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Abstract
Hesitant fuzzy set is a natural generalization of the classical fuzzy set. A hesitant fuzzy set on a universe of discourse is in terms
of a function that when applied to the universe returns a finite subset of [0, 1]. Since the axiomatic method of approximation
operator is of great significance in the research of the mathematical structure of rough set theory, it is a fundamental problem
in axiomatic method to find the minimum set of abstract axioms. This paper first introduces the basic concepts, properties and
related operations of hesitant fuzzy set, hesitant fuzzy rough set and hesitant fuzzy rough approximation operator. Secondly,
by defining inner product, outer product and by exploring their related properties, the single axiomatization problem of
the classical hesitant fuzzy rough approximation operator is solved. Furthermore, we study the single axiomatization of
hesitant fuzzy rough approximation operators derived from serial, reflexive, symmetric and transitive hesitant fuzzy relations,
respectively. Finally, we compare and analyze the advantages and disadvantages of hesitant fuzzy set, fuzzy rough set and
hesitant fuzzy rough set through some cases.

Keywords Hesitant fuzzy approximation operators · Hesitant fuzzy relation · Hesitant fuzzy rough sets

1 Introduction

Pawlak, a Polish mathematician, first proposed rough set
theory in 1982, which is an efficient scientific way for mod-
eling and processing incomplete and uncertain information
(Pawlak 1982, 1991). As the basic structure of rough set
theory, approximation space is made up of a universe of
discourse and a binary relation imposed on it. The most
important concepts in rough set theory are the upper and
lower approximation operators derived from the approxi-
mation space. In rough set data analysis, two methods are
commonly used to develop approximation operators, i.e. con-
structive method and axiomatic method. In the constructive
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method, binary relation, partition, covering, neighborhood
system and Boolean subalgebra are used as the original
concepts, then these concepts are used to construct approx-
imation operators. Compared with construction method,
axiomatic method, also known as algebraic method, does
not take approximation space as the basic concept. On the
contrary, it abstracts the upper and lower approximation
operators into original concepts. In thismethod,most approx-
imation operators generated in constructive methods are
described by a set of axioms. As another mathematical tool
to deal with fuzzy and uncertain knowledge, fuzzy set the-
ory was first established by Zadeh, an American cybernetic
expert, in 1965 (Zadeh 1965). After that, the fusion of rough
set and fuzzy set has become one of the hot research direc-
tions in the processing of intelligence information in recent
years (Liang et al. 2019).

In the study of fuzzy rough sets, Morsi and Yakout (1998)
first used axiomatic method to study fuzzy approximation
operators. Wu et al. (2003) studied the axiomatization of
fuzzy rough approximation operators derived from gen-
eral fuzzy relations, and obtained the axioms set describing
various fuzzy rough approximation operators. Mi et al.
(2008) and Wu (2011) characterized the dual fuzzy rough
approximation operators defined by general trigonometric
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modules and anti trigonometric modules. She and Wang
(2009) obtained the axiomatic characterization of fuzzy
rough approximation operators defined by residuated lat-
tices. Zhou et al. (2009) studied the intuitionistic fuzzy rough
approximation operators by using axiomatic approach. The
axiomatic characterization of intuitionistic fuzzy rough set
based on two universe was given by Zhang et al. (2012).
Furthermore, Zhang et al. (2019) studied axiomatic char-
acterization of approximation operators based on covering,
and recently, Pang et al. (2019) proposed the axiomatiza-
tions of L-fuzzy rough approximation operators based on
three kinds of new L-fuzzy relations. Shao et al. (2019) gave
the axiomatic characterizations of adjoint generalized (dual)
concept systems. Zhao and Li (2018) studied the axiomatiza-
tion on generalized neighborhood system-based rough sets.
And Gao et al. (2018) studied axiomatic approaches to rough
approximation operators via ideal on a complete completely
distributive lattice.

In 2013, Liu (2013) first introduced inner product opera-
tion in rough set theory, with this notion, he studied single
axiomatic characterization of rough approximation oper-
ators. Later, Wu (2017), Wu and Xu (2016), Wu et al.
(2019) also gave a single axiomatic characterization of
fuzzy rough approximation operators determined by dual
triangular norms. By using single axioms, Pang and Mi
(2020) characterized L-rough approximate operators with
respect to various types of L-relations. Recently, Wang and
Gong (2020) proposed single axioms for (S, T )-fuzzy rough
approximation operators with fuzzy product operations.

Meanwhile, fuzzy rough set theory is further extended
to hesitant fuzzy rough set theory Torra (2010). For the
first time, Yang and Song (2014) considered the axiomatic
characterization of the hesitation fuzzy rough approximation
operators derived respectively fromageneral hesitation fuzzy
relation and the serial, reflexive, symmetric and transitive
hesitation fuzzy relations. However, the inclusion relation
between two hesitant fuzzy sets defined in Yang and Song
(2014) does not necessarily satisfy antisymmetric property,
in other words, for any two hesitant fuzzy sets A and B, if
B ⊆ A and A ⊆ B, there is not necessarily an equation
A = B hold. In order to make up for this problem, Zhang
et al. (2019) improved Yang’s model and proposed a new
hesitant fuzzy rough set model.

In the process of theoretical application research, hesi-
tant fuzzy set, fuzzy rough set and hesitant fuzzy rough set
are widely used in multi-criteria decision, group decision
making, multi-attribute decision making (MADM), clus-
ter analysis and other fields. Among them, multi-attribute
decision-making is widely concerned as an important part of
modern decision analysis. In the process of multi-attribute
decision-making, when determining the attribute value, we
often encounter the situation of multiple values and hesitant
among them, which leads to the attribute value expressed in

the form of hesitant fuzzy element. In view of the above sit-
uation, by using TOPSIS (technology for order preference
by similarity to ideal solution) and the maximizing deviation
method, Xu and Zhang (2013) obtained a new method for
solving MADM problem in hesitant fuzzy environment.

The determination of membership function of hesitant
fuzzy set has a certain subjective apriority, while the upper
and lower approximations and roughness of rough set are
obtained through the calculation of objective data, so rough
set theory has a certain objectivity in dealing with uncertain
information. Since the two theories are highly complemen-
tary, Tian et al. (2013) defined the objective weight of the
index by fuzzy rough set, then got the comprehensive weight
by combining the subjective and objective weight. Finally,
they applied the comprehensive weight to TOPSIS to study
the MADM problem. Meanwhile, in Zhang et al. (2017),
Zhang et al studied how to use hesitant fuzzy rough set model
to solve MADM problem. Then, by integrating the objectiv-
ity of rough set into hesitant fuzzy environment, they made
up for the deficiency of subjective apriority of hesitant fuzzy
set.

Since the axiomatic method of approximation operator
is of great significance to the study of the mathematical
structure of rough set theory, it is a fundamental problem in
axiomaticmethod tofind theminimumset of abstract axioms.
In the study of this paper, we first define novel operations of
inner product and outer product between two hesitant fuzzy
sets by using the disjunctive and conjunctive normal forms
between two hesitant fuzzy elements. Then, by employing
the new model proposed by Zhang et al. (2019), we study
the single axiom characteristics of the hesitant fuzzy rough
approximation operators. In the next section, we will review
the basic concepts, properties and related operations about
hesitant fuzzy sets, hesitant fuzzy rough sets and hesitant
fuzzy approximation operators. In Sect. 3, the operations of
inner product, outer product between two hesitant fuzzy sets
are defined, and their related properties are examined. Then,
the single axiomatization problem of the classical hesitant
fuzzy rough approximation operator is solved. In Sect. 4,
we further study the single axiomatization of hesitant fuzzy
rough approximation operators derived from serial, reflexive,
symmetric and transitive hesitant fuzzy relation, respectively.
In Sect. 5, we compare and analyze hesitant fuzzy set, fuzzy
rough set and hesitant fuzzy rough set through some exam-
ples. Section 6 concludes the paper with some remarks.

2 Preliminaries

This section reviews some basic concepts and properties
related to hesitant fuzzy sets, hesitant fuzzy rough sets and
their approximate operators.
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Definition 1 (Torra 2010). Let U be a nonempty and finite
universe of discourse. A = {〈x, hA(x)〉|x ∈ U } is referred
to as a hesitant fuzzy set on U , where hA is the membership
function of hesitant fuzzy set A that when act on a element
x ∈ U returns a finite subset of [0,1], i.e. hA(x) is a finite set
of different values in [0,1], indicating the possible member-
ship degree of x in the hesitant fuzzy set A.

Noted that, if for any x ∈ U there is only one element in
hA(x), then the hesitant fuzzy set degenerates into a fuzzy set.
Therefore, hesitant fuzzy set is a generalization of a fuzzy set.
For convenience, we call hA(x) the hesitant fuzzy element.
The set of all hesitant fuzzy sets onU is called hesitant fuzzy
power set of U , and denoted by HF(U ).

Definition 2 (Zhang et al. 2019) Some special hesitant fuzzy
sets are defined as follows:

(1) A is referred to as an empty hesitant fuzzy set if and only
if hA(x) = {0}, ∀x ∈ U . In the sequel, the empty hesitant
fuzzy set is denoted by ∅.

(2) A is referred to as the hesitant fuzzy universe set if and
only if hA(x) = {1}, ∀x ∈ U . In the sequel, the hesitant
fuzzy universe set is denoted by U .

