
FOCUS

Securing data in transit using data-in-transit defender architecture
for cloud communication

Keerthana Nandakumar1 • Viji Vinod2 • Syed Musthafa Akbar Batcha3 • Dilip Kumar Sharma4 •

Mohanraj Elangovan5 • Anjana Poonia6 • Suresh Mudlappa Basavaraju7 • Sanwta Ram Dogiwal8 •

Pankaj Dadheech9 • Sudhakar Sengan10

Accepted: 31 May 2021 / Published online: 10 June 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The advent of cloud infrastructure in which third-party cloud services may retain sensitive consumer and company data in

storage environments underlines the need to advocate for encryption and multi-tenant shared processing as a primary

security mechanism. Digital information movement, storage, and processing are widely defined in terms of ‘‘Data in

Motion,’’ ’’Data at Rest,‘‘ and ’’Data in Usage,‘‘ respectively. The implementation of security methods for each of these

states can be viewed similarly. Transit data applies to data when being moved from one source of data to another. Transit

data contains data sent across the network from back-end clients, programs, and repositories. There could be two data

centers inside the same organizational network in the cloud, as a member of completely separate networks. This paper

presents a novel architecture data-in-transit defender (DiTD), to protect data in transit; DiTD provides a novel security

framework based on high-performance cloud computing. This protocol enables more efficient use of the key strength and

time of symmetric block encrypted data, public-key cryptography (PUKC), cryptographic hash, and brief key exchange

function.

Keywords Data in transit � Cloud security � Encryption � Ciphertext � Cloud service

1 Introduction

Over the past decades, the world’s Web has undergone an

unprecedented increase in hackers, malware, ransom

wares, and other harmful bugs or groups who are actively

attempting to find a way to access user data. This state goes

without saying that security has become one of the most

critical activities that can be addressed, irrespective of the

position we usually perform (Adrian et al. 2015). The

general necessity to avoid unauthorized access to confi-

dential, private/otherwise vital details is something every

end-users, database operators, system managers, and so on

can acknowledge: The disagreements are primarily linked

to what we ought to secure and how we can do it.

The process of deciding the best route to secure our data

always includes a well-conducted risk analysis supported

by a cost–benefit analysis, which is an effective model for

the order to assist us in identifying the appropriate tech-

nological and operational measures to be followed in our

given scenario (Aviram et al. 2016). The control system or

processor must use adequate processes and technologies to

maintain a minimum level of security to minimize the

costs, taking into account communications systems, the

cost of implementation and design, the scope, description,

and objective, the threat of varying probability and the

impact on human freedoms and privileges.

As the name suggests, in-transit data can be treated just

like a medium of transmission: A perfect illustration of in-

transit data is a standard Web page that we receive from the

internet while we browse the internet. In a nutshell, this is

what happens under the hood (Flavel et al. 2015):

1. We submit a request for HTTP (or HTTPS) to the

server, which runs the Web site we use.

2. The Web server acknowledges our request, processes

it by identifying the (static/dynamic) information that

we have requested, and then sends it to us as an HTTP

(or HTTPS) address over a specific TCP port (usually

80 for HTTP and 443 for HTTPS).

Communicated by Vicente Garcia Diaz.

Extended author information available on the last page of the article

123

Soft Computing (2021) 25:12343–12356
https://doi.org/10.1007/s00500-021-05928-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-05928-6&domain=pdf
https://doi.org/10.1007/s00500-021-05928-6

3. Our application, typically a Web browser such as

Google Chrome and Firefox receives the response(s) in

HTTP, stores it in their internal cache, and displays it

to us.

Now, let us assume for granted that both the server and

the client at rest introduced a high degree of data encryp-

tion: This ensures that the first and fifth states are internally

secure, as any attempt at penetration against encrypted data

is created. However, the third condition is that the data-in-

transit may or may not be authenticated based on the

application protocol. The client currently utilizes the data

to be transmitted.

This is what usually happens under the hood when the

HTTP protocol is being used:

As we can see, the security risks become quite clear.

When the Web server reads the incoming request and

decrypts the data, the submitted data become transparent,

and the route used to send it to the Web client (HTTP) is

not encrypted (Liu et al. 2015). As an outcome, any

unauthorized party that effectively performs an attack

(Fig. 1) directly accesses our encrypted information.

2 Related works

Additional conventional cryptographic protocols (e.g.,

TLS/SSL) do not always address the increasing security

requirements in cloud communications. These motivations

are mainly related to maintaining compatibility with the

middlebox, backward compatibility with older systems,

reduction due to non-availability of the selected protocol

version, and some recent attacks (e.g., BEAST, CRIME,

DROWN, WeakDH, and SSLv3 fallback, BREACH,

POODLE, Logjam, and ROBOT threats) (Cangialosi et al.

2016).

Recently, the final draft of the TLS v1.3 was published.

This reports some enhancements in terms of security and

efficiency over TLS v1.2. TLS v1.3 excludes both existing

symmetric encryption processes and the static RSA and the

Diffie–Hellman cipher suites from helping. This is applied

to the base requirements DHE (Bittau et al. 2010). It also

uses only related data Authentic Encryption with the

Accompanying Data (AEAD) processes to authenticate the

encryption.

However, it has specific weaknesses. In TLS v1.3, the

first two handshake round-trip messages are combined into

a single round-trip address. The mixed message contains

the approved cipher suites details, the network key

exchange details, and the ’’Client_Hello_Msg‘‘ response

together in the unencrypted form (Cramer and Shoup 2004;

Kodali and Sarma 2013). Most notably, both transactions

are conducted in unencrypted form until the Web gets a

’’Server_Hello_Msg‘‘ reply. The Client key exchange

knowledge is one-half of the key exchange process pro-

vided by the server-side algorithm random presumption. As

a result, if the server does not accept the algorithm or does

not send any key share data, the user creates and re-submits

key exchange data using the recognized algorithm, helping

to reduce the round-trip time. Along with the above

improvements, it also uses Pre-Shared Key (PSK) cipher

suites. The Redundant messages like

’’Change_Cipher_Specification‘‘ are often omitted, and

thus, it keeps backdoor support available for the middle-

box applications (Tillich and Großschädl 2005).

