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Abstract
This paper presents a data-driven machine learning approach of support vector regression (SVR) with genetic algorithm

(GA) optimization approach called SVR-GA for predicting the shear strength capacity of medium- to ultra-high strength

concrete beams with longitudinal reinforcement and vertical stirrups. One hundred and forty eight experimental samples

collected with different geometric, material and physical factors from literature were utilized for SVR-GA with fivefold

cross validation. Shear influence factors such as the stirrup spacing, the beam width, the shear span-to-depth ratio, the

effective depth of the beam, the concrete compressive and tensile strength, the longitudinal reinforcement ratio, the product

of stirrup ratio and stirrup yield strength were served as input variables. The simulation results show that SVR-GA model

can achieve highest accuracy in shear strength prediction based on testing set with a coefficient of determination (R2) of

0.9642, root mean squared error of 1.4685 and mean absolute error of 1.0216 superior to that for traditional SVR model

with 0.9379, 2.0375 and 1.4917, which both perform better than multiple linear regression and ACI-318. Furthermore, the

sensitivity analysis reveals the most important variables affecting the result of shear strength prediction are shear span-to-

depth ratio, concrete compressive strength, reinforcement ratio and the product of stirrup ratio and stirrup yield strength.

Three-dimensional input/output maps are employed to reflect the nonlinear variation of the shear strength with the two

coupling variables. All in all, the proposed SVR-GA model can achieve excellent accuracy in prediction the shear strength

of medium- to ultra-high strength concrete beams with stirrups in comparison with results obtained by traditional SVR,

MLP and ACI-318.
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1 Introduction

The shear failure of reinforced concrete beams with stir-

rups is a common concern of structural engineers (Collins

et al. 2008; Sagaseta and Vollum 2011; Słowik 2014).

However, it is difficult to predict the shear failure accu-

rately due to the influence of a large number of parameters,

such as stirrup spacing, width and effective depth of the

beam, shear span-to-depth ratio, stirrup ratio, longitudinal

reinforcement ratio, tensile compressive strength of con-

crete, and stirrup yield strength. This difficulty is particu-

larly evident in ultra-high strength concrete (UHSC) and

ultra-high performance concrete (UHPC) beams (Hossain

et al. 2017).

In order to accurately estimate the shear capacity of

UHPC beams, the shear capacity is artificially divided into

concrete shear capacity and stirrup yield shear capacity. An

additional shear contribution of steel fiber would be added

while adding steel fiber into concrete. Further, an addi-

tional shear contribution of the pin would be superimposed

when taking the pin action of longitudinal reinforcement

into account (Yoo and Yoon 2016; Marı̀ Bernat et al.

2020). However, these factors are not independent of each

other, and there is a coupling effect between them. For

example, the residual tensile stress between cracks will be
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increased by appropriately adding the steel fiber while both

increasing the shear contribution of the fiber and concrete.

A variety of normative formulas or models are proposed

to solve problems in engineering applications. However,

there are great differences in selecting main variables

affecting the shear strength, such as the code of China for

the design of concrete structures (GB 50010-2010, Press

2010) uses the concrete tensile strength to calculate the

shear strength, while the American concrete structure

design code (ACI 318-14, ACI Committee 318 2014)

adopts the concrete compressive strength for that. The

tensile strength and compressive strength of concrete are

both considered by the Chinese highway and bridge code

(JTG 3362–2018, Ministry of Transport of China 2018).

Although there is little difference between UHPC and

normal concrete in the ratio of tensile strength to com-

pressive strength. The addition of steel fibers has greatly

affected the tensile strength of UHPC while almost no

influence on the compressive strength (Hassan et al. 2012;

Krassowska et al. 2019). It is noteworthy that most of the

formulas in the codes have been tested on the limited data

which is just an extension of the existing empirical for-

mulas for the shear strength of medium and high strength

concrete beams, without fully considering and utilizing the

ultra-high mechanical properties of ultra-high strength

concrete.

Traditional models/equations with low accuracy mainly

rely on basic expressions and step-by-step refinement

process, it is urgent to propose more accurate method to

calculate the shear strength of UHPC beams. Recently, the

data-driven machine learning (ML) methods have attracted

extensive attention, because of their inherent ability of

overcoming the shortcomings of traditional algorithms by

relying on manual design features (Liu et al. 2017). Arti-

ficial neural network (Açikgenç et al. 2015; Golafshani

et al. 2015; Hossain et al. 2017), adaptive fuzzy neural

network (Mansouri et al. 2016; Nguyen et al. 2020),

Gaussian process regression (Hoang et al. 2016; Guo and

Hesthaven 2018) and support vector machine (Pal and

Deswal 2011; Farfani et al. 2015) have been widely applied

to model the mechanical properties of concrete structures.

