
OPTIMIZATION

A meta-heuristic density-based subspace clustering algorithm for high-
dimensional data

Parul Agarwal1 • Shikha Mehta1 • Ajith Abraham2

Accepted: 11 June 2021 / Published online: 21 June 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Subspace clustering is one of the efficient techniques for determining the clusters in different subsets of dimensions.

Ideally, these techniques should find all possible non-redundant clusters in which the data point participates. Unfortunately,

existing hard subspace clustering algorithms fail to satisfy this property. Additionally, with the increase in dimensions of

data, classical subspace algorithms become inefficient. This work presents a new density-based subspace clustering

algorithm (S_FAD) to overcome the drawbacks of classical algorithms. S_FAD is based on a bottom-up approach and finds

subspace clusters of varied density using different parameters of the DBSCAN algorithm. The algorithm optimizes

parameters of the DBCAN algorithm through a hybrid meta-heuristic algorithm and uses hashing concepts to discover all

non-redundant subspace clusters. The efficacy of S_FAD is evaluated against various existing subspace clustering algo-

rithms on artificial and real datasets in terms of F_Score and rand_index. Performance is assessed based on three

parameters: average ranking, SRR ranking, and scalability on varied dimensions. Statistical analysis is performed through

the Wilcoxon signed-rank test. Results reveal that S_FAD performs considerably better on the majority of the datasets and

scales well up to 6400 dimensions on the actual dataset.

Keywords Subspace clustering algorithm � High dimensional clustering � Meta-heuristic algorithm � Wilcoxon signed-rank

test � Success rate ratio ranking � Average ranking

1 Introduction

High-dimensional data mean data with numerous features.

High-dimensional data exist in various domains like rec-

ommendation systems, microarray data, social media data,

and many more. Its rapid growth is seeking the attention of

researchers and scientists for the last 2 decades (Steinbach

et al. 2003; Kriegel et al. 2009). Clustering is a technique

of finding groups of similar data based on their attributes.

Effective clustering of the high-dimensional dataset is an

important research issue in the field of data mining

(Abualigah et al. 2020; Abualigah 2019). It has many

challenges. Traditional clustering algorithms like K-Means,

DBSCAN, OPTICS, etc., (Fahad et al. 2014) perform

clustering in full-dimensional space. These algorithms

attempt to find the cluster using all attributes given for each

object of data. However, it becomes computationally

expensive to apply these algorithms in the case of a large

number of attributes/dimensions. This problem is called the

‘‘curse of dimensionality’’ (Steinbach et al. 2004). One of

the reasons for this problem is that distance measure loses

its importance as data points are sparse in high dimensional

space. Clusters in such high-dimensional space remain

hidden under few relevant dimensions. Such relevant

dimensions i.e., subsets of features are called subspaces.

Irrelevant dimensions and noise completely mask the true

clusters. Thus, classical clustering algorithms fail to

& Parul Agarwal

parul.agarwal@jiit.ac.in

Shikha Mehta

shikha.mehta@jiit.ac.in

Ajith Abraham

abraham.ajith@gmail.com

1 Department of Computer Science and Information

Technology, Jaypee Institute of Information Technology,

Sector-62, Noida, India

2 Machine Intelligence Research Labs (MIR Labs, Scientific

Network for Innovation and Research Excellence Auburn,

Washington, USA

123

Soft Computing (2021) 25:10237–10256
https://doi.org/10.1007/s00500-021-05973-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2262-0721
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-05973-1&domain=pdf
https://doi.org/10.1007/s00500-021-05973-1

determine clusters lying in different subspaces. One of the

efficient ways of performing clustering in high-dimensional

data is subspace clustering.

Data mining research communities have given a number

of techniques to perform clustering in high-dimensional

data (Assent 2012; Abualigah et al. 2021a, b). To deter-

mine clusters lying in different subsets of dimensions,

subspace clustering algorithms (Domeniconi et al. 2004;

Parsons et al. 2004) are employed. Subspace clustering

determines a similar group of objects in a set of relevant

dimensions of the dataset. Subspace clustering algorithms

are broadly classified into two categories: Hard subspace

and soft subspace (Deng et al. 2016). Hard subspace

determines precise subspaces for various clusters. How-

ever, subspaces can be overlapping on various clusters.

Müller et al. (2009a, b) divided hard subspace clustering

algorithms into three categories: cell-based algorithms,

density-based algorithms, and clustering-oriented based

algorithms. In order to obtain better subspace clusters,

researchers developed a number of algorithms in the lit-

erature. Some of the relevant work is discussed below.

The evolutionary algorithm has been incorporated to

form effective subspace clusters (Agarwal and Mehta

2014, 2017; Abualigah et al. 2021a, b). The first study in

this field was made by Sarafis et al. (2003). Authors

inculcated genetic operators for determining subspaces in

the subspace clustering algorithm. The experiment is per-

formed on 80-dimensional datasets but not compared with

existing algorithms. In Lu et al. (2011) introduced a tech-

nique for soft projected clustering of high-dimensional data

using particle swarm optimization algorithm (PSO). The

algorithm addresses the problem of variable weighting in

the projected clustering approach. The algorithm is evalu-

ated up to a 2000-dimensional dataset. Timmerman et al.

(2013) presented a new variant of the subspace k-means

algorithm for shaping clusters in all dimensions. The pro-

posed algorithm was assessed against k-means, factorial

k-means, mixture factor analysis, and reduced k-means.

The evaluation was made on adjusted rand_index and

cluster variance on a 9-dimensional dataset only. Lin et al.

(2014)suggested an evolutionary approach for determining

subspaces. In order to improve clustering quality, the

algorithm uses a hybrid genetic algorithm where local

search is performed by PSO. The efficacy of the algorithm

is assessed upon an error rate of up to 13-dimensional

problems. Kaur and Datta (2015) presented an extended

version of the SUBSCALE algorithm. The algorithm is

examined based on F_Score up to 6144-dimensional

dataset. However, no result of 6144-dimensional dataset is

depicted in the paper. In Kumar et al. (2016) projected the

clustering algorithm to address the issues of big data. The

algorithm (clusiVat) is compared with four existing algo-

rithms on the basis of rand_index and time for

500-dimensional data only. A survey on nature-inspired

algorithms with evolutionary strategies and applications is

illustrated in Agarwal and Mehta (2014). A comprehensive

analysis of nature-inspired algorithms is shown in Agarwal

and Mehta (2017). Comparative analysis of these algo-

rithms on clustering is depicted in Agarwal and Mehta

(2015). To improve clustering quality, an enhanced version

of the flower pollination algorithm is also employed

(Agarwal and Mehta 2016). Zhong and Pun (2020) have

given a subspace algorithm to find similarities in data

points and perform feature selection. The algorithm nor-

malizes the column values and does not find overlapping

clusters. The maximum dimensions evaluated were 6000.

Yan et al. (2020) have proposed a multi-view subspace

clustering algorithm which is an extended version of the K-

means algorithm. Clusters formed are mostly of spherical

shape and include all samples hence maximal subspaces

along with overlapping clusters and noisy points could not

be found. An extended version of high dimensional data

clustering using multivariate t-distribution is given by

Pesevski et al. (2018). The algorithm is evaluated on low

dimension datasets i.e., maximum 8 dimensions. A novel

subspace clustering technique for large number of samples

is given by Liu et al. (2020). Though algorithm discovers

clusters in low time complexity, yet overlapping clustering

could not be found. Another low rank subspace clustering

algorithm is given by Zhao et al. (2019). Maximum

dimensions evaluated are in hundreds only. Also, the

algorithms developed are not compared with conventional

subspace clustering algorithms.

Though various subspace clustering algorithms have

been developed yet there exist many challenges in finding

subspace clusters in high-dimensional data. There is scope

for improvement in clustering quality and finding over-

lapping subspace clusters. Existing algorithms are unable

to find maximal subspace i.e., subspaces without redundant

information. It should exclude noisy data points from

clusters. Existing hard subspace clustering algorithms are

not able to deal with high-dimensional data i.e., data with

thousands of attributes. Most of the existing studies for

high-dimensional clustering have been assessed on few

hundreds of attributes only. Additionally, these algorithms

require normalization of data in range 0–1 before per-

forming clustering. Normalization is usually min–max type

and does not handle outliers properly. Also, existing

algorithms have limited capability to find clusters of varied

densities. Generally, clusters found in subsets of dimen-

sions are of the same density. This might cause few

redundant data points to be included in a cluster or some

relevant points left out from the cluster.