(3) A is referred to as a constant hesitant fuzzy set if and
only if there exist ai ∈ [0, 1], i = 1, 2, · · · ,m, such that
hA(x) = {a1, a2, . . . , am} for all x ∈ U . In the sequel,
the constant hesitant fuzzy set is denoted by ̂a1 . . . am .

(4) Given y ∈ U and M ⊆ U , two special hesitant fuzzy
sets 1y and 1M are defined respectively as follows: for
x ∈ U ,

h1y (x) =
{

{1} x = y

{0} else

h1M (x) =
{

{1} x ∈ M

{0} else

It is worth noting that different hesitant fuzzy elements may
contain different numbers of values. Denote the number of
values in hA(x) by l(hA(x)), for correct operation, the fol-
lowing assumptions are given:

(1) Arrange all elements in hesitant element hA(x) in ascend-
ing order, then the kth maximum value in hA(x) is
denoted by hσ(k)

A (x).
(2) If, for two hesitant fuzzy elements hA(x) and hB(x),

l(hA(x)) �= l(hB(x)), then denote by lAB(x) =
max{l(hA(x)), l(hB(x))}. Only two hesitant fuzzy ele-
ments hA(x) and hB(x) have the same length can they
compare correctly. If the number of elements in hA(x)
is less than that in hB(x), extend hA(x) by repeating its
maximum element until hA(x) has the same length as
hB(x).

In this paper, the following definitions of operations between
hesitant fuzzy elements are based on the two hesitant fuzzy
elements having the same length.

Definition 3 (Zhang et al. 2019). Let U be a nonempty and
finite universe of discourse, A and B are two hesitant fuzzy
sets.

(1) The complement of A, denoted by Ac, is defined by:
hAc (x) =∼hA(x) = {1−hσ(k)

A (x)|k = 1, 2 . . . , l(hA(x))},
∀x ∈ U .

(2) The union of A and B, denoted by A ∪ B, is defined by:
hA∪B(x) = hA(x) � hB(x) = {hσ(k)

A (x) ∨ hσ(k)
B (x)|k =

1, 2 . . . , lAB(x)}, ∀x ∈ U .
(3) The intersection of A and B, denoted by A ∩ B, is

defined by: hA∩B(x) = hA(x) � hB(x) = {hσ(k)
A (x) ∧

hσ(k)
B (x)|k = 1, 2 . . . , lAB(x)}, ∀x ∈ U .

Theorem 1 (Zhang et al. 2019). Suppose A and B are two
hesitant fuzzy sets, then the following equations hold:

(1) (A ∪ B)c = Ac ∩ Bc.
(2) (A ∩ B)c = Ac ∪ Bc.

Definition 4 (Zhang et al. 2019). LetU be the nonempty and
finite universe of discourse, A and B are two hesitant fuzzy
sets. We define A ⊆ B if and only if hA(x) � hB(x) holds
for all x ∈ U , i.e.

hA(x) � hB(x) ⇐⇒ hσ(k)
A (x)

≤ hσ(k)
B (x), k = 1, 2, . . . , lAB(x).

If hA(x) ≺ hB(x) holds for all x ∈ U , i.e.

hA(x) ≺ hB(x) ⇐⇒ hσ(k)
A (x)

< hσ(k)
B (x), k = 1, 2, . . . , lAB(x),

then we define A ⊂ B.
Obviously, the following conclusions are established for

the above inclusion relation:

(1) A ⊆ A. (reflexivity)
(2) A ⊆ B, B ⊆ C ⇒ A ⊆ C . (transitivity)
(3) A ⊆ B, B ⊆ A ⇒ A = B. (antisymmetry)

Definition 5 (Zhang et al. 2019). Let U be a nonempty and
finite universe of discourse, a hesitant fuzzy relation R onU
is a hesitant fuzzy subset of U ×U , that is, R is defined by

R = {〈(x, y), hR(x, y)〉|(x, y) ∈ U ×U },
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where the set hR(x, y) is composed of finite different values
in [0, 1], and represents the possible membership degrees of
the relation between x and y.

Definition 6 (Zhang et al. 2019). Let U be a nonempty and
finite universe of discourse. Given a hesitant fuzzy relation
R on U .

(1) If there exists a y ∈ U such that hR(x, y) = {1} holds
for any x ∈ U , then R is said to be serial;

(2) If the equation hR(x, x) = {1} holds for all x ∈ U , then
R is said to be reflexive;

(3) If the equation hR(x, y) = hR(y, x) holds for all (x, y) ∈
U ×U , then R is said to be symmetric;

(4) If the formula hR(x, y) � hR(y, z) � hR(x, z) holds for
all x, y, z ∈ U , then R is said to be transitive. Alter-
natively, R is transitive if the following condition is
satisfied:

hσ(k)(x, y) ∧ hσ(k)(y, z) ≤ hσ(k)(x, z), k = 1, 2, . . . , l,

where l = max{l(hR(x, y)), l(hR(y, z)), l(hR(x, z))}.

Definition 7 (Zhang et al. 2019). Suppose U is a nonempty
and finite universe of discourse, R is a hesitant fuzzy relation
on U . Then the pair (U , R) is referred to as a hesitant fuzzy
approximation space. For any A ∈ HF(U ), the lower and
upper approximations of A with respect to (U , R), denoted
by R(A) and R(A), are twohesitant fuzzy sets and are defined
respectively by

R(A) = {〈x, hR(A)(x)〉|x ∈ U },
R(A) = {〈x, hR(A)(x)〉|x ∈ U },

where hR(A)(x) = �
y∈U

{hRc(x, y) � hA(y)}, hR(A)(x) =
�

y∈U
{hR(x, y) � hA(y)}.
The pair (R(A), R(A)) is referred to as the hesitant fuzzy

rough set of A with respect to (U , R), and R(A), R(A) :
HF(U ) → HF(U ) are known as the lower and upper
hesitant fuzzy rough approximation operators, respectively.
Obviously, we have that

hR(A)(x) = {∧y∈Uhσ(k)
Rc (x, y) ∨ hσ(k)

A (y)|k = 1, 2 . . . , lx },
hR(A)(x) = {∨y∈Uhσ(k)

R (x, y) ∧ hσ(k)
A (y)|k = 1, 2 . . . , lx },

where lx = maxmax
y∈U l(hR(x, y)), l(hA(y)).

Property 1 (Zhang et al. 2019). Given a hesitant fuzzy
approximation space (U , R), the lower and upper hesitant
fuzzy rough approximation operators R, R : HF(U ) →
HF(U ) satisfy the following properties: ∀A, B ∈ HF(U ),

∀ai ∈ [0, 1], i = 1, 2, . . . ,m,∀M ⊆ U ,∀(x, y) ∈ (U×U ),

(1) R(Ac) = (R(A))c, and R(Ac) = (R(A))c;
(2) A ⊆ B implies R(A) ⊆ R(B) and R(A) ⊆ R(B);
(3) R(A ∪ B) = R(A) ∪ R(B), and R(A ∩ B) = R(A) ∩

R(B);
(4) R(A ∩ B) ⊆ R(A) ∩ R(B), and R(A ∪ B) ⊇ R(A) ∪

R(B);
(5) R(A ∩ ̂a1 . . . am) = R(A) ∩ R( ̂a1 . . . am), and R(A ∪

̂a1 . . . am) = R(A) ∪ R( ̂a1 . . . am);
(6) R(∅) = ∅, and R(U ) = U ;
(7) hR(1M )(x) = �

y∈M
hR(x, y), and hR(1M )(x) = �

y∈M
hRc

(x, y);
(8) hR(1y)

(x) = hR(x, y);
(9) hR(1U−{y})(x) = hRc(x, y).

Theorem 2 (Yang and Song 2014). SupposeU is a nonempty
and finite universe of discourse, and R is a hesitant fuzzy
relation on U. R, R : HF(U )→ HF(U ) are the lower and
upper hesitant fuzzy rough approximation operators defined
in Definition 7, respectively, then

(1) R is serial ⇔ R(∅) = ∅;

⇔ R(U ) = U ;
⇔ R(A) ⊆ R(A),∀A ∈ HF(U ).

(2) R is reflexive ⇔ R(A) ⊆ A,∀A ∈ HF(U );

⇔ A ⊆ R(A),∀A ∈ HF(U ).

(3) R is symmetric⇔ hR(U−{x})(y) = hR(U−{y})(x),∀x, y ∈
U;

⇔ hR(U−{x})(y) = hR(U−{y})(x),∀x, y ∈ U .

(4) R is transitive ⇔ R(A) ⊆ R(R(A)),∀A ∈ HF(U );

⇔ R(R(A)) ⊆ R(A),∀A ∈ HF(U ).

Definition 8 (YangandSong2014).Given twohesitant fuzzy
set-theoretic operators L, H : HF(U ) → HF(U ), we call
them dual hesitant fuzzy operators if they satisfy one of the
following equivalent conditions:

L(A) = (H(Ac))c; H(A) = (L(Ac))c.

Theorem 3 (Yang and Song 2014). Let L, H : HF(U ) →
HF(U ) be a pair of dual hesitant fuzzy operators, then
there exists a hesitant fuzzy relation R on U such that
∀A ∈ HF(U ), L(A) = R(A), H(A) = R(A) holds, if and
only if L satisfies the following axioms:

(L1) L(A) ∪ ̂a1 . . . am = L(A ∪ ̂a1 . . . am), ∀A ∈ HF(U ),

∀{a1 . . . am} ∈ 2[0,1];
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(L2) L(A ∩ B) = L(A) ∩ L(B), ∀A, B ∈ HF(U ).

