, which were recor-

ded on two different dates from the enrolled subjects. The

subjects were under-diagnosis of roncopatia disease and

also some of them were affected with various types of sleep

problems. The same channel was used for signal acquisi-

tion and extracted the same features from the processed

EEG signal. The same obtained classification algorithms

used here and the reported classification accuracy perfor-

mance from all the classifiers are shown in Table 5.

From classification performance results, it has been

found that the RF classification model performs well for

two-class to five-class classification tasks. The reported

accuracy for CT-2 (98.62%), CT-3 (90.2%), CT-4

(89.71%) and CT-5 (89.1%). The KNN model achieved

very low accuracy in terms to sleep scoring for CT-2

(90.33%), CT-3 (88.77%), CT-4 (84.54%), and CT-5

(82.15%). The confusion matrix for CT-5 using RF clas-

sifier is presented in Table 6.

3.4 Performance of sleep staging using
Subgroup-III (SG-III) dataset

In this experiment, we have obtained completely four

healthy controlled subjects’ sleep recordings, who have not

affected any types of sleep problems during sleep hours.

Table 3 Summary of the accuracy results for different classifiers with

SG-I dataset

Classifier CT-2 (%) CT-3 (%) CT-4 (%) CT-5 (%)

Quadratic SVM 96.70 92.30 90.10 88.90

Gaussian SVM 97.40 93 91.30 89.80

DT 93.87 89.27 85.07 84.00

KNN 96.02 91 88.90 87.50

RF 99.00 97.97 97.77 96.33
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The performance achieved from base learning classifiers

using the SG-III dataset is presented in Table 7.

It has observed from Table 7 that, the highest classifi-

cation accuracy performance reached with random forest

classification model for CT-2 (99.10%), CT-3 (98.07%),

CT-4 (97.93%), and CT-5 (98.13%). The confusion matrix

for reporting higher accuracy with RF model is presented

in Table 8 with respect to CT-5.

3.5 Performance of sleep staging using
proposed Ensemble stacking algorithm using
subgroup-I/II/III datasets

Finally, we have deployed our proposed ensemble tech-

niques for sleep scoring, using the integration of the base

layers classification model. In this study, we have used four

classification techniques such as SVM, DT, KNN, and RF

for taking the first predictions on sleep scoring. This

computed first layer prediction output is considered as to

the second layer, called as meta classification layer. We

obtained an XGBoosting classification algorithm in the

second layer, which integrates the previous layer’s pre-

dictions and generates the final decisions on sleep staging.

The confusion matrix of this proposed ensemble learning

stacking model using SG-I, SG-II, and SG-III datasets for

five sleep states classification problems are presented in

Tables 9, 10, and 11, respectively. The final classification

performance of this proposed model with input of SG-I,

SG-II, and SG-III datasets are presented in Table 12.

It has found from Table 12 that, the proposed ensemble

learning stacking model performed excellent with related

to five sleep states classification problem in comparable to

base layers classification algorithms such as

SVM,KNN,DT and RF. The proposed stacking model

reported classification accuracy of 99.34%, 96.30%, and

98.50% for SG-I, SG-II, and SG-III datasets, respectively.

3.6 Summary of results

In this paper, we were used three subgroups data of

ISRUC-Sleep for sleep staging. In all the experimental part

conducted for this study using single-channel EEG signal.

The first three experiments conducted based on base layers

learning classification model and the final experiment

executed with the proposed stacking model. Table 13

presents the summary results that was obtained through

different classification models of base layers and ensemble

learning of stacking model with the three different health

categories of subjects sleep recordings using SG-I, SG-II,

and SG-III datasets.

The highest sleep staging was obtained using ensemble

learning stacking model from all the three subgroups

dataset. The highest classification accuracy was reported as

99.34% for five sleep states classification problem with

SG-I dataset.

Table 4 Confusion matrix for CT-5 using Random forest classifier

using SG-I dataset

True/predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 601 21 20 10 5

N1(1) 6 458 4 0 3

N2(2) 7 1 1052 3 1

N3(3) 4 1 7 473 0

REM(5) 0 2 5 1 315

Table 5 Summary of the accuracy results for different classifiers with

SG-II dataset

Classifier CT-2 (%) CT-3 (%) CT-4 (%) CT-5 (%)

Quadratic SVM 98.3 85.7 81.8 80.8

Gaussian SVM 98.6 86.66 83.31 81.27

DT 94.07 87.47 82.08 81.03

KNN 90.33 88.77 84.54 82.15

RF 98.62 90.2 89.71 89.1

Table 6 Confusion matrix for CT-5 using Random forest classifier

using SG-II dataset

True/predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 1256 16 7 11 15

N1(1) 36 997 55 35 63

N2(2) 50 47 1508 40 78

N3(3) 14 35 42 885 7

REM(5) 26 30 40 7 700

Table 7 Summary of the accuracy results for different classifiers with

SG-III dataset

Classifier CT-2 (%) CT-3 (%) CT-4 (%) CT-5 (%)

Quadratic SVM 98.62 95.19 92.69 91.12

Gaussian SVM 98.72 95.49 93.37 90.51

DT 94.47 89.53 83.97 80.02

KNN 87.71 86.64 83.23 80.59

RF 99.10 98.07 97.93 98.13
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4 Discussion

A machine learning (ML) based automated sleep scoring is

suggested for the classification of multiple sleep stages.