The above reasons draw the motivation for developing a

new subspace clustering algorithm. This paper is an

extended version of work presented in Agarwal and Mehta

10238 P. Agarwal et al.

123

(2019b). In previous work (Agarwal and Mehta 2019b), the

subspace algorithm presented is integrated with a differ-

ential evolution algorithm. However, the algorithm gets

stuck in local solutions due to its limited capability to

explore the complete search space. Also, it lags in main-

taining a judicious balance of exploration and exploitation.

One of the reasons is that the parameters of DBSCAN are

not well found. These shortcomings are taken care in the

presented work. Thorough analysis of the results and sta-

tistical analysis substantiates the performance of S_FAD

with respect to subspace_DE (subspace with differential

evolution) (Agarwal and Mehta 2019b) and other subspace

clustering variants.

In this work, a hybrid meta-heuristic subspace clustering

algorithm named S_FAD is proposed. In S_FAD, a self-

tuned DBSCAN algorithm is used to perform clustering. It

begins clustering with one-dimensional data, once clusters

in each dimension are formed, their details are stored in the

hash table. S_FAD uses the concept of hashing for finding

maximal subspace clusters. In each maximal subspace,

DBSCAN algorithm is executed to form clusters. It

employs a bottom-up subspace search method to determine

subspaces. The self-tuned version of the DBSCAN algo-

rithm is introduced in this work, wherein input parameters

of the DBSCAN algorithm are automatically determined

based on the dataset. This is achieved by a hybrid meta-

heuristic algorithm named as FAD algorithm (Agarwal and

Mehta 2019a). The FAD is a combination of flower polli-

nation, artificial bee colony, and differential evolution

algorithm (named ABC_DE_FP in Agarwal and Mehta

2019a). Experimentally it is observed that the S_FAD

algorithm can find clusters up to 6400-dimensional dataset.

It overcomes the shortcomings of the bottom-up approach

by automatically determining the optimized parameters

suitable for a given dataset. It is successful in determining

the overlapping subspace clusters. Also, the algorithm does

not need any parameter priory such as the number of

clusters or number of subspaces. S_FAD eliminates

duplicate subspaces by determining the maximal subspaces

through hashing. It obtains all possible clusters where each

data point participates. Along with it, S_FAD does not

normalize the original dataset as done by most of the

subspace clustering algorithms and finds arbitrary-shaped

clusters of varied densities.

Performance of S_FAD is evaluated on standard artifi-

cial and actual datasets and compared with various con-

ventional subspace clustering algorithms. Evaluation

parameters for assessing the performance of the S_FAD

algorithm are F_Score and rand_index. Using F_Score and

rand_index, S_FAD is judged on the following measures:

(a) Average ranking, (b) Success rate ratio ranking,

(c) Wilcoxon signed-rank test, (d) Scalability in terms of

dimensions. Results demonstrate that the proposed

algorithm (S_FAD) is able to handle the challenges of

subspace and high-dimensional clustering considerably.

The paper is organized under various sections. Section 2

describes the proposed algorithm in detail along with

pseudocode. The experimental setup is depicted in Sect. 3.

Section 4 shows experimental results and the analysis of

algorithms. Section 5 finally concludes the paper.

2 Subspace clustering in high-dimensional
data

Clusters in high-dimensional data are mostly present in low

dimension data. These dimensions may vary from cluster to

cluster. Hence subspace clustering plays an important role

in performing clustering in high-dimensional data. Algo-

rithms on subspace clustering explore the subspaces

existing in datasets with two different search techniques

(Parsons et al. 2004). These are top-down and bottom-up

subspace search methods. The top-down approach is an

iterative method that starts by finding clusters with full

dimensions assuming all dimensions are of equal weights.

Thereafter, according to the clusters formed, each dimen-

sion is allotted a certain weight. The modified weights of

dimensions are used in the successive iteration for gener-

ating new clusters. The most crucial input parameter is the

size of subspaces which is difficult to determine at an early

stage. This approach has the drawback of finding disjoint

subspaces of equal size. Some top-down-based search

algorithms (Parsons et al. 2004) are PROCLUS, FINDIT,

ORCLUS, etc. The bottom-up search method starts clus-

tering from a single dimension. It follows the Apriori

principle to reduce the search space. Only those dimensions

containing dense units participate in the formation of

higher subspaces. This approach finds overlapping clusters

and subspace clusters of arbitrary shape. Input parameters

used in this approach are density threshold and grid size.

CLIQUE, DOC, etc., are subspace algorithms of a bottom-

up approach.

2.1 Proposed algorithm (S_FAD)

A novel density-based meta-heuristic subspace clustering

algorithm is proposed for clustering high-dimensional data.

The naming convention provided to this algorithm is

S_FAD (subspace FAD) for ease of representation and

comparison. S_FAD algorithm is inspired by Kaur and

Datta (2015) and uses a bottom-up strategy of subspace

clustering (Parsons et al. 2004) which is based on the

Apriori principle (Agrawal et al. 1996). Accordingly, the

data points that do not participate in lower-dimensional

clustering are eliminated from high-dimensional subspace

clustering.

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10239

123

As shown in Fig. 1, the algorithm begins by performing

clustering on each attribute of the dataset (taking all tuples)

using a self-tuned DBCAN algorithm (explained in the

next subsection). Prior to clustering, every data point is

allotted a large unique arbitrary integer named as the sig-

nature. In the S_FAD, this signature is considered as 15

digits natural number generated randomly for each

record/tuple in the dataset. The signature of a cluster is the

sum of signatures of data points belonging to the cluster.

The large number is considered to avoid identical signa-

tures of clusters. Cluster signatures act as the key to the

hash table. The clustered data points with summation of

signatures (of respective data points) and dimensions are

noted in the hash table. The signature of dense points forms

the search key of the hash table. If any entered signatures in

the hash table are the same, then attributes are combined in

a single entry as shown in Fig. 2. (Signatures are merely

used to match the same clusters formed in the various

attributes. Instead of matching each data point, signatures

are matched.) This step ensures that attributes merged are

part of the same subspace. Thereafter rows with the same

subspaces/dimensions in the hash table are merged. Thus,

relevant maximum subspaces are created with dense points.

Thereafter, clustering in each subspace is performed to find

dense units by a self-tuned DBSCAN algorithm. Final

clusters in high-dimensional datasets are obtained in each

subspace.

Pseudocode of the S_FAD is presented in Algorithm 1.

Assume a given dataset is X with m tuples and n attributes

represented as {d1, d2, d3,…,dn).

2.2 Self-tuned DBSCAN using FAD

In the proposed algorithm, the DBSCAN (Density-based

spatial clustering of applications with noise) algorithm is

used to perform clustering in each dimension of the data as

well as in maximal subspaces formed in a hash table. The

advantage of the DBSCAN algorithm over the partition-

based algorithm (Fahad et al. 2014) is that it has the ability

to find clusters of arbitrary shapes and detect noisy points.

10240 P. Agarwal et al.

123

Moreover, it clusters the datasets even without any former

information of a number of clusters. Two input parameters

used in the DBSCAN algorithm are epsilon (e) and MinPts

(s). e is the distance measured between two points to form a

neighborhood. MinPts is the minimum number of points to

form a cluster in the neighborhood of any points within e
distance. The efficacy of the DBSCAN algorithm largely

depends on the input parameters e and MinPts. These are

the sensitive parameters that vary from data to data and are

hard to determine priory. Thus, with respect to datasets, the

optimized values of these parameters are determined by a

proposed meta-heuristic algorithm named FAD algorithm.

Hence, DBSCAN is named here as self-tuned DBSCAN as

parameters are self-tuned in the algorithm.

FAD is a swarm intelligence-based algorithm which is

an amalgamation of flower pollination (FP) (Yang

2012a, b), artificial bee colony algorithm (ABC) (Karaboga

and Basturk 2007), and differential evolution (DE) (Storn

and Price 1997) algorithm. FAD is a name given to the

binary version of ABC_DE_FP algorithm (Agarwal and

Mehta 2019a) which was developed for a continuous

optimization problem. It was established that ABC_DE_FP

performed better as compared to existing meta-heuristic

algorithms (Agarwal and Mehta 2019a) on complex

benchmark functions. Hence binary version of the algo-

rithm is developed to optimize the parameter values of the

DBSCAN algorithm i.e., Minpts and e.

The FAD algorithm encodes each individual of the

population in binary form. Each individual represents

MinPts in bit string format (Karami and Johansson 2014).

