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Abstract
In this study, the flood hazards susceptibility map of an area in Turkey which is frequently exposed to flooding was

predicted by training 70% of inventory data. For this, statistical, and hybrid methods such as frequency ratio (FR),

evidential belief function (EBF), weight of evidence (WoE), index of entropy (IoE), fuzzy logic (FL), principal component

analysis (PCA), analytical hierarchy process (AHP), technique for order preference by similarity to an ideal solution

(TOPSIS), and VlseKriterijumska optimizacija I Kompromisno Resenje (VIKOR) were adapted. Values at both 70% and

30% of inventory data from the generated maps were extracted to validate the training and testing processes by receiver

operating characteristics (ROC) analysis and seed cell area index (SCAI). Sensitivity, specificity, accuracy, and kappa

index were calculated from ROC analysis, and SCAI was computed from the classification of map by natural break method

and flood pixels in that classification. Since the predicted results of the methods applied did not point out the same model

for each criterion, a simple method was selected to determine the most preferable method. Analysis showed that, IoE model

was found to be the best model considering the ROC parameters, while PCA and AHP methods gave more reliable results

considering SCAI. This study may be considered as a comprehensive contribution to the hybridization methods in

predicting accurate flood hazards susceptibility maps.

Keywords Bivariate statistical models � Flood hazards susceptibility � Fuzzy logic model � Hybrid methods �
Multicriteria decision making methods

1 Introduction

In developing world, as the needs of human beings

increase, new residential areas and commercial facilities

expand near the waterfront sides. Hence, this brings a

direct confinement of the waterway and leads to increasing

of flood hazards. Floods are one of the major natural haz-

ards which seriously threaten the infrastructures, cultivated

agricultural lands, transportation networks in both urban

and countryside areas and cause losses of significant eco-

nomic activities and lives (Akay 2021). So, policymakers

have to face challenging decisions on irresistible and

increasing economic activities and its conflicting results of

flooding hazards. Being aware of this problem, researchers

are working on finding solutions to predict the spatial

distribution of flood susceptibility. Flood susceptibility

maps in terms of the risk groups may be considered as a

design criterion or input to assess the flood vulnerability of

the structures to be constructed, where necessary. For

instance, an engineer could decide about the construction

site of a new residential area by taking into consideration of

the flood susceptibility maps.

Watershed characteristics are spatially obtained by the

extraction of the available data using geographic infor-

mation system (GIS) which is an important and effective

tool, and adopted the contribution as an attribute in sus-

ceptibility assessment. Researchers focus on different

techniques, based on statistical, fuzzy logic (FL), multi-

criteria decision making (MCDM), machine learning, and

meta-heuristic algorithms etc. to estimate the spatial dis-

tribution of flood susceptibility of flooded and non-flooded

zones. Moreover, those methods have attracted attention

and been employed for not only flood susceptibility but
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also for landslide susceptibility, groundwater potential,

avalanche susceptibility, and wildfire probability mapping

etc. (Mogaji et al. 2015; Arabameri et al. 2019; Choubina

et al. 2019; Jaafari et al. 2019; Rahmati et al. 2019;

Moayedi et al. 2020).

Researchers performed various methods including fre-

quency ratio (FR) (Tehrany et al. 2019; Arabameri et al.

2019; Sahana and Patel 2019; Vafakhah et al. 2020; Mir-

zaei et al. 2021; Wang et al. 2021), weights of evidence

(WoE) (Tehrany et al. 2014), index of entropy (IoE)

(Haghizadeh et al. 2017; Wang et al. 2021), evidential

belief function (EBF) (Tehrany and Kumar 2018; Araba-

meri et al. 2019; Bui et al. 2019), logistic regression (LR)

(Nandi et al. 2016; Tehrany and Kumar 2018; Tehrany

et al. 2019), statistical index (SI) (Tehrany et al. 2019),

support vector machine (SVM) (Tehrany et al. 2014;

Shafapour Tehrany et al. 2019), naı̈ve Bayes tree (NBT)

(Khosravi et al. 2019; Chen et al. 2020), random forest

(RF) (Chen et al. 2020; Vafakhah et al. 2020; Mirzaei et al.

2021), fuzzy logic (FL) (Sahana and Patel 2019), fuzzy

DEMATEL ANP (Kanani-Sadat et al. 2019), artificial

neural network (ANN) (Kia et al. 2012), analytical hier-

archy process (AHP) (Hammami et al. 2019; Kanani-Sadat

et al. 2019), Technique for Order Preference by Similarity

to an Ideal Solution (TOPSIS) (Arabameri et al. 2019;

Khosravi et al. 2019), VlseKriterijumska optimizacija I

Kompromisno Resenje (VIKOR) (Arabameri et al. 2019;

Khosravi et al. 2019), SAW (Khosravi et al. 2019), adap-

tive neuro-fuzzy inference system (ANFIS) (Hong et al.

2018; Vafakhah et al. 2020), and gradient boosting tress

and multilayer perception algorithms (Costache et al. 2020;

Ahmadlou et al. 2021; Wang et al. 2021) for flood sus-

ceptibility assessment.

In recent years, results of flood susceptibility mapping

studies obtained from aforementioned methods were

compared with each other, accuracy of prediction results

were discussed and the methods giving the best accuracy

were determined, accordingly (Khosravi et al. 2016; Ara-

bameri et al. 2019; Kanani-Sadat et al. 2019; Shafapour

Tehrany and Kumar 2018; Shafapour Tehrany et al. 2019;

Shana and Patel 2019; Al-Abadi and Al-Najar 2020; Chen

et al. 2020). Since there is yet no consensus worldwide on

the accuracy of the model structure and limitations of the

models and the characteristics of the study area, flood

susceptibility mapping studies are still ongoing to improve

the accuracy of the spatially predicted results (Costache

et al. 2020). Hence, those methods are integrated creating

the hybrid or ensemble models to get higher prediction

performance (Shafapour Tehrany et al. 2014; Bui et al.

2019; Shafapour Tehrany et al. 2019; Costache et al. 2020).

Researchers studying on flash flood susceptibility mapping

coupled the EBF with LR, SVM, and other methods in

order to improve the accuracy of the predictions and also

avoid computational affords (Bui et al 2019; Chowdhuri

et al 2020; Costache et al 2020; Talukdar et al 2020).

