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Abstract
The bounded diameter minimum spanning tree (BD-MST) problem seeks a spanning tree (T ) of minimum weight on a given
connected, undirected and edge-weighted graph subject to the diameter of T does not exceed D ≥ 2, where D is a given
positive integer. The BD-MST problem isNP-hard problem and findsmany real-world applications. In this paper, we propose
an artificial bee colony (ABC) algorithm for the BD-MST problem. ABC algorithm is a swarm-based metaheuristic technique
based on the intelligent foraging behavior of honeybees. The proposed ABC algorithm employs permutation encoding. To
exploit this encoding structure, two neighborhood strategies that help ABC algorithm in faster convergence towards finding
high quality solutions are applied. On a set of Euclidean and non-Euclidean benchmark instances for various diameter
bounds, the proposed approach has been compared with state-of-the-art approaches. Computational results demonstrate the
effectiveness of the proposed approach to the other extant approaches in the literature.

Keywords Spanning tree · Bounded-diameter · Swarm intelligence · Artificial bee colony algorithm · Permutation encoding ·
Neighborhood strategies

1 Introduction

Given a connected, undirected and edge-weighted graph
G(V , E, w), where V represents a set of vertices of G; E
represents a set of edges of G; and each edge ∈ E associates
with a weight w, the bounded diameter minimum spanning
tree (BD-MST) problem consists of finding a spanning tree
(T ) of minimum weight subject to the diameter of T (the
maximum number of edges connecting any two vertices in
T ) does not exceed D ≥ 2, where D denotes a given positive
integer.

The BD-MST problem is proven to be NP-hard for
4 ≤ D < |V |-1 (Garey and Johnson 1979) and finds many
real-world applications. For example, linear light-wave net-
works (LLNs) involve multi-cast calls sent by each source
to multiple destinations. To minimize interference in such a
network, it is preferable to use a short (in terms of diame-
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ter) spanning tree for each transmission (Deo and Abdalla
2000). Bala et al. (1993) presented an algorithm to decom-
pose a LLN into a set of edge disjoint trees having at least one
spanning tree. However, this algorithm constructs trees with
smaller diameter by finding trees whose maximum node-
degree has lesser value in comparison to a parameter value
instead of optimizing the diameter of trees directly. Lines of
the network were assumed to be same. If such lines have dif-
ferent bandwidths, then spanning trees should have lines of
higher bandwidth as such lines are frequently used and have
heavy traffic. If an algorithm that can solve BD-MST prob-
lemwould bemore helpful in determining an appropriate tree
decomposition for such network. For that, an edge-weighted
tree would be appropriate to model the LLN, where the
weight of an edge would be set as 1/z. z represents the line
of bandwidth. Another application of the BD-MST problem
finds in the distributed mutual exclusion, where some con-
current processes try to access a shared resourcewith the help
of executing a section of code called critical section (CS).
Wang and Lang (1994) proposed a token-based distributed
algorithm that uses logical spanning tree built on a network of
processors taken from Raymond’s tree-based method (Ray-
mond 1989). In this algorithm, k entries are permitted in the
critical section, where k is the number of processes. The algo-
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rithm needs at most 2kD messages for a vertex to enter the
critical section, where D denotes the diameter of the tree.
Therefore, a small diameter plays a significant role for the
efficiency of the algorithm. Also, minimizing the weight of
a spanning tree leads to the reduction of the cost of the net-
work. The BD-MST problem also finds an application in
the information retrieval, where large files are compressed
through using large data structures called bitmaps. Com-
pressing these files help in occupying less memory space,
while allowing reasonably fast access. Bookstein and Klein
(1996) proposed amethod that uses a spanning tree of a given
complete edge-weighted graph to cluster and compress vec-
tors along the paths from a selected node (say root of the
tree), to all the leaves of the spanning tree, where such graph
is generated on the bitmaps. In such graph, vertices repre-
sent bitmaps, and the weighted edges represent Hamming
distances. Therefore, a spanning tree with a small diameter
can provide high-speed retrieval. In addition, Anderson et al.
(2014) used the bounded diameter minimum spanning tree
as a method for selecting concatenation of pairwise registra-
tions for finding good results on the joint image alignment
problem. An MRF-based optical flow refinement technique
and a method for mesh identification were demonstrated to
improve the results in terms of active appearancemodel com-
pactness, suitable for video-realistic synthesis.

The BD-MST problem is extensively studied. The liter-
ature has witnessed a number of exact methods, problem-
specific heuristic approaches and metaheuristic techniques.
Exact methods (Achuthan et al. 1994; Gouveia and Mag-
nanti 2003; Gouveia et al. 2011; Gruber and Raidl 2008)
for this problem can address only relatively small size of
problem instances upto V = 100 due to its computa-
tional complexity. Besides these exactmethods, literature has
also witnessed a number of problem-specific heuristic and
metaheuristic techniques for this problem. Among problem-
specific heuristic approaches, Abdalla et al. (2000) proposed
five heuristics (first general-iterative-refinement algorithm
(IR1), second general-iterative-refinement algorithm (IR2),
a composite iterative-refinement algorithm (CIR), one time
tree construction (OTTC), and the special-case approach for
k=4). For experimental purpose, authors used graphs of dif-
ferent orders (50 ≤ V ≤ 3000) and densities and found that
among all four general-algorithms only OTTC was always
successful in finding an approximate solution in complete
graphs regardless of the value of the diameter bound k; how-
ever, it was found that the success rate of OTTC (using one
source node) reduced quickly with the reduction of the the
density of the graphs, particularly with small values of the
diameter bound, such as k = 5. OTTC is a greedy-based
heuristic and follows the idea of Prim’s algorithm (Prim
1957) and at each iteration, in order to add an unselected
vertex to the tree, OTTC selects the closest (weight) ver-
tex whose addition into the partial tree respects the diameter

constraint. The remaining approaches can be read in details
in (Abdalla et al. 2000). Later, randomized greedy heuristic
(RGH) (Raidl and Julstrom 2003)—a modified version of
OTTC—was presented. RGH selects a single vertex as a tree
center if D is even, otherwise RGH selects two adjacent ver-
tices as two tree centers (D is odd). Then, at each step, instead
of selecting the closest (weight) unselected vertex whose
addition into the tree respects the diameter constraint, RGH
selects an unselected vertex randomly, and then, it joins this
vertex to the partial tree through the minimum-weight edge
that respects the diameter constraint. Later, Julstrom (2009)
proposed center-based tree construction (CBTC) problem-
specific heuristic—an improved version of RGH. Like RGH,
it is also based on the idea of tree center. In CBTC, at each
iteration, in order to add an unselected vertex to the par-
tial tree, it selects the minimum-weight edge connecting
an unselected vertex to one of vertices in the partial tree,
and addition of this edge into the tree respects the diam-
eter constraint. In terms of performance, RGH is superior
to CBTC on Euclidean instances, whereas CBTC is supe-
rior to RGH on non-Euclidean instances. Singh and Gupta
(2007) further extended the idea of RGH (Raidl and Julstrom
2003) and CBTC (Julstrom 2009) and presented its improved
versions called RGH-I and CBTC-I, respectively. Accord-
ing to this improvement strategy, a search is performed for
each vertex v (except center vertex/vertices and its imme-
diate child vertices) whether the vertex v can be connected
to a vertex whose depth is less than the depth of v with a
smaller edge-weight. If the search is successful, the subtree
rooted at vertex v is disconnected from its current parent and
connected to this newly selected vertex. Later, Saxena and
Singh (2009) proposed another improved versions of RGH
(Raidl and Julstrom 2003) and CBTC Julstrom (2009) called
RGH+HT and CBTC+HT, respectively. As per this improve-
ment greedy heuristic, it only allows a sub-tree rooted at v