TLS (Transport Layer Security), as well as related

protocols such as QUIC, depending on the third-party

repositories—Certificate Authorities (CA), is used to

Fig. 1 Weak spot (open to

malicious attacks)

12344 K. Nandakumar et al.

123

guarantee the authentication of the cryptographic keys

shared between two exchanging parties (e.g., client and

server), thereby defending beside successful Man-In-The-

Middle (MITM) assaults. However, we have seen several

issues in this program in recent years (Megouache et al.

2020): (a) CA’s need to be tricked into granting certificates

to the untrusted user; (b) CA servers have compromised;

(c) the process to revoke weak or stolen certificates is

troublesome; and (d) CA transfers the hidden keys to

another possibly dangerous user. Consequently, the secu-

rity offered by current TLS, contrary to successful MITM

attacks, is maximally debatable.

On the other side, opportunistic encryption protocols

like Tcpcryp offer an enhanced security standard for

Internet communications. Instead of utilizing any cryp-

tography, these protocols encrypt and authenticate the data

without allowing communicators to authenticate each

other’s public keys (PBK). It offers security against

proactive threats but leaves the door open for aggressive

others (Failed 2020). Essentially, this is equivalent to uti-

lizing a corrupted CA certificate or the self-signed one.

3 Proposed methodology

Throughout this segment, we suggest extensive stable data-

in-transit defender (DiTD) architecture for cloud commu-

nication. This design effectively reduces cloud communi-

cations’ risks that occur within cloud entities. DiTD

guarantees security Cloud Service Providers (CSPs) (Mo-

hiuddin and Almogren 2020) and Cloud Users (CUs) in-

transit data and validity. It has no middlebox or backward

compatibility. If the two parties interact using the NIST-

recommended cipher suites, then the protected connection

cannot be created. They carry out Man-In-The-Middle

(MITM) vulnerability monitoring (including eavesdrop-

ping, name spoofing, sniffing, code tampering), confiden-

tial knowledge leakage, compromised-key, repeat,

repudiation, and device hijacking assaults (Elazhary 2019).

But we are demonstrating that this design prevents such

attacks effectively. DiTD defends the cloud contact net-

works with the significantly less overhead agreement and

capacity, fair resource utilization, and better access than

standard authentication protocols (e.g., TLS v1.3) (Almo-

gren 2019).

Our key contribution in this work is a comprehensive

stable infrastructure for cloud communication named

DiTD. More precisely, the article refers to the following:

• DiTD offers a novel security framework based on the

high-performance cloud. The power and speed of

symmetric block encryption, PUKC, cryptographic

hash, and brief key exchange function are used

efficiently by this protocol.

• Using modern and concise message architectures facil-

itates reconnection, stable session configuration, and

data transfer. Such message architectures support

achieving reduced bandwidth utilization and reasonable

memory use associated with the TLS v1.3 (the current

regular variant of SSL successors) and implement other

communication protocols within it (Shailendra et al.

2018).

• DiTD guarantees data-in-transit confidentiality and all

related hidden keys. By conducting Secured Key

Exchange (SECKEX) for each client and encrypting

the client with a fresh hidden key, it retains Perfect

Backward Secrecy (PBS) and Perfect Forward Secrecy

(PFS)

• Secured Key Exchange (SECKEX) is a key exchange

protocol, expanding key exchange Diffie–Hellman. By

exploiting cloud communication channels between

interacting parties, SECKEX offers opportunistic

encryption with partial security, contrary to successful

MITM attacks. Therefore, our protocol has all the

usability advantages of opportunistic encryption while

providing security against many active attackers.

4 DiTD architecture

This segment discusses, in detail, the suggested secure

infrastructure for cloud communication. Within the fol-

lowing segment, we address the nature of this architecture

and its various stages of communication. In this, we clarify

the chain of activities executed at all ends of users and

servers.

4.1 Design specification

DiTD tackles data-in-transit security in cloud computing.

Utilizing a modern Key Management Server (KMS)

framework ensures the validity of cloud entities (Gawan-

navar et al. 2015; Veerabathiran et al. 2020). The KMS is

built to protect, delete, and securely spread public root

keys. DiTD successfully incorporates symmetric block

encryption intensity and time, PUKC, cryptographic hash,

and ephemeral key exchange system. Symmetric encryp-

tion helps to guarantee confidentiality, cryptographic

hashing helps to ensure integrity, and PBK cryptography

ensures trustworthiness and non-repudiation. It includes

these four critical security mechanisms into communica-

tion systems. A Cloud Service User (CSU) may provide a

safe channel of contact with Cloud Front End (CFE), and it

ensures that data and cryptographic keys are still secure.

Securing data in transit using data-in-transit defender architecture for cloud communication 12345

123

No long-term keys are used on the network. The session

is encrypted along with a new secret key guaranteeing

Perfect Forward Secrecy (PFS). DiTD is specific to inter-

actions focused on both TCP and UDP. It operates in the

layer of operation. It can therefore be effectively imple-

mented in most of the protocols and application networks.

DiTD utilizes seven different message architectures, which

are extremely compact: (i) To publish (PUB), (ii) To

acknowledge (ACK), (iii) To reconnect (RECON), (iv) For

request (REQ), (v) For response (RES), (vi) To expire

(EXP), and (vii) To find the error (ERR). We render DiTD

more effective bandwidth usage, memory usage, and inte-

gration with existing protocols. Thus, these message

architectures enable safe session configuration, reconnec-

tion, data transfer, and cloud-based error handling (Hamad

et al. 2020).

The design consists of six separate communication

phases: registration, configuration, creation of a session,

transmission of data, termination, and reconnection.