(Since MinPts represent a discrete value hence binary

version is applied instead of continuous version). The

number of dimensions ‘D’ is the number of bits required to

represent a decimal number (MinPts). In FAD, the popu-

lation of individuals is randomly initialized. Each indi-

vidual represents the food source. The fitness of the food

source is computed through an objective function. Here

purity (shown in Eq. (1) is the objective function used to

get the best values of MinPts and e. Purity is an external

validation criterion for measuring the quality of clusters

formed. Higher the purity, better the Minpts and e. To

compute purity, the most frequent class in a cluster is

assigned to that cluster. Thereafter, the correctness of the

class assignment to a cluster is determined by counting the

number of data points assigned appropriately divided by a

total number of points in the dataset ‘N’.

purity ¼
Pk

j¼1 max1\i\l classi \ clusterj
� �

N
ð1Þ

where k is the actual cluster number, ith is the class already

defined in the dataset and jth is the cluster formed from the

clustering algorithm. The numerator term of Eq. (1) sig-

nifies that jth cluster has a majority of data points of ith

class such that ith class is assigned to jth cluster.

Fig. 1 Clustering in single-

dimensional data

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10241

123

The working of FAD algorithm is divided into three

phases: Employed bee, onlooker bee, and scout bee. In the

employed bee phase, each food source is updated with

mutation (Eq. 2) and crossover strategies (Eq. 3) of dif-

ferential evolution algorithm:

vi ¼ xa þ F � xb � xcð Þ ð2Þ

where vi is the mutant food source, i = 1, 2,…N, xa, xb, and

xc are all distinct initial (target) food sources of the same

population such that xa, xb, xc [N. Also, i is different from

a, b and c. F is a scaling factor. In the present algorithm, F

is randomly generated between the uniform distribution

range betamin and betamax. Crossover is performed on

mutant and target food source. New food source generated

is called trial food source uij.

uij ¼
vij; if rand 0; 1½ � �Crorj ¼¼ jrand
xij; otherwise

�

ð3Þ

where j is the selected index of dimension D, jrand is ran-

domly chosen index from 1 to D. This is made to ensure

that resultant vector uij receives the minimum single

mutant vector vij. Cr is the rate of crossover which controls

the choice of target or mutant vectors. Fitness of the

updated solution is computed in the form of purity. If the

purity value (fitness value) of the new solution is better

than solution is updated in the population else its trial value

is incremented by 1. Trial represents a counter maintained

for each food source in the population. If a food source gets

updated in the population, then its respective trial is reset to

0 else it is incremented. After the employed bee phase,

food sources are updated in the onlooker bee phase. In this

phase, the global and local search of food sources is con-

trolled by switch probability p. Global search is made

through the global pollination process of flower pollination

algorithm (using Eq. 4)

xtþ1
i ¼ xti þ L xti � g�

� �
ð4Þ

where xti is the ith food source at tth generation, g� is the

current best food source and L is a levy flight distribution

given in Pavlyukevich (2007), Yang (2012a, b). If the

algorithm switches to the local search process, then the

mutation strategy of DE given in Eq. (2) is applied.

Thereafter crossover technique of DE given in Eq. (3) is

applied to obtain the new food source. If the fitness of the

food source is improved then it is updated in a population

otherwise its trial counter is incremented. Food sources

with the highest fitness value (nectar amount) are memo-

rized. If the trial counter of any food source outstrips the

Fig. 2 S_FAD algorithm

10242 P. Agarwal et al.

123

Limit value, then that particular food source is discarded

and the scout bee explores for a new food source. The

process continues unless the termination condition is sat-

isfied. Here, termination condition is maximum iterations.

For calculating the fitness value of any food source, e is
calculated using respective Minpts. Epsilon value (e) is

determined analytically (Daszykowski et al. 2001) from

Minpts and data matrix x using the following Eq. (5):

Eps ¼
Qmax xð Þ�min xð Þ

i¼1 i
� �

� k � C 0:5nþ 1ð Þ

m
ffiffiffiffiffi
pn

p

0

@

1

A

1=n

ð5Þ

where m is the number of tuples and n is the dimension of

each tuple of data matrix x. k is the MinPts, C is a gamma

function which generalizes the factorial of a given

argument.

FAD algorithm initializes the following input

parameters:

• Iterations Number of times each individual is updated

by an algorithm.

• D Number of bits used to represent MinPts.

• N Population size

• betamin, betamax Range of solution

• Trial a counter incremented when a solution does not

improve

• Limit threshold value for calling scout bees (randomly

initializing individual)

• p switch probability for selecting local and global

search

The flowchart of FAD is shown in Fig. 3. In DE, there

are only two update functions of chromosomes i.e., muta-

tion and crossover. While in FAD, there are three phases

where mutation and crossover are used for exploitation,

levy flight distribution is used for exploration. These steps

in FAD algorithms help in maintaining an appropriate

balance between the local and global search and hence give

better results as compared to DE.

3 Experimental setup

The proposed algorithm (S_FAD) is compared with various

well-known subspace clustering algorithms on actual as

well as artificial datasets. Existing subspace algorithms

(Müller et al. 2009a, b) compared are SCHISM (Sequeira

and Zaki 2004), CLIQUE (Road and Jose 1998), MINE-

CLUS (Yiu and Mamoulis 2003), DOC (Procopiuc 2002),

INSCY (Assent et al. 2008), SUBCLU (Kailing et al.

2004), FIRES(Kriegel et al. 2005), P3C (Moise et al.

2006), PROCLUS (Aggarwal et al. 1999), and STATPC

(Moise and Sander 2008). S_FAD is also compared with

the subspace clustering algorithm given by (Kaur and Datta

2015) called SUBSCALE algorithm and (Agarwal and

Mehta 2019b) named SUBSPACE_DE. Conventional

subspace clustering algorithms are implemented on an

extended WEKA toolbox provided by (Müller et al.

2009a, b). This toolbox provides space for executing var-

ious subspace clustering algorithms. S_FAD, SUBSCALE,

and SUBSPACE_DE algorithms are implemented on

MATLAB R2013a. Evaluation metrics, parameter setting

and dataset description used for comparison are described

in subsections.

3.1 Evaluation metrics

Performance evaluation of the proposed algorithm

(S_FAD) against various subspace clustering algorithms is

made through classification. The true cluster labels (T) for

data items in each dataset are already known. Each algo-

rithm predicts the label for each data item in the dataset.

Predicted and true labels for each data item in the dataset

form a confusion matrix. This confusion matrix helps in

determining various evaluation measures of clustering. In

this study, evaluation measures used for testing the per-

formance of S_FAD against various subspace algorithms

are rand_index and F_Score. Subsequently average ranks

and success rate ratio ranks are computed using F_Score

and rand_index. Evaluation measures employed are briefly

described as below:

• Rand index- It is the evaluation measure for determin-

ing the quality of clusters formed by the clustering

algorithm. It is defined by the ratio of correctly labeled

data items to the total number of data items. Higher the

rand_index, betters the algorithm. A good clustering

algorithm predicts the cluster that best portrays the true

cluster and thus posses’ high-quality clusters.

• F Score- This measure defines that the predicted cluster

should cover maximum data items from the true cluster

and minimum items from other clusters (Müller et al.

2009a, b). F_Score is expressed in Eq. (6):

Fscore ¼ 1

m

Xm

i¼1

2 � recallðTiÞ � precisionðTiÞ
recallðTiÞ þ precisionðTiÞ

ð6Þ

where ‘m’ is the number of true clusters. High precision

corresponds to the least number of items from another

cluster, while high recall signifies maximum coverage

of items from the true cluster. High F_Score denotes

good clustering quality.

• Average ranks- Average ranking is the primitive and

simple method to rank algorithms. This ranking is

defined in Brazdil and Soares (2000). According to this

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10243

123

method, the rand_index and F_Score defined for each

dataset by every algorithm are sorted and assigned the

ranks. It is worth noting that the F_Score and rand_in-

dex are treated independently while ranking the algo-

rithms. The algorithm possessing the highest value will

be assigned rank 1,the second-highest will be assigned

rank 2, and so on for each dataset independently.

Thereafter, the overall average rank of each algorithm is

computed by taking the mean of ranks on all datasets.

Let us consider rij be the jth algorithm rank for ith

dataset. The average rank of each algorithm on total ‘n’

datasets is computed using the following Eq. (7):

rj ¼
Pn

i¼1 r
i
j

n
ð7Þ

• Success Rate Ratio Ranks (SRR)- SRR is a ranking

method where the ratio of success rates is considered

between the pairs of algorithms (Brazdil and Soares

2000). This method is useful in estimating the magni-

tude of difference in rand_index (RI) obtained by

algorithms. Also, this method aids in determining the

significant differences in algorithms. If the difference is

not significant, then the success rate ratio is close to 1.