to be joined to any vertex of the spanning tree regardless
of its depth, iff, the cost of the resultant tree is further min-
imized subject to respecting the diameter constraint of the
resultant tree. Authors improved the results of RGH-I and
CBTC-I on Euclidean as well as non-Euclidean instances.
Gruber and Raidl (2009) proposed a hierarchical clustering-
based methods for the BD-MST problem. The clustering
heuristic builds diameter constrained trees within three steps:
finding a hierarchical clustering, minimizing the height of
this clustering according to the diameter bound, and finally
deriving a BD-MST from this height-restricted clustering.
Various techniques are usedwithin the individual phases, e.g.
a GRASP-like strategy to refine cutting positions through
the dendrogram, or dynamic programming to assign each
cluster a good root node. Authors (Gruber and Raidl 2009)
reported two variants of clustering heuristics, i.e. CdA and
CdB . Clustering heuristics have been tested on 15 Euclidean
instances of V = 1000 for various diameter bounds and
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obtains in general high solution quality in few seconds which
is better than CBTC and RGH and is even competitive with
ACO approach (Gruber et al. 2006). Steitz (2015) proposed
two new problem-specific heuristic approaches (called node
selection tree construction (NSTC) and savings tree con-
struction (STC)). Patvardhan et al. (2014) presented parallel
versions of CBTC (Julstrom2009), RGH (Raidl and Julstrom
2003) and Center-based Least Sum-of-costs (CBLSoC)
(Patvardhan and Prakash 2009) problem-specific heuristic
approaches. Patvardhan et al. (2015) presented some fast
and effective problem-specific heuristic approaches for the
BD-MST problem and tested their approach on Euclidean
instances upto V = 10000. Authors of (Steitz 2015) and
(Patvardhan et al. 2015) compared their problem-specific
heuristics with the existing problem-specific heuristics on
the Euclidean instances only.

In addition, the literature has also witnessed a num-
ber of metaheuristic approaches for the BD-MST problem.
Raidl and Julstrom (2003) proposed an evolutionary algo-
rithm based on edge-set encoding (RJ-ESEA). RJ-ESEA
uses a crossover based on RGH heuristic and four different
mutations. Later, Julstrom (2003) presented an evolution-
ary algorithm using permutation encoding and used RGH
heuristic for decoding the encoded solution into a spanning
tree. Authors (Julstrom 2003) showed that their proposed
evolutionary algorithm based on permutation encoding per-
forms better than RJ-ESEA (Raidl and Julstrom 2003) in
term of solution-quality, but several times slower. Julstrom
(2004) also proposed two generational evolutionary algo-
rithms based on the permutation-encoding and random-key
techniques. These two proposed approaches are comparable
with an evolutionary algorithm using permutation encod-
ing (Julstrom 2003). Singh and Gupta (2007) proposed a
permutation-coded evolutionary algorithm (PEA-I). In PEA-
I, RGH-I heuristic is used to decode the encoded solution
(the order of vertices) into a bounded-diameter spanning
tree. PEA-I, in comparison to approaches proposed in (Raidl
and Julstrom 2003; Julstrom 2003, 2004), takes a much
shorter time to obtain a better solution quality on each consid-
ered problem instance. Binh et al. (2008) proposed a hybrid
genetic algorithm (HGA) that uses the idea of multiple pop-
ulations. For multiple populations generation, authors used
different well-known heuristics. The individuals from each
population are then migrated to a final population called
GA_final for merging and competing to breed. HGA is bet-
ter than RJ-ESEA (Raidl and Julstrom 2003) and PEA-I
(Singh and Gupta 2007) on Euclidean instances overall, but
is marginally better than non-Euclidean instances in terms
of solution quality. Authors (Binh et al. 2008) used the same
termination criterion as used for RJ-ESEA and PEA-I, but
did not discuss or report the computational time for obtain-
ing solution quality of each Euclidean and non-Euclidean
instances. Since GA_final in HGA uses the same individual

representation and operators as that of RJ-ESEA (Raidl and
Julstrom 2003), therefore, one can infer that HGA obtains
overall better results than that of PEA-I (Singh and Gupta
2007) at the cost of much higher computational time. Gru-
ber and Raidl (2005) proposed a variable neighborhood
search (VNS) approach with four neighborhood strategies
(i.e. node-swap neighborhood, level-change neighborhood,
arc-exchange neighborhood and center change-level neigh-
borhood) for the BD-MST problem. These neighborhood
strategies have been used as local search methods in VNS
approach. Later, Gruber et al. (2006) proposed an evolution-
ary algorithm (EA) with a new solution encoding scheme
called level encoding and an ant colony optimization (ACO)
algorithm. They also used node-swap neighborhood and arc-
exchange neighborhood as local search methods in EA. In
ACO, they used node-swap neighborhood and arc-exchange
neighborhood as local search methods. In comparison to
VNS approach, EA and ACO find better solution quality
on almost all instances. Lucena et al. (2010) presented a
hybrid semi-greedy heuristic (LRS) which combines the
ideas of greedy randomized adaptive search procedures
(GRASP) and iterated local search (ILS). Later, Torkestani
(2012) presented a learning automata-based distributed algo-
rithm (LABD) for this problem. LABD consists of several
stages. At each stage, the constructed bounded-diameter
spanning tree is rewarded, if the cost of the tree is the min-
imum cost seen so far, otherwise, the constructed tree is
penalized. Author (Torkestani 2012) demonstrates the per-
formance of LABD by comparing the results of LABD with
the results reported in (Gruber andRaidl 2005), (Lucena et al.
2010). Vuppuluri and Patvardhan (2021) presented a serial
memetic algorithm (2PMA) for BD-MST problem. 2PMA
is a two-phase memetic algorithm that uses two recom-
bination operators based on order recombination operator
and neighborhood-based recombination operator in order to
direct the exploration of the search space into regions con-
taining better solutions. Also, authors presented a parallel
memetic algorithm for BD-MST problem. In addition, many
of the heuristics for the BD-MST problem have been also
recast for solving the related bi-objective BD-MST problem
(Saha et al. 2010; Prakash et al. 2018; Saha and Kumar 2011;
Prakash et al. 2020).