Vafakhah et al. (2020) compared FR, ANFIS, and RF

models in predicting flood susceptibility mapping, and the

authors found RF model as the best predicting model.

Mirzaei et al. (2021) adapted FR, RF, generalized additive

model (GAM), and extreme gradient boosting (EGB)

models to estimate the spatial distribution of flood sus-

ceptibility. Results indicated that RF and GAM models

gave the best performance. Ahmadlou et al. (2021)

implemented multilayer perceptron (MLP) and autoen-

coder–MLP models in flood susceptibility mapping.

Authors stated that autoencoder-MLP gave outperformed.

Wang et al. (2021) hybridized FR, IoE, and probability

density (PD) models with MLP, and classification and

regression tree (CART) models. MLP-PD was found as the

most efficient model in flood susceptibility prediction in

the study. Pham et al. (2021) employed best first decision

tree (BFT), and bagging, decorate and random subspace

ensemble models of BFT. Decorate-BFT was identified as

superior model in flood susceptibility predictions. Dodan-

geh et al. (2020), Mehrabi et al. (2020), Pourghasemi et al.

(2020), Arora et al. (2021), and Shahabi et al. (2021)

adopted ensemble meta-heuristic algorithms and ANFIS,

SVM machine learning techniques in order to optimize

parameters in development of their predictions. All the

researchers concluded that hybrid or ensemble techniques

changed the predictions and contributed the accuracy of the

model results. Researches on improvement of the model

predictions using optimization and ensemble machine

learning algorithms are still ongoing.

The main objective of this study is to contribute to the

recent efforts on comprehensive comparison of statistical,

FL and MCDM methods. To the best knowledge of the

author, a comprehensive study was not implemented using

this methodology. For this, some fundamental statistical

approaches such as FR, WoE, EBF, IoE, and principal

component analysis (PCA) were used. Moreover, some

hybridization techniques using those methods in FL and

MCDM methods such as AHP, TOPSIS, and VIKOR were

tested in order to further understand the capability of the

model outcomes. Flood hazards susceptibility maps were

predicted separately and compared with each other.

2 Materials and methods

2.1 Study area

Gokirmak Basin sited in the northern part of Turkey has a

drainage area of 1375 km2, drains through Ulus town and

Bartin city center and then discharges into the Black Sea.

The annual rainfall of the basin varies between
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850–1250 mm; and the average slope of the basin is 35%.

Increase in population and economic activities in the region

leads to rapid urbanization causing the curve number of the

region to increase, as well. So, the basin frequently faces

flash floods due to increase in excessive rainfall, steep

topography, deterioration in the basin, and the character-

istics of the basin. Some major flash flood disasters took

place in the study area, one of which occurred in 1998 that

is still in the memories of the local people who experienced

it (Akay and Baduna Koçyiğit 2020). Several studies

including hydrologic modeling of the hydrological pro-

cesses in the basin were conducted to further increase the

understanding of the runoff of excessive rainfall (Baduna

Koçyiğit et al. 2017; Akay et al. 2018). Flash floods

occurring in Gokirmak Basin might seriously damage the

residential areas, infrastructures, and suspend commercial

activities and transportation services causing economic loss

each year.

Rapid urbanization also requires infrastructure invest-

ments that should be insured against flash flood hazards.

Engineers should consider the hydrologic vulnerability and

risk assessment of flash floods regarding the safety of any

structure in design stage, as well. Hence, a reliable flood

hazards susceptibility mapping obtained using different

statistical and hybrid MCDM models for Gokirmak Basin

carried out in this study is thought to be crucial for espe-

cially local authorities for water management activities in

the area.

2.2 Methodology

The methodology adopted in this study to obtain flood

hazards susceptibility maps is given in Fig. 1.

2.3 Data

Data used in this study consist of flood inventory and

spatial distribution of flood conditioning factors. Flood

inventory data include hazards occurred at past flood

events reported by experts and local authorities while flood

conditioning factors are the parameters that directly affect

occurrence of flash floods.

2.3.1 Flood inventory

Past floods are one of the most important indicators, which

show that similar consequences or hazards may be expe-

rienced as a result of future possible floods in the same

environment depending on the meteorological, climato-

logical, hydrological conditions of the watershed at that

time. So, past flood hazards reported by the authorities at

different time intervals were considered in this study to

increase the estimation capability of flood hazards

susceptibility spatial modeling using various techniques.

Besides, flood inventory data also provide high flood sus-

ceptible zones in the watershed. On the other hand, non-

flooded zones which are generally constituted from hills

contribute to test the accuracy of the generated flood haz-

ards susceptibility mapping (Tehrany and Kumar 2018). In

the study, flooded and non-flooded points collected from

past flood events were introduced into ArcGIS and ana-

lyzed, accordingly. 139 flooded and 140 non-flooded points

were considered for the generation of flood hazards sus-

ceptibility maps, of which randomly selected 98 points

were used for training while the rest were used for testing

of the generated map (Fig. 2).

2.3.2 Flood conditioning factors

To determine the dominant flood conditioning factors is a

crucial issue regarding the flood hazards susceptibility

mapping. Accuracy of both inventory data and well-defined

flood condition factors plays an important role on the

accuracy of generated flood hazards susceptibility maps

since they are involved directly. Analysis of flooded or

non-flooded points is based on the extraction of attributes

of relevant flood conditioning factors, and then processing

and incorporating by overlapping those attributes. In the

literature, some common physical characteristics such as

lithology, land use, land cover, geological conditions,

precipitation, and drainage characteristics of the watershed

are considered in assessment of the landslides or flash

floods susceptibility and ground water potential. Three

meteorological observation stations collect meteorological

data in the basin (Akay et al. 2018). According to the report

analyzed from those stations, the basin takes average

annual precipitation of 850 mm, but sometimes it increased

to 1250 mm. However, unfortunately, these stations seri-

ously suffer from the scarce and lack of continuous data.

