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Abstract
The cuckoo search (CS) algorithm is an effective optimization algorithm, but it is prone to stagnation in suboptimality
because of some limitations in its exploration mechanisms. This paper introduces a variation of CS called exploratory CS
(ECS), which incorporates three modifications to the original CS algorithm to enhance its exploration capabilities. First,
ECS uses a special type of opposition-based learning called refraction learning to improve the ability of CS to jump out of
suboptimality. Second, ECS uses the Gaussian perturbation to optimize the worst candidate solutions in the population before
the discard step in CS. Third, in addition to the Lévy flight mutation method used in CS, ECS employs two mutation methods,
namely highly disruptive polynomial mutation and Jaya mutation, to generate new improved candidate solutions. A set of
14 widely used benchmark functions was used to evaluate and compare ECS to three variations of CS:CS with Lévy flight
(CS), CS with highly disruptive polynomial mutation (CS10) and CS with pitch adjustment mutation (CS11). The overall
experimental and statistical results indicate that ECS exhibits better performance than all of the tested CS variations. Besides,
the single-objective IEEE CEC 2014 functions were used to evaluate and compare the performance of ECS to six well-known
swarm optimization algorithms: CS with Lévy flight, Grey wolf optimizer (GWO), distributed Grey wolf optimizer (DGWO),
distributed adaptive differential evolution with linear population size reduction evolution (L-SHADE), memory-based hybrid
Dragonfly algorithm and Fireworks algorithm with differential mutation. Interestingly, the results indicate that ECS provides
competitive performance compared to the tested six well-known swarm optimization algorithms.

Keywords Cuckoo search · Refraction learning · Single-objective optimization · Mutation method

1 Introduction

The cuckoo search (CS) algorithm is nature-inspired opti-
mization algorithm Yang and Deb (2009) that has been
adapted to solve different types of optimization problems
in application fields such as image processing (Roy et al.
2017; Ye et al. 2015), engineering (Zhang et al. 2019; She-
hab et al. 2019) and networking (Mohamad et al. 2014; Sonia
and Patterh 2014). It has two main features that make it
stands out against other optimization algorithms. First, it
uses a mutation function based on Lévy flight (i.e., a spe-
cial random walk with step lengths that have a heavy-tailed
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probability distribution) to improve the quality of randomly
selected solutions at each iteration of CS. Second, it uses one
parameter called abandon fraction pa that does not require
fine-tuning. The optimization strategies of CS, the uniform
selection operators and the Lévy flight operator, may not be
able to generate improved solutions over consecutive iter-
ations (Abed-alguni and Alkhateeb 2017). This situation is
called premature convergence, and it may cause CS to get
strangled in local optimality.

Several improved versions of the CS algorithm have been
proposed recently (see Sect. 3) to reduce the chances of
CS being stuck in local optima. For example, many hybrid
CS algorithms have been discussed in the literature (e.g.,
hybrid Krill herd and CS Wang et al. 2016, hybrid CS and
β-hill climbing Abed-alguni and Alkhateeb 2018) in which
CS is usually combined with one or more search algorithms
(local-based or population-based algorithms) to improve the
exploration mechanism of CS. However, the main problem
with the hybrid CS approach is that it involves intensive com-
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putations, which make it slower than the basic CS algorithm
(Alkhateeb and Abed-Alguni 2017; Abed-alguni and Alkha-
teeb 2018).

In this paper, we introduce a variation of CS, called
exploratory CS (ECS), that incorporates three modifications
to the original CS algorithm in an attempt to enhance its
exploration capabilities. First, ECS uses refraction learning
(i.e., an opposition-based learning mechanism, which simu-
lates the principle of light refraction in physics) to improve
CS ability to jump out of suboptimality. Second, ECS uses
the Gaussian perturbation in an attempt to enhance the worst
candidate solutions in the population before the discard step
(i.e., the final steps at each iteration of CS). Third, in addition
to the Lévy flight mutation method, ECS employs two muta-
tion methods, namely highly disruptive polynomial mutation
and Jayamutation, to generate new improved candidate solu-
tions.

We carried out several experiments to investigate the per-
formance of ECS using well-known benchmark suits and
a variety of well-known optimization algorithms. First, we
used 14 popular benchmark functions to examine the perfor-
mance of ECS compared to three variations of CS: original
CS, CS10 and CS11 ( Abed-Alguni and Paul 2019). The
overall experimental and statistical results indicate that ECS
exhibits better performance than all of the tested CS vari-
ations. Second, we used 30 IEEE CEC 2014 functions to
examine the performance of ECS compared to six popular
optimization algorithms: CS, GWO (Mirjalili et al. 2014),
DGWO (Abed-alguni andBarhoush 2018), L-SHADE (Tan-
abe and Fukunaga 2014), memory-based hybrid Dragonfly
algorithm (MHDA) (Sree Ranjini and Murugan 2017) and
Fireworks algorithm with differential mutation (FWA-DM)
(Yu et al. 2014). The results clearly show that ECS provides a
competitive performance compared to the tested well-known
optimization algorithms.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the preliminaries of the research (including
CS, refraction learning, three mutation methods and Gaus-
sian perturbation). Section 3 provides a discussion about
well-known variations of CS. Section 4 discusses the ECS
algorithm. Section 5 discusses the experimental results of
ECS compared to popular optimization algorithms using
popular test suits. Finally, Sect. 6 presents the conclusion
of this paper.

2 Preliminaries

This section provides a summary of some of the underlying
concepts of the paper. Section 2.1 describes themathematical
notations used in the paper, Sect. 2.2 describes the cuckoo
search algorithm, Sect. 2.3 discusses the main concepts of
refraction learning and finally Sect. 2.4 describes three muta-

tion methods: highly disruptive polynomial mutation, Jaya
mutation and Gaussian perturbation.

2.1 Notations

We used the following mathematical notations in the discus-
sions of this paper:

– xi : the i th feasible solution (candidate solution), which
includes m decision variables 〈xi1, xi2, . . . , xim〉.