ML model uses samples with input and output for

training models that can be used to predict the output of

new inputs. At present, ML models have been employed to

predict the shear capacity of normal concrete beams or

ultra-high strength concrete beams without stirrups (Solh-

mirzaei et al. 2020; Zhang et al. 2020). However, few

studies were found for applying machine learning approach

to predict the shear capacity of ultra-high strength concrete

beams with stirrups. Support vector machine (SVM) is one

of ML methods based on statistical learning theory of

structural risk minimization. Also known as maximum

interval classifier, it is very popular for solving multi-class

problems by establishing a group of 2-class classifiers or

establishing a multi-class classifier (Teng et al. 2018). It is

called support vector regression (SVR) for solving

regression problems. SVR has the advantages of fast

learning, global optimization, avoiding local minimization

and excellent generalization ability (Çevik et al. 2015),

while it is difficult to determine proper parameters for SVR

model (Yu et al. 2006; Ccoicca 2013). GA can not only be

used to solve the optimization problem directly (Deveci

and Demirel 2016), but also optimize the model parameters

(Yan and Lin 2016). Here, GA is introduced to simulate

biological evolution process to search globally optimal

hyper-parameter for SVR.

The remainder of this paper is organized in the fol-

lowing order. Section 2 introduces the background over-

view, Sect. 3 shows the data structure including the

collected experimental results, Sect. 4 describes the pro-

posed SVR-GA model, Sect. 5 presents the model imple-

mentation and performance metrics, Sect. 6 presents a

performance comparison of SVR-GA, SVR, MLP and ACI

318, the sensitivity analysis for the input variables and the

experimental results and analysis. Finally, Sect. 7 provides

the conclusions of this study.

2 Literature review

With the wide application of high strength concrete, the

shear capacity of high-strength and ultra-high strength

reinforced concrete beam is one of the most important

calculation problems in the design of reinforced concrete

frames. In order to reveal and predict the performance of

high strength beam and to find the most important

parameters affecting the shear capacity, a number of

studies have been carried out in the last 2 decades. Zhang

(2005) used the modified compression field theory model to

predict the shear capacity of high strength concrete beams.

The influence of steel fiber and stirrups on the shear

strength of steel fiber high-strength concrete beams was

analyzed. The results showed that it is not reasonable for

steel fiber to completely replace stirrups to improve the

shear capacity of beams. Compared with ordinary concrete

beam, high strength concrete beam has higher shear

strength and better deformation capacity (Ji et al. 2011),

and the shear strength decreases with the increase in the

shear span-to-depth ratio while increases with the increase

in longitudinal reinforcement ratio and stirrup ratio. For the

ultra-high performance fiber reinforced concrete

(UHPFRC) beam, the stirrup spacing exceeds the spacing

limits recommended by the design code of ACI 318, but

the test values of shear strength are significantly larger than

the calculated values of ACI 318 (Lim and Hong 2016).

The stirrup spacing required by ACI 318 for reinforced
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concrete beams is not suitable for UHPFRC deep beams

(Yousef et al. 2018). The tensile strength of UHPC can be

increased when adding a certain amount of steel fiber, but

that has little effect on the compressive strength. In addi-

tion, steel fiber can enhance the ultimate shear strength of

reinforced concrete beams (Krassowska et al. 2019). Based

on the concept of piecemeal superposition, Qi et al. (2020)

established the theoretical calculation formula for the shear

capacity of UHPC beams considering the contribution of

concrete, stirrups and fibers. The analysis results show that

the formula is in good agreement with the experimental

data only containing 11 samples.

Pal and Deswal (2011) established a SVR model to

predict the shear strength of prestressed reinforced concrete

deep beams. The results showed that SVR model is supe-

rior to empirical relationship and back propagation neural

network in terms of prediction ability. And the concrete

cylinder strength and shear span-to-depth ratio are of great

significance to the strength prediction of deep beams. Some

researchers used intelligent algorithms to optimize model

parameters, such as genetic algorithm (GA) to optimize a

portion of the existing method (Zhang et al. 2020), and the

results obtained by this method are improved compared to

other machine learning methods including classical SVR,

ANN and gradient boosted decision trees (GBDTs). Solh-

mirzaei et al. (2020) presented a data-driven ML frame-

work for the failure mode and shear strength capacity of

UHPC beams. The results showed that different ML

algorithms SVM, ANN, and K-nearest neighbor (K-NN)

were effective to classify the shear, flexure-shear, and

flexure failure modes. SVM and K-NN algorithms were

better than ANN in identifying shear failure mode and

flexure-shear failure modes. The explicit expression pro-

posed by GP can predict the shear capacity of UHPC

beams with R2 of 0.92.

One concern of ML model is that the input data are sparse

matrices of high dimensions, which are mostly missing or

zero (Luo et al. 2018a). To solve this problem of the auto-

matic web-service selection, making highly accurate pre-

dictions for missing quality of service (QoS) data via

building an ensemble of non-negative latent factor models

(Luo et al. 2016). In order to further generate highly accurate

predictions for missing QoS data, the second-order solver

into latent factor models are proposed (Luo et al. 2018b).