Such kind of basins is called as poorly gauged or ungauged

basins. Moreover, this is a systematic problem that does not

significantly change, even reversely affect the flood hazard

maps, in poorly gauged watersheds, worldwide. Since the

watershed is poorly gauged, precipitation which is the main

component of flood hazards could not be used in prediction

of spatial distribution of flood hazards. In similar studies,

precipitation was left out in prediction of flood suscepti-

bility (Mirzaei et al. 2021; Pham et al. 2021). So, in this

study, available aforementioned types of data of the study

area which are compatible with similar studies conducted

in the literature were selected as flood conditioning factors

to estimate the flood susceptibility maps (Mirzaei et al.

2021). Those data may be categorized as local and con-

centrated characteristics of the watershed. Local attributes

of the watershed that are independent of the upstream

characteristics are considered to capture the heterogeneities
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in the watershed while concentrated characteristics of the

watershed consider the contribution of the most upstream

points. In this study, local parameters such as elevation,

slope, aspect, plan curvature, distance from stream and soil

groups, and concentrated characteristics such as topo-

graphic wetness index (TWI), sediment transport index

(STI), drainage density (Dd), elongation ratio (Er), and

stream order were considered as flood conditioning factors.

Elevation, slope, aspect, plan curvature, land cover, and

distance from stream, TWI, STI, and Dd parameters are

commonly utilized to assess flood, landslide susceptibility

and groundwater potential of the watershed. Er; just as Dd;

or stream order are related with shape and drainage prop-

erties of the watershed and reflect the flash flood vulnera-

bility, but those parameters have not been used in flash

flood susceptibility mapping studies to the best knowledge

of the author. All flood conditioning factors except soil

groups were processed in ArcGIS using digital elevation

model (DEM) with a resolution of 10 m obtained from

1:25,000 scaled topographic maps. Watershed consists of

alluvial (A), gray brown podzolic (G), colluival (K), brown

forest (M), non-calcareous brown forest (N), and red yel-

low podzolic (P) great soil groups. Slope, aspect and plan

curvature grids were obtained by using only DEM of the

watershed, itself. Flow direction and flow accumulation

cells were determined from DEM after operation of fill

sinks. TWI and STI concentrated factors were calculated as

a function of flow accumulation and slope grids. Stream

network of the watershed was extracted based on the value

Flood conditioning 
factors

Elevation

Slope

Aspect

Curvature

TWI

STI

Soil groups

Order

Dd

Er

Flood 
inventory data

Training

Testing

Data

Flood hazards 
susceptibility maps

FR

EBF

WoE

IoE

FL

PCA

AHP

TOPSIS

VIKOR

Preparation of flood hazards susceptibility 
maps using various methods

Validation of the generated maps

Fig. 1 Flood susceptibility mapping methodology

Fig. 2 Study area and flooding pixels
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of threshold cells, taken as 1000 in this study, of flow

accumulation (Arabameri et al. 2019). Studies in close

watersheds indicated that the drainage network is sensitive

to the threshold value of flow accumulation. However, it

does not improve the model accuracy when the threshold

value decreases more (Akay 2021). Stream order of the

extracted network was designated based on Strahler’s

method. Concentrated cells of each designated stream order

were defined as a domain of the class. Line density of the

extracted stream following the stream segmentation, and

drainage line processing, respectively, was used for deter-

mination of the drainage density spatial distribution of the

watershed. Elongation ratio of the watershed could be

spatially calculated by combining the flow accumulation

and flow length obtained using flow direction of the

watershed. Elongation ratio presented as a grid format

herein is one of the most important parameters in deter-

mining the flash flood characteristics of the watershed.

Previous studies on morphometric analysis emphasized the

vital contribution of watershed shape characteristics (Akay

and Baduna Koçyiğit 2020).

Multicollinearity test of flood conditioning factors was

conducted to detect if repeating variables may occur in

independent variables. In case of occurrence, one of the

repeating variables may be left out considering the value of

variance inflation factor (VIF). VIF value more than 10 is

accepted to be exist multicollinearity problem (Talukdar

et al. 2020). In ArcGIS, elevation, slope, distance from

stream, TWI, STI, Er and Dd conditioning factors were

classified based on natural break method in five sub-classes

while aspect, curvature, soil groups and order conditioning

factors were classified based on supervised classification

method. Since Strahler’s order of the main stream is seven,

while the number of soil groups in the watershed is six, the

number of sub-classes of the relevant factors was classified,

accordingly. Aspect in nine classes based on the surface

gradient direction and curvature in three classes based on

the tangent to the DEM were created. Figure 3 indicates

the flood conditioning factors in the watershed.

2.4 Flood susceptibility mapping

Besides the flood inventory data and values of flood con-

ditioning factors at those points, accuracy of the generated

flood hazards susceptibility maps also depends on how the

flood conditioning factors incorporate with well-defined

flood hazards. In similar studies, a basic assumption is that

future flash flood hazards will occur under the same con-

ditions as past flash floods. Flash floods are directly related

with the spatial information of flood conditioning factors.

The flood susceptibility maps of the study area were

obtained by using various methods such as FR, EBF, WoE

and IoE. Moreover, hybrid integration of those approaches

with PCA, FL, AHP, TOPSIS and VIKOR was established

in order to examine the accuracy of maps. For example, FL

with FR and WoE, separately, PCA with EBF, AHP with

IoE and EBF, and TOPSIS and VIKOR with AHP, and

PCA weights, separately, were hybridized and flood sus-

ceptibility maps were estimated. This new challenge on

preparation of accurate flood hazards susceptibility maps

requires a detailed analysis.

2.4.1 Frequency ratio (FR)

FR is one of the most popular statistical methods used in

mapping studies. FR approach is based on the observed

relationships between the distribution of flash floods and

each flash flood conditioning factor, to disclose the corre-

lation between flood hazard pixels and the factors in the

study area (Lee and Pradhan 2006). FR at a class of a flood

conditioning factor is defined as the ratio of the flooded

point percent at a class to the class pixel percent in the

domain. FR values of each flood conditioning factor are

computed and the flood susceptibility mapping is obtained

by summing up the raster values of each FR of flood

conditioning factors in ArcGIS.