Table 1 summarizes thework done in the literature—exact
methods, problem-specific heuristic approaches,metaheuris-
tic techniques and parallel implementations—for the BD-
MST problem.

In this paper, we present an artificial bee colony (ABC)
algorithm for the BD-MST problem. Artificial bee colony
(ABC) algorithm is a swarm-based metaheuristic technique
which emulates the intelligent foraging behavior of honey
bees. ABC algorithm was introduced by Karaboga (2005)
and has been successfully applied for various optimiza-
tion problems (Karaboga et al. 2014; Pan et al. 2011;
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Table 1 Summary of the work done in the literature for the BD-MST problem

Exact methods Problem-specific heuristic approaches Metaheuristic techniques Parallel implementations

Abdalla et al. (2000) Raidl and Julstrom (2003)

Raidl and Julstrom (2003) Julstrom (2003)

Julstrom (2009) Julstrom (2004)

Achuthan et al. (1994) Singh and Gupta (2007) Singh and Gupta (2007) Vuppuluri and Patvardhan (2021)

Gouveia et al. (2011) Saxena and Singh (2009) Binh et al. (2008) Patvardhan et al. (2014)

Gouveia and Magnanti (2003) Gruber and Raidl (2009) Gruber et al. (2006)

Gruber and Raidl (2008) Gruber et al. (2006) Lucena et al. (2010)

Steitz (2015) Torkestani (2012)

Patvardhan et al. (2015)

Singh 2009; Sundar and Singh 2010). The proposed ABC
algorithm employs permutation encoding. To exploit this
encoding structure, two neighborhood strategies that help
ABC algorithm in faster convergence towards finding high
quality solutions are applied. On a set of Euclidean and non-
Euclidean benchmark instances for various diameter bounds,
the proposed approach has been compared with state-of-
the-art approaches. Computational results demonstrate the
effectiveness of the proposed approach to the other extant
approaches in the literature in terms of solution quality and
computational time.

The remaining of this paper is organized as follows: Sect.
2 discusses the proposed ABC algorithm for the BD-MST
problem; Sect. 3 discusses about the computational results of
ABC algorithm for the BD-MST problem; and finally Sect.
4 presents some concluding remarks.

2 ABC algorithm for the BD-MST

Inspired by the foraging behaviour of honey bees, Karaboga
(Karaboga 2005; Karaboga et al. 2014) modeled ABC algo-
rithm for the solutions of optimization problems. ABC
algorithm also consists of three categories of artificial bees
called employed bees, scout bees and onlooker bees which
exhibit a variety of intelligent behaviours in their respec-
tive phases, i.e. employed bee phase, scout bee phase and
onlooker bee phase. Each category of artificial bees performs
stochastic behaviour in order to interact locally with one
another, leading to the emergence of high quality solutions
for an optimization problem. To readers, a general introduc-
tion on ABC algorithm and its applications can be found in
(Karaboga and Basturk 2007; Karaboga et al. 2014; Singh
2009; Sundar and Singh 2010).

This subsection presents an ABC algorithm (PABC_BD)
for the BD-MST. Hereafter, the proposed ABC algorithm for
the BD-MST will be referred to as PABC_BD.

The description of each component of PABC_BD is as
follows:

2.1 Solution representation

PABC_BD uses a permutation encoding to represent a solu-
tion (Ei ), where Ei is encoded as a linear permutation of
all vertices of V . Such ordering of vertices in Ei helps in
decoding (see Sect. 2.3) Ei into a feasible bounded-diameter
spanning tree. In this encoding, if D is even, then the first
vertex in the ordering of vertices is considered as the center
of Ei . If D is odd, then the first two vertices in the order-
ing of vertices are considered as the centers of Ei . Note that
such permutation encoding is also used in (Julstrom 2003,
Julstrom 2004, Singh and Gupta 2007).

2.2 Solution initialization

Each initial solution Ei which is encoded as a linear per-
mutation of all vertices of V is generated randomly in the
following iterative process. Initially, Ei represents an array
of |V | empty positions. Create a copy (say S) of V . A vertex
vi is selected randomly from S. The selected vertex vi is first
inserted into the first vacant position in Ei and then is deleted
from S. In a similar way, the next vertex v j that is selected
randomly from S is inserted into the next vacant position in
the order of |V | positions in Ei . After this, v j is deleted from
S. This whole procedure is repeatedly called until S becomes
empty.

Once an initial solution Ei is generated, its association
becomes with a unique employed bee.

2.3 Solution decoding

We follow a slight modified version of randomized greedy
heuristic (RGH) (Raidl and Julstrom 2003) as a decoder
to decode a solution Ei into a feasible bounded-diameter
spanning tree. In this decoding, instead of picking a ver-

123



Artificial bee colony algorithm using permutation encoding for the bounded diameter... 11293

tex randomly, the decoder picks a vertex in the order from
the linear arrangement of vertices in Ei . After decoding, a
feasible bounded-diameter spanning tree for Ei is obtained.
Similar decoding is also applied in (Julstrom 2003).

2.4 Fitness of a solution

Once the solution Ei is decoded as a bounded-diameter span-
ning tree, its fitness is computed as the sum of weights of all
edges in Ei .

2.5 Selection of a solution

We use binary tournament selection method—probability
based selection method—for PABC_BD. As per this selec-
tion method, two solutions which are different are selected
randomly from the employed bee population. Between these
two selected solutions, a best one (in terms of fitness) is
selectedwith probability Pbt , otherwise, aworst one (in terms
of fitness) is selected with probability 1-Pbt .

Algorithm 1 presents the pseudocode of binary tourna-
ment selection method—i.e. BT S(E1,E2, . . . ,ENE)

function—which returns the index of the selected solution
in the current employed bee population.

Algorithm 1: The pseudocode of binary tournament
selection method – i.e. BT S(E1,E2, . . . ,ENE) function
Input : The current employed bee population E1,E2, . . . ,ENE ;
Output: The index (si ) of the selected solution in the current

employed bee population;

1 Two different solutions (say Ex and Ey) are selected uniformly at
random from the current employed population; // x and y
are, respectively, indices of Ex and Ey in
the employed bee population

2 if u01 < Pbt then
// u01 is a uniform variate

3 if the fitness of Ex ≤ the fitness of Ey then
4 si ← the index of Ex ;

5 else
6 si ← the index of Ey ;

7 else
8 if the fitness of Ex > the fitness of Ey then
9 si ← the index of Ex ;

10 else
11 si ← the index of Ey ;

12 Return si ;

2.6 Determination of a neighboring solution

Since the problem structure of a solution in PABC_BD is
a linear random permutation of vertices of V , therefore, to

exploit this structure effectively so that PABC_BD converges
faster towards the high solution quality, PABC_BD uses
two different neighborhood strategies—insertion on multi-
ple positions (IMP) and swap on multiple positions (SMP).
Such neighborhood strategy is applied on the current solu-
tion Ei in order to determine a neighboring solution (E

′
).