Throughout the registration process, the cloud organiza-

tions must first report the root PBKs to the Key Manage-

ment Server (KMS). In the setup process, the partial

cryptographic key pairs and the Hash Function (HF) are

designed to create an encrypted session before any cloud

user chooses to communicate to the private cloud. Instead,

all organizations share their shared temporary keys signed

by their respective private root key. Hybrid-crypto protocol

secures the key exchange of temporary PBKs using AES/

ECC Code for device encryption and SSDH/ECDH for key

exchange of the session creation process.

After that, all organizations use SECKEX to produce a

standard symmetric encryption key. Then, in the data

transmission process, they continue sending coded signed

data to each other. The cloud server dismisses the link,

called the termination process, after successfully trans-

mitting the answer payload to the cloud customer. At this

stage, the server retains the session details protected before

the client expires. The cloud user submits a reconnection

request during that time and recovers the encrypted session

for further data transfer, called the reconnection process.

Figure 2 Illustrates specific interaction steps used by DiTD

that are addressed in depth in the following section.

4.2 Registration phase

Before every communication, all cloud entities are regis-

tered with root PBKs on the Key Management Server

(KMS) (Jurcut et al. 2020) of the DiTD. PBKs for the KMS

will consistently be implemented in the cloud agency

applications to guarantee the data’s security and reliability

between the KMS and the server. At this stage, it is

assumed that the KMS, along with all its correspondences

(Key Registration, Key Revocation, and Key Distribution),

is secured.

4.2.1 DiTD’s key management server

A Data Encryption Key (DEK) is the device used to

encrypt the data in a piece. Such keys are placed close to

the data they encrypt, leading to the need for low latency

and high availability. The DEKs are authenticated with a

Standard Encryption Key (SEK) (or ’’wrapped by‘‘). For

Cloud Platform providers, one or more KEKs exist (Vijaya

Kumar et al. 2020). Such KEKs are centrally maintained in

Key Management Server (KMS), a server specifically

designed to hold keys. With a reduced number of KEKs

than DEKs and a single key management tool, DiTD’s

encryption data exchange is more scalable. It enables user

access from a central point to be managed and regulated.

4.3 Setup phase

In the case of Cloud service Instance (CI), CI is started at

the very beginning. Nevertheless, for the Cloud User (CU),

interactions with the Cloud Front End (CFE) server begin

when a new cloud link is established. A growing cloud

entity creates a couple of temporary PUK-PK pairs during

this process. One key pair (AES/ECC) is the reliability and

validity of the payloads. For protected key exchange, the

other leading pair is (SSDH/ECDH). Every cloud entity

often initializes the cryptographic HF as defined in the

specification.

4.4 Session creation phase

When CU first links with CI, a temporarily authenticated

connection between CU and CI is initialized. A pair of

messages are exchanged among them during this process.

In the short session, secured by a 64-byte hashed session

key, all parties store the pair of PBKs from the other side.

Then, they produce a specific secret key for the data

transmission process to begin. After each valid transaction,

the 64-byte hashed session key (request-response) is

modified. The CU regularly gets a modified session key

concealed within the encrypted response. Once the session

ends, all the established PBKs are immediately deleted, and

a new secret key is created.

4.5 Data transmission phase

Once the protected session has been created, all parties use

the proposed 2-TCA algorithm to execute hybrid block

encryption to preserve the payloads’ secrecy for request

and answer. The agreed temporary key pair (AES/ECC) is

used during the session to conduct payload signing and

12346 K. Nandakumar et al.

123

verification, which guarantees the payload’s validity and

legitimacy. Each signing procedure carried out in this

architecture requires timestamps to defend in contrary to

replay attacks. The cloud-focused cryptographic HF is

mainly used to secure the privacy of the data during this

process.

4.6 Termination phase

During this step, the contact channel is terminated when

the CI successfully sends the encrypted response back to

CU. The current session stays valid until it expires for

reconnection.

4.7 Reconnection phase

This process is not seen directly in Fig. 2. Within the

design, it has an implicit operation. When the CU connects

the server again and directs a legitimate reconnection

(RECON) packet with the last obtained session key during

the termination process, the encrypted link is reset among

CI and CU. CFE provides a database of session key CIs. It

reconnects CU to correct CI, depending on the session key.

All sides use the PBK pair previously exchanged, and the

specific hidden key held. So, it is not appropriate to re-key

the block cipher throughout the session.

5 The proposed 2-tier cryptography
algorithm (2-TCA)

Draft 2-TCA is discussed in this segment. This 2-TCA

incorporates a modern process of integrating symmetric

and asymmetric methods across two parallel processes.

Such iterations mitigate the drawbacks of current hybrid

algorithms by attaining a high degree of reliability without

increasing execution time.

5.1 Encryption process

The Data in the Encryption is broken into n blocks, Bi.

Every block is composed of 128 bits. This is separated into

two sections of Msgi (0:
n/2–1) and Msgi (

n/2:n - 1). If n is

not an integer number and has a fraction, then the 2-TCA

algorithm uses padding with null to be 128 bits for the last

row. The encryption cycle is divided into two phases: The

first n/2 fragments are secured using the hybrid encryption

method (ECC and AES) in Phase I. The ECC algorithm is

used to protect the secret key; subsequently, it is the PBK’s

first stable algorithm.

ECC requires smaller key sizes than the other methods,

leading to fewer memory spaces, depending on the math-

ematical question. The ECC solved entirely exponential

rather than the sub-exponential for the other public-key

schemes (Hamad et al. 2020). ECC allows contact nodes to

accommodate the more considerable number of queries for

the lowest number of packets lost.

Fig. 2 DiTD architecture communication phases

Securing data in transit using data-in-transit defender architecture for cloud communication 12347

123

Meanwhile, ECC uses more energy than the symmetri-

cal process; the AES system’s usage decreases resource

consumption and improves the device’s efficiency.