Several experiments were executed on three subgroups

datasets to validate the potency of the proposed method-

ology. The proposed sleep staging methodology can auto-

matically learn high level from the single-channel EEG

signal directly.

4.1 Hypothesis and limitations of the proposed
model

The proposed automated sleep staging results indicate that

the ensemble learning stacking model reported improve-

ment in classification accuracy compared to the other

earlier automated sleep staging and other ML methods. In

comparison with the other contributed sleep staging clas-

sification problems, we mainly focus on four things that

help to improve the classification accuracy of sleep staging:

1.preprocessing the signal using wiener filter techniques,

2.feature screening algorithm using ReliefF weight tech-

niques, and 3.ensemble learning classification techniques.

One of the major advantages of this proposed model is

using three different medical conditioned subjects with

their different sleep recordings. One of the other major

focused things in this work was the proper screening of the

features by considering the ReliefF weight algorithm and

eliminating redundant features using Pearson correlation

techniques. In this research work, we have used wiener

filtering techniques which support a lot toward reducing the

artifacts from the input channel. Our proposed methodol-

ogy was executed with 12,000 epochs, each epoch of 30 s

length for two-five sleep stages classification with three

subgroups datasets.

The major difficulty with PSG signal is made the more

uncomfortable situation for subjects during sleep record-

ings due to more connecting electrodes and rigid placement

postures (Al-Janabi et al. 2019). Sometimes this uncom-

fortable scenario and possible body movements during

sleep recordings degrade the quality of input signals.

Finally, we have obtained the ensemble learning model

which combinations of two-layers of classification models,

first layer is considered as the base learning layer, and the

second layer is called a meta-learning layer. The final

decisions to be obtained from the meta-layer classification

model. Even though our proposed framework achieved

very good accuracy incomparable to other state-of-the-art

works. Till, there is more way for us to improve our model

to reach classification accuracy closer to 100% and this

result we can achieve by overcoming the class imbalance

problem. Also, we will use deep learning techniques, in

which automated feature learning helps us to overcome

variations on feature influence problems and supports to

reach the high classification accuracy on sleep staging. The

class imbalance problem solves by implementing data

augmentation concepts using deep learning techniques.

Table 8 Confusion matrix for CT-5 using Random forest classifier

using SG-III dataset

True/Predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 614 0 1 4 0

N1(1) 4 380 4 1 0

N2(2) 3 3 1034 3 3

N3(3) 3 3 8 580 1

REM(5) 1 2 8 4 336

Table 9 Confusion matrix for CT-5 using proposed ensemble learn-

ing stacking model using SG-I dataset

True/Predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 643 1 10 2 1

N1(1) 6 458 4 0 3

N2(2) 7 1 1052 3 1

N3(3) 4 1 7 473 0

REM(5) 0 2 5 1 315

Table 10 Confusion matrix for CT-5 using proposed ensemble

learning stacking model using SG-II dataset

True/Predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 1256 16 7 11 15

N1(1) 36 1062 30 35 23

N2(2) 50 47 1548 40 38

N3(3) 14 35 22 905 7

REM(5) 26 30 40 7 700

Table 11 Confusion matrix for CT-5 using proposed ensemble

learning stacking model using SG-III dataset

True/Predicated Wake (0) N1 (1) N2 (2) N3 (3) REM (5)

Wake(0) 615 0 1 3 0

N1(1) 4 381 3 1 0

N2(2) 3 3 1034 3 3

N3(3) 3 3 3 585 1

REM(5) 1 2 4 4 340
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4.2 Comparisons of the proposed research work
performances with other single-channel
sleep staging classification

The authors have compared the proposed system perfor-

mance with other studies available in state of the art.

Therefore, the authors have selected studies with similar

datasets according to our proposed study and based on a

single channel. In Table 14, the features used in the pro-

posed research work are compared to others used by related

works using single-channel EEG signals of ISRUC-Sleep

dataset. The comparisons with other similar research pro-

posals available in the literature must take into considera-

tion the use of single-channel EEG, different features and

classification models is presented in Table 15.

Tables 14 and 15 present a comparison of the overall

accuracies presented by the proposed methods and the

available studies in the literature. The results reported, but

the authors using the ensemble learning stacking model for

SG-III, SG-II, and SG-I present the highest results when

compared with the other methods available in the literature.

The proposed research work has obtained best accuracy

results for five-sleep (CT-5) classification. We achieved an

overall accuracy of 99.34% with SG-I, 90.8% with sub-

group-II and 98.50% with SG-III subjects through stacking

model. These classification results state that the proposed

research work provides a significant contribution to the

field of automated sleep stage classification and can sup-

port the decision-making by providing an efficient health-

care model to diagnosis the sleep-related diseases.