2.4.2 Evidential belief function (EBF)

EBF is a bivariate statistical method which is dominated by

four functions as belief (Bel), disbelief (Dis), uncertainty

(Unc), plausibility (Pls), and based on the importance of

class in a flood conditioning factor. EBF is a probability-

based approach and bounded by Bel, and Pls functions as

minimum and maximum probabilities, respectively. The

EBF model was designed to process flood hazards infor-

mation at different levels of knowledge. Moreover, no

other assumptions are required to represent knowledge

since the uncertainty responses is directly allowed directly

in representation of system (Althuwaynee et al. 2012).

Flood hazards probability of a class of a flood conditioning

factor may be approximated by Bel and Pls functions while

non-occurrence of flood at any classes of a flood condi-

tioning factor is defined as Dis function. As the Bel value

increases, the probability of flood occurrence also increa-

ses. Bel and Dis functions may be calculated as given in

Eqs. 1–4.

Bel ¼
wCijðfloodÞ

P
wCijðfloodÞ

ð1Þ

wCijðfloodÞ ¼
NðCij\DÞ
NðCijÞ

N Dð Þ�NðCij\DÞ
N Tð Þ�NðCijÞ

ð2Þ
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Dis ¼
wCijðnon�floodedÞ

P
wCijðnon�floodedÞ

ð3Þ

wCijðnon�floodedÞ ¼
NðCijÞ�NðCij\DÞ

NðCijÞ
NðTÞ�N Dð Þ�NðCijÞþNðCij\DÞ

N Tð Þ�NðCijÞ

ð4Þ

where Cij is the jth class of conditioning factors (Ci), and

wcij indicates the weight of Cij. N(T), N(Cij), N(D), and

N(Cij \ D) denote the total pixel in the domain, total flood

pixel in the domain, total pixel in the class, and total flood

pixel in the class, respectively.

Since the summation of maximum occurrence and non-

occurrence of flood hazard probabilities (Pls and Dis) are

unity, and the difference of maximum and minimum

occurrence probabilities are defined as uncertainty, the

governing equations are represented as follows:

Fig. 3 Flood conditioning factors of the watershed
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Unc ¼ 1� Bel� Dis ð5Þ
Pls ¼ 1� Dis ð6Þ

The Bel, Dis, Unc, and Pls functions at a prescribed

class of each flood conditioning factor were calculated and

processed in ArcGIS. The combination of each flood con-

ditioning factor was conducted based on Dempster–Shafer

theory using ArcGIS environment.

2.4.3 Weights of evidence (WoE)

WoE is a bivariate statistical method based on Bayesian

likelihood theorem and combines information from all the

flood hazards conditioning factors. In WoE method, in

natural logarithm format, occurrence (Wi
?) and non-oc-

currence (Wi
-) of flood hazards considering the flood

inventory data at a prescribed class of a flood conditioning

factor are described as likely to occur and not to occur,

respectively (Eqs. 7, 8).

Wþ
i ¼ ln

P BnAð Þ
PðBnAÞ

ð7Þ

W�
i ¼ ln

P BnA
� �

PðBnAÞ
ð8Þ

where P is the conditional probability, A is the presence of

flood pixels at B flood conditioning factor while over line

bar denotes the absence of A and B.

The difference between Wi
? and Wi

- is expressed as

contrast (C). The variances of Wi
? and Wi

- are calculated

as given in Eqs. 9, and 10 in terms of the number of flooded

and non-flooded pixels in a class (N). Standard deviation of

the contrast (S(C)) is calculated by Eq. 11. So, weight of

each class (W) can be calculated by Eq. 12.

S2ðWþ
i Þ ¼

1

N BnAð Þ þ
1

NðBnAÞ
ð9Þ

S2ðW�
i Þ ¼

1

NðBnAÞ
þ 1

NðBnAÞ
ð10Þ

SðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðW�

i Þ þ S2ðWþ
i Þ

q
ð11Þ

W ¼ C

SðCÞ ð12Þ

W values of each class of flood conditioning factors

were calculated and the flood hazards susceptibility map

was created by summing all the flood conditioning factors

in ArcGIS environment.

2.4.4 Index of entropy (IoE)

IoE proposed by Shannon (1948) is revealed to determine

the disorderliness in the distribution of values of variables

derived from information theory as a measure of redun-

dancy in data (Arora et al. 2019). This approach was then

adopted in flood susceptibility studies to understand the

weight of contribution of conditioning factors (Haghizadeh

et al. 2017). Given Eqs. (13–18) were followed to calculate

the parameters, and the flood hazards susceptibility map-

ping is obtained by Eq. 19 in ArcGIS environment.

Pij ¼ FR ð13Þ

ðPijÞ ¼
Pij

PSj
j¼1 Pij

ð14Þ

Hj ¼ �
XSj

i¼1

ðPijÞ log2 ðPijÞ ð15Þ

Hjmax ¼ log2 ðSjÞ ð16Þ

Ij ¼
Hjmax � Hj

Hjmax

ð17Þ

Wj ¼ Ij Pij ð18Þ

IoE ¼
X n

i¼1

z

mi
CWj ð19Þ

where Pij = frequency ratio, (Pij) = probability density, Hj

and Hjmax = entropy values, Sj = number of classes, Ij-
= information coefficient, Wj = weight of the conditioning

factor, i = number of particular conditioning factor map,

z = number of classes within the conditioning factor with

the greatest number of classes, mi = number of classes

within particular conditioning factor map, and C = value of

the class after secondary classification (Arora et al. 2019).

2.4.5 Principle component analysis (PCA)

PCA is generally conducted to understand the underlying

structure in which how the data was contributed to the total

variance explained by factor analysis. In this study, flood

conditioning factors were extracted based on the initial

eigenvalues of components using SPSS. Therefore, a

sample of 500 random points in the study area was gen-

erated in ArcGIS (Arabameri et al. 2019). Values of flood

conditioning factors at those points were extracted using

ArcGIS, and the data were processed based on the initial

eigenvalue of 0.95 which explains the total variance as

68%, in SPSS. So, five components were found to be more

explanatory. Since the extracted components by PCA

method did not have strong cross-correlation coefficients,

the rotated factor loading matrices were used (Malik et al.