Applying AES with ECC needs to save up to 25% more

energy and optimize the encryption and decryption proce-

dures by approximately 20%. The first n/2 number of blocks

is encrypted as subsequent: ‘mi is encrypted using AES

through the key Ki, an undisclosed key of AES encryption

procedure with 128 bits. Ki is encrypted through ECC for

producing Kj with the length L.

mi ¼
Xi¼ n

2�1

i¼0

Bið Þ; 0� i� n

2� 1
ð1Þ

Kj ¼ ECCenc TCPK; ki�1ð Þ; 0� j� L � 1. . .: ð2Þ

The ECC utility is ECCenc; the input ciphers with the

Trust Center Public Key (TCPK) are used to substantiate

the key function.

Ci ¼ EAES Kj;Bi

� �
ð3Þ

where EAES is the AES encryption function.

Phase II is implemented in conjunction with Phase I to

raise the degree of security without raising the execution

period. The remaining n/2 chains in Phase II are secured by

the XOR-DUAL RSA method. The DUAL RSA method

allows maximum encrypting and decrypting and is four

times faster than the standard RSA technique. The XOR

Encryption algorithm is a symmetric method of encryption

and decryption that uses the same key. The XOR-

DUALRSA algorithm ensures the creation of a more

trusted algorithm shown as follows:

Mi ¼
Xi¼n�1

i¼n=2

Bið Þn=2� i� n � 1. . .: ð4Þ

In this algorithm, two large prime numbers, viz. p and q,

have been selected randomly. Here, x = p 9 q, and the

function u(x) = (p - 1) 9 (q - 1). A number compara-

tively prime to u is chosen; d and e are considered so that

e 9 d = 1 MOD u(x), yet, the PBK (e,x) is used for the

encryption.

Ri ¼ Bið Þe
modx: ð5Þ

ASCII for (Bi) is received and converted into binary

values

Li ¼ ASCII Bið Þ ð6Þ

where Li is the utility for transferring message block to

ASCII. Ri is ciphered text by using DUAL RSA.

Ci ¼ Rið ÞXOR Lið Þ: ð7Þ

MD5 is applied to the ciphertext Ci. The optimized

performance of the hashing function is security.

di ¼ MD5 cið Þ ð8Þ
Di ¼ MD5 Cið Þ: ð9Þ

During the last stage of the encryption process, consis-

tent hash values (di and Di) along with a size of 128 bits are

concatenated, and two n/2 blocks are combined to produce

n block ciphertext. The encryption process is described in

the algorithm.

Q ¼ ci þ Ci ð10Þ
H ¼ di þ Di: ð11Þ

5.1.1 Algorithm of 2-TCA

Input: CD (Cloud Data), SK (AES Secret KEY), T(128-bit size of

the block)

Output: ED (Encrypted Data), AD(AES/ECC Hybrid Encrypted

Data), DRD (XOR dual RSA Encrypted Data), H (Hash

value for the Encrypted Data)

Step 1 Divide the data into defined 128-bit blocks, b = CD/T;

Step 2 Assign loop threshold i = 0;

Step 3 If i\ b/2, execute the following steps. Else go to Step 14;

Step 4 Starting with the first block of the cloud data,

mi =
Pi¼b=2

i¼0 ðBiÞ;
Step 5 Assign loop threshold j = 0;

Step 6 If j\ b - 1, execute the following steps. Else go to Step
10;

Step 7 Kj = ECCenc ðTCCDK ; Ski�1Þ;
Step 8 Increment loop threshold, j = j ? 1;

Step 9 GOTO Step 6;

Step 10 AES/ECC hybrid encrypted data, Ad = EAES(Kj,Bi);

Step 11 Apply an HF over the encrypted data, di = MD5(Ad);

Step 12 Increment loop threshold, i = i ? 1;

Step 13 GOTO Step 3;

Step 14 Assign loop threshold i = b/2;

Step 15 For public-key encryption, choose two large prime

numbers, p, q;

Step 16 x = p*q;

Step 17 u(x) = (p - 1) 9 (q - 1)

Step 18 The prime value is relatively chosen u, r;

Step 19 Calculate e 9 r = 1 MOD u(x);

Step 20 DUAL RSA encryption uses (e, x) as the PBK

Step 21 If i\ b, execute the following steps. Else GOTO Step 14;

Step 22 Starting with the second block of the cloud data,

Mi ¼
Pi¼n

i¼n=2 Bið Þ;
Step 23 Ri ¼ ðBiÞe

MODx;

Step 24 Li ¼ ASCIIðBiÞ, ASCII for (Bi) is got and converted to

binary

Step 25 DRi ¼ Rið ÞXORðLiÞ;
Step 26 Apply an HF over the encrypted data, Di = MD5 (DRd);

Step 27 Increment loop threshold, i = i ? 1;

Step 28 GOTO Step 21;

12348 K. Nandakumar et al.

123

Input: CD (Cloud Data), SK (AES Secret KEY), T(128-bit size of

the block)

Output: ED (Encrypted Data), AD(AES/ECC Hybrid Encrypted

Data), DRD (XOR dual RSA Encrypted Data), H (Hash

value for the Encrypted Data)

Step 29 The two n/2 blocks are incorporated to create ciphertext of

n blocks, ED = Ad ? DRd;

Step 30 The corresponding hash values (diand Di) with the size of

128 bits for every data is concatenated, H = di ? Di;

5.2 Decryption method

In decryption, ciphertext Q is separated into n blocks; it

consists of 128 bytes, and then again, it is divided into two

subsections, ci(0:
n/2 - 1) and Ci(

n/2:n - 1) blocks. Hash-

ing is used to determine whether or not the recipient gets

some text in cipher. In both the encryption and decryption

of data, the hash algorithm values can be compared. If they

are equivalent, then the algorithm precedes the cycle of

decryption. Otherwise, it discards the message that the first
n/2 blocks have been decrypted by using ECC and AES

algorithms, while hash values are equal at the source and

sink nodes as follows:

ci ¼
Xi¼n=2�1

i¼0

Bið Þ0� i� n=2� 1 ð12Þ

ki ¼ ECCdec TCPK;Kj�1

� �
0� i� n=2� 1 ð13Þ

0� j� L � 1:

The key of AES kj along with bits length the ECC

decrypts L for generating that is in used DAES (AES

decryption function) for decrypting cipher document.

mi ¼ D
AES Kj;cið Þ: ð14Þ

Mi is at the first portion of plain text, and the remaining
n/2blocks have decrypted by using the following XNOR-

DUAL RSA process:

Ci ¼
Xi¼n�1

i¼n=2

Bið Þn=2� i� n � 1. . .: ð15Þ

Private Key (d,p,q) is used for decrypting the data. For

decryption process, various parameters are computed dp-

= d MOD (p - 1), dq = d MOD (q - 1), Rpi = Ridp MOD

p, Rqi = Ridq MOD q,

S0 ¼ Rqi � Cpi

� �
p�1 MOD q ð16Þ

Si ¼ Rpi þ S0P: ð17Þ

ASCII for (Ci) is converted to binary

Wi ¼ ASCIIðCiÞ ð18Þ

where Liis a function used for converting the block of

ciphertext to ASCII.

Mi ¼ SiXNOR Wi: ð19Þ

Mi is the second, plain text portion. The two n/2 blocks

are inserted into the decryption cycle’s final stage to gen-

erate plain text of n pieces.

P ¼ mi þ Mi: ð20Þ

5.2.1 Decryption algorithm

Input: ED (Encrypted Data), H (Hash value for the encrypted

data), T (128-bit size of the block), L(Key Length), di, Di, K

(encrypted key using ECC)

Output: CD (Cloud Data);

Step 1 Divide the encrypted data into defined 128-bit blocks,

b = ED/T;

Step 2 Assign loop threshold i = 0;

Step 3 If i\ b/2, execute the following steps. Else go to Step 15;

Step 4 Starting with the first block of the encrypted data,

mi =
Pi¼b=2

i¼0 ðBiÞ;
Step 5 �

di
¼ MD5ðAdÞ

Step 6 �
Di

¼ MD5ðDRdÞ

Step 7 Compare the hash values generated with the ones received

If (di =
�
di
Þ and (Di =

�
Di
Þ

Step 8 Assign loop threshold j = 0;

Step 9 If j\L-1, execute the following steps

Else

GOTO Step 13;

Step 10 Kj = ECCdec ðTCCDK ; Ski�1Þ;
Step 11 Increment loop threshold, j = j ? 1;

Step 12 GOTO Step 9;

Step 13 Increment loop threshold, i = i ? 1;

Step 14 GOTO Step 3;

Step 15 Assign loop threshold i = b/2;

Step 16 Obtain the PK values, d, p, q;

Step 17 Measure the HFs:

dp ¼ dMODðp � 1Þ
Dp ¼ dMODðq � 1Þ

Step 18 If i\ b, execute the following steps. Else go to Step 24

Step 19 Starting with the 2nd Block of the cloud data,

DRdi
¼

Pi¼n
i¼n=2 Bið Þ;

Step 20 S0 ¼ Rqi � Cpi

� �
p�1MODq;

Step 21 Si ¼ Rpi þ S0P;

Step 22 ASCII for (Ci) is converted to binary, Wi ¼ ASCIIðCiÞ;
Step 23 For the second plain text portion, calculate:

Mi ¼ SiXNORWi;

Step 24 Increment loop threshold, i = i ? 1;

Securing data in transit using data-in-transit defender architecture for cloud communication 12349

123

Input: ED (Encrypted Data), H (Hash value for the encrypted

data), T (128-bit size of the block), L(Key Length), di, Di, K

(encrypted key using ECC)

Step 25 GOTO Step 18;

Step 26 The two n/2 blocks are inserted into the final stage of the

decryption cycle to generate plain text of n
pieces,P ¼ mi þ Mi;

6 Secure multipath key exchange

6.1 Elliptic curve Diffie–Hellman (ECDH) key
exchange protocol

The ECDH primary protocol is implemented on the dis-

crete logarithm problem of the Elliptical Curve, which is

faster than the nonlinear logarithm of the same security

measure. A generates the Private Key (PK) nA, and the

PBK = nA*G, where G represents the elliptical curve

generator if users A and B select their secret key, which is

used in private encryption. A public channel transfers PA

to B. Using the same method (Fig. 3), B converts PB to A.

After obtaining the message from B, A chooses a

specific hidden key KAB = nA*PB = nA*nB*G, which is

the point on the specified elliptic curve.

Algorithm Elliptic curve Diffie–Hellman

Step 1 Users A and B agree on a standard shared key for

encryption

Step 2 Users A and B calculate their respective PBK and PKs

Step 3 Users A and B interchange their respective PBKs

Step 4 Users A and B possess PKs along with other users’ PBKs

6.2 Key Exchange Model

Four distinct structures, including the Certificates Author-

ity (CA), customers, multi-owners, and Cloud Service

Providers (CSP), are associated with the research investi-

gation. The following are described in the competitive

phase:

a. CA

CA is a reputable organization that provides credentials

for the general public. The credential is a crucial compo-

nent of safe contact, which serves a critical function in the

main public networks. This usually contains the secret key,

the name, the expiry date, and other confidential material.

b. Multi-Owners

The word multi-owners implies that several individuals

own identical records. Each owner may change the data/file

at any time. They also have licenses to read, compose, and

Fig. 3 Sequence diagram for MECDH key exchange protocol

12350 K. Nandakumar et al.

123

delete. The owner may handle all (or part) of the records,

i.e., reading, writing, editing, and storage. The primary

proprietor is responsible for initializing the device and

authorizing the user. When the primary owner validates

with CA, the primary owner can connect other owners to

the cloud and grant approvals for entry, such as reading,

writing, and alteration. Our suggested modified elliptic

curve Diffie–Hellman (MECDH) algorithm uses a file

encryption technique for getting each file submitted with

the Access Control List (ACL) to the server to avoid the

MITM attack.

c. Users

Users are organizations that can quickly interact with

various cloud services and proprietary software. They can

update and decrypt encrypted data from the cloud storage

service if their characteristics meet the access control

policy. The client is a specified individual who can read the

file but not write or delete it.

d. CSP

The CSP offers enormous support for the clients. This

helps the owners to build, upload, and exchange data with

other owners and users (documents, folders, photos, videos,

etc.).