SRR ranking starts by taking one algorithm and one

dataset at a time and calculating its rand_index ratio

Fig. 3 FAD algorithm

10244 P. Agarwal et al.

123

with the rest of the algorithms. This ratio is computed

by following Eq. (8):

SRRi
j;k;j 6¼k ¼

RIij

RIik
ð8Þ

Where ‘i’ is the dataset, ‘j’ is the algorithm for which

success rate is calculated and ‘k’ is the compared

algorithm different from ‘j’. In this way, the success

rate ratio is computed for the algorithm ‘j’ with respect

to algorithm ‘k’ on ith dataset. Similarly, SRR is

computed for all datasets taking the same pair of

algorithms. Thereafter, SRR for all datasets are added

so as to obtain an overall SRR ratio for the given pair of

algorithms using the following Eq. (9):

SRRj;k;j 6¼k ¼
Pn

i¼1 SRR
i
j;k;j 6¼k

n
ð9Þ

where ‘n’ is the number of datasets. In this way, the

success rate of the algorithm ‘j’ is computed over the

algorithm ‘k’. Similarly, the success rate of the algo-

rithm ‘j’ is computed over each of the left algorithms.

After computing the success rate ratio for all datasets

and summing them, the mean success rate ratio is cal-

culated for an algorithm ‘j’ using the following

Eq. (10):

SRRj ¼
P

k SRRj;k;j6¼k

m� 1
ð10Þ

where ‘m’ is the total number of compared subspace

algorithms. In this way, SRR for each algorithm on all

datasets is computed and ranked in descending order as

the higher the rand_index or F_Score, the better the

algorithm.

3.2 Parameter tuning

Parameter values used in the S_FAD algorithm are shown

in Table 1. Values of these parameters are decided after

replicating many experiments. The best values are chosen

on the basis of an algorithm’s performance.

The two other parameters used in the FAD algorithm are

population size and iterations. These parameters are tuned

by repeating the set of experiments on datasets. Population

size and the number of iterations are decided by fixing any

one component and varying the other. Tables 2, 3, 4 and 5

depict the parameters for the best population size and

iteration value to be selected for further experiments of the

S_FAD algorithm. Datasets used for tuning the parameters

are ‘D50’ artificial dataset and ‘shape’ actual dataset of 50

and 17 dimensions, respectively.

Tables 2 and 3 correspond to the parameter tuning on an

artificial dataset. It is perceived from Table 2 that for the

population size of 40, the algorithm shows better

rand_index and F_Score. Using population size as 40,

Table 3 depicts variation in iterations. Twenty iterations on

the artificial dataset are selected for further experiments. In

the case of the actual dataset (assume shape dataset),

S_FAD’s performance variation in population size is

shown in Table 4. It is observed that the algorithm per-

forms better for 40 population size. Adopting this popula-

tion size, variation in iterations is shown in Table 5.

Twenty iterations on the actual dataset are selected for

further experiments. For the ease of implementation on

higher-dimensional datasets (500 and above dimensions)

(Bache and Lichman 2006), population size is assumed to

be 10 with 20 iterations.

Parameter values of other compared algorithms are

obtained from their respective work. For SUBSCALE

algorithm, parameter values are taken from the original

author’s work (Kaur and Datta 2015). Set of parameter

values for existing subspace clustering algorithms are

defined in (Müller et al. 2009a, b).

3.3 Dataset description

In order to establish the efficacy of the S_FAD algorithm

against various subspace clustering algorithms, it is eval-

uated on artificial and actual datasets. The description of

datasets is shown in Tables 6 and 7. Artificial datasets used

in this research work are composed of 10 to 75 dimensions.

These datasets are used in work (Müller et al. 2009a, b).

Table 6 (also used in Agarwal and Mehta 2019b) gives the

name of artificial datasets along with their size. Real

datasets used in this research work are divided into two

categories: small dimensions and high dimensions. These

datasets are the standard datasets and have been used by

various researchers for evaluation of the algorithm’s per-

formance (Assent et al. 2008; Moise and Sander 2008;

Sequeira and Zaki 2004). Table 7 depicts the number of

dimensions and instances of each actual dataset used in

experiments. The maximum dimensional dataset evaluated

by S_FAD is DrivFace with 6400 attributes.

4 Results and analysis

Thorough experiments are carried out for evaluating the

performance of the proposed algorithm (S_FAD) on small

and high-dimensional datasets. S_FAD takes 30 indepen-

dent runs on small dimensional datasets and the mean value

is considered for comparison. For high-dimensional data-

sets (Madelon, Micromass, Gissette, and Drivface), 10

independent runs of S_FAD are considered due to hard-

ware limitations. F_Score and rand_index of various con-

ventional algorithms except for SUBSCALE and

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10245

123

SUBSPACE_DE are obtained by re-implementing on the

extended WEKA framework provided by Müller et al.

(2009a, b). While S_FAD, SUBSCALE and SUB-

SPACE_DE are implemented on Matlab.

In order to explore the experimental outcome, this sec-

tion is comprised of two subsections: Sect. 4.1 illustrates

the comparison of S_FAD algorithm with various con-

ventional subspace algorithms on different datasets. Sec-

tion 4.2 depicts results of S_FAD on high-dimensional

actual datasets.

4.1 Comparison of proposed algorithm (S_FAD)
with conventional subspace clustering
algorithms

Figures 4 and 5 depict the actual values of S_FAD and

conventional subspace clustering algorithms for rand_in-

dex and F_Score respectively on artificial datasets. In these

figures, results of conventional subspace clustering algo-

rithms are adapted from Agarwal and Mehta (2019b),

Müller et al. (2009a, b). It can be observed from Fig. 4 that

S_FAD attains more than 90% accuracy on the majority of

artificial datasets. On small dimensions i.e., D10 dataset

S_FAD gives better performance than all existing algo-

rithms except SCHISM where it lags by approximately 4%.

On the D15 dataset, percentage enhancement in the accu-

racy of S_FAD is much higher than percentage decrease

from DOC (approximately 5%) and SCHISM (approxi-

mately 4%). S_FAD lags by 4% only from INCY while

superior to all other algorithms for D20. On the D25

dataset, S_FAD depicts better performance than compared

algorithms except for MINECLUS and SCHISM where

percentage lag is by 8% and 2% respectively. On D50 and

D75 dimensions, S-FAD outperforms all algorithms in

terms of rand_index. SCHISM and INSCY algorithms are

capable of achieving good rand_index but fail to provide

results for 50 and 75-dimensional datasets. A similar kind

of trend is exhibited on F_Score which is shown in Fig. 5.

Figures 6 and 7 show the results of proposed algorithm

against various conventional algorithms on liver disorder,

glass, diabetes, shape, breast and vowel datasets in terms of

rand_index and F_Score respectively. It can be witnessed

from Fig. 6 that the proposed algorithm (S_FAD) gives

similar or better performance as compared to other various

subspace clustering algorithms. For the glass dataset,

S_FAD lags by 7.1% total from CLIQUE, SUBCLU, and

INCY, while enhances by overall 171.3% from the rest of

the algorithms. On the Diabetes dataset, S_FAD gives a

comparable performance. It improves by overall 33.2% and

worse by 6.9%. For the liver disorder dataset, S_FAD

outperforms all other subspace clustering algorithms in

terms of rand_index. For breast cancer and shape dataset,

performance is very much similar to other algorithms. In

the vowel dataset, S_FAD total percentage enhancement is

much higher than total percentage decrement (11% from

CLIQU, SCHISM, INSCY). For the pendigits dataset,

S_FAD remains near to the best performing algorithm. It

can be witnessed from the above observation that though

S_FAD does not outperform on all actual dataset; however,

the average percentage enhancement of the algorithm is

Table 1 S_FAD parameter settings

Parameter Values

Signature 15 digit number

Crossover (cr) 0.25

[betamin, betamax] [0.2, 0.8]

Switch probability

(p)
0.7

Limit Population Size* number of decision

variables

D 8

Table 2 Varying population size with 10 iterations (for artificial

dataset)

Population 10 20 30 40 50

F_Score 0.46 0.71 0.61 0.78 0.61

Rand_index 0.77 0.92 0.87 0.94 0.88

Table 3 Varying iterations with 40 population size (for artificial

dataset)

Iterations 10 20 30 40 50 100

F_Score 0.78 0.85 0.82 0.82 0.80 0.82

Rand_index 0.94 0.97 0.95 0.95 0.95 0.96

Table 4 Varying population size with 10 iterations (for actual dataset)

Population 10 20 30 40 50

F_Score 0.29 0.37 0.46 0.47 0.47

Rand_index 0.4 0.59 0.71 0.72 0.71

Table 5 Varying iterations with 40 population size (for actual dataset)

Iterations 10 20 30 40 50 100

F_Score 0.47 0.52 0.46 0.51 0.48 0.5

Rand_index 0.72 0.78 0.71 0.76 0.72 0.75

10246 P. Agarwal et al.

123

much higher than average percentage decrement. Thus,

S_FAD performs above average on actual datasets. Anal-

ysis for F_score is similar to that of rand_index.