IMP follows the principle of utilization of solution compo-
nents from another solution of employed bee population (
Sundar and Singh 2012). The principle is that if a vertex is
positioned correctly in a high quality solution, then there is a
high likelihood that this vertex would hold the same position
or would be in the vicinity of this same position in many
other high quality solutions. The role of SMP is to avoid
the current solution from the local optima trap and to help
in exploration of the search space. Note that both IMP and
SMP are applied in a mutually exclusive way. With proba-
bility Pnbr , IMP is applied, otherwise SMP is applied. Pnbr
is a parameter to be decided experimentally. The description
of each neighborhood strategy is as follows:

To apply insertion on multiple positions (IMP) neighbor-
hood strategy on the current solution Ei in order to determine
a new permutation of vertices of V (a new neighboring solu-
tion E

′
), first a solution Er , different from Ei , is picked from

the employed bee population with help of binary tournament
selectionmethod (see Sect. 2.5). Also, IMP initializesE

′
with

an empty solution. A number (say (|V | × Pmpi ) of different
positions are picked randomly from Er . Insert all vertices
assigned to these picked positions of Er into the exact posi-
tions of E

′
. Now, insert those vertices of Ei , which are not

in the current E
′
, one-by-one in the same order in which

these remaining vertices seem to be in Ei . Note that Pmpi

is a parameter to be decided experimentally. Also note that
while picking a solution Er with the help of binary tourna-
ment selection method, if it is found that Ei and Er represent
the same solution, i.e a collision happens (Singh 2009), then
it shows that the employed bee population is facing the diver-
sity issue. To handle this, if this situation happens while
determining a new solution in the neighborhood of current
solution in the employed bee phase, then the employed bee
associated with this solution (food source) Ei abandons Ei to
become a scout. This scout instantly becomes employed by
associating it with a newly generated random solution (see
Sect. 2.2). However, if this situation happens while deter-
mining a new neighboring solution for an onlooker bee in
the onlooker bee phase, then this onlooker bee is associated
with a dummy solution whose fitness value is assigned a
value artificially higher than the fitness value of its associ-
ated employed bee solution so that it cannot be selected in
the next iteration. Note that we have not generated a random
solution for such onlooker bee. The reason behind this one
is that this newly generated random solution has to strive to
win against the actual solution as well as with the solutions
of all those onlookers which are associated with this actual
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solution. Hence, it is highly likely that such a newly gener-
ated random solution will be lost immediately. This is similar
to the concept of “collision” coined in (Singh 2009).

To explain I MP , we take the help of an example that is
depicted by a series of Fig. 1a–c. Figure 1a depicted in white
color represents a solution Ei—a linear permutation of ver-
tices, i.e. {1, 5, 7, 2, 4, 3, 6}. Figure 1b depicted in light grey
color represents another solutionEr—alinear permutation of
vertices, i.e. {4, 7, 1, 2, 3, 6, 5}—picked randomly from the
employed bee population. One can notice that Er is differ-
ent from Ei . Initially, E

′
is an empty solution. Two different

positions are picked randomly from Er . Insert all vertices
assigned to these picked positions of Er into the exact posi-
tions of E

′
. These selected positions of Er are represented

by light grey color in E
′
. Now, insert those vertices of Ei ,

which are not in the current E
′
, one-by-one in the same order

in which these remaining vertices seem to be in Ei . Finally,
Fig. 1c depicts a new neighboring solution E

′
—a linear per-

mutation of vertices, i.e. {1, 7, 5, 2, 4, 6, 3}.
To apply swap on multiple positions (SMP) neighborhood

strategy on the current solutionEi in order to determine a new
permutation of vertices of V (a new neighboring solution
E

′
), first create a copy (say E

′
) of Ei . Hereafter, a number

(say |V | × Pmsw) of swap is performed by swapping two
vertices associated with two different positions (x and y)
which are selected uniformly at random from E

′
. Here, Pmsw

is a parameter to be decided experimentally. It is to be noted
that the distance between positions x and y must be greater
than two.

To explain SMP, we take the help of an example that is
depicted by a series of Fig. 2a–b. Figure 2a depicts a solution

(a)

(b)

(c)

Fig. 1 An illustration for I MP

(a)

(b)

Fig. 2 An illustration for SMP

Ei—a linear permutation of vertices, i.e. {4, 7, 1, 2, 3, 6, 5}.
Figure 2b depicts a solution (E

′
) which is a copy of Ei . Two

positions in light grey color with distance greater than two
are selected inE

′
. Vertices assigned to these two positions are

7 and 6 that are swapped in E
′
. After this swap, the resultant

solution is depicted in Fig. 2b.

Algorithm 2: The pseudocode of PABC_BD
1 Generate a set of NE solutions, i.e., E1,E2, . . . ,ENE ;
2 Best ← Best solution in NE solutions;
3 while Termination criteria is not met do
4 for i ← 1 to NE do
5 E′ ← DNbring_Sol(Ei );
6 if E′ == Φ then
7 Replace Ei with a newly generated random

solution;// See Section 2.2

8 else
9 if E′ is better than Ei then

10 Ei ← E′;
11 else if Ei is not improving last limit iterations then
12 Scout bee;

13 if Ei is better than Best then
14 Best ← Ei ;

15 for i ← 1 to NO do
16 si ← BT S(E1,E2, ...,ENE);
17 Oi ← DNbring_Sol(Esi );
18 if Oi == Φ then
19 Assign Oi a fitness value artificially which is higher

than the fitness value of Esi ;

20 for i ← 1 to NO do
21 if Oi is better than Esi then
22 Esi ← Oi ;

23 if Oi is better than Best then
24 Best ← Oi ;

2.7 Other features

If a solution (say Ei ) of the employed bee population does
not improve over a certain number of iterations (say limit),
then it is assumed that Ei is trapped into a local optima. To
handle this situation, the employed bee becomes a scout bee
by abandoning its associated Ei . This scout bee, then, gener-
ates a new random solution (see 2.2). This newly generated
solution instantly replaces this abandoned solution, and the
status of this scout bee becomes an employed bee on this
newly generated random solution. limit is a parameter that is
to be decided experimentally.

Algorithm 2 presents the pseudocode of PABC_BD,
where binary tournament selection method is called by
BT S(E1,E2, . . . ,ENE) function which returns a selected
solution (see Algorithm 1 in Sect. 2.5); and the method for
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determining a solution in the neighborhood of a solution,
say X, is called by DNbring_Sol(X) function which returns
a neighboring solution, say X ′. Note that DNbring_Sol(X)

contains two different neighborhood strategies, i.e., IMP and
SMP that are applied in a mutually exclusive way. If a colli-
sion occurs in IMP, thenDNbring_Sol(X) will return Φ for
X ′.