6.3 Overview of proposed MECDH algorithm

• MECDH indicates workflow in Fig. 4.

• The primary owner of the data (O1) signs with CA.

• After the primary owner (O1) has been licensed with

CA, it includes a PBK certificate. After completing the

credential, the primary owner may connect other users

to the cloud and access permissions (such as reading,

editing, and writing) to the data via ACL. Owners can

also connect with users that require learning.

• CA authorization of owners uses passwords (Email ID,

User Name) to exchange data with the other users and

proprietors.

• If two connection holders attempt to authenticate each

other, they must trigger mutual authentication.

• For example, the shareholders (O2, O3, given two

shareholders) seek entry from the primary Owner (O1).

Using the MECDH algorithm, the primary exchange

value is determined. Both proprietors build and validate

the signature using the ECDS algorithm to stop the

MITM attack.

• Owners share a shared hidden authentication key. This

approach lets the owners authenticate each other, and

anonymity is protected while exchanging cloud data.

• The proprietors encrypt and transfer the data/file to the

server using the MECDH.

• CSP proprietors/users request data/files to access the

data owners’ policies for expected users. Next, the users

open the ciphertext. The user submits the decryption

key request to the principal owner to decrypt the

data/files.

• If owners/users require a cloud connection to data, the

CSP must verify whether the owner or customer is an

approved entity or not. Once owners or customers have

been approved, they may again access cloud data. Users

Fig. 4 MECDH data are sharing between users and owners

Securing data in transit using data-in-transit defender architecture for cloud communication 12351

123

would be able to retrieve the cloud’s ciphertext if their

attributes match the owners’ defined access tree.

6.4 Multi-owner mutual authentication using
MECDH

The central agreement on the EMCDH is not restricted to

agreeing to a main that only two parties share. Any number

of users/owners participate in an organization by con-

ducting contract protocol iterations and intermediary data

exchange. For examples, Owner 1, Owner 2, and Owner 3

(O1, O2, and O3) may engage in Diffie–Hellman deal and

measure the mutual secret keys (R1, R2, and R3) as

follows:

1. The session’s symmetric key are the parties that

agree on the highest first number ‘p’ and points on

the elliptic curve P and K.

2. The parties create PKs, called nA, nB, and nC.

3. O1 computes R1 = nA*P%p and transfer it to O2 and

O3.

4. O2 computes R2 = nB*P%p and transfer it to O3 and

O1.

5. O3 computes R3 = nC*P%p and transfer it to O1 and

O2.

6. O1 computes K = nA*R2*R3P%p.

7. O1 computes K = nA*nB*nCP%p.

8. O2 computes K = nB*R1*R3P%p.

9. O2 computes K = nA*nB*nCP%p.

10. O3 computes K = nC*R1*R2P%p.

11. O3 computes K = nA*nB*nCP%p.

6.4.1 Authentication and mutual key interchange
appliance

As shown in Fig. 5, the owners (O1, O2, and O3) use their

passwords (Email ID, User Name) to authenticate with CA.

It verifies the credentials and then reacts with the PBK

certificate of owners when credentials are legitimate.

Therefore, they would not grant the certificates. To stop the

MITM attack, the transmitting owners test themselves for

reciprocal security utilizing the Diffie–Hellman key

exchange before exchanging their keys, determining their

common key values. This approach lets the owners

authenticate each other, and anonymity is protected while

exchanging cloud data.

7 Experimental environments

Cloud Instances (CI’s) are configured as needed. Every CI

has one hyperthreaded CPU core (4.0 GHz turbo boost

frequency), 4 GB RAM, and a 20 GB local SSD disk. The

cloud example runs CentOS 7 (minimum version) to use

fewer approaches from other systems, and the software

examples are configured and managed by the front-end

Web server. The CFE server has a simple load balancer

that operates in a simplistic round-robin fashion.

The Cloud Instances log files the client’s execution time

(if any), request, and reply for plaintext, TLS v1.2,

and v1.3, and the DiTD, with and without the availability

of the user to connect to the cloud service. The Cloud User

(CU) thus tracks round-trip time details for more review on

the client-side. All CUs run iteratively, and each time

submits requests with a different size (100 KB, 500 KB,

1 KB, 500 KB, or 1 MB) of the data. A dedicated pro-

tected system for the authentication and delivery of shared

keys acts as a Key Management Server (KMS) to handle

collective root keys. In KMS, all cloud organizations are

registered with their parent PBKs in contradiction to the

unique identifier. In DiTD, the server CFE and CUs file the

cryptographic keys with their IP addresses and allocate

tokens with random strings. Both tests are carried out in

iterative form (1000-fold). That request is appropriate to

short encrypted sessions with the hashed session key cre-

ated from the property of the link and details received by

the client.

8 Results and discussion

This segment discusses the findings, and the solution is

analyzed. The standard cryptographic methods (digital

signature, PUKC and authentication, cryptographic hash,

and symmetric block encryption) are iteratively tested for

various payload sizes (100 to 200 MB) for choosing the

best option for implementing high-performance cloud-

based secured protocol (i.e., DiTD), which utilizes such

technologies effectively concerning their length. The next

segment provides a detailed DiTD vulnerability review

toward multiple forms of threats. Before that, we analyze

DiTD’s output in terms of server-side execution time,

plaintext bandwidth overhead, client-side round-trip time,

server-side memory consumption, and the effect of dif-

ferent payload sizes in the scenarios mentioned above.

8.1 Server-Side Execution Time

Figure 6 shows the average time in ms for the public

clouds. It examines average execution times in various

12352 K. Nandakumar et al.

123

cloud examples such as TLS v1.3, TLS v1.2, and DiTD for

different payload sizes (Ex., 100 KB, and 500 KB; 1 KB,

500 KB, and 1 MB). DiTD mechanism outperforms TLS

v1.3 considerably for all payload sizes. DiTD performs

about 90% faster than TLS v1.3 communication. The

proposed model produces better outcomes with the DiTD

mechanism, which depends upon TLS v1.2.