– xij : the value of the j th decision variable of xi . The value

of xij is produced using a uniform random-based function
as follows:

xij = LBj + (UBj − LBj ) ×U (0, 1) (1)

whereU (0, 1) is a uniform randomnumber in the interval
[0, 1], LBj is the lower bound andUBj is the upper bound
of x j .

– f (xi ): the fitness value of xi .
– The population of n candidate solutions is conventionally
represented as xi (i = 1, 2, . . . , n).

2.2 Cuckoo search algorithm

One of the most effective iterative population-based opti-
mization algorithms is the cuckoo Search (CS) algorithm
(Yang and Deb 2009). The optimization process of CS sim-
ulates the opportunistic reproduction habits of cuckoo birds
and the Lévy flight behavior of birds.

CS initially generates a population of n random candidate
solutions xi (i = 1, 2, . . . , n). The values of the decision
variables are generated according to Eq. 1. The maximum
number of iterations (MaxItr) of the optimization loop in CS
depends on the complexity of the problem in hand.

CS uses the population to produce a sequence of improv-
ing approximate populations for a specific complex problem,
in which the new population is derived from the previous
ones. At each iteration t of the optimization loop of CS, one
candidate solution (xi (t)) is selected based on a random uni-
form function. The selected solution is then mutated using
the Lévy-based mutation function as follows:

xi (t + 1) = xi (t) + β ⊕ Lévy(λ), (2)

Here, β > 0 is the step size of mutation, the Lévy flight
operator (Lévy(λ)) is a vector of m values drawn from Lévy
distribution and ⊕ is an entry-wise product operation. The
Lévy flight operator is a special type of the random walk
method, where the step length of the Lévy flight operator is
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calculated as follows:

Lévy ∼ u = S−α, (3)

where S is the step size of the distribution and α is a
uniform-random number in the range (1, 3] related to the
fractal dimension (i.e., a statistical index of the complexity
of a given search space). The Lévy distribution function has
two characteristics: it has an infinite variance and the value
of D gets longer over the course of iterations (Yang and Deb
2009).

Each iteration of CS ends with the discard process, which
aims to strengthen the diversity of the current solutions. In
this process, CS selects a fraction (pa) of the worst solutions
in the population, and then, it tries to replace themwith better
solutions.

2.3 Refraction learning

The natural phenomenon of refraction is the bending of a
light ray when it leaves a fast–medium (e.g., air) and enters
a slow one (e.g., water). The light ray changes its velocity
when it passes to the second medium and bends toward the
normal to the boundary between two mediums.

Refraction learning is a special type of opposition-based
learning that is based on the refraction principle in physics.
It was used with GWO (Long et al. 2019) and the whale
optimization algorithm (WOA) (Long et al. 2020). The exper-
imental and statistical results in Long et al. (2019, 2020)
indicate that it can improve the performance of optimiza-
tion algorithms such as GWO andWOA. Figure 1 shows the
refraction–learning process applied at iteration t to the global
optima x∗ that has a single decision variable. In the refrac-
tion learning algorithm, the opposite of optimal solution x∗
is given as follows:

x
′∗ = (LB + UB)/2 + (LB + UB)/(2kη) − x∗/(kη), (4)

where η represents the refraction index which is expressed
as follows:

η = sin θ1

sin θ2
, (5)

where sin θ1 and sin θ2 (Fig. 1) are represented as follows:

sin θ1 = ((LB + UB)/2 − x∗)/h, (6)

sin θ2 = (x
′∗ − (LB + UB)/2)/h

′
, (7)

where x is the incidence point (a candidate solution) and x
′
is

the refraction point (another candidate solution), LB and UB
are the lower and upper boundaries of the decision variables,

O is the center point between LB and UB, h is the distance
between x and O and h′ is the distance between x

′
and O .

x
′∗ is the opposite solution of x∗ based on refraction learning
(i.e., is the projection of x

′
on the x-axis)

Interestingly, Eq. 4 can be simply generalized to manipu-
late n decision variables as follows:

x
′∗
j = (LB j + UB j )/2 + (LB j + UB j )/(2kη) − x∗

j /(kη),

(8)

where x∗
j and x

′∗
j are the jth decision variable of x∗ and

x
′∗, respectively, [LB j , UB j ] is the search interval of the jth
decision variable.

2.4 Mutationmethods

2.4.1 Highly disruptive polynomial mutation

The highly disruptive polynomial (HDP) mutation Deb and
Tiwari (2008) is a well-recognized mutation method (Abed-
alguni 2019; Abed-Alguni and Paul 2019). It provides
efficient exploration of the search range of each decision vari-
able in a candidate solution regardless of the current value of
the decision variable.

The HDP method is used to optimize a candidate solution
x j (t) at iteration t by attempting to alter each decision vari-
able in x j (t) with probability Pm ∈ [0, 1] as follows (Doush
et al. 2014):

x j
i (t + 1) ← x j

i (t) + δk .(UBi − LBi ), where (9)

δk =
{

(2r) + (1 − 2r) × (1 − δ1)
ηm+1] 1

ηm+1−1 r ≤ Pm

1 − [2(1 − r) + 2(r − 0.5) × (1 − δ2)
ηm+1] 1

ηm+1 r > Pm

(10)

δ1 ← x j
i (t) − LBi
UBi − LBi

(11)

δ2 ← UBi − x j
i (t)

UBi − LBi
(12)

The following are definitions of the parameters of HDP
mutation:

– r : a random number generated within the interval [0, 1]
– Pm : the mutation probability
– LBi : the lower boundary of x j

i (t)

– UBi : the upper boundary of x j
i (t)

– δ1: the distance between x j
i (t) and LBi divided by the

distance between UBi and LBi
– δ2: the distance between UBi and x j

i (t) divided by the
distance between UBi and LBi

– ηm : a nonnegative number that represents the distribution
index
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Fig. 1 Refraction learning for
the global optimal x∗

2.4.2 Jaya mutation

The Jaya algorithm (Rao 2016) is an iterative population-
based optimization algorithm. It uses the Jaya mutation
method to mutate all the candidate solutions in the popu-
lation of solutions by moving them between the best and
worst candidate solutions at each iteration of Jaya. The deci-
sion variable xij (t) of candidate solution xi (t) at iteration t
is mutated as follows:

xij (t + 1) = xij (t) + r1 x
B
j (t) + r2 x

W
j (t), (13)

where x Bj (t) and xWj (t) are the values of the jth decision vari-
ables of the best and worst candidate solutions, respectively,
at iteration t . The parameters r1 and r2 are two uniformly
distributed random numbers in the range [0,1]. After updat-
ing the population, if the fitness value of xi (t + 1) is better
than the fitness of xi (t), the solution xi (t + 1) is accepted to
replace xi (t).