3 Computational results

PABC_BD is implemented in C and executed on a Linux-
based operating system with the configuration of Intel Core
i5 processor 3.3 GHz × 4 with 4 GB RAM. Subsequent
subsections discuss about benchmark instances (see Sect.
3.1); parameter setting (see Sect. 3.2); a comparison study
of PABC_BD with state-of-the-art approaches such as PEA-
I (Singh and Gupta 2007) and HGA (Binh et al. 2008) (see
Sect. 3.3) and VNS Gruber et al. 2006, EA (Gruber et al.
2006), ACO (Gruber et al. 2006), LRS (Lucena et al. 2010)
and LABD (Torkestani 2012) (see Sect. 3.4); and a statistical
analysis is performed to find significant difference between
PABC_BD and other approaches (PEA-I, VNS, EA, ACO,
LRS and LABD) (see Sect. 3.5).

3.1 Benchmark instances

As in (Gruber et al. 2006, Lucena et al. 2010, Singh and
Gupta 2007, Torkestani 2012), PABC_BD is also tested on
the same benchmark instances. The description of the set of
45 benchmark instances that are classified into two different
data-sets with varying sizes of |V | from 50 to 1000 vertices
are as follows:

– Euclidean data-set: This data-set consists of graphs
whose sizes vary from 50 to 1000 vertices. There are 5
instances for each value ofV ={50, 100, 250, 500, 1000},
leading to a total of 25 instances. One can use OR-library
to download these instances. These instances are listed
there as instances of the Euclidean Steiner tree problem.
Euclidean instances consist of V points randomly chosen
in the unit square. The diameter bound (D) is set to {5,
10, 15, 20, 25} for problems of size V = {50, 100, 250,
500, 1000} respectively.

– Non-Euclidean data-set: There are five instances for
each value of V = {100, 250, 500, 1000}, leading to a
total of 20 non-Euclidean instances.All of these instances
are complete graphs with weights randomly chosen from
the range[0.01, 0.99]. The diameter bound D is set to
{10, 15, 20, 25} for problems of size V = {100, 250,
500, 1000} respectively.

3.2 Parameter tuning

In all our experiments with PABC_BD, we have used NE,
NO, limit , Pbt , Pnbr , Pmpi and Pmsw parameters. For param-
eter setting, we consider three Euclidean instances V = {250,
500, 1000} with the instance number {3, 4, 2} and the
diameter-bound (D) {15, 20, 25} respectively.

Table 2 reports the results on various values of each param-
eter. In Table 2, the column denotes Parameter used in
PABC_BD; the column Value denotes various potential val-
ues of a particular parameter; each next two columns report
the best value (Best) and the average solution quality (Avg)
obtained over 50 runs. The best values are highlighted in bold
fonts. Note that graph instances are represented by notation
NV _I N , where NV is the total number of vertices of con-
sidered graph and I N is the instance number from the set of
five instances of V = {250, 500, 1000}. Also note that for
parameter setting, each time one potential value of consid-
ered parameter is tested, whereas values of other parameters
are kept fixed. Experimental observations based on the per-
formance of PABC_BD on different combinations of various
values of parameters that can be seen in Table 2 led to choose
the best combination of value of each parameter, i.e. NE =
50, NO = 150, limit = 50, Pbt = 0.85, Pnbr = 0.80, Pmpi =
0.04, Pmsw = 0.05.

3.3 Comparison of PABC_BD, HGA and 2PMAwith
PEA-I

This subsection discusses about comparison of PABC_BD
with PEA-I (Singh and Gupta 2007), HGA (Binh et al. 2008)
and 2PMA (Vuppuluri and Patvardhan 2021) on a set of stan-
dard benchmark instances. Since authors of PEA-I, HGA and
2PMAused a termination criterionwhen the best-so-far solu-
tion obtained does not improve over 100,000 generations on
a given instance, therefore, to allow a fair comparison of
PABC_BD, HGA and 2PMAwith PEA-I, we have also used
the same termination criterion for PABC_BD, i.e. PABC_BD
is allowed to execute till the best-so-far solution does not
improve over 500 generations. As PEA-I which is a steady
state genetic algorithm generates a single solution in each
generation, hence, 1,00,000 generations generate 1,00,000
child solutions. In a similar way, PABC_BD generates ≈
200 neighboring solutions due tomainly employed bee phase
(NE = 50) and onlooker phase (NO = 150), hence 500 gen-
erations generate ≈ 1,00,000 neighboring solutions. As in
PEA-I, HGA and 2PMA, PABC_BD is also given 50 runs
for each problem instance.

Tables 3 and 4 report the results of 25 Euclidean instances
and 20 non-Euclidean instances for PEA-I, HGA, 2PMA and
PABC_BD. In Tables 3 and 4, first three columns |V |, D
and N under Instances respectively denote the total number
of vertices of each Euclidean/non-Euclidean instance, the
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Table 2 Influence of parameter
values on a set of graph
instances

Parameter Value 250_3 500_4 1000_2

Best Avg Best Avg Best Avg

NE 25 11.98 12.07 16.92 17.02 23.63 23.79

50 11.98 12.06 16.86 16.96 23.51 23.68

100 11.98 12.06 16.89 16.97 23.53 23.76

NO 100 12.00 12.07 16.84 16.97 23.58 23.69

150 11.98 12.06 16.86 16.96 23.51 23.68

200 11.98 12.05 16.85 16.96 23.55 23.69

Pbt 0.80 11.99 12.06 16.89 16.96 23.50 23.69

0.85 11.98 12.06 16.86 16.96 23.51 23.68

0.90 12.00 12.06 16.88 16.98 23.51 23.66

Pnbr 0.70 11.98 12.06 16.87 16.96 23.52 23.68

0.80 11.98 12.06 16.86 16.96 23.51 23.68

0.90 11.98 12.06 16.90 16.97 23.52 23.69

limit 25 12.00 12.07 16.84 16.97 23.58 23.69

50 11.98 12.06 16.86 16.96 23.51 23.68

100 11.99 12.06 16.87 16.96 23.55 23.69

Pmpi 0.03 11.97 12.10 16.89 16.98 23.52 23.65

0.04 11.98 12.06 16.86 16.96 23.51 23.68

0.05 11.97 12.07 16.85 16.97 23.55 23.70

Pmsw 0.04 11.99 12.06 16.89 16.97 23.52 23.69

0.05 11.98 12.06 16.86 16.96 23.51 23.68

0.06 11.99 12.06 16.87 16.96 23.52 23.69

diameter-bound and the instance number from each set of
five instances; and for PEA-I, HGA, 2PMA and PABC_BD,
each next four columns Best, Avg, SD and ATET respectively
denote the best-so-far solution obtained in terms of fitness,
average solution quality, standard deviation and average total
execution time. Tables 3 and 4 highlight the best value (Best)
and the best average solution quality (Avg) among PEA-
I, HGA, 2PMA and PABC_BD in bold fonts. Comparing
PABC_BD with PEA-I, one can observe the results of 25
Euclidean instances from Table 3 that PABC_BD, in terms
of Best, is better on 14, is same on 9 and is worse on 2, and
that PABC_BD, in terms ofAvg, is better on 24 and is same on
1. In a similar way, comparing PABC_BD with PEA-I, one
can observe the results of 20 non-Euclidean instances from
Table 4 that PABC_BD, in terms of Best, is better on 13, is
same on 6 and is worse on 1, and that PABC_BD, in terms
of Avg, is better on 18, is same on 1 and is worse on 1. Com-
paring PABC_BD with HGA, one can observe the results
of 25 Euclidean instances from Table 3 that PABC_BD, in
terms of Best, is better on 11, is same on 2 and is worse on
12, and that PABC_BD, in terms of Avg, is better on 14, is
same on 4 and is worse on 7. In a similar way, comparing
PABC_BDwith HGA, one can observe the results of 20 non-
Euclidean instances from Table 4 that PABC_BD, in terms
of Best, is better on 6, is same on 4 and is worse on 10, and
that PABC_BD, in terms of Avg, is better on 18, is same on