It can be noticed that SUBCLU could not cope with

pendigits dataset as the dataset has 7494 instances. Thus, it

can be concluded that in the terms of F_Score and

rand_index, S_FAD gives a good performance as com-

pared to other subspace clustering algorithms.

In order to further establish the results, two well-rec-

ognized ranking methods—F_Score and rand_index are

used for analysis (Brazdil and Soares 2000). Also, the

statistical significance of algorithms is portrayed using a

Wilcoxon signed-rank test. The subsections included in this

section are as follows. Section 4.1.1 depicts the average

ranking of algorithms on artificial and actual datasets,

Sect. 4.1.2 shows the success rate ratio ranking of algo-

rithms, Sect. 4.1.3 describes Wilcoxon signed-rank test and

final Sect. 4.1.4 illustrates the scalability of S_FAD in

terms of data dimensionality.

4.1.1 Analysis on average ranking

The average ranking of S_FAD and various existing sub-

space algorithms on artificial datasets and actual datasets

are computed independently based on F_Score and

rand_index. Table 8 presents the average ranking of sub-

space algorithms on rand_index and F_Score values for

artificial datasets (depicted in Figs. 4 and 5). S_FAD

attains the first rank based on both rand_index and

F_Score. SCHISM occupies the second rank in terms of

rand_index. Based on F_Score, DOC occupies the second

rank which belongs to cell-based category. It can be con-

cluded from the above analysis that next to S_FAD, cell-

based algorithms depict approximately similar perfor-

mances on artificial datasets, while clustering-oriented-

based algorithms occupy ranks in second-half positions

(i.e., after 5th position).

Table 9 represents the average ranking of subspace

algorithms on actual datasets in connection with rand_in-

dex and F_Score. CLIQUE algorithm is a winning algo-

rithm based on rand_index but in terms of F_Score, it

stands in the third last position. However, S_FAD gives a

very consistent behavior and holds on the second position

concerning both rand_index and F_Score. MINECLUS

depicts the first and fifth positions with respect to F_Score

and rand_index respectively. It can also be observed that

two cell-based algorithms i.e., CLIQUE and MINECLUS

depict extreme performance, whereas S_FAD is consistent.

Additionally, except for these two cell-based algorithms

(CLIQUE and MINECLUS), none of the subspace algo-

rithms gives good performance in connection with

rand_index and F_Score. Thus, S_FAD shows sufficiently

better results for both measures.

4.1.2 Analysis of ranking on success rate ratios

Success rate ratio (SRR) ranks of S_FAD and other exist-

ing subspace clustering algorithms are calculated on arti-

ficial and actual datasets. Table 10 depicts the SRR rank of

all subspace algorithms concerning rand_index and

F_Score on artificial datasets. It can be seen that the

S_FAD wins the among various subspace algorithm and

stands at the first position. The second position is occupied

by SUBSPACE_DE with respect to rand_index and

F_Score. These results indicate that density-based algo-

rithms win over cell-based and clustering-oriented based

algorithms.

Table 11 depicts the ranking of various subspace algo-

rithms based on the success rate ratio on actual datasets.

S_FAD stands at the fifth and fourth position correspond-

ing to F_Score and rand_index respectively. Conversely, its

average rank is 2. The reason for such difference in average

and SRR ranks is that S_FAD could not perform very well

for few low-dimensional datasets like pendigits, shape, and

vowel. However, S_FAD gives a consistent performance as

its ranks are approximately the same for rand_index and

F_Score. The performances of CLIQUE, MINECLUS,

DOC, PROCLUS, INSCY vary largely to rand_index and

Table 7 Description of actual datasets

Name of data

dataset

No. of attributes

(dimentions)

No. of

instances

LIVER DISORDER 6 345

DIABETES 8 768

GLASS 9 214

VOWEL 10 990

PENDIGITS 16 7494

SHAPE 17 160

BREAST 33 198

MADELON 500 4400

MICROMASS 1300 931

GISSETTE 5000 13,500

DRIVFACE 6400 606

Table 6 Description of artificial datasets

Dataset Dimensions Records No. of clusters

D10 10 1596 11

D15 15 1596 11

D20 20 1596 11

D25 25 1596 11

D50 50 1596 12

D75 75 1596 12

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10247

123

F_Score. CLIQUE algorithm holds the first position and

gives the highest rand_index but at the same time, it gives

poor F_Score on actual datasets. Whereas S_FAD that

gives a comparable performance for both rand_index and

F_Score on actual datasets.

Also, it has been observed from the analysis that the

overall percentage enhancement of S_FAD is better as

compared to the percentage decrease from other subspace

clustering algorithms. Thus, it can be concluded that

S_FAD overall presents considerably good efficacy, better

consistency, and reliability in view of rand_index and

Fig. 4 Rand_index of algorithms on artificial datasets

Fig. 5 F_Score of algorithms on artificial datasets

10248 P. Agarwal et al.

123

Fig. 6 Rand_index of algorithms on actual datasets

Fig. 7 F_Score of algorithms on actual datasets

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10249

123

F_Score for the majority of small dimensional datasets.

S_FAD is a hard subspace clustering algorithm that per-

forms clustering on high-dimensional datasets (shown in

Sect. 5.2). The next section discusses the statistical sig-

nificance of obtained results using the Wilcoxon signed-

rank test.

4.1.3 Statistical significance of results of proposed
algorithm (S_FAD) versus other subspace clustering
algorithms

To further strengthen the performance of S_FAD over

conventional subspace clustering algorithms, a statistical

hypothesis test is performed. This test is used to establish

the statistical significance of results obtained through

experiments. The test starts with the null hypothesis H0 and

alternative hypothesis H1. These two hypothesis claims as

follows:

H0 = results of compared algorithms are statistically the

same

H1 = results of compared algorithms are statistically not

the same

For the problem given at hand, it is suitable to use a non-

parametric test (Demšar 2006) as there are no assumptions

on population distribution. Wilcoxon signed-rank statistical

test is used to determine the significant difference in results

obtained by various subspace algorithms on each dataset. It

finds the difference, overlooking the signs in rand_index

and F_Score on artificial and actual datasets. Thereafter,

algorithms are ranked and compared considering positive

and negative differences. The significance level is assumed

5% i.e., the probability of rejecting the null hypothesis

when it is true is 5%. In this work, the significant difference

of S_FAD algorithm with other subspace algorithms is

determined based on rand_index and F_Score.

4.1.3.1 Results of Wilcoxon signed-rank test on artificial
datasets Tables 12, 13, and 14 show the Wilcoxon

signed-rank test of the proposed algorithm (S_FAD) versus

density-based, cell-based, and clustering-oriented based

subspace algorithms respectively on artificial datasets. It is

examined from Table 12 that S_FAD shows a significant

difference from SCHISM on F_Scores. However, no sig-

nificant difference (H0 TRUE) is obtained in performances

of S_FAD versus cell-based algorithms on artificial data-

sets. This is because the value of parameter ‘W’ surpasses

the critical value of the Wilcoxon signed-rank test.

Table 13 illustrates the outcomes of the Wilcoxon

signed-rank test of S_FAD against density-based algo-

rithms. It is observed that for FIRES, SUBSCALE, and

SUBSPACE_DE algorithms, parameter ‘W’ is equal to

critical value i.e., 0, which means S_FAD outperformed all

artificial datasets. Hence, it shows a significant difference

with respect to these two algorithms. There is no significant

difference between the S_FAD and INSCY algorithm with

respect to rand_index and F_Score. S_FAD shows better

results for the majority of datasets. Thus, it can be con-

cluded that S_FAD shows overall better performance than

existing density-based algorithms. Table 14 represents a

statistical test of S_FAD against clustering-oriented sub-

space algorithms. It is observed that S_FAD surpasses

subspace clustering-oriented based algorithms i.e., P3C,

PROCLUS, and, STATPC in regard to rand_index and

F_Score. It is also seen that W- = 0 which means S_FAD

outperforms on all datasets and depicts higher rand_index

and F_Score than clustering-oriented based algorithms.

Table 8 Average rank of algorithms on artificial datasets

Rand_index F_Score

S_FAD 1 1

SCHISM 2 9

INSCY 3 7

SUBSPACE_DE 4 3

FIRES 5 4

SUBSCALE 6 8

MINECLUS 7 5

DOC 8 2

P3C 9 10

PROCLUS 10 5

StatPC 11 11

Table 9 Average rank of algorithms on actual datasets

Rand_index F_Score

CLIQUE 1 11

S_FAD 2 2

DOC 3 4

SCHISM 3 8

MINECLUS 5 1

INSCY 5 5

STATPC 7 6

PROCLUS 8 7

SUBCLU 9 10

SUBSPACE_DE 10 3

SUBSCALE 11 9

P3C 12 12

FIRES 13 13

10250 P. Agarwal et al.

123

4.1.3.2 Results of Wilcoxon signed-rank test on actual
datasets Table 15 shows the statistical significance test in

form of the Wilcoxon signed-rank test of S_FAD versus the

cell-based algorithm on actual datasets. Since the number

of actual datasets considered for evaluation is 7 and two-

tailed tests have been employed; therefore, critical value

(seen from Wilcoxon signed-rank test table) is 2. It has

been observed that S_FAD shows the statistical difference

in results from the CLIQUE algorithm based on F_Score.