2.4.3 Gaussian perturbation

The Gaussian perturbation is a mutation method derived
from the Gaussian distribution (Feng et al. 2018). It is com-
monly used to improve the diversity of a population of
candidate solutions to help it to escape local optimality. For
example, it is possible to use the Gaussian perturbation to
optimize the worst candidate solutions in a population. The
one-dimensional Gaussian density function is expressed as
follows:

Gaussian(x) = 1

σ
√
2π

e− (x−μ)2

2σ2 , (14)

where μ = 1.0 and σ = 0.5.
Then Gaussian perturbation function is as follows:

xij (t + 1) = r Gaussian(xij (t)), (15)

where xij is the jth decision variable of the ith candidate solu-

tion xi and r is a randomly generated real number between
(0,1).

3 Related work

This section provides a discussion about recently proposed
research studies that focus on improving the exploration
capabilities or convergence rate to optimality for theCS algo-
rithm.

Abed-alguni (2019) proposed the iCSPM algorithm,
which is an efficient modified CS algorithm that is built
on the island model and HDP mutation. The island model
is a parallel model that is used to parallelize the execution
of an optimization algorithm and at the same time improve
the diversity of its population (Lardeux and Goëffon 2010;
Abed-alguni 2019). Besides, the HDP mutation is a well-
recognized mutation method (Sect. 2.4.1). In iCSPM, the
population (i.e., a group of candidate solutions) of an opti-
mization problem is organized into subpopulations (islands)
to allow the candidate solutions in each island to evolve using
the original CS algorithm for a predefined period. However,
the islands are permitted to connect and share solutions after
a certain number of iterations. According to Abed-alguni
(2019), iCSPM shows better performance than the basic CS
algorithm and island-based genetic algorithm (Lardeux and
Goëffon 2010). However, it is better to execute iCSPM algo-
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rithm across parallel machines to reduce its computational
complexity. This is because its computational complexity
is higher than the original CS algorithm (Abed-alguni and
Barhoush 2018; Abed-alguni et al. 2019). Another prob-
lem of iCSPM is that the reliability of the island model is
strongly dependent on the initial configuration of its param-
eters (Abed-alguni and Barhoush 2018; Abed-alguni et al.
2019; Abed-alguni 2019).

Alkhateeb and Abed-Alguni (2017) proposed four
approaches to integrate CS and simulated annealing (SA)
algorithms in one hybrid algorithm. The common factor
among these approaches is that they all use the exploration
mechanism of the SA algorithm. In this mechanism, the solu-
tion space is explored by replacing some current solutions by
worse solutions with a decreasing probability. However, the
proposed algorithms require higher computational time than
the computational times of CS and SA algorithms.

Wang et al. (2016) suggested the integration of the krill
herd (KH) and CS algorithms in one algorithm by the name
the krill-herd cuckoo-search (KHCS) algorithm. This algo-
rithm is basically used to solve the continuous optimization
problems. It utilizes the optimization operators of CS in the
optimization loop of KH. These operators aim to improve the
exploitation ability of the original KH algorithm. It is impor-
tant to note that the KHCS algorithm does not perform much
better compared to the CS and KH algorithms (Wang et al.
2016). Furthermore, fine-tuning of the parameters of KH for
each class of a given optimization problem is important and
is a key factor in the success of KHCS.

CSARL (Shehab et al. 2019) is a variation of CS that
is based on the basics of reinforcement learning (i.e., a
machine learning approach that is based on trial and error
Abed-Alguni et al. 2016). The use of reinforcement learn-
ing in CSARL aims to improve the exploration mechanism
of CS, but it incurs a heavy computation cost compared to
standard optimization algorithms. This means that the aver-
age length of an iteration in CSARL is longer than the one
of that standard CS algorithm. According to Shehab et al.
(2019), CSARL was only compared to standard optimiza-
tion algorithms (standard genetic, harmony search (HS) and
krill-heard algorithms) using standard benchmark functions,
which is insufficient to evaluate the performance of new pro-
posed algorithms.

Li et al. (2019) introduced TOB-DCS, which is a CS
algorithm that uses the Taguchi opposition-based learning
and dynamic evaluation. These methods are employed to
explore different regions in the problem space and pro-
duce possibly better solutions from the current population.
The Taguchi search is basically a random opposition-based
learning approach. The dynamic evaluation strategy has the
potential to reduce the number of times a function is evalu-
ated by merging the updated decision variable with the other
decision variables to make a new candidate solution. In Li

et al. (2019), TOB-DCS was compared to basic optimization
algorithms using basic test functions, which is considered
insufficient to reliably examine the performance behavior of
TOB-DCS.

Several variations of the ECSEE algorithm (i.e., enhanced
CS with enhanced exploration and exploitation properties)
have been proposed in Salgotra et al. (2018). All of the vari-
ations of ECSEE use the Cauchy operator to determine the
step size of mutation instead of the Lévy flights, and they
also use a local search method to improve the exploration of
CS. Besides, the population in ECSEE may be divided into
n subpopulations by following a process called division of
the population or divided into two subpopulations through
a process called the division of generations. The goal of the
division process is to increase the diversity of population in
ECSEE by allowing unfitted solutions in each subpopula-
tion to develop in isolation away from other subpopulations.
The ECSEE has been compared to standard optimization
algorithms (Grey wolf optimization, differential evolution,
firefly algorithm, flower pollination algorithm and bat algo-
rithm (BA)) using 25 standard test functions and IEEE CEC
2015 benchmark suite. However, according to Salgotra et al.
(2018) ECSEE did not perform well with IEEE CEC 2015
benchmark suite, which may be because of the stochastic
nature of ECSEE.