Recently, the momentum-incorporated parallel stochastic

gradient descent algorithm has also been applied to solve

sparse matrix problems by implementing parallelization and

accelerating convergence rate (Luo et al. 2021).

Another main problem of SVR is to choose proper

parameters and kernel function, which needs to take time

for trial and error (Yu et al. 2006; Ccoicca 2013). One

method is to solve the problem of optimal hyper-parameter

determination through grid search (Zhang et al. 2018),

which is time-consuming while traversing all grids within

the parameter value range. Another efficient way to do this

is through genetic algorithm (GA), which has been used as

a powerful optimization tool to solve a variety of academic

and engineering problems. For example, to solve the airline

crew pairing problem, an improved dynamic-based GA has

been proposed (Deveci and Demirel 2016, 2018; Demirel

and Deveci 2017). To predict the failure of the RC struc-

ture, GA are explored the optimal initial weights and biases

for ANN with single and multiple objective to avoid falling

into local minima (Yan and Lin 2016; Chatterjee et al.

2017; Umeonyiagu and Nwobi-Okoye 2019).

It is concluded ML models can be useful tool in predicting

shear capacity of concrete beams, and GA can be an effective

method to optimize parameters for ML models, which is

introduced to select optimal parameters for SVR. Few studies

were conducted to apply ML approach to predict the shear

strength of ultra-high strength concrete beams with stirrups

due to the complexity of the calculation. Therefore, we pro-

posed a hybrid SVR-GA model to solve this problem.

In this study, a hybrid SVR-GA is proposed to predict

the shear strength of medium- to ultra-high-strength

strength concrete beams with stirrups. The major contri-

butions are as follows:

1) Employment of a ML model combining SVR with

GA optimization approach to predict the shear

strength of medium- to ultra-high-strength strength

concrete beams with stirrups.

2) Comparison results of ACI-318 and ML models

including SVR-GA, SVR and multiple linear regres-

sion (MLR) to obtain the model with highest

precision for shear strength prediction.

3) Utility of parametric sensitivity analysis with three-

dimensional visualization map to reveal the inputs

that have significant influence on shear strength

prediction.

Our proposed model can provide a guide with high

accuracy for the performance analysis and optimal design

of the shear strength of medium- to ultra-high strength

concrete beams with stirrups.

3 Data construction

The experimental dataset in this study was collected from

previously published works discussing about the shear

strength of the simply supported beam (Zhang 2005;

Magureanu et al. 2010; Ji et al. 2011; Baby et al. 2014; Xu

et al. 2014; Kamal et al. 2014; Zhou and Chen 2015; Hou

et al. 2015; Jin et al. 2015; Lim and Hong 2016; Pansuk

et al. 2017; Smarzewski 2018; Yousef et al. 2018; Mészöly

and Randl 2018; Hasgul et al. 2019; Zheng et al. 2019;
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Krassowska et al. 2019; Qi et al. 2020; Wang et al. 2020).

The typical RC beam with stirrups and its geometric

parameters are illustrated in Fig. 1. The paper review helped

determine the factors affecting the beam’s shear capacity

(Russo et al. 2004; Olalusi and Viljoen 2020). Various

related factors used to predict ultimate shear capacity (Vu)

are shown in Table 1, including different geometric, material

and physical factors, such as stirrup spacing (s), beam width

(b), shear span-to-depth ratio (a/d), effective depth of the

beam (d), concrete compressive strength (fc), concrete ten-

sile strength (ft), longitudinal reinforcement ratio (q), as well

as the product of the stirrup ratio and the stirrup yield

strength (qsvfyv). In this study, the normalized ultimate shear

strength [i.e., vu = Vu/(bd) (Zhang et al. 2020)] was used as a

measure for evaluating the shear resistance of the beam.

4 Machine learning methods

4.1 Support vector regression (SVR)

Suppose a sample is represented by {(xi, yi), i = 1, 2, …,

n}, where xi and yi correspond to its input and output,

respectively. In SVR, the fundamental idea is to map xi to a

high- dimensional feature space F through a nonlinear

mapping function U(xi). The goal of SVR is to perform

linear regression in this space and find the following linear

equation (Vapnik et al. 1997) defined in Eq. 1.

f xð Þ ¼ w � U xð Þ þ b;U : Rn ! F;w 2 F ð1Þ

where w and b are the normal vector and scalar, respectively.