Since W- = 0, that means S_FAD performs better on all

datasets. For the rest of the cell-based algorithms, S_FAD

shows no significant difference (H0 TRUE).

Table 16 demonstrates the Wilcoxon signed-rank test of

S_FAD against density-based subspace algorithms on

actual datasets. S_FAD depicts better performance with

respect to F_Score and rand_index against FIRES,

SUBCLU, SUBSCALE, and SUBSPACE_DE algorithms.

While on INSCY, no statistically significant difference is

pointed. Also for SUBCLU, SUBSCALE, and SUB-

SPACE_DE algorithms W- = 0 which means S_FAD is

superior on all datasets.

Table 17 represents the statistical difference of S_FAD

versus clustering-oriented based subspace algorithms.

S_FAD gives a statistically better rand_index than the P3C

algorithm. However, value of W’ exceeds the critical value

of PROCLUS and STATPC and hence there is no signifi-

cant difference in the performance of S_FAD in connection

with rand_index and F_Score. It is noticeable that

W? [W- even if there is no significant difference, that

means S_FAD is a better performer for clustering-oriented

based algorithms. From the above discussions, it can be

established that S_FAD performs considerably superior to

the majority of algorithms on most of the datasets.

4.1.4 Algorithm’s scalability analysis

Scalability of algorithms means the performance of algo-

rithms with increasing dimensions of data. Scalability

could be shown only on artificial datasets as these datasets

have the same number of instances with varied attributes.

In this work, scalability has been shown with respect to

both rand_index and F_Score. The scalability of S_FAD

versus cell-based is shown in Figs. 8 and 9 respectively.

The scalability is represented in terms of rand_index/

F_Score (y-axis) on data dimensionality (x-axis). It has

been scrutinized that the proposed algorithm (S_FAD)

depicts comparable performance from 10 to 25 dimen-

sional datasets while it gives better performance on 50 and

75 dimensional datasets. DOC and MINECLUS reveal

random behavior with an increase in dimensionality. Fig-

ures 10 and 11 show the scalability of S_FAD on density-

based algorithms. INCY performed very well with 25-di-

mensional dataset, however, an algorithm could not handle

higher dimension dataset. S_FAD takes the lead on the 50

and 75 dimensional dataset. The scalability of S_FAD

versus clustering-oriented based algorithms is depicted in

Figs. 12 and 13. S_FAD gives better results in almost all

datasets against clustering-oriented algorithms like

STATPC, P3C, and PROCLUS.

Thus, S_FAD shows a good sign of improvement with

scalability on data dimensionality as compared to various

subspace clustering algorithms. The next section illustrates

the performance of S_FAD on very high-dimensional

datasets.

4.2 S_FAD on high-dimensional actual dataset

To validate the efficacy of the proposed algorithm

(S_FAD) on high-dimensional data, it is implemented on

Table 10 SRR Rank of Algorithms on Artificial Datasets

Rand_index F_Score

S_FAD 1 1

SUBSPACE_DE 2 2

FIRES 3 5

SUBSCALE 4 7

DOC 5 3

MINECLUS 6 4

P3C 7 10

PROCLUS 8 6

SCHISM 9 9

INSCY 10 8

STATPC 11 11

Table 11 SRR Rank of Algorithms on Actual Datasets

Rand_index F_Score

S_FAD 4 5

CLIQUE 1 10

SCHISM 2 8

INSCY 3 1

STATPC 5 7

SUBSPACE_DE 6 6

DOC 7 3

PROCLUS 8 4

MINECLUS 9 2

SUBCLU 10 11

P3C 11 12

FIRES 12 13

SUBSCALE 13 9

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10251

123

actual datasets with a large number of attributes. It is found

that S_FAD is successful in forming subspace clusters on

high-dimensional datasets. Tables 18 and 19 present results

in the form of best (maximum), worst (minimum), mean

(average), median and standard deviation of F_Score and

rand_index at 10 independent runs. Other subspace clus-

tering algorithms could not cope up with high-dimensional

datasets. Also, the results of any other clustering algorithm

are not available on such high-dimensional datasets.

SUBSCALE algorithm (Kaur and Datta 2015) was

attempted on the MADELON dataset but exact values of

results are not revealed in their work. The actual datasets

included for the study are MADELON, MICROMASS,

GISSETTE, and DRIV FACE with 500, 1300, 5000, and

6400 dimensions respectively.

It is perceived from Tables 18 and 19 that the pro-

posed algorithm (S_FAD) shows a high rand_index on

MADELON, MICROMASS, and DRIV FACE datasets.

In the case of the GISSETTE dataset, the algorithm’s

efficacy is low because of the sparse dataset. Since the

standard deviation is very low, algorithms do not

require many independent runs for obtaining the best

results.

4.3 Discussion

S_FAD is assessed against 11 subspace clustering algo-

rithms on a total of 13 datasets including actual and arti-

ficial with respect to rand_index and F_Score. On small

dimensions, it is found that the total percentage

Table 12 Wilcoxon signed-rank test of S_FAD vs. Cell-based

DOC MINECLUS SCHISM

Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 20 16 18 18 15 21

W- 1 5 3 3 6 0

W (min(W? ,W-) 1 5 3 3 6 0

Critical value 0 0 0 0 0 0

Significant difference H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 False

Table 13 Wilcoxon signed-rank test of S_FAD versus density-based

FIRES INCY SUBSCALE SUBSPACE_DE

Rand_index F_Score Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 15 21 16.5 18 17 21 21 21

W- 0 0 4.5 3 0 0 0 0

W (min(W? ,W-) 0 0 4.5 3 0 0 0 0

Critical value 0 0 0 0 0 0 0 0

Significant difference H0 False H0 False H0 TRUE H0 TRUE H0 False H0 False H0 False H0 False

Table 14 Wilcoxon signed-rank test of S_FAD versus clustering oriented

PROCLUS P3C STATPC

Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 21 21 21 21 21 21

W- 0 0 0 0 0 0

W (min(W? , W-) 0 0 0 0 0 0

Critical value 0 0 0 0 0 0

Significant difference H0 False H0 False H0 False H0 False H0 False H0 False

10252 P. Agarwal et al.

123

enhancement of S_FAD is higher than the total percentage

lag (as compared to other algorithms). Subspace algorithms

are also ranked on the basis of average ranking and SRR

ranking on artificial and actual datasets independently. The

Wilcoxon signed-rank test, is performed to validate the

significant variation in results obtained by subspace algo-

rithms. From the above experimental results and analysis, it

is inferred that S_FAD reveals better performance in terms

of F_Score and rand_index against most of the existing

subspace algorithms on the majority of datasets. Addi-

tionally, S_FAD is executed on high-dimensional actual

datasets. The results exhibit that the proposed algorithm

scales very well on high-dimensional thin data sets. As the

size of the dataset increases, some other measures like

sampling are required to be inculcated to improve the

efficacy. The time complexity of the S_FAD algorithm is

O((2m).(nlogn)) where m is the number of dimensions and

n is the number of records in the dataset. Hence, there is a

trade-off between rand_index and time complexity.

Although the time complexity of the proposed S_FAD

algorithm is relatively high, it can provide near-optimal

solutions on high-dimensional problems. On the contrary

traditional subspace clustering algorithms are unsuccessful

in providing the results for high-dimensional data. Also,

S_FAD finds overlapping subspace clusters with no

redundant information. This property is hardly satisfied by

any of the other subspace clustering algorithms. The unique

property of S_FAD is it can determine subspace clusters of

varied densities.