Or equivalently H satisfies the following axioms:

(H1) H(A)∩ ̂a1 . . . am = H(A∩ ̂a1 . . . am), ∀A ∈ HF(U ),

∀{a1 . . . am} ∈ 2[0,1];
(H2) H(A ∪ B) = H(A) ∪ H(B), ∀A, B ∈ HF(U ).

3 Single axiomatic characterization of
classical hesitant fuzzy rough
approximation operators

In Yang and Song (2014), the axiomatic characterization of
hesitant fuzzy rough approximation operators was given for
the first time. In this section, novel concepts of inner and outer
product operations between two hesitant fuzzy sets are first
defined, and their properties are examined. Then, by using the
two product operations, the axiom set is simplified to obtain
the single axiom characterization of the hesitant fuzzy rough
approximation operator proposed in Zhang et al. (2019).

Property 2 Given a hesitant fuzzy approximation space
(U , R), the lower and upper hesitant fuzzy rough approx-
imation operators R and R: HF(U ) → HF(U ) satisfy the
following properties: ∀A j ∈ HF(U ), j ∈ J , where J is an
index set.

(1) R( ∩
j∈J

A j ) = ∩
j∈J

R(A j );

(2) R( ∪
j∈J

A j ) = ∪
j∈J

R(A j ).

Proof (1) ∀x ∈ U , by Definition 7 we have

h
R

(
∩
j∈J

A j

)(x)

= �
y∈U

{hRc(x, y) � h ∩
j∈J

A j (y)}

= �
y∈U

{hRc(x, y) � [ �
j∈J

hA j (y)]}

= �
j∈J

�
y∈U

{hRc(x, y) � hA j (y)}

= h ∩
j∈J

R(A j )(x).

Thus R( ∩
j∈J

A j ) = ∩
j∈J

R(A j ) holds.

(2) The proof is similar to (1). ��

Theorem 4 . Suppose L and H : HF(U ) → HF(U ) are
a pair of dual hesitant fuzzy operators, then there exists a
hesitant fuzzy relation R on U such that L = R, H = R if
and only if L satisfies the following axioms:

(L1) L(A) ∪ ̂a1 . . . am = L(A ∪ ̂a1 . . . am), ∀A ∈ HF(U ),

∀{a1 . . . am} ∈ 2[0,1];
(L3) L( ∩

j∈J
A j ) = ∩

j∈J
L(A j ), ∀A j ∈ HF(U ), j ∈ J .

Or equivalently H satisfies the following axioms:

(H1) H(A) ∩ ̂a1 . . . am = H(A∩ ̂a1 . . . am), ∀A ∈ HF(U ),

∀{a1 . . . am} ∈ 2[0,1];
(H3) H( ∪

j∈J
A j ) = ∪

j∈J
H(A j ), ∀A j ∈ HF(U ), j ∈ J .

Where J is an index set, and ∀{a1 . . . am} ∈ 2[0,1].

Proof If there exists a hesitant fuzzy relation R on U such
that L = R holds, then by Property 2 we have

L

(
∩
j∈J

A j

)
= R

(
∩
j∈J

A j

)
= ∩

j∈J
R(A j ) = ∩

j∈J
L(A j ).

Thus (L3) holds. By (5) in Property 1, we conclude that (L1)
holds.

Conversely, if L satisfies axioms (L1) and (L3). By taking
J = {1, 2} we have L(A1 ∩ A2) = L(A1) ∩ L(A2). By
Theorem 3, there exists a hesitant fuzzy relation R on U
such that L = R holds.

For the hesitant fuzzy operator H , the prove is similar to
L . ��
Theorem 5 Suppose L and H : HF(U ) → HF(U ) are
a pair of dual hesitant fuzzy operators, then there exists a
hesitant fuzzy relation R on U such that

(1) L = R if and only if L satisfies the following axiom:
∀A j ∈ HF(U ), ∀ j ∈ J , where J is an index set, and
∀{a1 . . . am} ∈ 2[0,1],

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )

)
= ∩

j∈J
(

̂

a j
1 . . . a j

m ∪ L(A j )).

(1)

(2) H = R if and only if H satisfies the following axiom:
∀A j ∈ HF(U ), ∀ j ∈ J , where J is an index set, and
∀{a1 . . . am} ∈ 2[0,1],

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
= ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )

)
.

(2)

Proof (1) Firstly, we prove the necessity. By Theorem

4, L( ∩
j∈J

(
̂

a j
m . . . a j

m ∪ A j )) = ∩
j∈J

L(
̂

a j
m . . . a j

m ∪ A j ) =

∩
j∈J

(
̂

a j
m . . . a j

m ∪ L(A j )).
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Secondly, we prove the sufficiency. Assume that

L( ∩
j∈J

(
̂

a j
m . . . a j

m ∪ A j )) = ∩
j∈J

(
̂

a j
m . . . a j

m ∪ L(A j )) holds,

then, from L we define a hesitant fuzzy relation R on U :
∀(x, y) ∈ U ×U ,

R(x, y) = 1 − L(1U−{y})(x).

∀A ∈ HF(U ), noticing that A = ∩
y∈U(̂hA(y)∪1U−{y}), then

∀x ∈ U we have

L(A)(x) = L

(
∩

y∈U
̂(hA(y) ∪ 1U−{y})

)
(x)

= ∩
y∈U(̂hA(y) ∪ L(1U−{y}))(x)

= �
y∈U

(hA(y) � L(1U−{y})(x))

= �
y∈U

(hA(y) � 1 − hR(x, y))

= �
y∈U

(hA(y) � hRc(x, y))

= R(A)(x).

Thus L(A) = R(A) holds. ��
(2) Necessity. By Theorem 4, H( ∪

j∈J
(

̂

a j
m . . . a j

m ∩ A j )) =

∪
j∈J

H(
̂

a j
m . . . a j

m ∩ A j ) = ∪
j∈J

(
̂

a j
m . . . a j

m ∩ H(A j )).

Sufficiency. Assume that H( ∪
j∈J

(
̂

a j
m . . . a j

m ∩ A j )) =

∪
j∈J

(
̂

a j
m . . . a j

m ∩ H(A j )) holds, then, from H we define a

hesitant fuzzy relation R on U : ∀(x, y) ∈ U ×U ,

R(x, y) = H(1y)(x).

Noticing that ∀A ∈ HF(U ), A = ∪
y∈U(̂hA(y) ∩ 1y), then

∀x ∈ U we have

H(A)(x) = H

(
∪

y∈U
̂(hA(y) ∩ 1y)

)
(x)

= ∪
y∈U

(
̂hA(y) ∩ H(1y)

)
(x)

= �
y∈U

(hA(y) � h(1y)(x))

= �
y∈U

(hA(y) � hR(x, y))

= R(A)(x).

Thus H(A) = R(A) holds. ��
In Wu and Xu (2016), Wu et al. defined the operations of

inner product and outer product of two fuzzy sets based on

t-norm and t-conorm, and studied the single axiomatic char-
acterization of fuzzy rough approximation operators. Next,
we extend these notions to the hesitant fuzzy environment,
and give novel definitions and properties of inner product and
outer product between two hesitant fuzzy sets.

Definition 9 ∀A, B ∈ HF(U ), the outer product of A and
B, denoted as [A, B], is defined by

[A, B] = �
x∈U

(hA(x) � hB(x)).

The inner product of A and B, recorded as (A, B), is
defined by

(A, B) = �
x∈U

(hA(x) � hB(x)).

Property 3 The outer product between two hesitant fuzzy
sets satisfies the following properties: ∀A, B, A j ∈ HF(U ),
j ∈ J , where J is an index set, ∀{a1, . . . , am} ∈ 2[0,1].

(1) [A, B] = [B, A];
(2) [∅, B] = �

x∈U
hB(x), [U , B] = 1;

(3) A ⊆ B if and only if [A,C] � [B,C], ∀C ∈ HF(U );
(4) If [A,C] = [B,C], ∀C ∈ HF(U ), then A = B;
(5) [( ̂a1 . . . am ∪ A), B] = {a1 . . . am} � [A, B];
(6) [ ∩

j∈J
A j , B] = �

j∈J
[A j , B].

Proof

(1) and (2) are obvious by Definition 9.
(3) The necessity is obvious by Definition 9.

Secondly, we prove the sufficiency. ∀x ∈ U , let C =
1U−{x}, then

[A,C] = �
y∈U

(hA(y) � hC (y))

=
(

�
y �=x

(hA(y) � hC (y)) � (hA(x) � hC (x))

)
= hA(x).

Similarly, we can verify that [B,C] = hB(x). As
[A,C] � [B,C], we have hA(x) � hB(x) for all x ∈ U .
Consequently A ⊆ B.

(4) It can be immediately obtained from (3).
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(5) For any {a1 . . . am} ∈ 2[0,1], we have

[( ̂a1 . . . am ∪ A), B]
= �

x∈U
(hâ1...am∪A(x) � hB(x))

= �
x∈U

({ ̂a1 . . . am} � hA(x) � hB(x))

= { ̂a1 . . . am} � ( �
x∈U

�hA(x) � hB(x))

= { ̂a1 . . . am} � [A, B].

(6) By Definition 3, it is obvious. ��

Property 4 The inner product between two hesitant fuzzy
sets satisfies the following properties: ∀A, B, A j ∈ HF(U ),
j ∈ J , where J is an index set, ∀{a1 . . . am} ∈ 2[0,1].