They can be derived from the minimized regularization risk

function (Vapnik et al. 1997) showed in Eq. 2 as follows:

minR a; a�ð Þ ¼
Xn

i;j¼1

ai � a�i
� �

aj � a�j

� �
K xi; xj
� �

þ
Xn

i¼1

ai e� yið Þ þ
Xn

i¼1

ai eþ yið Þ

Subject to

Pn

i¼1

ai � a�i
� �

¼ 0

ai; a�i 2 0;C½ �

8
<

:

ð2Þ

where C is the positive penalty coefficient, which is the

tradeoff between model training error and model flatness. e
is the insensitivity coefficient, which determines the error

tolerance.ai and a�i are the Lagrange multipliers related to

the constraint. K x; xið Þ ¼ U xð Þ � U xið Þ is the kernel func-

tion. After determining ai, a�i and b the linear function in

Eq. 1 can be expressed explicitly by Eq. 3.

f xð Þ ¼
Xn

i¼1

ai � a�i
� �

K x; xið Þ þ b ð3Þ

One of the key problems in the application of SVR

model is to select an appropriate kernel function. Four

kinds of kernel functions are commonly used, namely

linear, polynomial, sigmoid and Gaussian (radial basis)

(Çevik et al. 2015). Considering the efficiency and relia-

bility, especially in the face of a variety of parameters,

Gaussian kernel function is selected here as shown below:

K x; xið Þ ¼ exp �c x� xik k2
� �

ð4Þ

where c is the kernel parameter. The generalization ability

of SVR depends on the proper setting of parameters C, c
and e. Genetic algorithm is used to determine the optimal

value of parameters.

4.2 Genetic algorithm (GA)

In the past few years, GA has been applied as an effective

tool to solve different optimization problems in engineer-

ing and academia (Yan and Lin 2016; Chatterjee et al.

2017; Umeonyiagu and Nwobi-Okoye 2019). GA is not

only a global optimization search algorithm by simulating

the process of natural selection and biological evolution

(Taylor 1994), but also a probabilistic parallel optimization

method, which can adjust the search direction adaptively

without the need of certain rules. The main characteristic is

that it acts directly on the target object and uses the fitness

function instead of the cost function without the require-

ment of function continuity and derivability. The complex

problem can be solved by three genetic operations: selec-

tion, crossover and mutation.

In the GA, search parameters are binary encoded to

produce many binary strings called chromosomes. Multiple

chromosomes form an initial population. The aim is to get

Fig. 1 Typical geometry and

cross section of a rectangular

beam
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a qualified set of chromosomes after limited generations.

For this purpose, a fitness function associated with chro-

mosomes is defined. The higher fitness, the higher proba-

bility of chromosome selection, and then the selected

chromosomes are crossed and mutated to produce a new

population. Finally, a chromosome with the best fitness is

obtained after finite generations, which is decoded to obtain

optimal parameters. From this process, it can be seen that

GA is independent of the specific domain of the problem

and very robust to various optimization problems. The

searching efficiency of GA is affected by some factors,

such as population size, crossover probability and mutation

probability, but it is out the scope of our paper.

4.3 The hybridized SVR-GA model

The main problem of SVR model is to select appropriate

kernel function and hyper parameters, which is time con-

suming work (Çevik et al. 2015). GA can be employed to

quickly select the optimal parameters for SVR model. The

flow diagram of proposed hybrid SVR-GA model was

shown in Fig. 2. In the SVR-GA model, the population size

was 50, while the evolutionary iteration was 200 genera-

tions, and the probability of crossover and mutation was

0.8 and 0.09, respectively. The SVR parameters, C and c
were binary encoded while e was always 0.01. For better

evolution, the fitness function here adopts the correlation

coefficient, which is calculated by the experimental value

and predicted value of the SVR model. Higher fitness value

means higher ranking for a chromosome, while a lower

ranking chromosome is less likely to be selected.

According to the principles of survival of the fittest, the

latest generation chromosome with the best fitness can be

decoded as the approximate optimal parameter after gen-

eration after generation of selection, crossover, and muta-

tion. In the end, the optimal parameters can be obtained for

the SVR model used for data training and model validation,

and the well trained SVR-GA model for prediction with

high accuracy can be obtained. The key parameters of SVR

named C and c can be determined by the pseudo-code

combing GA (Deveci and Demirel 2018; Gao et al. 2019)

and SVR shown in Algorithm 1 with initial parameters

shown in Table 2.

5 Model implementation and performance
metrics

The dataset containing 148 experimental samples was split

into training set and testing set for SVR-GA. 16% of the

dataset (24 samples) were randomly selected as testing set,

which were not involved in the model training. The

remaining 84% of the dataset (124 samples) were used to

Table 1 Initial statistical

parameters for the experimental

dataset

Parameter s (mm) b (mm) a/d d (mm) fc (MPa) ft (MPa) q (%) qsvfyv (MPa) vu (MPa)