1 and is worse on 1. Comparing PABC_BD with 2PMA,
one can observe the results of 25 Euclidean instances from
Table 3 that PABC_BD, in terms of Best, is better on 13, is
same on 5 and is worse on 7, and that PABC_BD, in terms
of Avg, is better on 20, is same on 3 and is worse on 2. In
a similar way, comparing PABC_BD with 2PMA, one can
observe the results of 20 non-Euclidean instances from Table
4 that PABC_BD, in terms of Best, is better on 6, is same on
2 and is worse on 12, and that PABC_BD, in terms of Avg,
is better on 8, is same on 1 and is worse on 11. One can also
observe from the overall results of PABC_BD and 2PMA on
45 instances (25 Euclidean instances and 20 non-Euclidean
instances) in Tables 3 and 4 that PABC_BD is better than
2PMA in terms of robustness, as comparing with 2PMA,
PABC_BD, in terms of Avg, is better on 28, is same on 4 and
is worse on 13.

Since configuration of computer system (Pentium 4, 2.4
GHz with 512 MB RAM) used for PEA-I (Singh and Gupta
2007) is different from that of computer system (Intel Core
i5, 3.3 GHz× 4with 4 GBRAM) used for PABC_BD, there-
fore, to give a fair comparison based on computational time, a
scaling factormechanism is used according to the publicCPU
benchmark provided by PassMark Software ( https://www.
cpubenchmark.net/singleThread.html). As per this website,
we find that CPU Mark for the computer system used for
PABC_BD is 2114, whereas CPU Mark for the computer
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system used for PEA-I is 561. Higher CPU Mark result rep-
resents higher performance. Hence, the performance of our
computer system used for PABC_BD is ≈ 3.8 times (scal-
ing factor) better than the computer system used for PEA-I
(see Table 5). Also, authors of PEA-I reported only aver-
age time till best (i.e. ATTB) needed by PEA-I to reach the
best solution, not average total execution time (i.e. ATET)
needed by PEA-I. Even considering this fact about average
time till best (ATTB) versus average total execution time
(ATET) (see Tables 3 and 4) of each instance obtained by
PEA-I and PABC_BD respectively, we can safely say that
PABC_BD converges much faster in terms of finding better
solution quality in comparison to PEA-I.

It is to be noted and is already discussed in Sect. 1 that
authors (Binh et al. 2008) did not discuss or report the compu-
tational time needed for obtaining the solution quality of each
Euclidean and non-Euclidean instances (see N R that refers
to Not Reported in Tables 3 and 4). Also, one can infer that
HGA obtains overall better results than that of PEA-I (Singh
and Gupta 2007) at the cost of much higher computational
time. Since our proposed PABC_BD is much faster in terms
of finding better solution quality in comparison to PEA-I,
therefore, it implies that PABC_BD is evenmuchmore faster
in terms of finding better solution quality in comparison to
HGA. It is clear from the results reported in Tables 3 and 4
that PABC_BD is comparable with HGA in terms of Best on
Euclidean instances, but is better than HGA in terms of Avg
on Euclidean instances as well as in terms of Best and Avg
on non-Euclidean instances. Since authors of 2PMA (Vuppu-
luri and Patvardhan 2021) did not report the computational
time (ATTB or ATET) on each instance while comparing
with PEA-I in their paper, therefore, we have not provided
the details of comparison of our proposed PABC_BD with
2PMA in terms of computational time.

3.4 Comparison of PABC_BDwith VNS, EA, ACO, LRS
and LABD

The performance of VNS (Gruber et al. 2006), EA (Gruber
et al. 2006), ACO (Gruber et al. 2006) and LRS (Lucena
et al. 2010) has been tested on only a set of Euclidean bench-
mark instances. To give a fair comparison, we have also
compared our PABC_BD with these approaches on only
Euclidean instances. Also, to test VNS, EA, ACO and LRS
approaches, their authors used different-2 criterion for ter-
mination. As in (Gruber et al. 2006), authors used different
CPU time limits which depend on the size of instances. For
example, they used CPU time limits of 2000, 3000, and 4000
seconds for instances with |V | = 100, 250, 500, respectively.
In addition, in case of the VNS and ACO approaches, they
terminated their approaches after 1000 iterations without fur-
ther improvement of the best-so-far solution obtained. For
instanceswith |V |=1000, they used aCPU time limit of 1000

seconds. Similarly, authors ofLRSalso used aCPU time limit
as the termination criterion. They used CPU time limits of
200, 1500, 3000, and 4500 seconds for instances with |V |
= 100, 250, 500 and 1000, respectively. In addition to these
different-2 termination criterion, configurations of the com-
puter system used for VNS, EA, ACO (Pentium 4 with 2.8
GHz) and LRS (Pentium 4with 2.0GHz) approaches are also
different from that of computer system used for PABC_BD.

To know the performance of computer system used for
PABC_BD in comparison to that of computer system used
for VNS, EA, ACO and LRS approaches, we have again used
a scaling factor according to the public CPU benchmark pro-
vided by PassMark Software. Hence, the performance of our
computer system used for PABC_BD is ≈ 3.4 times (scaling
factor) better than the computer system used for VNS, EA
and ACO approaches (Gruber et al. 2006) (see Table 5). In
case of LRS (Lucena et al. 2010), the performance of our
computer system used for PABC_BD is ≈ 4.6 times (scaling
factor) better than the computer system used for LRS (see
Table 5). Looking at all these aspects, i.e. different-2 crite-
ria for termination of VNS, EA, ACO and LRS approaches
and their computer system configuration, it is difficult to
exactly compare PABC_BD with VNS, EA, ACO and LRS
approaches in terms of solution quality and computational
time. To overcome this difficulty, we have used another ter-
mination criterion for PABC_BD which is different from the
termination criterion used for comparing with PEA-I (see
Sect. 3.3). PABC_BD is allowed to execute till the best-so-
far solution obtained does not improve over 5000 generations
in order to compare VNS, EA, ACO and LRS approaches in
terms of solution quality and computational time. Like VNS,
EA and ACO approaches, PABC_BD is also given 50 runs
for each problem instance.