(1) (A, B) = (B, A);
(2) (∅, B) = ∅, (U , B) = �

x∈U
hB(x);

(3) A ⊆ B if and only if (A,C) � (B,C),∀C ∈ HF(U );
(4) If (A,C) = (B,C),∀C ∈ HF(U ), then A = B;
(5) (( ̂a1 . . . am ∩ A), B) = {a1 . . . am} � (A, B);
(6) ( ∪

j∈J
A j , B) = �

j∈J
(A j , B).

Proof The proofs are similar to those of Property 3. ��

Definition 10 Suppose U is a nonempty and finite universe
of discourse, for a hesitant fuzzy operators O : HF(U ) →
HF(U ),∀A ∈ HF(U ), y ∈ U , denote

O−1
� (A)(y) = [O(1U−{y}), A]

= �
x∈U

(hO(1U−{y})(x) � hA(x)),

O−1
� (A)(y) = (O(1y), A)

= �
x∈U

(hO(1y)(x) � hA(x)).

Then O−1
� and O−1

� : HF(U )→ HF(U ) are called respec-
tively the lower inverse operator and upper inverse operators
of O .

Theorem 6 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
set valued operator, then there exists a hesitant fuzzy relation
R onU such that L = R if and only if L satisfies the following
axiom:

[A, L(B)] = [B, L−1
� (A)], ∀A, B ∈ HF(U ).

Proof Assume that [A, L(B)] = [B, L−1
� (A)], ∀A, B ∈

HF(U ). By Theorem 5 and Properties (1) and (4) in Property

3, we only need to prove that

[
C, L

(
∩
j∈J

(
̂

a j
m . . . a j

m ∪ A j )

)]

=
[
C, ∩

j∈J
(

̂

a j
m . . . a j

m ∪ L(A j ))

]
, ∀C ∈ HF(U ).

In fact, ∀C ∈ HF(U ), we have

[
C, L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))]

=
[

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

)
, L−1

� (C)

]
by the assumption

= ∧
j∈J

[(
̂

a j
1 . . . a j

m ∪ A j

)
, L−1

� (C)

]
by Property 3, (6)

= ∧
j∈J

(
{a j

1 . . . a j
m} � [A j , L

−1
� (C)]

)
by Property 3, (5)

= ∧
j∈J

(
{a j

1 . . . a j
m} � [C, L(A j )]

)
by the assumption

= ∧
j∈J

(
{a j

1 . . . a j
m} � [L(A j ),C]

)
by Property 3, (1)

= ∧
j∈J

[(
̂

a j
1 . . . a j

m ∪ L(A j )

)
,C

]
by Property 3, (5)

=
[

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

)
,C

]
by Property 3, (6)

=
[
C, ∩

j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

)]
. by Property 3, (1)

Therefore, L = R.

Conversely, assume that L satisfies L = R. Noticing that
∀B ∈ HF(U ), B = ∩

y∈U(̂hB(y) ∪ 1U−{y}), then

[A, L(B)]
= ∧

x∈U(hA(x) � hL(B)(x))

= ∧
x∈U(hA(x) � h

L

(
∩

y∈U( ̂hB (y)∪1U−{y})
)(x))

= ∧
x∈U(hA(x) � h ∩

y∈U( ̂hB (y)∪L(1U−{y}))(x) by Theorem 5

= ∧
x∈U(hA(x) �

(
∧
y∈U hB(y) � hL(1U−{y})(x)

)
)

= ∧
x∈U ∧

y∈U(hA(x) � (hB(y) � hL(1U−{y})(x)))

= ∧
y∈U ∧

x∈U(hB(y) � (hA(x) � hL(1U−{y})(x)))

= ∧
y∈U

(
hB(y) �

(
∧

x∈U(hA(x) � hL(1U−{y})(x))

))

= ∧
y∈U

(
hB(y) � L−1

� (A)(y)
)

by Definition 10
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= ∧
y∈U(hB(y) � L−1

� (A)(y))

= [B, L−1
� (A)]. by Definition 9

Thus L satisfies [A, L(B)] = [B, L−1
� (A)], ∀A ∈ HF(U ).

��

Analogous to Theorem 6, by using the inner product and
the upper inverse operator of H , we can obtain another single
axiom to characterize the upper hesitant fuzzy rough approx-
imation operator.

Theorem 7 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a hesitant fuzzy relation R on U
such that ∀A ∈ HF(U ), H(A) = R(A) holds, if and only if
H satisfies the following axiom:

(A, H(B)) = (B, H−1
� (A)), ∀A, B ∈ HF(U ).

Proof Sufficiency. Assume that (A, H(B)) = (B, H−1
� (A)),

∀A, B ∈ HF(U ). By Theorem 5 and Properties (1) and (4)
in Property 4, we only need to prove that

(
C, H

(
∪
j∈J

(
̂

a j
m . . . a j

m ∩ A j

)))

=
(
C, ∪

j∈J

(
̂

a j
m . . . a j

m ∩ H
(
A j

)))
.

In fact, ∀C ∈ HF(U ), we have

(
C, H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

)))

=
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
, H−1

� (C)) by The assumption

= ∨
j∈J

(
̂

a j
1 . . . a j

m ∩ A j , H
−1
� (C)

)
by Property 4, (6)

= ∨
j∈J

(
a j
1 . . . a j

m �
(
A j , H

−1
� (C)

))
by Property 4, (5)

= ∨
j∈J

(
a j
1 . . . a j

m �
(
C, H−1

�
(
A j

)))
by The assumption

= ∨
j∈J

(
a j
1 . . . a j

m �
(
H−1

�
(
A j

)
,C

))
by Property 4, (1)

= ∨
j∈J

((
̂

a j
1 . . . a j

m ∩ H−1
�

(
A j

))
,C

)
by Property 4, (5)

=
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H−1
�

(
A j

))
,C

)
by Property 4, (6)

=
(
C, ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H−1
�

(
A j

)))
. by Property 4, (1)

Thus H satisfies H(A) = R(A), ∀A ∈ HF(U ).

Necessity. Noticing that for all B ∈ HF(U ), B =
∪

y∈U(̂hB(y) ∩ 1y), then

(A, H(B))

= ∨
x∈U

(
hA (x) � hH(B) (x)

)

= ∨
x∈U

⎛
⎝hA (x) � h

H

(
∪

y∈U
(

̂hB (y)∩1y
)) (x)

⎞
⎠

= ∨
x∈U

(
hA (x) � h ∪

y∈U
(

̂hB (y)∩H(1y)
) (x)

)
by Theorem 5

= ∨
x∈U

(
hA (x) �

(
∨
y∈U

(
hB (y) � hH(1y) (x)

)))

= ∨
x∈U ∨

y∈U

(
hA (x) �

(
hB (y) � hH(1y) (x)

))
= ∨

y∈U ∨
x∈U

(
hB (y) � hA (x) � hH(1y) (x)

)

= ∨
y∈U

(
hB (y) �

(
∨

x∈U

(
hA (x) � hH(1y) (x)

)))

= ∨
y∈U

(
hB (y) � H−1

� (A) (y)
)

by Definition 10

=
(
B, H−1

� (A)
)

by Definition 9

Thus H satisfies (A, H(B)) = (B, H−1
� (A)), ∀A, B ∈

HF(U ). ��

4 Single axiomatic characterization of
special hesitant fuzzy rough
approximation operators

4.1 Single axiom for serial hesitant fuzzy rough
approximation operators

In this subsection, we will study how to use a single axiom
to characterize the hesitant fuzzy rough approximation oper-
ators generated by a serial hesitant fuzzy relation. We give
the following results.

Theorem 8 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a serial hesitant fuzzy relation R
on U such that ∀A ∈ HF(U ), L(A) = R(A) holds, if and
only if L satisfies the following axiom:

(U − L(∅)) ∩ L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )

)

= ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )).

Where J is an index set, and ∀{a j
1 . . . a j

m} ∈ 2[0,1].
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Proof Firstly, we prove the necessity. Assume that there
exists a serial hesitant fuzzy relation R onU such that ∀A ∈
HF(U ), L(A) = R(A). By Theorem 2, L(∅) = R(∅) = ∅.

Thus

(U − L(∅)) ∩ L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= U ∩ L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )).

Secondly, we prove the sufficiency. Assume that L satis-

fies (U − L(∅))∩ L( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) = ∩
j∈J

(
̂

a j
1 . . . a j

m ∪
L(A j )). By taking J = {1}, A1 = ∅, a11 . . . a1m = 1
we have (U − L(∅)) ∩ L (̂1 ∪ ∅) = 1̂ ∪ L(∅), that is,
(U − L(∅)) ∩ L (̂1∪ ∅) = U thus L(∅) = ∅, by the assump-

tion, L( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) = ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )).

According to Theorem5, there exists a hesitant fuzzy relation
R on U such that ∀A ∈ HF(U ), L(A) = R(A). Therefore,
we conclude by Theorem 2 that R is serial. ��
Theorem 9 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a serial hesitant fuzzy relation R
onU such that H = R if and only if H satisfies the following
axiom:

(U − H(U )) ∪ H( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j ))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )).

Where J is an index set, and ∀{a j
1 . . . a j

m} ∈ 2[0,1].

Proof Assume that there exists a hesitant fuzzy relation R
such that ∀A ∈ HF(U ), H(A) = R(A). Then by Theorem
2, we have that H(U ) = R(U ) = U , thus U − H(U ) = ∅.
By Theorem 5, we see that H satisfies:

(U − H(U )) ∪ H( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j ))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )).