Minimum 60.00 40.00 0.79 114.00 23.60 1.96 0.50 12.02 1.17

Mean 179.10 122.47 2.67 277.39 109.60 7.49 3.78 274.29 12.11

Maximum 1000.00 200.00 5.00 430.00 232.10 24.18 13.57 1045.00 31.08

Median 151.00 120.00 2.50 270.27 116.70 6.14 3.25 141.74 9.67

Std* 116.51 51.59 1.02 81.40 53.36 4.67 2.76 256.32 8.55

Cov* 0.65 0.42 0.38 0.29 0.49 0.62 0.73 0.93 0.71

*Std and Cov denotes the standard deviation and the coefficient of variable, respectively. When there was

no test value of tensile strength ft, 0.75 times of splitting strength was taken (Zheng et al. 2019)
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train and validate the model. To accurately evaluate the

prediction ability of the model preventing from over-fitting

and under-fitting conditions, a fivefold cross-validation

method was utilized. It means the training set was divided

into five equally sized subsets. Each fold was used to

validate and obtain the optimal hyper-parameters (i.e., C, c)

for SVR model by GA, while the other fourfolds were used

to train SVR model and get parameters w and b. In this

process, one SVR-GA sub-model (fi) is generated for each

fold. Over all folds, the average training error was calcu-

lated through five SVR-GA sub-model using all training

set. The final prediction model of SVR-GA takes the

average of the five sub-model predictions. More details for

the fivefold cross-validation method in modeling process

were shown in Fig. 3.

The experimental dataset was normalized with Eq. 5

before model training and testing. where xn is the nor-

malized value of experimental data (xreal), between - 1

and 1. xmax and xmin are the maximum and minimum values

of xreal, respectively. After model predictions, the inverse

normalization is needed for the predicted data shown in

Eq. 6.

xn ¼ 2
xreal � xmin

xmax � xmin

� 1 ð5Þ

xreal ¼
xn þ 1ð Þ xmax � xminð Þ

2
þ xmin ð6Þ

Here, four statistical metrics are used to measure per-

formance of proposed model, such as coefficient of deter-

mination (R2), mean absolute error (MAE), root mean

squared error (RMSE), mean square error (MSE). The

closer the value of R2 gets to 1, the better the prediction

achieves. The formula of R2 can be shown as below.

R2 ¼
Pn

i¼1 yi � �yð Þ ŷi � ŷ
� �� �2

Pn
i¼1 yi � �yð Þ2 Pn

i¼1 ŷi � ŷ
� �2

ð7Þ

where yi and byi are the ith observed and predicted values,

respectively. �
y and �

by are mean values of observed and

predicted, respectively. n is the total number of observa-

tions. The low values of MAE and RMSE indicate good

prediction accuracy of the model. MAE, MSE and RMSE

are given by Eqs. 8–10.

MAE ¼
Xn

i¼1

yi � byij j=n ð8Þ

MSE ¼
Xn

i¼1

yi � byið Þ2=n ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

yi � byið Þ2=n

s
ð10Þ

Randomize the initial
population of chromosomes

Calculate fitness values
calling SVR model

Selection

Satisfy
termination
condition

Initialize the parameters,
C and γ of SVR model Obtain optimal C and γ

Train SVR model

Validate
SVR-GA model

SVR-GA model
accuracy

Coding parameters
as chromosomes

No

Yes

Crossover

Mutation

New population
of chromosomes

SVR-GA

SVR predictionGA optimization

Fig. 2 Flow diagram of hybrid

SVR-GA model

Table 2 The initial parameters used in SVR-GA

Parameter Value

Type Real coded

Selection Roulette wheel

Probability of crossover 0.8

Probability of mutation 0.09

Population size 50

Maximum number of generations 200

(Cmin, Cmax) (2-10, 210)

(cmin, cmax) (2-10, 210)
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6 Results and discussion

In this section, we employed three ML models including

MLR, SVR and also SVR-GA to estimate the shear

strength of medium- to ultra-high concrete strength beams

with stirrups. The results of the three proposed models are

compared with the results of the last edition of ACI 318.

Scatter plots with plumb error lines for the results of the

proposed models based on training set are shown in Figs. 4,

5, 6 and 7. It is clear from Fig. 4 that SVR-GA has more

accuracy than the other two ML models, as well as ACI

318. The box diagrams of the ratio of experimental value to

predicted value for both training set and testing set are

shown in Fig. 8. Compared to MLR and ACI 318, the

upper and lower quartiles and the median of both two SVR

and SVR-GA are all close to 1 with small dispersion,

indicating that both SVR model and SVR-GA model can

well predict the shear strength, and the SVR-GA model

performs better than the SVR model for both training set

and testing set. Furthermore, we also made comparison

between experimental shear strength and predicted value of

SVR-GA, SVR, MLR and ACI 318, the scatter plots are

shown in Figs. 9 and 10 for the training set and testing set,

respectively. It shows that all ML proposed models has

better results than that for ACI 318 equations. A summary

result of the proposed models are also presented in Table 3,

which reveals that SVR-GA achieves the least RMSE, the

highest R2 and minimum MAE in both training set and

testing set. Therefore, the SVR-GA model is a useful

model for predicting the considered target.