2019). Flood conditioning factors with the greatest corre-

lation coefficient for each component were determined

from the rotated component matrix. Weights of the com-

ponent were determined as the ratio of the cross-correlation

coefficient of that component and the total cross-
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correlation coefficients (Malik et al. 2019). Then, all

classes of dominant flood conditioning factors were ranked

starting from 2 to 10 based on the Bel value and raster

maps were created, accordingly (Benjmel et al. 2020). So,

flood hazard susceptibility map was processed by the

summation of the multiplication of the ranks and factor

weights.

2.4.6 Fuzzy logic (FL)

According to FL theory, membership value of flood haz-

ards conditioning factors has varying degrees of support

and confidence in the range of 0 and 1. Fuzzy classes were

obtained by considering the maximum and minimum FR

and WoE values of a factor by corresponding that 0 is set

for minimum and 1 is set for maximum. A value of one

indicates full membership while zero demonstrates mini-

mum membership of the class. Inner class values bounded

with the minimum and maximum are computed based on

the membership functions. In the study, flood conditioning

factors at each class calculated using FR and WoE, sepa-

rately, were transformed based on a linear membership

type of raster maps varying between 0 and 1 in ArcGIS

environment. Fuzzified raster maps of flood conditioning

factors were overlaid by gamma method which is a func-

tion of fuzzy algebraic product and fuzzy algebraic sum in

which a default value of gamma of 0.9 was used, con-

verging to fuzzy and method.

2.4.7 Analytical hierarchy process (AHP)

In AHP method, criteria weights of the flood conditioning

factors were implemented by hybridization of IoE and

compound factor. Wj values of each conditioning factors

were sorted in ascending order and then graded from 1 to

10 based on compound factor method. Pair-wise compar-

ison matrix of flood conditioning factors was created based

on those compound values and the classification scale

proposed by Saaty (1980). The criteria weight vectors of

flood conditioning factors were obtained from pair-wise

comparison matrix.

The inconsistency index (Ii) of pair-wise comparison

matrix was computed to examine the consistency of flood

conditioning factors (Eqs. 20, 21).

Ii ¼
kmax�n

n� 1
ð20Þ

Ir ¼
Ii
Ri

ð21Þ

where kmax = the largest eigenvalue of the pair-wise

comparison matrix, n = number of flood conditioning

factors, Ir = inconsistency ratio, and Ri = random index.

For n = 11, Ri value can be approximated as 1.51. It should

be noted that consistency of the factors is trustworthy when

Ir is less than 0.10 (Saaty 1980). In this study, consistency

of factors is satisfied since Ir value was calculated as 0.008.

Flood hazard susceptibility map was then processed by

summing up the multiplication of the ranks, as mentioned

in PCA section by criteria weights.

2.4.8 Technique for order preference by similarity
to an ideal solution (TOPSIS)

Flood hazards susceptibility map of the study area was

processed by TOPSIS method using the criteria weights

obtained from AHP and PCA methods, separately. Deci-

sion matrix was created using flood conditioning factor

values at generated random 500 points, as aforementioned

in PCA sub-section, and then the decision matrix was

normalized. Weighted normalized decision matrices were

calculated using factor weights obtained from both AHP

and PCA, separately. Of using Euclidean distance, positive

and negative ideal solutions were computed considering

the benefit or cost exhibition of the flood conditioning

factors based on linear fitting of class number and Bel

function. When the tendency line of the Bel value and the

class number has positive slope, this factor was then

thought to be cost. Watershed order, TWI and Er factors

exhibited cost performance while the rest of the factors

exhibited benefit performance. The closeness coefficients

of random points were then determined. Flood suscepti-

bility map of the study area was created by interpolating a

raster surface from values of closeness coefficients of

random points using Inverse Distance Weighting (IDW)

method in ArcGIS since IDW method performed better

results than Krigging method.

2.4.9 VlseKriterijumska optimizacija I Kompromisno
Resenje (VIKOR)

Similar procedures adopted in TOPSIS method was fol-

lowed, but some differences in techniques were employed

in VIKOR method by definition. Instead of closeness

coefficient determined from Euclidean distance of positive

and negative ideal solutions, a compromising solution was

introduced by using the utility, regret indexes, and the

weight of the compromise strategy (Opricovic and Tzeng

2004).

2.5 Validation of flood hazards susceptibility
maps

After creation of flood hazards susceptibility maps using

various methods, the model results at flooded and non-

flooded points were extracted from the model to obtain
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both training and testing data to be used in assessment of

the prediction capability of the models using various sta-

tistical indicators. Thus, a receiver operating characteristic

curve (ROC) analysis was conducted to examine the sen-

sitivity, specificity, and accuracy of the estimated results

involved assessment of not only more susceptible zones to

flooding, but less susceptible zones, as well. In ROC

analysis, 1-specificity in x-direction (Eq. 22) vs. sensitivity

in y-direction (Eq. 23) was presented, and some statistical

indicators as specificity, sensitivity, accuracy (Eq. 24), and

kappa index (Eq. 25) were computed as follows:

x ¼ 1� specificity ¼ 1� TN

TNþ FP
ð22Þ

y ¼ sensitivity ¼ TN

TPþ FN
ð23Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð24Þ

Kappa ¼ Pc � Pexp

1� Pexp

ð25Þ

where TN = true negatives, FP = false positives, TP = true

positives, FN = false negatives, Pc = number of pixels to

be classified correctly, and Pexp = expected agreement. As

the ROC parameters increased, the prediction capability of

the models implemented also increased. Furthermore,

Kappa index was assessed quantitatively and qualitatively:

poor (0–0.4), moderate (0.4–0.55), good (0.55–0.85),

excellent (0.85–0.99), and perfect (0.99–1) (Monserud and

Leemans, 1992; Kanani-Sadat et al. 2019).

The area under the ROC curve (AUC) is also associated

with efficiency of the predicted susceptibility maps espe-

cially for flooded pixels. The AUC values can be inter-

preted as: weak (0.5–0.6), moderate (0.6–0.7), good

(0.7–0.8), very good (0.8–0.9), and excellent (0.9–1) (Ye-

silnacar and Topal 2005).