8.2 Client-side round-trip time

On the client side, it measures average round-trip time (in

ms) using the sum of experimental durations for the session

establishment, the connection creation (if it occurs pre-

sent), request-response time of different payload sizes.

Figure 7 represents the average round-trip time for exam-

ined client instances under plaintext, TLS v1.2, TLS v1.3,

and DiTD for different payload sizes (100 KB, 500 KB,

1 KB, 500 KB, and 1 MB). While observing the client-side

average round-trip time’s performance curves, the DiTD

mechanism shows promising performance against TLS

v1.2 and TLS v1.3.

8.3 Bandwidth overhead

The bandwidth of the graph shown in Fig. 8 is considered

based upon the bandwidth utilization of plaintext commu-

nication. By this, it immediately notifies the bandwidth

overhead of the 100 bytes based upon the payload size,

which is higher than 28% for TLS v1.3. Fortunately, for

DiTD, the overall process with plaintext communication

alone displays 80% and provides a 54% advance over the

TLS v1.3.

Fig. 5 Owner authentication

and key exchange

Fig. 6 Server-side execution

time

Securing data in transit using data-in-transit defender architecture for cloud communication 12353

123

For 1 KB of payload size, the DiTD mechanism delivers

32% increases over bandwidth utilization of TLS v1.3. This

graph displays diminishing payload sizes, and increases for

payload size overhead (500 KB) turn into nearly 1% in all the

types of communications according to the plaintext. Hence,

the large volume of data is negligible in an overhead pro-

cess—however, DiTD is implemented prominently well in

lesser payload sizes and greater payload sizes.

8.4 Server-side memory consumption

Figure 9 represents server-side memory usage of DiTD

considered in cloud instances depending upon the plaintext,

TLS v1.3, and TLS v1.2 communications. Figure 9 shows

the DiTD mechanism, which displays the memory usage

with a reasonable quantity of dissimilar payload sizes that

lie much closer to TLS v1.2 and TLS v1.3 communications.

And the pattern usage images have similar behavior, which

increases proportionately with increasing payload size in

all scanned cloud cases and memory usage.

Overall, the DiTD mechanism performs significantly

well than TLS v1.3 at the server-side performance, band-

width overhead, memory usage at server side, and client-

side round-trip time.

Fig. 7 Client-side execution

time

Fig. 8 Bandwidth while

overhead occurs

12354 K. Nandakumar et al.

123

A 256-bit encrypted channel is conclusively recognized

during the session development phase without affecting the

overhead performance, memory, or bandwidth.

9 Conclusion

In this paper, we have suggested a comprehensive, secure

architecture for cloud communication. In DiTD, the secu-

rity in data-in-transit and the legitimacy of the cloud

entities have guaranteed and determinedly incorporated

into communications for protecting, in contrast to the full

range of the cloud assaults. A unique high-performance

cloud dedicated to the 2-TCA algorithm is intended and

also applied. It takes seven highly closed new message

organizations that establish more secured performance and

the bandwidth-efficient protocol along with practical

memory usage. It is highly successful and secure Man-In-

The-Middle (MITM) (with identity spoofing, eavesdrop-

ping, sniffing, data intrusive), replay, compromised-key,

sensitive information disclosure, session hijacking attacks,

and repudiation. DiTD produces 90% execution time,

which is more than that of the TLS v1.3 (latest version

between SSL successors) on the server side, and it shows

similar performance at the client-side. It produces 54%

more than the TLS v1.3 and overall reasonable memory

usage, contrary to the dissimilar payload sizes in bandwidth

consumption. As a basis of the security aimed at the data

transit in cloud computing, it enforces the NIST

recommendation.

Funding Not Applicable.

Declarations

Conflicts of interest The authors declare that they have no conflict of

interest.

References

Adrian, D., Bhargavan, K., Durumeric, Z., et al. (2015) Imperfect

forward secrecy: How Diffie-Hellman fails in practice. In:

Proceedings of the 22Nd ACM SIGSAC Conference on Com-

puter and Communications Security. pp 5–17. CCS’15, ACM,

New York, NY, USA. https://doi.org/10.1145/2810103.2813707.

Almogren A (2019) An automated and intelligent Parkinson disease

monitoring system using wearable computing and cloud tech-

nology. Clust Comput 22(1):2309–2316

Aviram, N., Schinzel, S., Somorovsky, J., et al. (2016) Drown:

Breaking TLS using SSLv2. In: USENIX Security Symposium.

pp 689–706

Bittau A, Hamburg M, Handley M et al. (2010)The case for

ubiquitous transport-level encryption. In USENIX Security

Symposium, pp 403–418,

Cangialosi F, Chung T, Choffnes D et al. (2016) Measurement and

analysis of private key sharing in the HTTPS ecosystem. In

Proceedings of the 2016 ACMSIGSAC Conference on Computer

and Communications Security, pp 628–640, New York, NY,

USA. ACM.

Cramer R, Shoup V (2004) Design and analysis of practical public-

key encryption schemes secure against adaptive chosen cipher-

text attack. SIAM J Comput 33(1):167–226

Elazhary H (2019) Internet of Things (IoT) mobile cloud cloudlet

mobile IoT cloud fog mobile edge and edge emerging computing

paradigms: Disambiguation and research directions. J Netw

Comput Appl 128:105–140

Flavel A, Mani P, Maltz D et al. (2015) Fast route: A scalable load-

aware anycast routing architecture for modern cdns. In 12th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 15), pp 381–394, Oakland, CA. USENIX

Association.

Fig. 9 Server-side memory consumption

Securing data in transit using data-in-transit defender architecture for cloud communication 12355

123

https://doi.org/10.1145/2810103.2813707

Gawannavar M, Mandulkar P, Thandeeswaran R, Jeyanthi N (2015)

Office in cloud: approach to authentication and authorization.