On the contrary, assume that L satisfies (U − H(U )) ∪
H( ∪

j∈J
(

̂

a j
1 . . . a j

m ∩ A j )) = ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )). By tak-

ing J = {1}, A1 = U , a11 . . . a1m = 0 we have (U −H(U ))∪
H (̂0∩U ) = 0̂∩ H(U ) = ∅, thus (U − H(U )) = ∅ ⇒ U =

H(U ). By the assumption, we conclude that

(U − H(U )) ∪ H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

= H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )

)
.

By Theorem 5, there exists a hesitant fuzzy relation R on
U such that ∀A ∈ HF(U ), H(A) = R(A). Moreover, by
Theorem 2, we conclude that R is serial. ��

4.2 Single axiom for reflexive hesitant fuzzy rough
approximation operators

In this subsection we will study how to use a single axiom
to characterize the hesitant fuzzy rough approximation oper-
ators generated by a reflexive hesitant fuzzy relation. The
results are summarized as follows.

Theorem 10 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a reflexive hesitant fuzzy relation R
on U such that L = R if and only if L satisfies the following
axiom:

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
=

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

))
.

Where A j ∈ HF(U ), J is an index set, and∀{a j
1 . . . a j

m} ∈
2[0,1].

Proof Firstly, we consider the necessity. If there exists a
reflexive fuzzy relation R on U such that ∀A ∈ HF(U ),
L(A) = R(A) holds, then we have by Theorem 2 that

∀A ∈ HF(U ), L(A) = R(A) ⊆ A. Therefore, (
̂

a j
1 . . . a j

m ∪
L(A)) ⊆ (

̂

a j
1 . . . a j

m ∪ A). By Theorem 5, we see that L
satisfies

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

)

=
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
∩

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

))
.

Next we consider the sufficiency. Assume that L satis-

fies L( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) = ( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) ∩

( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j ))). Where A j ∈ HF(U ), J is
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an index set, and ∀{a1 . . . am} ∈ 2[0,1]. By taking J =
{1}, a11 . . . a1m = 0 and A1 = B, B ∈ HF(U ) we have that
L (̂0 ∪ B) = (̂0 ∪ B) ∩ (̂0 ∪ L(B) ⇒ L(B) = B ∩ L(B).
Thus L(B) ⊆ B, by the assumption we conclude that

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

=
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
∩

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

))

= ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

)
.

By Theorem 5, there exists a hesitant fuzzy relation R
on U such that ∀A ∈ HF(U ), L(A) = R(A). Thus, we
conclude by Theorem 2 that R is reflexive. ��

Theorem 11 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a reflexive hesitant fuzzy relation
R onU such that ∀A ∈ HF(U ), H(A) = R(A) holds, if and
only if H satisfies the following axiom:

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

=
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
∪

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

)))
.

Where A j ∈ HF(U ), J is an index set, and∀{a j
1 . . . a j

m} ∈
2[0,1].

Proof Necessity. If there exists a reflexive hesitant fuzzy rela-
tion R on U such that ∀A ∈ HF(U ), H(A) = R(A) holds.
Then, by Theorem 2, we have ∀A ∈ HF(U ), A ⊆ R(A) =
H(A). Thus, we see by Theorem 5 that

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

))

=
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
∪

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

)))
.

Sufficiency. Assume that ∀A j ∈ HF(U ) and ∀{a1 . . . am}
∈ 2[0,1], H( ∪

j∈J
(

̂

a j
1 . . . a j

m ∩ A j )) = ( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j ))∪

( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j ))) holds. By taking J = {1},
a11 . . . a1m = 1 and A1 = B, B ∈ HF(U ) we have that
H (̂1∩ B) = (̂1∩ B) ∪ (̂1∩ H(B)) ⇒ H(B) = B ∪ H(B).

Hence, from the arbitrariness of B, it is easy to observe that

(
̂

a j
1 . . . a j

m ∩ A j ) ⊆ (
̂

a j
1 . . . a j

m ∩H(A j )). By the assumption,
we conclude that

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

=
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
∪ ( ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )

)
)

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j )).

By Theorem 5, there exists a hesitant fuzzy relation R on
U such that ∀A ∈ HF(U ), H(A) = R(A). Moreover, we
conclude by Theorem 2 that R is reflexive. ��

4.3 Single axiom for symmetric hesitant fuzzy rough
approximation operators

In this subsection we study how to use a single axiom to
characterize the hesitant fuzzy rough approximation opera-
tors generated by a symmetric hesitant fuzzy relation. We
first examine some properties of the lower and upper inverse
operators.

Theorem 12 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
operator. If L satisfies Eq. (1) of Theorem 5, then the follow-
ing statements are equivalent:

(1) hL(1U−{x})(y) = hL(1U−{y})(x), ∀x, y ∈ U.

(2) L(A) = L−1
� (A), ∀A ∈ HF(U ).

Proof (1) ⇒ (2) Noticing that for all A ∈ HF(U ), A =
∩

y∈U(̂hA(y) ∪ 1U−{y}), we have ∀x ∈ U that

L(A)(x) = L

(
∩

y∈U(hA(y) ∪ 1U−{y})
)

(x)

=
(

∩
y∈U

(
̂hA(y) ∪ L(1U−{y})

))
by Theorem 5

= �
y∈U

(hA(y) � hL(1U−{y})(x))

= �
y∈U

(hA(y) � hL(1U−{x})(y)) by (1)

= L−1
� (A)(x).

Therefore, L(A) = L−1
� (A), ∀A ∈ HF(U ).

(2) ⇒ (1) For any (x, y) ∈ U × U , since ∀A ∈
HF(U ), L(A) = L−1

� (A), we conclude by taking A =
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1U−{x} that

hL(1U−{x})(y) = hL−1
� (1U−{x})(y)

= [1U−{x}, L(1U−{y})]
= �

z∈U
(h1U−{x}(z) � hL(1U−{y})(z))

=
(

�
{z∈U |z �=x}

({1} � hL(1U−{y})(z))

)
� ({0}

� hL(1U−{y})(x))

= hL(1U−{y})(x).

��
Theorem 13 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator. If H satisfies Eq. (2) of Theorem 5, then the fol-
lowing statements are equivalent:

(1) hH(1{x})(y) = hH(1{y})(x), ∀x, y ∈ U.

(2) H(A) = H−1
� (A), ∀A ∈ HF(U ).

Proof (1) ⇒ (2) Since for all A ∈ HF(U ), A =
∪

y∈U(̂hA(y) ∩ 1y), then ∀x ∈ U we have that

H(A)(x) = H( ∪
y∈U(̂hA(y) ∩ 1y))(x)

= ( ∪
y∈U(̂hA(y) ∩ H(1y)))(x) by Theorem 5

= �
y∈U

(hA(y) � hH(1y)(x))

= �
y∈U

(hA(y) � hH(1x )(y)) by (1)

= H−1
� (A)(x).

As a result, H(A) = H−1
� (A), ∀A ∈ HF(U ).

(2) ⇒ (1)∀(x, y) ∈ U×U , since∀A ∈ HF(U ), H(A) =
H−1

� (A). By taking A = 1x , we have that

hH(1x )(y) = hH−1
� (1x )

(y)

= (1x , H(1y))

= �
z∈U

(h1x (z) � hH(1y)(z))

=
(

�
{z∈U |z �=x}

({0} � hH(1y)(z))

)

� ({1} � hH(1y)(x))

= hH(1y)(x).

��
Theorem 14 Let L : HF(U ) → HF(U ) be a hesi-
tant fuzzy operator, then there exists a symmetric hesitant

fuzzy relation R on U such that ∀A ∈ HF(U ), L(A) =
R(A) holds, if and only if L satisfies the following axiom:
∀{a1 . . . am}, {a j

1 . . . a j
m} ∈ 2[0,1], ∀A, A j ∈ HF(U ), j ∈ J ,

where J is an index set,

( ̂a1 . . . am ∪ L−1
� (A)) ∩ L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= (
̂a1 . . . am ∪ L(A)

) ∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

))
.

Proof Firstly, we prove the necessity. If there exists a sym-
metric hesitant fuzzy relation R onU such that∀A ∈ HF(U ),
L(A) = R(A) holds, then, we know that L satisfies Equa-
tion (1) of Theorem 5. Since the symmetry of R, we conclude
that hR(U−{x})(y) = hR(U−{y})(x), ∀(x, y) ∈ U × U . Thus
hL(1U−{x})(y) = hL(lU−{y})(x). Using Theorem 12 we have

L(A) = L−1
� (A), ∀A ∈ HF(U ). Hence, by equation (1) of

Theorem 5, we conclude that

(
̂a1 . . . am ∪ L−1

� (A)
)

∩ L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

= (
̂a1 . . . am ∪ L(A)

) ∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j )

))
.