According to the description above, SVR-GA had better

results than other models, which is proposed for the con-

sidered prediction in this study. All figures indicated that

the SVR-GA reflects the best performance, and further it

had been applied for the sensitivity analysis to explore the

Fig. 3 Schematic diagram of the

fivefold cross-validation and

mean prediction model

Fig. 4 The comparison of experimental strength to predicted strength

for SVR-GA with training set

Fig. 5 The comparison of experimental strength to predicted strength

for SVR with training set

Fig. 6 The comparison of experimental strength to predicted strength

for MLR with training set
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importance of each input. More details of proposed models

are shown in the following section.

6.1 Performance comparison of various models

Considering that MLR model is the most classical predic-

tion model, it is also used as a comparison model. Per-

formances of the MLR, SVR and SVR-GA are investigated

and discussed based on the training set and testing set.

Here, these models predict results are compared with ACI

318. The developed models were all applied to learn the

relationship between the normalized ultimate shear

strength (vu) and eight different input variables (s, b, h0, fc,

ft, q and qsvfyv). In order to visualize the results of the

models, the experimental and predicted shear strength

values versus the experiment number of training set are

presented graphically in scatter diagrams shown in Figs. 4,

5, 6 and 7 for the models of SVR-GA, SVR, MLR and ACI

318, respectively. Plumb lines are drawn to indicate pre-

diction errors between the values of experimental shear

strength and predicted shear strength. It can be seen that

most of the predicted points are closest to the experimental

points with SVR-GA model relative to the other models. It

also reveals that the predicted errors in the SVR-GA model

are lowest following by SVR model. And the prediction

result of ACI 318 is too conservative, and its prediction

accuracy is worse than all three ML models above.

Meanwhile, the predicted errors of SVR and MLR mainly

appear in the region of high shear strength, and they also

increase with the increase in shear strength. One possible

reason is that there are fewer experimental data points

available in this region compared to other regions.

The prediction error analysis box diagram of the ratio of

experimental value to predicted value is shown graphically

in Fig. 8. As a statistical diagram, the box diagram can

provide key information about the location and dispersion

of the data, and it can also clearly show the maximum,

minimum, median, and upper and lower quartiles of the

data. When the ratio of the predicted value to the test value

is used as the input data of the box diagram, the closer the

data point is to 1 and the lower the dispersion degree gets,

the higher the accuracy the model can achieve. As seen in

Fig. 8, compared to MLR and ACI 318, the upper and

lower quartiles and the median of both two SVR and SVR-

GA are close to 1 and the degree of dispersion is very

small, especially for the SVR-GA model. It suggests that

both SVR model and SVR-GA model can well predict the

shear strength, and the SVR-GA model performs better

than the SVR model.

The comparison of the experimental shear strength with

the predicted value of the SVR-GA, SVR, MLR and ACI

318 is presented graphically in scatter plot shown in Figs. 9

and 10 for the training set and testing set, respectively. The

fitting lines of the experimental and predicted value are

also shown in the figures. It can be seen that the closer the

fitting line is to the perfect line (the included angle with the

x-axis is to 45�), the better predicted performance the

model works. The angle slope of the fitting line is close to

the perfect line in both the training set and testing set for

SVR-GA and SVR. This validates the consistency of the

models of SVR-GA and SVR. We can also derive that the

predicted values of the SVR-GA model have less

Fig. 7 The comparison of experimental strength to predicted strength

for ACI 318 with training set

Fig. 8 Comparison of the model

error of MLR, SVR and SVR-

GA model
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dispersion compared with the SVR model based on both

training set and the testing set indicating that the SVR-GA

model surpasses the SVR model. As shown in Figs. 9d and

10d, the fitting line of ACI 318 is above and almost parallel

to the perfect line, indicating that it is too conservative. The

predicted values of ACI 318 are the most dispersed, fol-

lowed by MLR.

To further determine the accuracies of the four models

mentioned above, different metrics such as R2, RMSE,

MSE and MAE are measured by Eqs. 7–10. The reported

statistical results are shown in Table 3 for both the training

set and testing set. The SVR-GA model performs best both

in the training stage and testing stage recorded with highest

values of R2 and the lowest values of RMSE, MSE and

MAE. To be specific, for the training set, R2 = 0.9806,

RMSE = 1.2055, MSE = 1.4533 and MAE = 0.5281.

Contrast to SVR model with R2 = 0.9419, RMSE =

2.0882, MSE = 4.3605 and MAE = 1.0773, MLR model

with a lower R2 (0.7303), higher RMSE (5.0122), MSE

(25.1217) and MAE (3.6367), while ACI 318 has the

lowest R2 (0.5274), highest RMSE (10.2943), MSE

(105.9724) and MAE (8.2110). Meanwhile, for the testing

set, SVR-GA model with the highest R2 (0.9642), lowest

RMSE (1.4685), MSE (2.1566) and MAE (1.0216), fol-

lowing by SVR model with R2 (0.9379), higher RMSE

(2.0375), MSE (4.1513) and MAE (1.4973). And there

were the lower R2 (0.9642), higher RMSE (1.4685), MSE

(2.1566) and MAE (1.0216) for MLR model, while there

are the lowest R2 (0.5410), highest RMSE (11.1574), MSE

(124.6848) and MAE (9.3290) for ACI 318. It reveals that

the MAE and RMSE values of the SVR-GA model are

lowest among other models in Fig. 11. These results show

that the SVR-GA model can achieve best performance in

ultimate shear strength prediction. More details can be seen

in Table 3.