For LABD (Torkestani 2012), author allowed 100 runs to
execute their approach on same machine as used in (Lucena
et al. 2010) (i.e. (Pentium 4with 2.0 GHz)). However, results
of LABD (Torkestani 2012) are reported in terms of best
value and average total execution time only. To compare
PABC_BD with LABD, we have used the same termination
criterion for PABC_BD as discussed in the previous para-
graph.

Table 6 reports the results of 20 Euclidean instances for
VNS, EA, ACO, LRS, LABD and PABC_BD approaches. In
this table, first three columns |V |, D and N under Instances
respectively denote the total number of vertices of each
Euclidean instance, the diameter-bound and the instance
number from each set of five instances; for VNS, EA and
ACO approaches, each next four columns Best, Avg, SD and
ATET respectively denote the best-so-far solution obtained
in terms of fitness, average solution quality, standard devi-
ation and average total execution time; for LRS, next three
columns Best, Avg and ATET respectively denote the best-
so-far solution obtained in terms of fitness, average solution
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Table 5 Scaling factors of
various computer systems used
in existing approaches with
respect to the computer system
(Intel Core i5 processor 3.3 GHz
× 4) used in PABC_BD

Existing approaches Configuration of computer system CPU mark Scaling factor

PEA-I Pentium 4 with 2.4 GHz 561 ≈ 3.8

VNS, EA, ACO Pentium 4 with 2.8 GHz 631 ≈ 3.4

LRS Pentium 4 with 2.0 GHz 464 ≈ 4.6

LABD Pentium 4 with 2.0 GHz 464 ≈ 4.6

quality and average total execution time ; for LABD, next
two columns Best and ATET respectively denote the best-
so-far solution obtained in terms of fitness and average total
execution time; for PABC_BD, next four columns Best, Avg,
SD and ATET respectively denote the best-so-far solution
obtained in terms of fitness, average solution quality, stan-
dard deviation and average total execution time.

Table 6 highlights the best value (Best) and the best aver-
age solution quality (Avg) among VNS, EA, ACO, LRS,
LABD and PABC_BD approaches in bold fonts. Compar-
ing the results of PABC_BD with the results of VNS on
20 Euclidean instances, PABC_BD, in terms of Best, is bet-
ter on 16 and is equal on 4. In terms of Avg, PABC_BD is
better than VNS in all instances. Comparing the results of
PABC_BDwith the results of EA on 20 Euclidean instances,
PABC_BD, in terms of Best, is better on 13, is equal on 6
and is worse on 1. In terms of Avg, PABC_BD is better on 19
and is worse on 1 in comparison to EA. Similarly, comparing
the results of PABC_BD with the results of ACO approach
on 20 Euclidean instances, PABC_BD, in terms of Best, is
better on 12, is equal on 4 and is worse on 4. In terms of Avg,
PABC_BD is better on 17 and is worse on 3 in comparison to
ACO. Comparing the results of PABC_BD with the results
of LRS on 20 Euclidean instances, PABC_BD, in terms of
Best, is better in all instances. In terms of Avg, PABC_BD is
also better than LRS in all instances. Similarly, comparing
the results of PABC_BD with the results of LABD, on 20
Euclidean instances, PABC_BD, in terms of Best, is better
on 15, is equal on 3 and is worse on 2.

In terms of computational time (ATET ) in Table 6, even
considering the points—the performance of computer system
used for PABC_BD is≈ 3.4 times (scaling factor) better than
the computer system used for VNS, EA andACO approaches
and ≈ 4.6 times (scaling factor) better than the computer
system used for LRS and LABD approaches—discussed in
the second paragraph of Sect. 3.4, we can safely say that
PABC_BD converges much faster towards better solution
quality in comparison to VNS, EA, ACO, LRS and LABD
approaches.

3.5 Statistical analysis

For statistical analysis, we have performed a non-parametric
Wilcoxon’s signed rank test (García et al. 2009) on each

data-set in order to compare PABC_BD with PEA-I, VNS,
EA, ACO, LRS and LABD approaches in terms of the
best (Best) and the average solution quality (Avg). We have
used Wilcoxon Signed-Rank Test Calculator which is avail-
able at http://www.socscistatistics.com/tests/signedranks/
Default2.aspx. For this statistical test, we first calculate
the difference between the results obtained by each two
compared approaches on each data-set and then rank them
according to their absolute value. For each data-set, R+ is the
sum of ranks in which the second approach outperforms the
first, while R− denotes the sumof ranks for the opposite case.
If min{R+; R−} is less than or equal to the critical value,
then this test detects significant difference between the two
compared approaches. The critical values are taken from the
statistical table available at http://users.stat.ufl.edu/~athienit/
Tables/tables. Tables 7 and 8 report the results ofWilcoxon’s
signed rank test with a level of significance α = 0.05 for the
best value (Best) and the average solution quality (Avg) over
50 runs respectively.

In Tables 7 and 8, the column Data-set denotes the name
of each data-set; the column Comparison denotes the name
of two compared approaches; the next five columns Sam-
ple Size, Critical Value, R+, R− and Significant respectively
denote the sample size, critical value, R+, R− and signifi-
cant difference between the two compared approaches (“yes”
if there exists a significant difference between two com-
pared approaches, otherwise “no”) for each Best and Avg
on each data-set. The results in Tables 7 and 8 confirm that
PABC_BD significantly performs better with respect to the
other approaches because the value of R− (corresponding to
the other approaches) is lower than the value of R+ (corre-
sponding to the PABC_BD) as well as the critical value in
all performed comparisons.

3.6 Analysis of convergence behavior of PABC_BD

This subsection analyzes the convergencebehavior ofPABC_
BD in order to gain a useful insight into PABC_BD. For
this, we consider four instances, i.e. 100_1, 250_1, 500_2
and 1000_5 which are picked randomly from the set of
Euclidean instances. Figure 3a–d exhibit the average solu-
tion quality over 50 runs versus the number of generations on
considered instances. In each figure, PABC_BD is allowed to
execute over 5000 generations. X-axis represents the “Num-
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Table 7 Results of statistical
comparison for the best value
(Best)

Data-set Comparison Best

Sample size Critical value R+ R− Significant

Euclidean PEA-I-PABC_BD 16 29 131 5 Yes

VNS-PABC_BD 16 29 136 0 Yes

EA-PABC_BD 14 21 93 12 Yes

ACO-PABC_BD 16 29 116 20 Yes

LRS-PABC_BD 20 52 210 0 Yes

LABD-PABC_BD 17 34 136 17 Yes

Non-euclidean PEA-I-PABC_BD 14 21 105 0 Yes

Table 8 Results of statistical
comparison for the average
solutions quality (Avg)

Data-set Comparison Avg

Sample size Critical value R+ R− Significant

Euclidean PEA-I-PABC_BD 24 81 300 0 Yes

VNS-PABC_BD 20 52 210 0 Yes

EA-PABC_BD 20 52 192 18 Yes

ACO-PABC_BD 19 46 151.5 38.5 Yes

LRS-PABC_BD 20 52 210 0 Yes

Non-euclidean PEA-I-PABC_BD 19 46 189 1 Yes

ber of Generations” generated, whereasY-axis represents the
“Average Solution Quality” obtained over 50 runs after car-
rying out the “Number of Generations” generated. One can
observe fromFig. 3a–d that the PABC_BD converges rapidly
towards better solution quality as the number of generations
increases.