The β-hill climbing (BHC) algorithm is a single-solution
optimization algorithm that employs an operand called the
β-operand in the hill climbing (HC) algorithm for more
efficient exploration of the potential solutions of a givenmin-
imization algorithm. The BHC algorithm has been recently
integrated inside theCSalgorithm inAbed-alguni andAlkha-
teeb (2018). The new algorithm was called CSBHC. Unlike
most well-known hybrid optimization algorithms, CSBHC
uses the BHC algorithm inside the improvement loop of
CS based on a decreasing probability. This way of inte-
gration reduces the computational cost that is normally
associated with most hybrid optimization algorithms. How-
ever, the performance of CSBHC degrades with an increase
in the dimensions of complex optimization function (Abed-
alguni and Alkhateeb 2018). Furthermore, the performance
of CSBHC was only evaluated using standard benchmark
functions. This means that more experiments are required to
assess the performance of CSBHC.

Ali and Tawhid (2016) proposed a hybrid optimization
algorithm calledHCSNM. It combines theCS algorithmwith
the Nelder–Mead method. The Nelder–Mead approach is a
nonlinear optimization algorithm that is derivative-free and
built on the idea of a simplex. The HCSNM algorithm calls
the Nelder–Mead method periodically (i.e., each few num-
ber of iterations of CS) to refine the best candidate solution.
However, the HCSNM algorithm does not specify a for-
mula that calculates the period (i.e., the number of iterations)
that should pass before calling the Nelder–Mead method.
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Besides, the authors of the algorithm did not conduct experi-
ments that study the sensitivity of HCSNM to its parameters
(e.g., the period before calling the Nelder–Mead method).

Chaotic maps (i.e., chaotic functions that exhibit some
chaotic behaviors El-Shorbagy et al. (2016)) are commonly
utilized in the optimization field to explore the possibility of
improving the convergence speed of optimization algorithms
(Gandomi and Yang 2014). Wang and Deb (2016) have
recently incorporated twelve chaotic maps (e.g., Chebyshev
map, circle map, Liebovich map, iterative map, Tent map,
sinusoidal map) with the CS algorithm in a new algorithm
called chaotic CS (CCS). In CCS, the maps are employed
to generate the step size β for the Lévy mutation function
(Eq. 2). This is because the ergodicity and mixing proper-
ties of chaos maps may speed up the convergence speed of
CS (Gandomi and Yang 2014). A problem that occurs when
using chaotic maps with an optimization algorithm is that
choosing a suitable chaos map for a given optimization prob-
lem requires extensive simulations and analysis (Fister et al.
2015).

Chi et al. (2019) proposed a hybrid optimization algorithm
called CSPSO that incorporates the particle optimization
algorithm (PSO) into the CS algorithm. In CSPSO, the Lévy
mutation function (Eq. 2) of CS and the update equation of
PSO are used together to increase the diversity of the pop-
ulation and improve the convergence rate to optimality. The
CSPSO algorithm was compared in Chi et al. (2019) to basic
optimization algorithms (PSO, CS, BA, HS) using standard
benchmark functions which is still insufficient to evaluate the
performance of CSPSO.

Cheng et al. (2019) introduced a newCS algorithm named
the ensemble cuckoo search variant (ECSV). At each iter-
ation of ECSV, three variations of CS (Chaos-enhanced
cuckoo search Huang et al. 2016, nearest-neighbor cuckoo
search Wang et al. 2016, peer-learning cuckoo search Yang
et al. 2017) are used synchronously to evolve a population of
candidate solutions to better solutions. ECSV assigns at the
end of each iteration distinct candidate solutions to each CS
algorithm based on its performance. ECSV was evaluated
using 42 benchmark functions from CEC 2005 and CEC
2013. The simulation results indicate that ECSV provides
competitive performance compared to CS, chaos-enhanced
cuckoo search, nearest-neighbor cuckoo search and peer-
learning cuckoo search.

It is a known fact that the performance of most of the opti-
mization algorithms degrades with an increase in the number
of dimensions (decision variables of a candidate solutions)
(Abed-alguni and Barhoush 2018; Abed-alguni 2019). The
DDECS (short for dimension-by-dimension enhanced CS)
algorithm is a recently proposed variation of CS that makes
the update strategy of CS more suitable to solve high-
dimensionality optimization problems (Chen et al. 2019).
DDECSmerges each updated decision variablewith the other

decision variables to create a new candidate solution. The
new solution is only accepted, if it enhances the current solu-
tion. According to Chen et al. (2019), DDECS was found to
be a better optimization algorithm than CS, DECS (CS based
on differential evolution Xiao and Duan 2014) and DDICS
(CS with dimension by dimension improvement Wang et al.
2013). However, the experiments in Chen et al. (2019) were
conducted using 18 basic benchmark functions, and no CEC
benchmark suits have been used.

Rakhshani and Rahati (2017) introduced SDCS (snap-
drift cuckoo search) that has two execution modes: snap
and drift modes. SDCS was designed to address the per-
formance issues of CS. In the snap mode, global search is
conducted more than local search, while more local search is
conducted in the drift mode. The SDCS algorithm was com-
pared in Rakhshani and Rahati (2017) to basic optimization
algorithms (e.g., CS, MCS Walton et al. 2011) using basic
benchmark functions.

4 Proposed algorithm: exploratory cuckoo
search

4.1 Algorithmic details of exploratory cuckoo search

In this section, we describe the exploratory cuckoo search
(ECS) algorithm. The ECS algorithm attempts to increase the
probability of finding globally optimal solutions by incorpo-
rating three modifications to the original CS algorithm. First,
the refraction learning mechanism is used in the initializa-
tion and discard steps of CS. Second, aGaussian perturbation
method is used to update the part of the worst candidate solu-
tions in the population before the discard step in an attempt
to improve them. Finally, in addition to the Lévy flight muta-
tionmethod used in CS, ECS employs twomutationmethods
(highly disruptive polynomial mutation and Jaya mutation)
to generate new improved candidate solutions.