Secondly, we prove the sufficiency. Assume that ∀A ∈
HF(U ), A j ∈ HF(U ), j ∈ J , where J is an index

set, and {a1 . . . am}, {a j
1 . . . a j

m} ∈ 2[0,1], ( ̂a1 . . . am ∪
L−1

� (A)) ∩ L( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) = ( ̂a1 . . . am ∪ L(A)) ∩

( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L(A j ))) holds. By taking a1 = . . . = am =

1 we have L( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j )) = ( ∩
j∈J

(
̂

a j
1 . . . a j

m ∪
L(A j ))). Thus by Theorem 5, there exists a hesitant fuzzy
relation R on U such that ∀A ∈ HF(U ), L(A) = R(A).
Then by taking J = {1}, a1 = . . . = am = a j

1 = . . . =
a j
m = 1, A = A1 we have

(̂1 ∪ L−1
� (A)) ∩ L (̂1 ∪ A)

= (̂1 ∪ L(A)) ∩ (̂1 ∪ L(A)) ⇒ 1̂ ∩ L (̂1) = 1̂,

thus L (̂1) = L(U ) = U .
On the other hand, by taking J = {1}, a1 = . . . = am = 0,

a11 = . . . = a1m = 1, A = A1, we have

(̂0 ∪ L−1
� (A)) ∩ L (̂1 ∪ A)

= (̂0 ∪ L(A)) ∩ (̂1 ∪ L(A)) ⇒ L−1
� (A) ∩ L(A) = L(A).

Therefore, we conclude L−1
� (A) = L(A), ∀A ∈ HF(U ).

By Theorem 12 we conclude that R is a symmetric hesitant
fuzzy relation. ��
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Theorem 15 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a symmetric hesitant fuzzy relation
R on U such that ∀A ∈ HF(U ), H(A) = R(A) holds, if
and only if H satisfies the following axiom: ∀{a1 . . . am},
{a j

1 . . . a j
m} ∈ 2[0,1], ∀A, A j ∈ HF(U ), j ∈ J , where J is

an index set,

( ̂a1 . . . am ∩ H−1
� (A)) ∪ H( ∪

j∈J
(

̂

a j
1 . . . a j

m ∩ A j ))

= ( ̂a1 . . . am ∩ H(A)) ∪ ( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j ))).

Proof If there exists a symmetric hesitant fuzzy relation R
onU such that ∀A ∈ HF(U ), H(A) = R(A) holds, then, we
know that H satisfies Equation (2) of Theorem 5. Since the
symmetry of R, we have hR(1x )

(y) = hR(1x )
(y), ∀(x, y) ∈

U ×U , thus, hH(1x )(y) = hH(1x )(y). Then by Theorem 13,
we have H(A) = H−1

� (A), ∀A ∈ HF(U ) holds. Hence, by
Equation (2) of Theorem 5, we conclude that

( ̂a1 . . . am ∩ H−1
� (A)) ∪ H( ∪

j∈J
(

̂

a j
1 . . . a j

m ∩ A j ))

= ( ̂a1 . . . am ∩ H(A)) ∪ ( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H(A j ))).

Conversely, assume that ∀A ∈ HF(U ), A j ∈ HF(U ),

j ∈ J , and {a1 . . . am}, {a j
1 . . . a j

m} ∈ 2[0,1], ( ̂a1 . . . am ∩
H−1

� (A))∪H( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j )) = ( ̂a1 . . . am ∩H(A))∪

( ∪
j∈J

(
̂

a j
1 . . . a j

m∩H(A j ))).holds.By takinga1 = . . . = am =

0 we have H( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j )) = ( ∪
j∈J

(
̂

a j
1 . . . a j

m ∩
H(A j ))). Thus, by Theorem 5, there exists a hesitant fuzzy
relation R on U such that ∀A ∈ HF(U ), H(A) = R(A)

holds. Then by taking J = {1}, a1 = . . . = am = a j
1 =

. . . = a j
m = 0, A = A1, we have

(̂0 ∩ H−1
� (A)) ∪ H (̂0 ∩ A)

= (̂0 ∩ H(A)) ∪ (̂0 ∩ H(A)) ⇒ H (̂0) = ∅.

On the other hand, by taking J = {1}, a1 = . . . = am = 1,
a11 = . . . = a1m = 0, A = A1, we have

(̂1 ∩ H−1
� (A)) ∪ H (̂0 ∩ A)

= (̂1 ∩ H(A)) ∪ (̂0 ∩ H(A)) ⇒ H−1
� (A) ∪ H (̂0) = H(A).

Therefore, we have that H−1
� (A) = H(A), ∀A ∈ HF(U ).

By Theorem 13, we conclude that hesitant fuzzy relation R
is symmetric. ��
Theorem 16 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a symmetric hesitant fuzzy relation

R on U such that ∀A ∈ HF(U ), L(A) = R(A) holds, if and
only if L satisfies the following axiom:

[A, L(B)] = [L(A), B], ∀A, B ∈ HF(U ).

Proof Necessity. If there exists a symmetric hesitant fuzzy
relation R on U such that L = R, then by Theorem 6 we
have that [A, L(B)] = [B, L−1

� (A)],∀A, B ∈ HF(U ). From

Theorems 2 and 12 we know that L = L−1
� . Thus we con-

clude that [A, L(B)] = [L(A), B], ∀A, B ∈ HF(U ).
Sufficiency. Assume that [A, L(B)] = [L(A), B], ∀A, B

∈ HF(U ) holds. For any A ∈ HF(U ) and x ∈ U , by taking
B = 1U−{x}. Then, by Definition 10 and Property 3, we
see that [A, L(B)] = [A, L(1U−{x})] = [L(1U−{x}), A] =
L−1

� (A)(x). On the other hand, [L(A), B] = [L(A), 1U−{x}]
= �

y∈U
(hL(A)(y) � h1U−{x}(y)) = �

{y∈U |y �=x}
(hL(A)(y) � 1) ∧

(hL(A)(x) � 0) = L(A)(x).
In summary L(A)(x) = L−1

� (A)(x), thus [A, L(B)] =
[L(A), B] = [B, L(A)] = [B, L−1

� (A)]. By Theorem 6,
there exists a hesitant fuzzy relation R onU such that L = R
holds. Then, by Theorems 2 and 12 we know that hesitant
fuzzy relation R is a symmetric hesitant fuzzy relation. ��

Theorem 17 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a symmetric hesitant fuzzy relation
R onU such that ∀A ∈ HF(U ), H(A) = R(A) holds, if and
only if H satisfies the following axiom:

(A, H(B)) = (H(A), B), ∀A, B ∈ HF(U ).

Proof Necessity. If there exists a symmetric hesitant fuzzy
relation R on U such that H = R, then by Theorem 7 we
have that (A, H(B)) = (B, H−1

� (A)), ∀A, B ∈ HF(U ).

From Theorems 2 and 13 we know that H = H−1
� . Thus we

conclude that (A, H(B)) = (H(A), B), ∀A, B ∈ HF(U ).
Sufficiency. Assume that (A, H(B)) = (H(A), B),

∀A, B ∈ HF(U ) holds. For any A ∈ HF(U ) and x ∈ U ,
by taking B = 1x . Then, by Definition 10 and Property 4,
we see that (A, H(B)) = (A, H(1x )) = (H(1x ), A) =
H−1

� (A)(x). On the other hand, (H(A), B) = (H(A), 1x ) =
�

y∈U
(hH(A)(y) � h1x (y)) = �

{y∈U |y �=x}
(hH(A)(y) � 0) ∨

(hL(A)(x) � 1) = H(A)(x).
In summary H(A)(x) = H−1

� (A)(x), thus (A, H(B)) =
(H(A), B) = (B, H(A)) = (B, H−1

� (A)). By Theorem 7,

there exists a hesitant fuzzy relation R onU such that H = R
holds. Then, by Theorems 2 and 13 we know that hesitant
fuzzy relation R is a symmetric hesitant fuzzy relation. ��
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4.4 Single axiom for transitive hesitant fuzzy rough
approximation operators

In this subsection we will study single axioms to character-
ize hesitant fuzzy rough approximation operators generated
by a transitive hesitant fuzzy relation. Axiomatic charac-
terizations of transitive hesitant fuzzy rough approximation
operators are summarized as follows.

Theorem 18 Let L : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a transitive hesitant fuzzy relation
R on U such that ∀A ∈ HF(U ), L(A) = R(A) holds, if and
only if L satisfies the following axiom: ∀A, A j ∈ HF(U ),

and ∀{a j
1 . . . a j

m} ∈ 2[0,1], j ∈ J , J is an index set,

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))

=
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
A j

)))
∩

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
L

(
A j

))))
.

Proof Firstly, we consider the necessity. If there exists a tran-
sitive hesitant fuzzy relation R onU such that ∀A ∈ HF(U ),
L(A) = R(A) holds, by Theorem 2, we have ∀A ∈ HF(U ),
R(A) ⊆ R(R(A)) i.e. L(A) ⊆ L(L(A)). Thus, we con-
clude that ( ̂a1 . . . am ∪ L(A)) ⊆ ( ̂a1 . . . am ∪ L(L(A))),
∀{a1 . . . am} ∈ 2[0,1]. Then by equation (1) of Theorem 5,
we conclude that

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
=

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
A j

)))

∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
L

(
A j

))))
.

Then we consider the sufficiency. Assume that L satisfies

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
=

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
A j

)))

∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
L

(
A j

))))
,

where ∀A, A j ∈ HF(U ), and ∀{a j
1 . . . a j

m} ∈ 2[0,1], j ∈ J ,
J is an index set. By taking J = {1}, a11 = . . . = a1m = 0,
A1 = A, ∀A ∈ HF(U ) we have

L (̂0 ∪ A) = (̂0 ∪ L(A)) ∩ (̂0 ∪ L(L(A))),

That is, L(A) = L(A) ∩ L(L(A)). Therefore, we conclude
that

(
̂

a j
1 . . . a j

m ∪ L(A)

)
⊆

(
̂

a j
1 . . . a j

m ∪ L(L(A))

)
,

thus equation (
̂

a j
1 . . . a j

m ∪ L(A)) = (
̂

a j
1 . . . a j

m ∪ L(A)) ∩
(

̂

a j
1 . . . a j

m ∪ L(L(A))) holds. Then we conclude that

L

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ A j

))
=

(
∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
A j

)))

∩
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
L

(
A j

))))

=
(

∩
j∈J

(
̂

a j
1 . . . a j

m ∪ L
(
A j

)))
.