Model results were also classified using natural break

method in ArcGIS in five categories as very low (VL), low

(L), moderate (M), high (H), and very high (VH) flood

hazards susceptibility. This enabled to further understand

the behavioral compatibility of spatial distribution of the

predictions. So, another significant indicator, seed cell area

index (SCAI) given in Eq. 26 was used to determine the

categorized class density per flood pixel density in the

class. Based on the SCAI values in a flood hazards sus-

ceptibility class, it is a reasonable judgment to make that

the values of SCAI increase as the susceptibility class

inversely decreases. Hence, a linear relationship between

the susceptibility class and the SCAI values was fitted to

decide about the method, which is more compatible with

SCAI definition. It is also surmised that the greater nega-

tive inclined-fitted line with a reasonable coefficient of

determination may give better classified maps.

SCAI¼ Percentageof the class pixels

Percentage of the floodhazards pixels on each class

ð26Þ

3 Results and discussion

Multicollinearity test was conducted to specify the VIF

values of each conditioning factor (Table 1). Since VIF

values are less than 10, all the conditioning factors were

considered in flood hazards susceptibility mapping. Class

ranges of flood conditioning factors obtained from natural

break method, pixels in domain and flooding pixels in the

class are presented in Table 2 which also shows the results

of FR and EBF methods. It can be said that flood pixels

were concentrated on the specific class in elevation, slope,

curvature, distance from river, TWI, and STI factors. For

instance, there is a strong belief and high sensitivity that

flood occurs in domain for elevation\ 474.12, slope\
16.618, curvature not convex, distance\ 1589 m,

TWI[ 11.47, STI\ 17.46. Moreover, flat surfaces, and

Er[ 0.50 pixels are found to be significant in producing

flooding. Those results are also compatible with FR results.

Greater FR or Bel values mean more prone area to flooding

at that class. Flood hazards susceptibility maps obtained

from FR, and EBF methods are given in Figs. 4 and 5,

respectively.

Table 3 shows the WoE and IoE results at prescribed

classes. WoE results regarding the dominant and significant

classes are also compatible with EBF and FR findings.

However, some classes at a flood conditioning factor have

a negative impact on flood. Final weights of IoE suggest

that STI has a maximum weight of 25.87 while Dd has a

minimum weight of 0.04 on flood conditioning. Flood

hazards susceptibility maps processed with results of WoE

and IoE methods are given in Figs. 6 and 7, respectively.

Table 1 Multicollinearity test of

flood hazards conditioning

factors

Factors TOL VIF

Order 0.186 5.382

TWI 0.187 5.339

STI 0.464 2.157

Slope 0.173 5.776

Er 0.506 1.977

Dd 0.667 1.499

Soil groups 0.533 1.875

Curvature 0.453 2.209

Aspect 0.696 1.437

Elevation 0.534 1.873

Distance 0.518 1.930
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Table 2 Flood conditioning factors at prescribed classes, and results of FR and EBF methods

Factors Class ranges Pixels in domain% Flooding pixels % FR EBF

Bel Dis Unc Pls

Elevation (m) \ 242.69 17.88 67.35 3.77 0.76 0.08 0.16 0.92

242.69–474.12 26.86 32.65 1.22 0.24 0.18 0.57 0.82

474.12–711.80 22.09 0 0 0 0.26 0.74 0.74

711.80–955.75 18.05 0 0 0 0.24 0.76 0.76

[ 955.75 15.11 0 0 0 0.24 0.76 0.76

Slope (8) \ 8.15 14.87 94.90 6.38 0.97 0.01 0.02 0.99

8.15–16.61 26.48 5.10 0.19 0.03 0.25 0.72 0.75

16.61–24.12 30.01 0 0 0 0.28 0.72 0.72

24.12–33.21 21.73 0 0 0 0.25 0.75 0.75

[ 33.21 6.92 0 0 0 0.21 0.79 0.79

Aspect Flat 1.79 33.67 18.83 0.78 0.07 0.15 0.93

North 12.24 5.10 0.42 0.02 0.12 0.86 0.88

Northeast 9.35 7.14 0.76 0.03 0.11 0.86 0.89

East 10.54 3.06 0.29 0.01 0.12 0.87 0.88

Southeast 13.77 9.18 0.67 0.03 0.12 0.86 0.88

South 13.40 10.20 0.76 0.03 0.11 0.85 0.89

Southwest 10.76 10.20 0.95 0.04 0.11 0.85 0.89

West 12.64 9.18 0.73 0.03 0.12 0.85 0.88

Northwest 15.51 12.24 0.79 0.03 0.11 0.85 0.89

Curvature Concave 13.69 4.08 0.30 0.18 0.46 0.36 0.54

Flat 71.09 95.92 1.35 0.82 0.06 0.12 0.94

Convex 15.22 0 0 0 0.49 0.51 0.51

TWI \ 7.10 29.90 0 0 0 0.26 0.74 0.74

7.10–8.87 44.52 0 0 0 0.33 0.67 0.67

8.87–11.47 18.30 0 0 0 0.22 0.78 0.78

11.47–15.62 5.52 5.10 0.92 0.02 0.18 0.80 0.82

[ 15.62 1.76 94.90 54.02 0.98 0.01 0.01 0.99

STI \ 0.73 99.85 89.80 0.90 0.00 0.95 0.05 0.05

0.73–4.73 0.14 9.18 64.88 0.30 0.01 0.69 0.99

4.73–17.46 0.01 1.02 148.67 0.69 0.01 0.29 0.99

17.46–44.74 0.00 0 0 0 0.01 0.99 0.99

[ 44.74 0.00 0 0 0 0.01 0.99 0.99

Er \ 0.10 9.94 0 0 0 0.22 0.78 0.78

0.10–0.27 24.15 0 0 0 0.26 0.74 0.74

0.27–0.38 30.54 2.04 0.07 0.01 0.28 0.71 0.72

0.38–0.50 25.34 54.08 2.13 0.32 0.12 0.55 0.88

[ 0.50 10.03 43.88 4.38 0.67 0.12 0.21 0.88

Soil groups A 5.23 64.29 12.29 0.49 0.06 0.45 0.94

G 53.82 11.22 0.21 0.01 0.30 0.70 0.70

P 16.11 4.08 0.25 0.01 0.18 0.81 0.82

K 1.51 18.37 12.19 0.49 0.13 0.39 0.87

N 11.94 0 0 0 0.17 0.83 0.83

M 11.41 2.04 0.18 0.01 0.17 0.82 0.83
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Since the extracted values of 500 random points in the

study area had inadequate cross-correlation in PCA

method, the rotated component matrix was considered to

specify five significant components (Table 4). Distance

from river, TWI, Er, Dd, and aspect were found to be more

significant for components 1, 2, 3, 4, and 5, respectively.