It can be derived from the above analysis that the

highest precision prediction value can be obtained by using

SVR-GA, while results obtained by ACI 318 are worse

than all of ML models mentioned above both in training

data and testing data. It also demonstrates that SVR-GA

model can achieve best prediction effect on the shear

strength of medium- to ultra-high-strength concrete beams,

which is superior to the traditional SVR model, MLR

model and ACI 318. Therefore, we applied SVR-GA model

for sensitivity analysis in the following section.

Fig. 9 The comparison of

experimental strength to

predicted strength using the

training data
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6.2 Sensitivity analysis

The sensitivity analysis is implemented for exploring the

important degree of each of the input variables using the

SVR-GA model. Twentieth quantiles (from minimum to

maximum, increased by 5%) of each input variable collated

from the experimental dataset are used as a new dataset to

calculate the normalized ultimate shear strength. To be

more precise, the value of one input varies from minimum

to maximum, while all other inputs remain with their

average values. According to the statistical probability

distribution of input variables, the influence of input vari-

able changes on output results is explored shown in

Table 4. For example, the minimum value (0.79) and

maximum value (5.0) of a/d, and the median value of other

parameters are taken to predict the shear strength as vmax

(15.7606 MPa) and vmin (4.9361 MPa), then the important

degree of this variable is (vmax - vmin)/vmax = 0.6868. The

Fig. 10 The comparison of

experimental strength to

predicted strength using the

testing data

Table 3 Statistical properties of the developed models

Parameters SVR-GA model SVR model MLR model ACI 318

Dataset Training data Testing data Training data Testing data Training data Testing data Training data Testing data

R2 0.9806 0.9642 0.9419 0.9379 0.7303 0.7667 0.5274 0.5410

RMSE 1.2055 1.4685 2.0882 2.0375 5.0122 4.2566 10.2943 11.1574

MSE 1.4533 2.1566 4.3605 4.1513 25.1217 18.1182 105.9724 124.6848

MAE 0.5281 1.0216 1.0773 1.4973 3.6367 3.2728 8.2110 9.3290

Mean* 0.9988 0.9999 0.9949 0.9995 1.3720 1.1609 0.7806 0.8041

Std* 0.0696 0.1745 0.1354 0.2181 3.5749 1.2823 0.5634 0.6754

*Mean and Std are respectively, the mean and standard deviation of the ratio of the experimental shear strength to the predicted value
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sensitivity analysis results for each input are presented

graphically in bar chart shown in Fig. 12. The figure re-

veals that all input variables can affect the prediction of the

shear strength through the SVR-GA model. The most

important variables are a/d, fc, q and qsvfyv, with the degree

of importance values of 0.6868, 0.6044, 0.4615 and 0.4607,

respectively. This information is highly relevant to the

literature (Wang et al. 2020), and is consistent with the

results of the literature that the most important parameters

are the shear span-to-depth ratio and concrete compressive

strength. However, Fig. 12 reveals that the stirrup spacing

has little effect on the shear strength of the slender beam,

and its important degree is only 0.1658. It is noteworthy

that although the range of stirrup spacing in the experi-

mental dataset is very large ranging from 20 to 1000 mm,

the median value is only 151 mm, and most of the data are

small. Consequently, a larger database of larger stirrup

spacing should be considered in future research to explore

the degree of importance of the stirrup spacing.

The sensitivity analysis described above shows that

machine learning and artificial intelligence technologies

can be helpful during the design of beam shear resistance

phase. In addition to accurately predicting the ultimate

shear strength, the SVR-GA model can also help create

more informative input/output maps of the ultimate shear

strength. Especially, the most important variables (a/d, fc, q
and qsvfyv) will be used here to illustrate the input and

output maps of the ultimate shear strength. The values of

the other variables remain the same as the average value.

Six ultimate shear strength maps with the same color range

are presented in Fig. 13, which shows the relationship

diagrams of fc and a/d, fc and qsvfyv, fc and q, a/d and qsvfyv,

a/d and q, q and qsvfyv, respectively. Three-dimensional

maps indicate that there is a nonlinear behavior in the input

and output relationship, which makes it difficult to detect

their relationship only from the experimental data. Except

that the increase in a/d will reduce the shear strength to

some extent, the increase in other input variables will

increase the shear strength to varying degrees. Figure 13a

and f shows an interesting phenomenon that the ultimate

shear strength is not the maximum, when the two most

important factors (a/d and fc) are both used as inputs. On

the contrary, the ultimate shear strength reaches the max-

imum, when taking the two lower important factors (q and

qsvfyv) as inputs. This reflects from the side that the shear

strength calculation of the beam with stirrups is extremely

complex, which is the result of the coupling of multiple

variables, and the variables cannot be considered

separately.