Thus, by Theorem 5, there exists a hesitant fuzzy relation
R onU such that ∀A ∈ HF(U ), L(A) = R(A) holds, hence
wehave R(A) ⊆ R(R(A)),∀A ∈ HF(U ). Then byTheorem
2, that hesitant fuzzy relation R is transitive. ��
Theorem 19 Let H : HF(U ) → HF(U ) be a hesitant fuzzy
operator, then there exists a transitive hesitant fuzzy relation
R onU such that ∀A ∈ HF(U ), H(A) = R(A) holds, if and
only if L satisfies the following axiom: ∀A, A j ∈ HF(U ),

and ∀{a j
1 . . . a j

m} ∈ 2[0,1], j ∈ J , J is an index set,

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

)) ∪
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
H

(
A j

))))
.

Proof Necessity. If there exists a transitive hesitant fuzzy
relation R on U such that ∀A ∈ HF(U ), H(A) = R(A)

holds. By Theorem 2, we have ∀A ∈ HF(U ), R(R(A)) ⊆
R(A) i.e. H(H(A)) ⊆ H(A). Thus, we conclude that
( ̂a1 . . . am∩H(H(A))) ⊆ ( ̂a1 . . . am∩H(A)),∀{a1 . . . am} ∈
2[0,1]. Then by Equation (2) of Theorem 5, we conclude that

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
= ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

))

∪
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
H

(
A j

))))
.

Sufficiency. Assume that H satisfies

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
= ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

))

∪
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
H

(
A j

))))
.

By taking J = {1}, a11 = . . . = a1m = 1, A1 = A,
∀A ∈ HF(U ) we have

H (̂1 ∩ A) = (̂1 ∩ H(A)) ∪ (̂1 ∩ H(H(A))),

i.e. H(A) = H(A)∪H(H(A)). Therefore, we conclude that

(
̂

a j
1 . . . a j

m ∩ H(H(A))

)
⊆ (

̂

a j
1 . . . a j

m ∩ H(A)).
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Therefore, (
̂

a j
1 . . . a j

m ∩ H(A)) = (
̂

a j
1 . . . a j

m ∩ H(A)) ∪
(

̂

a j
1 . . . a j

m ∩ H(H(A))) holds. Then we conclude that

H

(
∪
j∈J

(
̂

a j
1 . . . a j

m ∩ A j

))
= ∪

j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

))

∪
(

∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
H

(
A j

))))

= ∪
j∈J

(
̂

a j
1 . . . a j

m ∩ H
(
A j

))
.

Thus, by Theorem 5, there exists a hesitant fuzzy relation
R onU such that∀A ∈ HF(U ), H(A) = R(A) holds. Hence
we have R(R(A)) ⊆ R(A),∀A ∈ HF(U ). Thus byTheorem
2, R is a transitive hesitant fuzzy relation. ��

5 Comparative analysis

In this section, we will compare and analyze the advantages
and disadvantages of fuzzy rough set, hesitant fuzzy set and
hesitant fuzzy rough set by some cases. Fuzzy rough set,
hesitant fuzzy set and hesitant fuzzy rough set are exten-
sively used in multi-criteria decision making, multi-attribute
decision making(MADM), attribute reduction, clustering
analysis and other fields. In solving the problem of MADM,
we often encounter the situation of hesitation in the deter-
mination of attribute value i.e. the attribute value is in the
form of hesitant fuzzy element. In view of the above situa-
tion, we redefine the similarity between two hesitant fuzzy
sets according to the reference Xu and Zhang (2013), and
obtain a measure-based hesitant fuzzy MADMmethod. The
approach involves the following steps:

Step 1Let Ai be the i-th alternative, c j be the i-th attribute.
Determining hesitant fuzzy decision matrix.

Step 2According to the decision matrix, the positive ideal
solution A+ and the negative ideal solution A− are calcu-
lated.

A+ =
{

�
i=1,2,...,n

hAi (c j )| j = 1, 2, . . . ,m

}

=
{{

∨
i=1,2,...,n

hσ(k)
Ai

(c j )|k = 1, 2, . . . , l(hAi (c j ))

}

| j = 1, 2, . . . ,m

}
, (3)

A− =
{

�
i=1,2,...,n

hAi (c j )| j = 1, 2, . . . ,m

}

=
{{

∧
i=1,2,...,n

hσ(k)
Ai

(c j )|k = 1, 2, . . . , l(hAi (c j ))

}

| j = 1, 2, . . . ,m

}
, (4)

where n is the number of alternatives andm is the number of
attributes.

Step 3 Calculate the separation measures d+
i and d−

i of
each alternative Ai from the positive ideal solution A+ and
the negative ideal solution A−, respectively.

d+
i (Ai , A

+) =
�

j=1,2,...,m

�
k

|hσ(k)
Ai

(c j )−hσ(k)
A+ (c j )|

l+

m
, k = 1, 2, . . . , l+,

(5)

d−
i (Ai , A

−) =
�

j=1,2,...,m

�
k

|hσ(k)
Ai

(c j )−hσ(k)
A− (c j )|

l−

m
, k = 1, 2, . . . , l−,

(6)

where l+ = max{l(hAi (c j )), l(hA+(c j ))}, l− = max{l
(hAi (c j )), l(hA−(c j ))}.

Step 4 Calculate the relative closeness and then select the
most desirable one. Obviously, the smaller the value of Ci

the better corresponding alternative Ai .

Ci = d+
i (Ai )

d+
i (Ai ) + d−

i (Ai )
. (7)

Next, the method is applied to an example in LI (2019) to
illustrate its effectiveness.

Example 1 This example analyzes the influencing factors of
the evaluation index of “postgraduate training”. Suppose that
there are four alternatives: A1: doctoral student scale; A2:
scale of master degree students; A3: outstanding achieve-
ments; A4: scientific research level and four attributes: c1:
academic output power; c2: academic influence power; c3:
academic innovation power; c4: academic growth power. The
hesitant fuzzy decision matrix for the above information is
given in Table 1.

Step 2 Utilize formulas (3) and (4) to determine the pos-
itive ideal solution A+ and the negative ideal solution A−,
respectively:

A+ = {{0.6, 0.5, 0.3}, {0.8, 0.6, 0.3},
{0.8, 0.7, 0.5, 0.4}, {0.8, 0.7, 0.6}},

A− = {{0.4, 0.3, 0.2, 0.1}, {0.5, 0.4, 0.2},
{0.6, 0.5, 0.4, 0.3, 0.2}, {0.6, 0.5, 0.3, 0.2}}.

Step 3 Utilize formulas (5) and (6) to calculate the sepa-
ration measures d+

i and d−
i of each alternative Ai from the

positive ideal solution A+ and the negative ideal solution A−,
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Table 1 The hesitant fuzzy
decision matrix

c1 c2 c3 c4

A1 {0.5, 0.3, 0.2} {0.8, 0.6, 0.3} {0.8, 0.7, 0.5, 0.3, 0.2} {0.6, 0.5, 0.4, 0.3, 0.2}
A2 {0.5, 0.4, 0.2, 0.1} {0.5, 0.4, 0.3, 0.2} {0.6, 0.5, 0.4, 0.3} {0.8, 0.6, 0.5, 0.4}
A3 {0.6, 0.5, 0.3} {0.6, 0.4, 0.2} {0.7, 0.6, 0.5, 0.3} {0.6, 0.5, 0.3, 0.2}
A4 {0.4, 0.3, 0.2} {0.6, 0.4, 0.3} {0.6, 0.5, 0.4} {0.8, 0.7, 0.6}

Table 2 The fuzzy decision
system

c1 c2 c3 c4 d

x1 0.8 0.1 0.1 0.5 1

x2 0.3 0.5 0.2 0.8 1

x3 0.2 0.2 0.6 0.7 0

x4 0.6 0.3 0.1 0.2 1

x5 0.3 0.4 0.3 0.3 0

respectively:

d+
1 = 0.08958, d+

2 = 0.13125,

d+
3 = 0.12917, d+

4 = 0.10625,

d−
1 = 0.13125, d−

2 = 0.0675,

d−
3 = 0.0708, d−

4 = 0.10667.

Step 4 The relative closenesses are calculated by formula (7):

C1 = 0.537549, C2 = 0.660377,

C3 = 0.641822, C4 = 0.499022.

Thus, C4 < C1 < C3 < C2. Obviously, A4 is the best
alternative. The results are consistent with those in reference
LI (2019).

We find that hesitant fuzzy membership function has a
certain subjective apriority. However, in rough set theory,
the upper and lower approximation operators are obtained by
objective calculation, so fuzzy rough set has a certain objec-
tivity in dealing with uncertain information. This objectivity
can be reflected by attribute reductionmethod based on fuzzy
rough set in reference Chen et al. (2019).

Example 2 Table 2 is a fuzzy decision system (U ,C ∪ {d}),
in which object set U = {x1, x2, . . . , x5}, attribute set C =
{c1, c2, . . . , c4}.