Hence it can be established that conventional subspace

clustering algorithms are more suited for applications

involving small dimensions and have time-sensitive

Table 15 Wilcoxon signed-rank test of S_FAD versus cell-based

DOC MINECLUS SCHISM CLIQUE

Rand_index F_Score Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 27 11 10 9 16 23 13 27

W- 7 17 5 19 12 5 15 0

W (min(W? , W-) 7 11 5 9 12 5 13 0

Critical value 2 2 2 2 2 2 2 2

Significant difference H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 False

Table 16 Wilcoxon signed-rank test of S_FAD versus density-based

FIRES INSCY SUBCLU SUBSCALE SUBSPACE_DE

Rand_index F_Score Rand_index F_Score Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 27 27 19.5 10 28 28 21 28 21 11

W- 1 1 8.5 18 0 0 0 0 0 0

W

(min(W? ,W-)

1 1 8.5 10 0 0 0 0 0 0

Critical value 2 2 2 2 2 2 2 2 2 2

Significant

difference

H0 False H0

False

H0 TRUE H0

TRUE

H0 False H0

False

H0 False H0

False

H0 False H0

False

Table 17 Wilcoxon signed-rank test of S_FAD versus clustering oriented

PROCLUS P3C STATPC

Rand_index F_Score Rand_index F_Score Rand_index F_Score

W? 22 16 26 24 15 20

W- 6 12 1 4 6 8

W (min(W? , W-) 6 12 1 4 6 8

Critical value 2 2 2 2 2 2

Significant difference H0 TRUE H0 TRUE H0 False H0 TRUE H0 TRUE H0 TRUE

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10253

123

requirements. However, for high dimension applications

adopting the S_FAD algorithm would be a better choice.

5 Conclusion

Subspace clustering in a large number of attributes is a

computational challenge in the data mining field. This

challenge includes an unknown number of subspaces and

dimensions involved in each subspace before clustering.

Additionally, there can be an exponential number of sub-

spaces for the high-dimensional dataset. To resolve these

issues, a novel subspace clustering algorithm S_FAD is

proposed. The efficacy of S_FAD is better in terms of

F_Score and rand_index. Using these evaluation measures,

the proposed algorithm is compared with various

Fig. 8 Scalability of S_FAD versus Cell based on Rand_index

Fig. 9 Scalability of S_FAD versus Cell based on F_Score

Fig. 10 Scalability of S_FAD versus density based on Rand_index

Fig. 11 Scalability of S_FAD versus density based on F_Score

Fig. 12 Scalability of S_FAD versus clustering oriented on RI

Fig. 13 Scalability of S_FAD versus clustering oriented on F_Score

10254 P. Agarwal et al.

123

conventional subspace clustering algorithms on basis of 4

parameters i.e., average ranking, success rate ratio ranking,

Wilcoxon signed-rank test, and scalability on dimensions.

S_FAD provides considerably good performance when

analyzed on these parameters. It does not give any redun-

dant information of subspaces as it performs clustering in

maximal subspaces. S_FAD takes input data in its original

form without normalization. It could determine overlap-

ping subspace clusters of varied densities. Thus, S_FAD

provides several advantages over existing subspace clus-

tering algorithms and is successful in determining clusters

in 6400-dimensional actual datasets. In future, the S_FAD

algorithm can be applied in applications of distributed

databases such as vertical and horizontal fragmentation.

Also, some useful techniques can be incorporated into the

algorithm to cluster large datasets and improve clustering

quality.

Declarations

Conflict of interest All author declares that he/she has no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Abualigah LMQ (2019) Feature selection and enhanced krill herd

algorithm for text document clustering. Springer

Abualigah L, Gandomi AH, Elaziz MA, Hussien AG, Khasawneh

AM, Alshinwan M, Houssein EH (2020) Nature-inspired opti-

mization algorithms for text document clustering: a comprehen-

sive analysis. Algorithms. https://doi.org/10.3390/a13120345

Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH

(2021a) The arithmetic optimization algorithm. Comput

Methods Appl Mech Eng 376:1609. https://doi.org/10.1016/j.

cma.2020.113609

Abualigah L, Gandomi AH, Elaziz MA, Hamad HA, Omari M,

Alshinwan M, Khasawneh AM (2021b) Advances in meta-

heuristic optimization algorithms in big data text clustering.

Electronics. https://doi.org/10.3390/electronics10020101

Agarwal P, Mehta S (2014) Nature-inspired algorithms: state-of-art,

problems and prospects. International Journal of Computer

Applications 100(14):14–21. https://doi.org/10.5120/17593-8331

Agarwal P, Mehta S (2015) Comparative analysis of nature inspired

algorithms on data clustering. In: IEEE international conference

on research in computational intelligence and communication

networks (ICRCICN), pp 119–124

Agarwal P, Mehta S (2016) Enhanced flower pollination algorithm on

data clustering. Int J Comput Appl 7074:144–155. https://doi.

org/10.1080/1206212X.2016.1224401

Agarwal P, Mehta S (2017) Empirical analysis of five nature-inspired

algorithms on real parameter optimization problems. Artif Intell

Rev. https://doi.org/10.1007/s10462-017-9547-5

Agarwal P, Mehta S (2019a) ABC_DE_FP: a novel hybrid algorithm

for complex continuous optimisation problems. Int J Bio

Inspired Comput 14(1):46–61. https://doi.org/10.1504/ijbic.

2018.10014476

Agarwal P, Mehta S (2019b) Subspace clustering of high dimensional

data using differential evolution. In: Nature-inspired algorithms

for big data frameworks, pp 47–74, IGI Global. https://doi.org/

10.4018/978-1-5225-5852-1.ch003

Aggarwal C, Wolf J, Yu P, Procopiuc C, Park J (1999) Fast algorithm

for projected clustering. SIGMOD 28:61–72

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo A (1996)

Fast discovery of association rules. Adv Knowl Discov Data Min

12:307–328

Assent I (2012) Clustering high dimensional data. Wiley Interdiscip

Rev Data Min Knowl Discov 2(4):340–350. https://doi.org/10.

1002/widm.1062

Assent I, Krieger R, Muller E, Seidl T (2008) INSCY: indexing

subspace clusters with in-process-removal of redundancy. In:

ICDM, pp 719–724

Bache K, Lichman M (2006) UCI machine learning repository. http://

archive.ics.uci.edu/ml

Brazdil P, Soares C (2000) A comparison of ranking methods for

classification algorithm selection. Mach Learn ECML

2000(1810):63–75. https://doi.org/10.1007/3-540-45164-1_8

Daszykowski M, Walczak B, Massart DL (2001) Looking for natural

patterns in data: Part 1. density-based approach. Chemom Intell

Lab Syst 56:83–92

Table 18 F_Score of S_FAD on

high-dimensional actual

datasets

Dimension Best Worst Mean Median SD

MADELON 500 0.9905 0.9434 0.974 0.9797 0.0165

MICROMASS 1300 0.8166 0.8141 0.8159 0.8166 0.0008

GISSETTE 5000 0.5888 0.5668 0.5768 0.5772 0.0087

DRIVFACE 6400 0.8864 0.8844 0.8852 0.8854 0.0008

Table 19 Rand_index of

S_FAD on high-dimensional

actual datasets

Dimension Best Worst Mean Median SD

MADELON 500 0.9905 0.94 0.9731 0.9795 0.0176

MICROMASS 1300 0.69 0.6865 0.6891 0.69 0.0012

GISSETTE 5000 0.4181 0.3972 0.4053 0.4052 0.0077

DRIVFACE 6400 0.797 0.7937 0.7951 0.7954 0.0012

A meta-heuristic density-based subspace clustering algorithm for high dimensional data 10255

123

https://doi.org/10.3390/a13120345
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.3390/electronics10020101
https://doi.org/10.5120/17593-8331
https://doi.org/10.1080/1206212X.2016.1224401
https://doi.org/10.1080/1206212X.2016.1224401
https://doi.org/10.1007/s10462-017-9547-5
https://doi.org/10.1504/ijbic.2018.10014476
https://doi.org/10.1504/ijbic.2018.10014476
https://doi.org/10.4018/978-1-5225-5852-1.ch003
https://doi.org/10.4018/978-1-5225-5852-1.ch003
https://doi.org/10.1002/widm.1062
https://doi.org/10.1002/widm.1062
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/3-540-45164-1_8

Demšar J (2006) Statistical Comparisons of Classifiers over Multiple

Data Sets. J Mach Learn Res 7:1–30. https://doi.org/10.1016/j.

jecp.2010.03.005

Deng Z, Choi KS, Jiang Y, Wang J, Wang S (2016) A survey on soft

subspace clustering. Inf Sci 348:84–106. https://doi.org/10.1016/

j.ins.2016.01.101

Domeniconi C, Papadopoulos D, Gunopulos D, Ma S (2004)

Subspace clustering of high dimensional data. In: SIAM

international conference on data mining, pp 31–40

Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou

S, Bouras A (2014) A survey of clustering algorithms for big

data: Taxonomy and empirical analysis. IEEE Trans Emerg Top

Comput 2(3):267–279. https://doi.org/10.1109/TETC.2014.

2330519

Kailing K, Kriegel HP, Oger PK (2004) Density-connected subspace

clustering for high-dimensional data. In: SDM, pp 246–257

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC)

algorithm. J Global Optim 39(3):459–471. https://doi.org/10.