It can be derived from the above analysis that the

highest precision prediction value can be obtained by using

SVR-GA while results obtained by ACI 318 are worse than

all of ML models mentioned above both in training data

and testing data. It also demonstrates that SVR-GA model

can achieve best prediction effect on the shear strength of

medium- to ultra-high-strength concrete beams, which is

superior to the traditional SVR model, MLR model and

ACI 318.

Fig. 11 Comparison of the

RMSE and MAE of MLR, SVR

and SVR-GA model

Fig. 12 Bar chart of the degree of importance value estimation
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7 Conclusions

In this study, machine learning models for prediction goals

is investigated to propose an effective model with high

accuracy to calculate the shear strength of medium- to

ultra-high concrete strength beams with stirrups. For this

purpose, three ML models including MLR, SVR and SVR-

GA are considered and discussed. All models are trained

and tested based on an experimental database with 148

samples gathered from literatures, which consists of eight

input variables including stirrup spacing, beam width,

shear span-to-depth ratio, effective depth of the beam,

concrete compressive strength, concrete tensile strength,

longitudinal reinforcement ratio and the product of the

stirrup ratio and the stirrup yield strength. These inputs are

applied in order to determine the shear strength of the

considered medium- to ultra-high concrete beams with

stirrups. The performances of the proposed ML models are

compared with each other and also with ACI 318. The

experimental results indicated that all ML models under

fivefold cross-validation can achieve lower errors than ACI

318 equations, and the SVR model with optimal parameters

obtained by GA had best performance than the other

models, which can be applied to predict the shear strength.

It is also concluded that SVR-GA can be used as a suit-

able tool to predict the shear strength of ultra-high concrete

beams with stirrups with a high level of precision. Fur-

thermore, the sensitivity analysis reveals that all input

variables can affect the prediction accuracy of the shear

strength, and the most important variables are shear span-

to-depth ratio, concrete compressive strength, longitudinal

reinforcement ratio and the product of the stirrup ratio and

the stirrup yield strength. The proposed SVR-GA model

here can be a guide with high prediction accuracy for the

shear strength design of ultra-high concrete beams with

stirrups. It is expected that the shear strength of medium- to

ultra-high strength concrete beams with any combination

of design parameters can be predicted accurately providing

guides for optimal design. At the same time, there are still

some issues that need to be resolved. For example, there is

poor interpretability for the proposed SVR-GA model,

making it difficult to be well understood by designers for

optimal design of medium- to ultra-high strength concrete

beams with stirrups. The future works can be done with

more experimental data with other more

interpretable models.

Table 4 Values of the variables

used to calculate the degree of

importance

s (mm) b (mm) a/d d (mm) fc (MPa) ft (MPa) q(%) qsvfyv (MPa) vu (MPa) DI*

1000 122.47 2.67 277.4 109.6 7.49 3.78 274.29 15.1803 0.1658

60 122.47 2.67 277.4 109.6 7.49 3.78 274.29 12.6631

179.1 200 2.67 277.4 109.6 7.49 3.78 274.29 11.5489 0.3036

179.1 40 2.67 277.4 109.6 7.49 3.78 274.29 16.5844

179.1 122.47 5.00 277.4 109.6 7.49 3.78 274.29 4.9361 0.6868

179.1 122.47 0.79 277.4 109.6 7.49 3.78 274.29 15.7606

179.1 122.47 2.67 430 109.6 7.49 3.78 274.29 7.1733 0.3738

179.1 122.47 2.67 114 109.6 7.49 3.78 274.29 11.4559

179.1 122.47 2.67 277.4 232.1 7.49 3.78 274.29 23.7992 0.6044

179.1 122.47 2.67 277.4 23.6 7.49 3.78 274.29 9.4155

179.1 122.47 2.67 277.4 109.6 24.18 3.78 274.29 16.2389 0.4094

179.1 122.47 2.67 277.4 109.6 1.96 3.78 274.29 9.5910

179.1 122.47 2.67 277.4 109.6 7.49 13.57 274.29 18.3481 0.4615

179.1 122.47 2.67 277.4 109.6 7.49 0.5 274.29 9.8808

179.1 122.47 2.67 277.4 109.6 7.49 3.78 1045 20.0627 0.4607

179.1 122.47 2.67 277.4 109.6 7.49 3.78 12.02 10.8193

Bold font indicates the maximum value and minimum value of the input variables. While the values of vu in

bold font are used to show the predicted shear strength of the input variable a/d with minimum value (0.79)

and maximum value (5.0), respectively, and the degree of importance (DI*) of a/d is equal to 0.6868 in bold

font calculated by (vmax-vmin)/vmax

*DI denotes the degree of importance
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