Algorithm 1 shows the algorithmic details of the ECS
algorithm. In the beginning, ECS generates a population of n
candidate solutions, where half of the n solutions are gener-
ated using a random generation function (Eq. 2) and the other
half is the opposite solutions of the first half. The refraction
learning mechanism is used at this step to generate the oppo-
site solutions as described in Sect. 2.3.

In the improvement loop of ECS, the initial population
is used to generate a sequence of improving approximate
populations for a given optimization problem. There are five
main steps in each iteration of this loop. First, ECS randomly
selects three candidate solutions (xi , x j , xk) and then attempts
to improve xi using a Lévy function (Eq. 2), x j using the Jaya
mutation (Eq. 13) and xk using the HDP mutation (Eq. 9).
Second, it calculates the pa worst solutions and updates them
using Gaussian perturbation (Eq. 15). Then, it recalculates
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the pa worst solutions and replaces them with new randomly
generated solutions. Third, it ranks the candidate solutions
to find the current best solution (x∗

t ). Fourth, it generates the
opposite solution x

′∗
t of x∗

t using refraction learning and then
replaces x∗

t with x
′∗
t , if f (x

′∗
t ) < f (x∗

t ). This step aims to
explore the opposite region to the region where x∗

t is located,
which may help to jump out of suboptimality if x∗

t is not
improving throughout iterations. The improvement loop of
ECS keeps repeating, while the stop criterion is not satisfied
or the maximum number of iterations has not been reached.
The final output of ECS is the global best solution x∗.

4.2 Computational complexity of ECS

In this section, we show the calculations of the computational
complexity of ECS. We assumed that the computational cost
of any basic vector operation isO(1) andwe denotedMax I tr
as M .

The computational complexity of ECS (Algorithm 1) can
be computed as follows:

– The number of operations required to randomly generate
n/2 candidate solutions is n/2 operations (Line 3(a)).
Similarly, the number of operations required to calcu-
late the opposite solutions of the n/2 candidate solutions
using refraction learning (Eq. 13) is n/2 operations (Line
3(b)).

– The random selection of three candidate solutions in line
5 costs 3 operations.

– The update process of the three selected solutions in lines
6–8 costs 3 operations.

– Calculating the fitness value of each of the three updated
candidate solutions costs 3 operations (line 9).

– The random selection of another three candidate solu-
tions in line 10 costs 3 operations.

– The comparisons in lines 11–19 cost between 3 and 6
operations.

– The computational cost in lines 20–22 is 2 × pa × n
operations. It can be further simplified to pa × n.

– The cost of the calculations in lines 23 and 24 is n log2 n+
1 operations, which can be simplified to n log2 n.

– The comparison process in lines 25–27 costs atmaximum
2 operations.

– Overall, the cost of the operations in the optimization loop
(lines 4–28 ) isM(3+3+3+3+6+pa×n+n log2 n+2).
This can be simplified to Mn log2 n because n log2 n is
greater than 3 + 3 + 3 + 3 + 6 + pa × n + 2

– The cost of line 29 is one operation.
– The overall computational cost of ECS is n/2 + n/2 +

Mn log2 n + 1, which can be simplified to Mn log2 n
because Mn log2 n is greater than n + 1.

In summary, the computational complexity of ECS is
O(Mn log2 n), which is more than the computational com-
plexity of the original CS algorithm O(Mn) Alawad and
Abed-alguni (2021).

4.3 Limitations

We proposed in this section ECS to solve continuous single-
objective optimization problems. However, many real-world
decision-making problems have multiple criteria and there-
fore are modeled as multi-objective optimization problems.
In a multi-objective optimization problem, each criterion is
modeled as an objective function (Ding et al. 2017). For
example, the resource-scheduling problem in cloud comput-
ing has multiple criteria such as minimizing the completion
time and cost and maximizing the profit (Wang et al. 2018;
Alawad and Abed-alguni 2021; Abed-alguni and Alawad
2021). Therefore, we will further develop ECS in the near
future to solve multi-objective optimization problems. In
addition, we will incorporate a discretization method (e.g.,
the smallest position value method Alawad and Abed-alguni
2021; Abed-alguni and Alawad 2021) into ECS to enable
it to deal with discrete optimization problems such as the
resource-scheduling problem.

5 Experiments

5.1 Benchmark functions

Table 1 describes 14 well-known benchmark functions
(Hasan et al. 2014; Doush et al. 2014) that were utilized
to asses the overall performance of ECS compared to three
CS algorithms: CS, CS10 and CS11 Abed-Alguni and Paul
(2019).

Table 2 describes the single-objective real-parameter
optimization-benchmark suit of CEC2014 that comprises
30 minimization functions. The function of this suite is
very powerful functions that simulate real-world optimiza-
tion problems. The search boundaries of each function in
the suit are [-100, 100]D . The complete definitions of these
functions are available in Liang et al. (2014).

The comparison results reported in Abed-alguni and Bar-
housh (2018) using the CEC2014 suit were used to compare
the performance of ECS to the performance of six well-
known optimization algorithms: CS (Yang and Deb 2009),
GWO (Mirjalili et al. 2014), DGWO (Abed-alguni and Bar-
housh 2018), L-SHADE (Tanabe and Fukunaga 2014),
MHDA (Sree Ranjini andMurugan 2017) and FWA-DM (Yu
et al. 2014).
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Table 1 Selected benchmark
functions Hasan et al. (2014),
Abed-alguni (2019),
Abed-alguni and Barhoush
(2018)

Function name Abb Search range D f (
−→
X∗)

De Jong’s first function f1 [−100, 100] m 0

Schwefel 2.22 function f2 [−100, 100] m 0

Step function f3 [−100, 100] m 0

Rosenbrock’s function f4 [−2.048, 2.048] m 0

Rotated hyper-ellipsoid function f5 [−100, 100] m 0

Schwefel 2.26 function f6 [−500, 500] m −418.98 ∗ m

Rastrigin’s function f7 [−5.12, 5.12] m −1

Ackley’s function f8 [−32.77, 32.77] m 0

Griewank’s function f9 [−600, 600] m 0

Six-hump camel-back f10 [−5, 5] 2 −1.031628

Shifted sphere function f11 [−100, 100] m −450

Shifted Schwefel’s problem 1.2 f12 [−100, 100] m −450

Shifted Rosenbrock’s function f13 [−100, 100] m 390

Shifted Rastrigin’s function f14 [−5, 5] m −330

Table 2 Single-objective real-parameter optimization-benchmark suit
of CEC2014

Function Function type

f1– f3 Unimodal functions

f4– f16 Multimodal functions

f17– f22 Hybrid functions

f23– f30 Composite functions

5.2 Setup

The experiments were conducted using a 10th-generation
Intel® Core i7 processor (3.4GHz)with 32GBRAMrunning
macOS 10.13, High Sierra. The Java programming language
was used to write the source codes of all of the algorithms.