1007/s10898-007-9149-x

Karami A, Johansson R (2014) Choosing DBSCAN parameters

automatically using differential evolution. Int J Comput Appl

91(7):1–11

Kaur A, Datta A (2014) SUBSCALE: fast and scalable subspace

clustering for high dimensional data. In: IEEE international

conference on data mining workshops, ICDM, pp 621–628.

https://doi.org/10.1109/ICDMW.2014.100

Kaur A, Datta A (2015) A novel algorithm for fast and scalable

subspace clustering of high-dimensional data. J Big Data

2(1):17. https://doi.org/10.1186/s40537-015-0027-y

Kriegel HP, Kroger P, Renz M, Wurst S (2005) A generic framework

for efficient subspace clustering of high-dimensional data. In:

ICDM, pp 250–257

Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional

data: a survey on subspace clustering, pattern-based clustering,

and correlation clustering. ACM Trans Knowl Discov Data

3(1):1–58. https://doi.org/10.1145/1497577.1497578

Kumar D, Bezdek JC, Palaniswami M, Rajasegarar S, Leckie C,

Havens TC (2016) A hybrid approach to clustering in big data.

IEEE Trans Cybern 46(10):2372–2385. https://doi.org/10.1109/

TCYB.2015.2477416

Lin L, Gen M, Liang Y (2014) A hybrid EA for high-dimensional

subspace clustering problem. In: Proceedings of the 2014 IEEE

congress on evolutionary computation, CEC 2014,

pp 2855–2860. https://doi.org/10.1109/CEC.2014.6900313

Liu X, Wang J, Cheng D, Shi D, Zhang Y (2020) Non-convex low-

rank representation combined with rank-one matrix sum for

subspace clustering. Soft Comput. https://doi.org/10.1007/

s00500-020-04865-0

Lu Y, Wang S, Li S, Zhou C (2011) Particle swarm optimizer for

variable weighting in clustering high-dimensional data. Mach

Learn 82(1):43–70. https://doi.org/10.1007/s10994-009-5154-2

Moise G, Sander J (2008) Finding non-redundant, statistically

significant regions in high dimensional data: a novel approach

to projected and subspace clustering. In: KDD, pp 533–541.

Moise G, Sander J, Ester M (2006) P3C: a robust projected clustering

algorithm. In: ICDM, pp 414–425

Müller E Günnemann S, Assent I, Seidl T, Färber I (2009) Evaluating

clustering in subspace projections of high dimensional data.

http://dme.rwth-aachen.de/en/OpenSubspace/evaluation

Müller E, Günnemann S, Assent I, Seidl T (2009b) Evaluating

clustering in subspace projections of high dimensional data. Proc

VLDB Endow 2(1):1270–1281

Parsons L, Haque E, Liu H (2004) Subspace clustering for high

dimensional data: a review. ACM SIGKDD Explor Newsl

6(1):90–105. https://doi.org/10.1145/1007730.1007731

Pavlyukevich I (2007) Lévy Flight, non local search and simulated

annealing. J Comput Phys 226:1830–1844. https://doi.org/10.

1016/j.jcp.2007.06.008

Pesevski A, Franczak BC, McNicholas PD (2018) Subspace cluster-

ing with the multivariate-t distribution. Pattern Recogn Lett

112(2002):297–302. https://doi.org/10.1016/j.patrec.2018.07.

003

Procopiuc CEA (2002) A monte carlo algorithm for fast projective

clustering. In: SIGMOD, pp 418–427

Road H, Jose S (1998) Automatic subspace clustering mining of high

dimensional applications for data. In: Proceedings of the 1998

ACM SIGMOD international conference on management of

data, 27, pp 94–105. https://doi.org/10.1145/276305.276314

Sarafis IA, Trinder PW, Zalzala AMS (2003) Towards effective

subspace clustering with an evolutionary algorithm. In: 2003

congress on evolutionary computation, CEC 2003 - proceedings,

2, pp 797–806. https://doi.org/10.1109/CEC.2003.1299749

Sequeira K, Zaki M (2004) SCHISM: a new approach for interesting

subspace mining. In: ICDM, pp 186–193

Steinbach M, Ertoz L, Kumar V (2003) The challenges of clustering
high dimensional data. In: New vistas in statistical physics,

applications in econophysics, bioinformatics, and pattern recog-

nition, pp 1–33

Steinbach M, Levent E, Kumar V (2004) The challenges of clustering

high dimensional data. In: New vistas in statistical physics,

applications in econophysics, bioinformatics, and pattern recog-

nition, pp 273–309. https://doi.org/10.1007/978-3-662-08968-2_

16

Storn R, Price K (1997) Differential evolution – a simple and efficient

heutistic for global optimization over continuous spaces.

J Global Optim 11:341–359

Timmerman ME, Ceulemans E, De Roover K, Van Leeuwen K

(2013) Subspace K-means clustering. Behav Res Methods

45(4):1011–1023. https://doi.org/10.3758/s13428-013-0329-y

Yan F, Wang XD, Zeng ZQ, Hong CQ (2020) Adaptive multi-view

subspace clustering for high-dimensional data. Pattern Recognit

Lett 130:299–305. https://doi.org/10.1016/j.patrec.2019.01.016

Yang X-SS (2012a) Flower pollination algorithm for global opti-

mization. Unconvent Comput Nat Comput 7445:240–249.

https://doi.org/10.1007/978-3-642-32894-7_27

Yang XS (2012). Flower pollination algorithm for global optimiza-

tion. In: Lecture notes in computer science (including subseries

lecture notes in artificial intelligence and lecture notes in

bioinformatics), 7445 LNCS, pp 240–249. https://doi.org/10.

1007/978-3-642-32894-7_27

Yiu ML, Mamoulis N (2003) Frequent-pattern based iterative

projected clustering. In: ICDM, pp 689–692

Zhao X, An G, Cen Y, Wang H, Zhao R (2019) Robust discriminant

low-rank representation for subspace clustering. Soft Comput

23(16):7005–7013. https://doi.org/10.1007/s00500-018-3339-y

Zhong G, Pun CM (2020) Subspace clustering by simultaneously

feature selection and similarity learning. Knowl-Based Syst

193:105512. https://doi.org/10.1016/j.knosys.2020.105512

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

10256 P. Agarwal et al.

123

https://doi.org/10.1016/j.jecp.2010.03.005
https://doi.org/10.1016/j.jecp.2010.03.005
https://doi.org/10.1016/j.ins.2016.01.101
https://doi.org/10.1016/j.ins.2016.01.101
https://doi.org/10.1109/TETC.2014.2330519
https://doi.org/10.1109/TETC.2014.2330519
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1109/ICDMW.2014.100
https://doi.org/10.1186/s40537-015-0027-y
https://doi.org/10.1145/1497577.1497578
https://doi.org/10.1109/TCYB.2015.2477416
https://doi.org/10.1109/TCYB.2015.2477416
https://doi.org/10.1109/CEC.2014.6900313
https://doi.org/10.1007/s00500-020-04865-0
https://doi.org/10.1007/s00500-020-04865-0
https://doi.org/10.1007/s10994-009-5154-2
http://dme.rwth-aachen.de/en/OpenSubspace/evaluation
https://doi.org/10.1145/1007730.1007731
https://doi.org/10.1016/j.jcp.2007.06.008
https://doi.org/10.1016/j.jcp.2007.06.008
https://doi.org/10.1016/j.patrec.2018.07.003
https://doi.org/10.1016/j.patrec.2018.07.003
https://doi.org/10.1145/276305.276314
https://doi.org/10.1109/CEC.2003.1299749
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.3758/s13428-013-0329-y
https://doi.org/10.1016/j.patrec.2019.01.016
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1007/s00500-018-3339-y
https://doi.org/10.1016/j.knosys.2020.105512

	A meta-heuristic density-based subspace clustering algorithm for high-dimensional data
	Abstract
	Introduction
	Subspace clustering in high-dimensional data
	Proposed algorithm (S_FAD)
	Self-tuned DBSCAN using FAD

	Experimental setup
	Evaluation metrics
	Parameter tuning
	Dataset description

	Results and analysis
	Comparison of proposed algorithm (S_FAD) with conventional subspace clustering algorithms
	Analysis on average ranking
	Analysis of ranking on success rate ratios
	Statistical significance of results of proposed algorithm (S_FAD) versus other subspace clustering algorithms
	Results of Wilcoxon signed-rank test on artificial datasets
	Results of Wilcoxon signed-rank test on actual datasets

	Algorithm’s scalability analysis

	S_FAD on high-dimensional actual dataset
	Discussion

	Conclusion
	References