5 Conclusion and future directions

This paper has presents an ensembling learning stacking

model under AASM sleep scoring rules for two–five sleep

states classification using a single channel EEG signals.

The proposed methodology has been analyzed 12,000

Table 12 Performance of five-

state sleep (CT-5) staging based

on ensemble learning stacking

model with SG-I, SG-II, and

SG-III datasets

Performance metrics SG-I dataset (%) SG-II dataset (%) SG-III dataset (%)

Accuracy 99.34 96.30 98.50

Precision 98.59 90.91 98.43

Sensitivity 97.81 90.97 98.27

F1-Score 98.20 90.91 98.34

Table 13 Summary results of

classification accuracy for

various classification models

and subgroups datasets

Database Classification model Accuracy rates (%)

Five Sleep States (CT-5)

Classification Task

ISRUC-Sleep Subgroup-I Quadratic SVM 88.90%

Gaussian SVM 89.80%

DT 84.00%

KNN 87.50%

RF 96.33%

Stacking Model 99.34%

ISRUC-Sleep Subgroup-II Quadratic SVM 90.8%

Gaussian SVM 91.27%

DT 81.03%

KNN 82.15%

RF 89.1%

Stacking Model 90.8%

ISRUC-Sleep Subgroup-III Quadratic SVM 91.12%

Gaussian SVM 90.51%

DT 80.02%

KNN 80.59%

RF 98.13%

Stacking Model 98.50%
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epochs composed of three different medical conditioned

subject datasets.

There are three main important contributions in this

research study. The first one has obtained wiener filter

techniques for eliminating the various artifacts that exist in

the input signals and followed by we have extracted

numerous features from linear and nonlinear features. This

set of features supports the analysis of sleep EEG param-

eters and their characteristics. It has been observed that

multi-feature extraction improves sleep staging accuracy.

Secondly, the proposed research work obtained feature

screening techniques, which directly useful for identifying

the most relevant features from extracted feature vectors.

Additionally, we also eliminate the redundant features from

selected relevant features using Pearson correlation analy-

sis, which helps us to select the suitable features for clas-

sification tasks. Thirdly, this proposed research work

establishes an ensemble learning model, which integrates

multiple classification models implements in two layers. In

the first base layers, we obtain SVM, DT, KNN, and RF

classifiers, and the second layer contained XGBoosting

techniques. The proposed stacking model reported high

recognition rates for multiple sleep staging classification

tasks.

The results show that this study can provide an effective

mechanism for handling different health conditions of the

subjects with high accuracy. The authors have also com-

pared the proposed research with other similar studies

available in the literature to show better performance and

state the present contribution. Moreover, the proposed

system presents high performance through all the cate-

gories of subjects with different medical conditions.

Finally, this study uses the ISRUC-Sleep three subgroups

dataset, which is a useful information source for a sleep

evaluation.

Furthermore, the authors use shorter epochs lengths (the

20 s, 15 s, 10 s, and 5 s) to the development of a real

automated sleep staging system. Consequently, the authors

aim also to consider a high number of clinical sleep data. In

particular, the future work will include the different sleep

problems patients to evaluate the performance of the pro-

posed method work for higher accuracy using deep learn-

ing techniques.

Table 14 Comparisons of CAs (in %) of our proposed model with other state-art-of the techniques used same features and datasets

Author Features Classifier Classification

accuracy

Khalighi

et al. (2011)

Statistical features, Entropy features, Time and Frequency domain features SVM 95%

Simoes et al.

(2010)

Harmonic and Hjorth parameters, Spectral Power, Skewness, Kurtosis Bayesian Classifier 83%

Khalighi

et al. (2016)

Statistical, Harmonic, Hjorth parameters, Entropy, Spectral power, Percentile

(20,50,75)

SVM 93.97%

Sousa et al.

(2015)

Skewness, kurtosis, Renyi entropy, Tsallis entropy, Shannon entropy, slow-wave

index, autoregressive coef., peak to peak amplitude and Energy, Percent of energy,

mean, standard deviation, relative spectral power, harmonic parameters, Hjorth

parameters, percentile (20,50,75)

SVM 86.75%

Khalighi

et al. (2013)

Time and Frequency domain features SVM 81.74%

Tzimourta

et al. (2018)

Energy Random Forest 75.29%

Najdi et al.

(2017)

Multi-domain features Stacked Sparse Auto-

Encoders (SSAE)

82.3%

Kalbkhani

et al. (2018)

Entropy features SVM 83.33%

Proposed Mean, Minimum, Median, Zero Crossing Rate, Signal Skewness, Signal Activity,

Signal Complexity, Signal Mobility, Maximum, Standard Deviation, Variance, 75

percentile, Signal Kurtosis, Relative Spectral Power, Band power, Power Ratios

Stacking Model (SG-I) 99.34%

Stacking Model (SG-

II)

90.8%

Stacking Model (SG-

III)

98.50%
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