The parameter settings of theCS algorithmswere: n = 10,
D = 1 and pa = 0.25. The mutation rate r = 0.05 for CS10
and CS11. In addition, CS11 used PAR = 0.3. These values
are based on the recommendations in Yang and Deb (2009),
Yang and Deb (2010), Abed-alguni and Alkhateeb (2017).

The parameters of FWA-DM were as suggested in Yu
et al. (2014). The parameters of L-SHADEwere dynamically
adjusted as in Tanabe and Fukunaga (2014). The parameters
of MHDA were as suggested in Sree Ranjini and Murugan
(2017). The best experimental findings in the tables of this
section are highlighted with bold font.

5.3 Comparison between ECS and other well-known
variations of cuckoo search

Tables 3 and 4 show the experimental results of CS, ECS,
CS10 and CS11 using the test functions that are described in
Table 1. The format of the results is as follows: the first row is

the average of the lowest acquired fitness values, the second
row is the standard deviation and the third row is the FEV
for 30 independent runs. FEV is the error value of a function,
which is the distance between its true optimal value and the
average of best objective values of the function over multiple
runs. Note that in this section we say that an optimization
algorithm outperforms the other algorithmswhen it produces
the lowest mean fitness value and error value compared to the
other algorithms over 30 independent runs.

Table 3 shows a summarization of the experimental results
of the 30D (30 decision variables) problems, while Table 4
shows a summarization of the experimental results of the 50D
(50 decision variables) problems. We can obviously see that
ECS achieved the best fitness values for all of the benchmark
functions. This observation clearly indicates that ECS has a
robust performance even when the problem size increases.
The outstanding performance of ECS is expected because
it uses several exploration methods. First, it uses the HDP
mutation, which provides efficient exploration capabilities
over the search range of each decision variable in a candi-
date solution regardless of the current value of the decision
variable. In contrast, CS and CS11 may get trapped closer
to the middle between the two boundaries. Second, it uses
refraction learning to improve the ability of CS to jump out
of suboptimality. Third, it tries to improve a portion of the
worst candidate solutions usingGaussian perturbation before
the discard step of CS. Fourth, it uses Jaya mutation to move
randomly selected solutions between the worst and best solu-
tions in the population. Fifth, it uses the original mutation
method in CS (Lévy flight mutation) to improve randomly
selected candidates solutions.

We can also see that CS10 (CSwith polynomial mutation)
is the second-best performing algorithm in Tables 3 and 4.
The performance of CS10 is expected because it also uses
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Algorithm 1 Exploratory Cuckoo Search (ECS).
Begin

2: Objective function f (xi ), where xi = 〈x1, ..., xm〉 is a candidate
solution
Generate initial population of n candidate solutions xi (i =
1, 2, ..., n) as follows:

(a) Generate n/2 random candidate solutions
(b) Generate the opposite solutions of the n/2 generated solutions

using refraction learning (apply Equation 8 to every decision
variable in every generated solution)

4: while (t <MaxItr) or (stop criterion) do
Select three candidate solutions randomly (say, xi , x j , xk ) from
the current population

6: Update the solution xi using Lévy flights (apply equation 2)
Update the solution x j using the Jaya mutation (apply Equation
13 to every decision variable in x j )

8: Update the solution xk using the HDP mutation (Equation 9)
Calculate the fitness values: f (xi ), f (x j ) and f (xk)

10: Select three candidate solutions randomly from the current pop-
ulation (say, xl1 , xl2 , xl3 )
if f (xi ) is better than f (xl1 ) then

12: Replace xl1 by xi

end if
14: if f (x j ) is better than f (xl2 ) then

Replace xl2 by x j
16: end if

if f (xk) is better than f (xl3 ) then
18: Replace xl3 by xk

end if
20: Calculate the pa worst solutions and update themusingGaussian

Perturbation (Equation 15)
Rank the solutions based on their fitness values and replace the
worst pa solutions with new randomly generated solutions.

22: Keep the best solutions in the population
Rank the solutions and find the current best x∗

t

24: Generate the opposite solution x
′∗
t of x∗

t using refraction learning
(i.e., apply Equation 8 to every decision variable in x∗

t )
if f (x

′∗
t ) is better than f (x∗

t ) then
26: Replace x∗

t by x
′∗
t

end if
28: end while

Return the global best solution x∗
30: End

the HDP mutation to sample the search space. Moreover,
ECS and CS10 have the lowest standard deviations for all
the functions. This strongly indicates that they provide more
stable and consistent results over multiple runs compared to
the other tested algorithms.

5.4 Comparison between ECS and other well-known
optimization algorithms

The FEV values for the 30 CEC2014 functions are reported
in Table 5. We can see that the simulation results in Table 5
confirm the conclusion in Abed-alguni and Barhoush (2018)
that L-SHADE performs better than the other optimization
algorithms by providing the lowest FEV for 10 functions of
the 30 functions. This is maybe because L-SHADE continu-

ously adjusts its internal parameters and population size over
the course of its optimization process. We can also see that
ECS is the second-best performing algorithm with only one
function difference than L-SHADE. A possible explanation
is that ECS uses several techniques to help CS to jump out
of suboptimality.