Moreover, these flood conditioning factors were found to

be in a good correlation. The Spearman correlation coef-

ficients of five components were used to determine the

weights of flood conditioning factors (Table 5). Weights of

the parameters were closer to each other and varied

between 0.17 and 0.24. Flood hazards susceptibility map

implemented with more significant flood conditioning

factors is given in Fig. 8.

FR values and C/S(C) of WoE values at each class were

fuzzified using linear membership type, separately. Flood

hazards susceptibility maps of FL-FR and FL-WoE were

overlaid using gamma and membership functions as shown

in Figs. 9 and 10, respectively.

Table 2 (continued)

Factors Class ranges Pixels in domain% Flooding pixels % FR EBF

Bel Dis Unc Pls

Order 1 58.22 2.04 0.04 0.00 0.30 0.70 0.70

2 17.29 8.16 0.47 0.02 0.14 0.84 0.86

3 9.86 2.04 0.21 0.01 0.14 0.85 0.86

4 5.70 10.20 1.79 0.06 0.12 0.81 0.88

5 4.32 30.61 7.09 0.25 0.09 0.65 0.91

6 3.05 37.76 12.37 0.44 0.08 0.47 0.92

7 1.55 9.18 5.91 0.21 0.12 0.67 0.88

Dd (1/km) \ 0.30 20.93 12.24 0.59 0.12 0.22 0.65 0.78

0.30–0.58 25.46 39.80 1.56 0.33 0.16 0.50 0.84

0.58–0.88 24.62 25.51 1.04 0.22 0.20 0.58 0.80

0.88–1.21 18.18 15.31 0.84 0.18 0.21 0.61 0.79

[ 1.21 10.81 7.14 0.66 0.14 0.21 0.65 0.79

Distance from river (m) \ 487.57 28.57 94.90 3.32 3.32 0.94 0.07 0.01

487.57–1011.25 26.54 3.06 0.12 0.12 0.03 1.32 0.27

1011.25–1589.10 22.68 2.04 0.09 0.09 0.03 1.27 0.26

1589.10–2275.31 15.40 0.00 0.00 0.00 0.00 1.18 0.24

[ 2275.31 6.81 0.00 0.00 0.00 0.00 1.07 0.22

Fig. 4 Flood hazards susceptibility map using FR method Fig. 5 Flood hazards susceptibility map using EBF method
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Table 3 WoE and IoE results of flood conditioning factors

Factors Class WoE IoE

W ? W- C S2(W ?) S2(W-) SC C/SC (Pij) Hj Hjmax Ij Wj

Elevation (m) 1 1.33 -0.92 2.25 0.02 0.03 0.22 10.44 0.76 0.80 2.32 0.65 0.65

2 0.20 -0.08 0.28 0.03 0.02 0.22 1.29 0.24

3 0 0.25 0 0 0.01 0 0 0

4 0 0.20 0 0 0.01 0 0 0

5 0 0.16 0 0 0.01 0 0 0

Slope (8) 1 1.85 -2.81 4.67 0.01 0.20 0.46 10.17 0.97 0.19 2.32 0.92 1.21

2 -1.65 0.26 -1.90 0.20 0.01 0.46 -4.14 0.03

3 0 0.36 0 0 0.01 0 0 0

4 0 0.24 0 0 0.01 0 0 0

5 0 0.07 0 0 0.01 0 0 0

Aspect F 2.94 -0.39 3.33 0.03 0.02 0.21 15.57 0.28 1.41 3.17 0.55 1.49

N -0.88 0.08 -0.95 0.20 0.01 0.46 -2.08 0.10

NE -0.27 0.02 -0.29 0.14 0.01 0.39 -0.75 0.16

E -1.24 0.08 -1.32 0.33 0.01 0.59 -2.24 0.08

SE -0.41 0.05 -0.46 0.11 0.01 0.35 -1.31 0.14

S -0.27 0.04 -0.31 0.10 0.01 0.33 -0.92 0.16

SW -0.05 0.01 -0.06 0.10 0.01 0.33 -0.18 0.18

W -0.32 0.04 -0.36 0.11 0.01 0.35 -1.02 0.15

NW -0.24 0.04 -0.27 0.08 0.01 0.31 -0.89 0.16

Curvature 1 -1.21 0.11 -1.32 0.25 0.01 0.51 -2.58 0.45 0.68 1.58 0.57 0.31

2 0.30 -1.96 2.26 0.01 0.25 0.51 4.42 0.24

3 0 0.17 0 0 0.01 0 0 0

TWI 1 0 0.36 0 0 0.01 0 0 0 0.12 2.32 0.95 10.41

2 0 0.59 0 0 0.01 0 0 0

3 0 0.20 0 0 0.01 0 0 0

4 -0.08 0.00 -0.08 0.20 0.01 0.46 -0.18 0.10

5 3.99 -2.96 6.95 0.01 0.20 0.46 15.13 0.02

STI 1 -0.11 4.23 -4.33 0.01 0.10 0.33 -12.98 0.03 0.92 2.32 0.60 25.87

2 4.17 -0.09 4.27 0.11 0.01 0.35 12.20 0.52

3 5.00 -0.01 5.01 1.00 0.01 1.01 4.99 0.37

4 0 0.00 0.00 0 0.01 0 0 0

5 0 0.00 0.00 0 0.01 0 0 0

Er 1 0 0.10 0 0 0.01 0 0 0 0.92 2.32 0.60 0.80

2 0 0.28 0 0 0.01 0 0 0

3 -2.71 0.34 -3.05 0.50 0.01 0.71 -4.27 0

4 0.76 -0.49 1.24 0.02 0.02 0.20 6.14 0.53

5 1.48 -0.47 1.95 0.02 0.02 0.20 9.57 0.39

Soil groups A 2.51 -0.98 3.48 0.02 0.03 0.21 16.53 0.50 1.19 2.58 0.54 2.27

G -1.57 0.65 -2.22 0.09 0.01 0.32 -6.94 0.06

P -1.37 0.13 -1.51 0.25 0.01 0.51 -2.95 0.07

K 2.50 -0.19 2.69 0.06 0.01 0.26 10.31 0.51

N 0.00 0.13 0.00 0.00 0.01 0 0 0

M -1.72 0.10 -1.82 0.50 0.01 0.71 -2.55 0.05
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Pair-wise comparison of flood conditioning factors in