Recent Adv Commun Netw Technol Bentham Sci 4(1):49–55

Hamad SA, Sheng QZ, Zhang WE et al. (2020) Realizing an Internet

of Secure Things: A Survey on Issues and Enabling Technolo-

gies, In IEEE Communications Surveys and Tutorials, vol. 22,

no. 2, pp. 1372–1391, Second quarter.

Jurcut A, Niculcea T, Ranaweera P et al. (2020) Security consider-

ations for internet of things: a survey. SN Comput SCI 1:193

Kodali, R., Sarma, N., (2013) Energy-efficient ECC encryption using

ECDH. In: Emerging Research in Electronics, Computer Science

and Technology, Lecture Notes in Electrical Engineering, Vol.

248. Springer, pp 471–478.

Liu Y, Tome W, Zhang L et al. (2015) An end-to-end measurement

of certificate revocation in the web’s PKI. In Proceedings of the

2015 Internet Measurement Conference, pp:183–196, New York,

NY, USA. ACM.

Megouache L, Zitouni A, Djoudi M (2020) Ensuring user authenti-

cation and data integrity in multi-cloud environment. Hum Cent

Comput Inf Sci 10:15

Mohiuddin I and Almogren A (2020) Security Challenges and

Strategies for the IoT in Cloud Computing, 2020 11th Interna-

tional Conference on Information and Communication Systems

(ICICS), pp 367–372.

Shailendra R, Arun KS, Park JH (2018) A novel framework for

internet of knowledge protection in social networking services.

J Comput Sci 26:55–65

Singh HJS and Khanna MS (2020) Cloud’s Transformative

Involvement in Managing Big-Data Analytics for Securing Data

in Transit, Storage And Use: A Study, 2020 Sixth International

Conference on Parallel, Distributed and Grid Computing

(PDGC), pp 297–302.

Tillich, S., Großschädl, J., 2005. Accelerating AES using instruction

set extensions for Elliptic Curve cryptography. In: Computa-

tional Science and its Applications–ICCSA, vol. 3481.,

pp 665–675.

Veerabathiran VK, Mani D, Kuppusamy S et al (2020) Improving

secured ID-based authentication for cloud computing through

novel hybrid fuzzy-based homomorphic proxy re-encryption.

Soft Comput 24:18893–18908

Vijaya Kumar V, Devi M, Vishnu Raja P, Kanmani P, Priya V (2020)

Sengan Sudhakar, Krishnamoorthy Sujatha, Design of peer-to-

peer protocol with sensible and secure IoT communication for

future internet architecture. Microprocess Microsyst 78:103216

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Keerthana Nandakumar1 • Viji Vinod2 • Syed Musthafa Akbar Batcha3 • Dilip Kumar Sharma4 •

Mohanraj Elangovan5 • Anjana Poonia6 • Suresh Mudlappa Basavaraju7 • Sanwta Ram Dogiwal8 •

Pankaj Dadheech9 • Sudhakar Sengan10

& Keerthana Nandakumar

keerthana.mca@drmgrdu.ac.in

Viji Vinod

vijivino@gmail.com

Syed Musthafa Akbar Batcha

syedmusthafait@gmail.com

Dilip Kumar Sharma

dilipsharmajiet@gmail.com

Mohanraj Elangovan

csemohanraj@gmail.com

Anjana Poonia

anjanapoonia.ap@gmail.com

Suresh Mudlappa Basavaraju

sureshresearch45@gmail.com

Sanwta Ram Dogiwal

dogiwal@gmail.com

Pankaj Dadheech

pankajdadheech777@gmail.com

Sudhakar Sengan

sudhasengan@gmail.com

1 Department of Computer Science, Dr. M.G.R Educational

and Research Institute, Chennai, Tamil Nadu 600095, India

2 Department of Computer Applications, Dr. M.G.R

Educational and Research Institute, Chennai,

Tamil Nadu 600095, India

3 Department of Information Technology, M. Kumarasamy

College of Engineering, Karur, Tamil Nadu 639113, India

4 Department of Mathematics, Jaypee University of

Engineering and Technology, Guna,

Madhya Pradesh 473226, India

5 Department of Computer Science and Engineering, K.

S. Rangasamy College of Technology, Tiruchengode,

Tamil Nadu 637215, India

6 Department of Master of Computer Application, Sri Balaji

College of Engineering & Technology, Jaipur,

Rajasthan 302013, India

7 Department of Information Science and Engineering, East

West Institute of Technology, Bengaluru, Karnataka 560091,

India

8 Department of Information Technology, Management &

Gramothan (SKIT), Swami Keshvanand Institute of

Technology, Jaipur, Rajasthan 302017, India

9 Department of Computer Science and Engineering,

Management & Gramothan (SKIT), Swami Keshvanand

Institute of Technology, Jaipur, Rajasthan 302017, India

10 Department of Computer Science and Engineering, PSN

College of Engineering and Technology, Tirunelveli,

Tamil Nadu 627152, India

12356 K. Nandakumar et al.

123

	Securing data in transit using data-in-transit defender architecture for cloud communication
	Abstract
	Introduction
	Related works
	Proposed methodology
	DiTD architecture
	Design specification
	Registration phase
	DiTD’s key management server

	Setup phase
	Session creation phase
	Data transmission phase
	Termination phase
	Reconnection phase

	The proposed 2-tier cryptography algorithm (2-TCA)
	Encryption process
	Algorithm of 2-TCA

	Decryption method
	Decryption algorithm

	Secure multipath key exchange
	Elliptic curve Diffie--Hellman (ECDH) key exchange protocol
	Key Exchange Model
	Overview of proposed MECDH algorithm
	Multi-owner mutual authentication using MECDH
	Authentication and mutual key interchange appliance

	Experimental environments
	Results and discussion
	Server-Side Execution Time
	Client-side round-trip time
	Bandwidth overhead
	Server-side memory consumption

	Conclusion
	Funding
	References