3.7 Collective picture

Table 9 gives a collective picture of an overall comparison of
PABC_BD on Euclidean and non-Euclidean Instances with
PEA-I, VNS, EA,ACO, LRS andLABDapproaches in terms
of best value and average solution quality obtained. From
Table 9, one can observe the superiority of PABC_BD over
PEA-I, VNS, EA,ACO, LRS andLABDapproaches in terms
of best value (Best) and average solution quality (Avg).

3.8 Performance of PABC_BD on 15 Euclidean
instances of 1000 nodes with various diameter
bounds

The subsection discusses the performance of PABC_BD on
15 Euclidean Steiner tree instances of Beasley’s OR-Library
with 1000 nodes for various diameter bounds that range from
4 to 25 whose results obtained by two hierarchical clustering
heuristics—CdA andCdB—andACOapproach are reported
in (Gruber and Raidl 2009) (see discussion on literature sur-
vey inSect. 1). It ismentioned inGruber andRaidl (2009) that
being problem-specific heuristics, CdA and CdB takes very

few seconds to find high quality solutions in general, whereas
ACOapproachwhich is taken from (Gruber et al. 2006) needs
computation times of one hour andmore. Table 10 reports the
results ofCdA,CdB , ACOandPABC_BDon suchEuclidean
instances, where the results on instances obtained by CdA,
CdB and ACO approach are taken from (Gruber and Raidl
2009). In this table, first column denotes instances with 1000
nodes for various bounds; for CdA, CdB and ACO, each
next two columns Avg and SD respectively denote the aver-
age solution quality and standard deviation obtained over 30
runs; and the last three columns Avg, SD and ATET respec-
tively denote the average solution quality, standard deviation
and average total execution time. Table 10 shows that the per-
formance of PABC_BD decreases with decreasing diameter
bound against CdA, CdB and ACO approach. The possible
reason behind poor performance of PABC_BD particularly
on smaller diameter bounds is the use of RGH decoding. It is
mentioned in (Gruber and Raidl 2009) that RGH in compari-
son to clustering heuristics lacks in finding a good backbone.
For more details, readers are suggested to read (Gruber and
Raidl 2009).

4 Conclusion

In this paper, we present an artificial bee colony algorithm
(PABC_BD) for the bounded diameter minimum spanning
tree (BD-MST) problem. The proposed approach employs
a permutation encoding of solutions. To exploit this encod-
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(a) (b)

(c) (d)

Fig. 3 Convergence curve of PABC_BD for the average solution quality

Table 9 Overall comparison of PABC_BD with PEA-I (Singh and Gupta 2007),VNS (Gruber et al. 2006), EA (Gruber et al. 2006),ACO (Gruber
et al. 2006), LRS, (Lucena et al. 2010) and LABD (Torkestani 2012)

Comparison Euclidean-instances Non-euclidean-instances

Best Avg Best Avg

State-of-the-art approaches PEA-I VNS EA ACO LRS LABD PEA-I VNS EA ACO LRS PEA-I PEA-I

Total instances 25� 20 20 20 20 20 25� 20 20 20 20 20 20

Better 14 16 13 12 20 15 24 20 19 17 20 13 18

Same 9 4 5 4 0 3 1 0 0 0 0 6 1

Worse 2 0 2 4 0 2 0 0 1 3 0 1 1

� See Sect. 3.3
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Table 10 Comparison of
PABC_BD with CdA, CdB

(Gruber and Raidl 2009) and
ACO (Gruber et al. 2006)

Diameter CdA CdB ACO PABC_BD

Best SD Best SD Avg SD Avg SD ATET

4 68.32 0.72 68.32 0.70 65.80 0.48 108.09 1.44 79.93

6 47.40 4.85 47.17 4.61 42.12 0.26 52.98 1.02 27.58

8 37.07 1.35 36.94 1.34 34.75 0.23 39.02 0.40 13.85

10 33.55 0.67 33.34 0.66 31.04 0.20 33.66 0.20 9.91

12 32.26 0.48 31.96 0.44 28.64 0.23 31.12 0.15 8.59

14 31.38 0.37 31.02 0.33 26.65 0.32 29.35 0.20 9.06

16 30.7937 0.33 30.43 0.29 25.58 0.19 25.48 1.15 32.08

18 30.52 0.29 30.13 0.27 24.88 0.16 24.86 0.09 34.07

20 30.31 0.31 30.04 0.28 24.37 0.15 24.41 0.06 32.42

22 30.24 0.30 30.07 0.28 24.01 0.17 24.06 0.06 32.49

24 30.02 0.23 30.16 0.27 23.77 0.20 23.77 0.07 32.27

5 62.29 0.76 62.06 0.67 59.59 0.49 89.16 1.28 60.44

7 46.73 3.92 46.41 3.73 39.99 0.25 48.47 0.65 20.60

9 37.02 1.25 36.89 1.27 33.59 0.23 37.19 0.29 11.46

11 33.41 0.70 33.17 0.66 30.27 0.19 32.85 0.17 8.91

13 32.11 0.43 31.80 0.41 28.12 0.20 30.65 0.134 8.10

15 31.27 0.35 30.89 0.32 26.39 0.25 28.60 0.26 9.76

17 30.77 0.33 30.37 0.30 25.38 0.23 25.26 0.52 35.36

19 30.54 0.29 30.08 0.27 24.77 0.18 24.70 0.06 33.30

21 30.30 0.30 30.04 0.27 24.77 0.18 24.28 0.06 31.83

23 30.06 0.24 30.12 0.31 23.97 0.21 23.93 0.07 31.6

25 29.95 0.21 30.14 0.24 23.77 0.25 23.65 0.07 31.96

ing structure, two neighborhood strategies based on insertion
on multiple positions and swap on multiple positions are
applied. PABC_BD has been tested on a set of benchmark
instances for various diameter bounds. Computational results
justify the effectiveness and robustness of our proposed
PABC_BD as the diameter bound increases. On these bench-
mark instances, PABC_BD is much faster in finding better
solution quality in comparison to state-of-the-art metaheuris-
tic approaches except smaller diameter bounds.

The performance of PABC_BD against two hierarchical
clustering heuristics on 15Euclidean instances of 1000 nodes
suggested us that in the near future, we will focus our efforts
in the development of a better decoder that can be applied to
decode a solution encoded as a linear permutation of all ver-
tices of V for this problem while developing a metaheuristic
technique.
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