The overall results suggest that ECS performs very well
compared to the powerful optimization algorithms. Note that
GWOandCS are theworst-performing algorithms compared
to the other algorithms. This is expected because CS and
GWO do not use any special techniques to improve their
convergence behaviors compared to the other tested algo-
rithms.

6 Conclusion

This paper presented a new version of cuckoo search (CS)
called exploratory cuckoo search (ECS). ECS incorporates
threemodifications to the original CS algorithm in an attempt
to enhance its exploration capabilities. First, it uses refraction
learning for a better exploration of the space of all feasible
solutions. Second, it applies a Gaussian perturbation method
to a predefined fraction of the worst candidate solutions in
the population before the discard step. Third, it uses three
mutation methods, the Lévy flight mutation, HDP mutation
and Jayamutation, to produce new optimized candidate solu-
tions.

Extensive simulations were conducted to examine the per-
formance of ECS using different algorithms and different
benchmark functions. First, ECS was evaluated and com-
pared to three variations of CS (the original CS, CS10 and
CS11) using 14 widely used benchmark functions. The over-
all experimental and statistical results indicate that ECS
exhibits better performance than the three variations of CS.
Second, ECSwas evaluated and compared to the state-of-the-
art optimization algorithms, CS, GWO, DGWO, L-SHADE,
MHDA and FWA-DM, using 30 IEEE CEC 2014 functions.
Although the results indicate that ECS is the second-best
performing algorithm after L-SHADE, the results strongly
indicate that ECS provides competitive performance com-
pared to L-SHADE.

There are three interesting directions for future work.
First, two improvements will be incorporated to ECS based
on L-SHADE: success-history-based parameter adaptation
and dynamic reduction of the population based on a lin-
ear function (Tanabe and Fukunaga 2014). Second, ECS
will be applied to cooperative Q-learning (Abed-alguni
et al. 2015a, b; Abed-alguni and Ottom 2018) as described
in Abed-alguni (2018), Abed-alguni (2017), Abed-Alguni
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Table 3 Summary of the
experimental results of of ECS
compared to three CS
algorithms using 14 test
functions

Function CS ECS CS10 CS11

F1 5.13E−06 0.00E+00 0.00E+00 4.31E−06

5.84E−06 0.00E+00 0.00E+00 6.29E−06

5.13E−06 0.00E+00 0.00E+00 4.31E−06

F2 3.48E−03 0.00E+00 0.00E+00 1.26E−03

4.03E−03 0.00E+00 0.00E+00 1.03E−03

3.48E−03 0.00E+00 0.00E+00 1.26E−03

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 2.58E+03 2.27E+02 2.83E+03 2.83E+03

7.07E+02 1.14E+02 1.21E−02 2.71E−03

2.58E+03 2.27E+02 2.83E+03 2.83E+03

F5 1.76E+01 0.00E+00 0.00E+00 1.19E+01

1.57E+01 0.00E+00 0.00E+00 2.63E+01

1.76E+01 0.00E+00 0.00E+00 1.19E+01

F6 1.97E+03 1.00E+00 5.87E+03 5.87E+03

2.16E+02 2.36E−03 1.44E−03 8.44E−04

1.45E+04 1.25+04 1.84E+04 1.84E+04

F7 3.46E−03 0.00E+00 0.00E+00 2.08E−04

4.58E−03 0.00E+00 0.00E+00 2.94E−04

3.46E−03 0.00E+00 0.00E+00 2.08E−04

F8 1.19E−02 0.00E+00 4.44E−16 3.72E−03

9.51E−03 0.00E+00 1.04E−31 7.36E−03

1.19E−02 0.00E+00 4.44E−16 3.72E−03

F9 1.84E−02 0.00E+00 0.00E+00 9.36E−03

1.47E−02 0.00E+00 0.00E+00 8.35E−03

1.84E−02 0.00E+00 0.00E+00 9.36E−03

F10 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00

1.56E−03 1.50E−03 1.62E−03 1.97E−03

1.52E−03 1.26E−03 2.04E−03 2.15E−03

F11 6.12E+04 −4.35E+02 −2.86E+02 6.12E+04

7.17E+03 1.76E+01 1.89E+01 1.00E+04

6.17E+04 0.15E+02 1.64E+02 6.16E+04

F12 1.08E+07 1.11E+04 2.79E+04 1.14E+07

1.36E+06 5.14E+03 4.59E+03 1.94E+06

1.08E+07 1.11E+04 2.84E+04 1.14E+07

F13 3.02E+10 2.03E+7 7.01E+10 4.18E+10

5.87E+10 4.18E+7 8.68E+10 4.38E+10

3.02E+10 2.03E+7 7.01E+10 4.18E+10

F14 2.98E+01 −1.84E+02 4.45E+01 9.55E+01

1.76E+02 1.40E+02 1.25E+02 1.80E+02

3.60E+02 1.46E+02 3.75E+02 4.26E+02

D = 30, runs = 30 and maximum number of iterations = 10,000
The best result for each benchmark function is highlighted with bold font
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Table 4 Summary of the
experimental results of ECS
compared to three CS
algorithms using 14 test
functions

Function CS ECS CS10 CS11

F1 7.44E−06 0.00E+00 0.00E+00 2.99E−06

9.12E−06 0.00E+00 0.00E+00 4.18E−06

7.44E−06 0.00E+00 0.00E+00 2.99E−06

F2 5.16E−03 0.00E+00 0.00E+00 1.03E−03

4.76E−03 0.00E+00 0.00E+00 8.16E−04

5.16E−03 0.00E+00 0.00E+00 1.03E−03

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 4.83E+03 2.21E+01 4.83E+03 4.83E+03