Next, use each attribute c j to define a fuzzy equivalence
relation R̃ j ,

R̃ j (xi , xi ′) =
{
min{c j (xi ), c j (xi ′)}, i �= i ′

1, i = i ′

The calculation is as follows.

R̃1 =

⎛
⎜⎜⎜⎜⎝
1 0.3 0.2 0.6 0.3

1 0.2 0.3 0.3
1 0.2 0.2

1 0.3
1

⎞
⎟⎟⎟⎟⎠

R̃2 =

⎛
⎜⎜⎜⎜⎝
1 0.1 0.1 0.1 0.1

1 0.2 0.3 0.4
1 0.2 0.2

1 0.3
1

⎞
⎟⎟⎟⎟⎠

R̃3 =

⎛
⎜⎜⎜⎜⎝
1 0.1 0.1 0.1 0.1

1 0.2 0.1 0.2
1 0.1 0.3

1 0.1
1

⎞
⎟⎟⎟⎟⎠

R̃4 =

⎛
⎜⎜⎜⎜⎝
1 0.5 0.5 0.2 0.3

1 0.7 0.2 0.3
1 0.2 0.3

1 0.2
1

⎞
⎟⎟⎟⎟⎠

Then construct fuzzy equivalence relation R̃ = ∩
j=1,2,...,4

R̃ j .

R̃ =

⎛
⎜⎜⎜⎜⎝
1 0.1 0.1 0.1 0.1

1 0.2 0.1 0.2
1 0.1 0.2

1 0.1
1

⎞
⎟⎟⎟⎟⎠

Obviously, the decision attribute d divides U into two
classes A = {x1, x2, x4}, B = {x3, x5}. From the definition
of fuzzy rough lower approximation defined by Chen et al.
(2019), the lower approximations of A and B with respect to
equivalence relation R̃ can be calculated: R̃∗A = 0.9

x1
+ 0.8

x2
+

0.9
x4
, R̃∗B = 0.8

x3
+ 0.8

x5
. Next, the fuzzy rough discernibility

matrix defined byChen et al. (2019)MC (D) can be calculated
as
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MC (D) =

⎛
⎜⎜⎜⎜⎝

23 23
123 3

234 123 1234
3 3

23 3 34

⎞
⎟⎟⎟⎟⎠

It is easy to get the unique relative reduction: {c3}.
In the process of attribute reduction, the lower approxima-

tion is obtained by objective calculation, so this method has
a certain objectivity. Next, the above fuzzy rough attribute
reduction method is extended to hesitant fuzzy environment.
The steps of hesitant fuzzy rough attribute reduction are for-
mulated as follows.

Step1Determininghesitant fuzzydecision system (U ,C∪
D).

Step 2 Calculating fuzzy equivalence relation R =
∩

j=1,2,...,4
R j , j = 1, 2, . . . ,m, m is the number of attributes.

hR j (xi , xi ′) =

⎧⎪⎨
⎪⎩
hc j (xi ) � hc j (xi ′) = {hσ(k)

c j (xi ) ∧ hσ(k)
c j (xi ′)

|k = 1, 2, . . . , l}, i �= i ′

1, i = i ′

(8)

where l = max{l(hc j (xi )), l(hc j (xi ′))}.
Step 3 Calculating the decision partition by (U ,C ∪ D)

and the hesitant fuzzy rough lower approximations for each
decision class, by Definition 7.

Step 4Determining the hesitant fuzzy rough discernibility
matrix HMc(D) = (cii ′).

cii ′ =
{

{c ∈ C |hRc
j
(xi , xi ′) ≥ λ(xi )}, D(xi ) �= D(xi ′)

∅, D(xi ) = D(xi ′)

(9)

where hRc
j
(xi , xi ′) =

�
k=1,2,...,l1

hσ(k)
Rc (xi ,xi ′ )

l1
, k = 1, 2, . . . , l1,

l1 = l(hRc(xi , xi ′)), λ(xi ) =
�

k=1,2,...,l2
hσ(k)
R∗([xi ]D )

(xi )

l2
, l2 =

l(hR∗([xi ]D)(xi )), [xi ]D is an equivalent class of decision
attributes.

If the membership degree of an object is given by several
experts, the fuzzy decision system will be transformed into
a hesitant fuzzy decision system. Obviously, fuzzy rough
set can’t solve the problem of attribute reduction in hesitant
fuzzy decision system, thus it is meaningful to extend fuzzy
rough set to hesitant fuzzy rough set.

Example 3 Several experts give themembership of the object
in Example 2, and the membership degree will be a hesitant
fuzzy element. The following Table 3 is a hesitant fuzzy deci-
sion system (U ,C ∪ D).

Step 2 Utilize formula (8) to calculate fuzzy equivalence
relation R j and R.

R1 =

⎛
⎜⎜⎜⎜⎝

{1} {0.3, 0.2} {0.3, 0.2} {0.6, 0.5} {0.4, 0.3, }
{1} {0.3, 0.2} {0.3, 0.2} {0.5, 0.4, 0.3}

{1} {0.3, 0.2} {0.3, 0.2}
{1} {0.3, 0.2}

{1}

⎞
⎟⎟⎟⎟⎠

R2 =

⎛
⎜⎜⎜⎜⎝

{1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1}
{1} {0.3, 0.2} {0.3, 0.2} {0, 5, 0.4, 0.3}

{1} {0.3, 0.2} {0.3, 0.2}
{1} {0.3, 0.2}

{1}

⎞
⎟⎟⎟⎟⎠

R3 =

⎛
⎜⎜⎜⎜⎝

{1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1}
{1} {0.3, 0.2, 0.1} {0.2, 0.1} {0.3, 0.2, 0.1}

{1} {0.2, 0.1} {0.3, 0.2}
{1} {0.2, 0.1}

{1}

⎞
⎟⎟⎟⎟⎠

R4 =

⎛
⎜⎜⎜⎜⎝

{1} {0.6, 0.5, 0.4} {0.6, 0.5, 0.4} {0.3, 0.2} {0.3, 0.2, 0.1}
{1} {0.8, 0.7} {0.3, 0.2} {0.3, 0.2, 0.1}

{1} {0.3, 0.2} {0.3, 0.2, 0.1}
{1} {0.3, 0.2, 0.1}

{1}

⎞
⎟⎟⎟⎟⎠

R =

⎛
⎜⎜⎜⎜⎝

{1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1} {0.2, 0.1}
{1} {0.3, 0.2, 0.1} {0.2, 0.1} {0.3, 0.2, 0.1}

{1} {0.2, 0.1} {0.3, 0.2, 0.1}
{1} {0.2, 0.1}

{1}

⎞
⎟⎟⎟⎟⎠

Step 3 Obviously, the decision attribute d divides U into
two classes A = {x1, x2, x4}, B = {x3, x5}. By Defini-
tion 7, the lower approximations of A and B with respect
to can be calculated R∗A = {0.9,0.8}

x1
+ {0.9,0.8,0.7}

x2
+ {0.9,0.8}

x4
,

R∗B = {0.9,0.8,0.7}
x3

+ {0.9,0.8,0.7}
x5

. Next, calculate the fuzzy
rough discernibility HMC (D) by formula (9):

HMC (D) =

⎛
⎜⎜⎜⎜⎝

23 23
3 34

23 3 3
3 3

234 34 34

⎞
⎟⎟⎟⎟⎠

Obviously, the unique relative reduction is {c3}.
To sum up, when solving the problem of attribute reduc-

tion in hesitant fuzzy environment, integrating the objectivity
of fuzzy rough set into hesitant fuzzy rough set can make the
final result objective.

6 Conclusion

In the development of hesitant fuzzy rough set theory, the
axiomatization of approximation operator is a significant
direction to research the mathematical structure of hesitant
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Table 3 The hesitant fuzzy
decision system

c1 c2 c3 c4 d

x1 {0.8, 0.7, 0.6} {0.2, 0.1} {0.2, 0.1} {0.6, 0.5, 0.4} 1

x2 {0.3, 0.2} {0.6, 0.5, 0.4} {0.3, 0.2, 0.1} {0.9, 0.8} 1

x3 {0.3, 0.2} {0.3, 0.2} {0.8, 0.7, 0.6} {0.8, 0.7} 0

x4 {0.6, 0.5} {0.3, 0.2} {0.2, 0.1} {0.3, 0.2} 1

x5 {0.4, 0.3, 0.2} {0.5, 0.4, 0.3} {0.3, 0.2} {0.3, 0.2, 0.1} 0

fuzzy rough set. The preponderance of axiomatic charac-
terization is that it focuses on the algebraic properties of
approximation operators, and it also lays a foundation for
further research on uncertainty theory.

The axiomatic characterization of hesitant fuzzy rough
approximation operator was first studied by Yang and Song
(2014). Furthermore, Zhang et al. (2019) improved Yang’s
model of hesitant fuzzy rough sets such that any two hes-
itant fuzzy sets are antisymmetric. In this paper, based on
the new hesitant fuzzy rough set model proposed by Zhang
et al. (2019), by defining the inner product and outer prod-
uct operations between two hesitant fuzzy sets, the single
axiomatic characterization of the classical hesitant fuzzy
approximation operators is obtained. Besides, we study the
single axiomatic characterization that the upper and lower
approximation operators generated by fuzzy preference rela-
tion satisfy sequence, reflexivity, symmetry and transitivity
respectively. Finally, we compare and analyze the advantages
and disadvantages of hesitant fuzzy set, fuzzy rough set and
hesitant fuzzy rough set by some cases.
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