2.14E−01 1.70E+01 7.20E−03 3.48E−02

4.83E+03 2.21E+01 4.83E+03 4.83E+03

F5 1.12E+02 0.00E+00 0.00E+00 2.86E+00

1.76E+02 0.00E+00 0.00E+00 7.18E+00

1.12E+02 0.00E+00 0.00E+00 2.86E+00

F6 6.43E+02 7.87E+01 5.87E+03 5.87E+03

3.73E+02 7.31E−04 2.16E−03 5.78E−04

1.32E+04 1.26E+4 1.84E+04 1.84E+04

F7 1.58E−03 0.00E+00 0.00E+00 4.64E−04

1.87E−03 0.00E+00 0.00E+00 5.36E−04

1.58E−03 0.00E+00 0.00E+00 4.64E−04

F8 6.91E−03 0.00E+00 4.44E−16 1.87E−03

5.94E−03 0.00E+00 1.04E−31 8.60E−04

6.91E−03 0.00E+00 4.44E−16 1.87E−03

F9 1.40E−02 0.00E+00 0.00E+00 1.33E−02

8.48E−03 0.00E+00 0.00E+00 1.64E−02

1.40E−02 0.00E+00 0.00E+00 1.33E−02

F10 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00

1.56E−03 1.42E−03 1.62E−03 1.97E−03

1.52E−03 1.66E−03 2.04E−03 2.15E−03

F11 1.42E+05 −8.14E+01 −6.40E+01 1.39E+05

1.31E+04 3.17E+01 2.96E+01 1.64E+04

1.43E+05 3.61E+02 3.86E+02 1.40E+05

F12 8.08E+07 −1.11E+02 2.20E+05 8.44E+07

1.04E+07 1.66E+01 2.98E+04 1.07E+07

8.08E+07 3.48E02 2.21E+05 8.44E+07

F13 1.11E+11 2.16E+2 1.87E+11 7.14E+10

1.59E+11 1.47E+2 1.66E+11 1.39E+11

1.11E+11 2.16E+2 1.87E+11 7.14E+10

F14 3.90E+02 −0.51E+02 3.84E+02 2.97E+02

3.14E+02 3.65E+02 3.38E+02 3.43E+02

7.20E+02 2.79E+02 7.14E+02 6.27E+02

D = 50, runs = 30 and maximum number of iterations = 10,000
The best result for each benchmark function is highlighted with bold font
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Table 5 Summary of the experimental results of ECS compared to six optimization algorithms

Function ECS GWO DGWO CS L-SHADE MHDA FWA-DM

f1 9.00E−15 2.00E+03 4.36E+00 3.47E + 07 9.00E−15 3.59E+03 4.91E+05

f2 2.45E−16 2.12E+03 2.36E+00 2.50E + 07 8.50E−11 3.82E+03 2.50E−16

f3 1.78E−16 2.89E−01 2.54E−04 4.10E + 04 5.83E−10 5.80E−07 1.88E−16

f4 1.82E−09 8.75E−03 1.63E−09 4.22E+02 2.58E−09 1.42E−08 2.23E+01

f5 5.67E+00 3.96E+02 2.00E+02 5.00E+01 2.00E+01 2.36E+00 2.11E+01

f6 8.75E−15 5.19E+01 1.21E+00 3.63E+01 1.25E−06 8.52E−14 1.82E+01

f7 1.26E−10 2.89E−03 8.53E−10 1.86E+00 7.25E−09 2.25E−11 2.53E−03

f8 8.55E−17 1.33E+00 1.51E−19 3.89E+02 1.25E−09 2.20E−19 9.53E−15

f9 1.13E+00 1.82E+01 1.03E+00 3.00E+03 8.96E+00 5.30E+00 6.54E+01

f10 3.18E−03 9.79E+00 3.20E−03 4.37E+03 2.36E−02 1.22E+03 1.13E+01

f11 1.50E+02 1.99E+04 2.95E+03 4.00E+03 2.30E+03 1.52E+02 2.19E+03

f12 6.35E−02 8.50E+00 6.30E−02 4.78E−01 9.00E−01 1.42E−01 3.25E−01

f13 3.15E−01 2.19E+00 4.59E−01 4.81E−01 6.50E−01 4.78E−01 3.11E−01

f14 2.00E−01 2.35E−01 1.99E−01 4.28E−01 8.60E−01 5.43E−01 2.99E−01

f15 1.67E+00 1.01E+02 7.23E+01 9.94E+01 1.60E+00 3.25E+00 8.36E+00

f16 9.50E+00 1.90E+01 9.53E+00 1.53E+01 1.02E+01 1.06E+01 1.10E+01

f17 2.55E+00 1.66E+02 4.55E+03 3.47E+06 2.20E+00 4.53E+02 6.59E+03

f18 2.95E+00 8.77E+00 3.94E+01 3.90E+03 1.90E+00 3.69E+00 7.24E+01

f19 5.70E+00 4.96E+01 1.22E+02 6.14E+01 5.30E+00 3.78E+02 1.04E+01

f20 4.21E+00 6.20E+01 4.73E+02 3.97E+04 4.30E+00 7.09E+02 4.37E+01

f21 2.78E+02 1.04E+03 7.09E+02 3.57E+05 3.69E+02 2.57E+02 8.75E+02

f22 1.32E+02 2.42E+02 2.73E+02 9.47E+02 1.32E+02 2.73E+02 1.62E+02

f23 3.89E+01 3.65E+02 3.69E+01 3.78E+02 3.26E+02 3.10E+03 3.16E+02

f24 1.98E+02 2.24E+02 2.25E+02 2.89E+02 1.93E+02 2.26E+02 2.96E+02

f25 2.10E+02 2.45E+02 2.11E+02 3.26E+02 2.00E+02 2.11E+02 2.09E+02

f26 1.89E+02 3.29E+02 2.10E+02 2.22E+02 2.69E+02 1.00E+02 9.93E+01

f27 1.29E+02 2.95E+02 4.09E+02 5.22E+02 1.26E+02 4.05E+02 4.10E+02

f28 3.89E+02 5.36E+02 1.65E+03 3.86E+03 3.62E+02 1.54E+03 4.22E+02

f29 2.31E+02 2.39E+02 2.29E+02 2.59E+05 7.33E+02 7.86E+02 2.78E+02

f30 2.93E+00 3.32E+02 2.83E+00 2.39E+04 6.99E+02 2.63E+03 4.69E+02

D = 30, runs = 30 and number of iterations = 10,000
The best result for each benchmark function is highlighted with bold font

(2014). Finally, ECSwill be further developed to solvemulti-
objective optimization problems.
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