AHP method based on Wj values in IoE method, and

compound factor, using Saaty’s scale (Saaty 1980), is given

in Table 6. Weights of the flood conditioning factors given

in Table 8 were computed by using ranks which varied

between 2 and 10, given in Table 7. Flood hazards sus-

ceptibility maps based on AHP method were generated as

shown in Fig. 11. In flood hazards susceptibility mapping,

STI was found to have the most dominant impact while

aspect and Dd had the least impact.

Flood hazards susceptibility maps determined by

Euclidean distance-based TOPSIS method coupled with

AHP and PCA weights were generated, as shown in

Figs. 12, and 13, respectively. Flood hazards susceptibility

maps obtained by VIKOR method also enabled comparison

of the performance of two different decision models

(Figs. 14, 15).

Figures 16 and 17 present the ROCs of flood hazards

susceptibility maps estimated for training and testing

Table 3 (continued)

Factors Class WoE IoE

W ? W- C S2(W ?) S2(W-) SC C/SC (Pij) Hj Hjmax Ij Wj

Order 1 -3.35 0.85 -4.20 0.50 0.01 0.71 -5.88 0.01 1.92 2.81 0.32 1.26

2 -0.75 0.10 -0.86 0.13 0.01 0.37 -2.32 0.10

3 -1.58 0.08 -1.66 0.50 0.01 0.71 -2.32 0.05

4 0.58 -0.05 0.63 0.10 0.01 0.33 1.89 0.25

5 1.96 -0.32 2.28 0.03 0.01 0.22 10.40 0.50

6 2.52 -0.44 2.96 0.03 0.02 0.21 14.20 0.52

7 1.78 -0.08 1.86 0.11 0.01 0.35 5.31 0.47

Dd (1/km) 1 -0.54 0.10 -0.64 0.08 0.01 0.31 -2.08 0.37 2.23 2.32 0.04 0.04

2 0.45 -0.21 0.66 0.03 0.02 0.21 3.20 0.53

3 0.04 -0.01 0.05 0.04 0.01 0.23 0.20 0.48

4 -0.17 0.03 -0.21 0.07 0.01 0.28 -0.74 0.44

5 -0.41 0.04 -0.45 0.14 0.01 0.39 -1.16 0.40

Distance from river (m) 1 1.20 -2.64 3.84 0.01 0.20 -3.04 -1.26 0.08 0.38 2.32 0.84 0.59

2 -2.16 0.28 -2.44 0.33 0.01 3.43 -0.71 0.16

3 -2.41 0.24 -2.64 0.50 0.01 3.63 -0.73 0.14

4 0.00 0.17 -0.17 0.00 0.01 1.16 -0.14 0.00

5 0.00 0.07 -0.07 0.00 0.01 1.06 -0.07 0.00

Fig. 6 Flood hazards susceptibility map using WoE method
Fig. 7 Flood hazards susceptibility map using IoE method
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processes generated from aforementioned methods. Sensi-

tivity, specificity, accuracy, kappa index and AUC values

computed from the extracted values from flooded and non-

flooded points for both training and testing data are given

in Table 9. Findings of the method which involved the

training process based on statistical measures can be

interpreted as follows: Sensitivity was calculated the best

for IoE, and followed by AHP and EBF. Specificity of FL-

FR for training and FL-WoE for testing was found to be the

best performing model in their processes. Accuracy of EBF

Table 4 Significant components

in PCA method
Rotated component matrix

Flood conditioning factors Component

1 2 3 4 5

Order 0.749 0.122 -0.100 -0.074 -0.075

TWI -0.106 0.868* 0.263 0.044 0.037

STI 0.030 0.378 0.351 0.253 0.510

Slope 0.142 -0.793 0.212 0.089 0.122

Er -0.115 -0.089 0.774* -0.110 0.100

Dd -0.251 0.031 -0.140 0.723* -0.146

Curvature -0.126 -0.132 -0.751 0.016 0.143

Soil groups 0.144 -0.049 0.009 0.819 0.057

Aspect -0.040 -0.149 -0.126 -0.144 0.836*

Elevation 0.723 -0.035 -0.068 -0.027 -0.095

Distance from river 0.863* -0.077 -0.008 -0.109 -0.001

Table 5 Weights of the flood

conditioning factors of PCA

method

Flood conditioning factors TWI Er Soil groups Aspect Distance

TWI 1.000 0.123 -0.031 -0.114 -0.168

Er 0.123 1.000 -0.031 0.048 -0.025

Soil groups -0.031 -0.031 1.000 -0.055 0.079

Aspect -0.114 0.048 -0.055 1.000 0.000

Distance -0.168 -0.025 0.079 0.000 1.000

Sum of correlation 0.810 1.115 0.962 0.879 0.886

Grand total 4.652

Weight 0.1741 0.2397 0.2068 0.1890 0.1905

Fig. 8 Flood hazards susceptibility map using PCA method Fig. 9 Flood hazards susceptibility map using FL-FR method
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and IoE models for training, FR, and IoE for testing per-

formed the best. Kappa index of IoE model gave the best

result. AUC of PCA gave the best results. When excluding

TOPSIS and VIKOR methods, AUC of other methods was

assessed as excellent.

A framework assessment should be conducted to

determine the efficiency of the methods in generating flood

hazards susceptibility maps using statistical measures since

values of those are conflicting, and do not concentrate on

the same model. A simple-relative approach based on the

compound factor was adopted such that statistical measures

for both training and testing were graded from one for the

best model to twelve for the worst. In case the model

results gave the same statistical measure values, they were

successively ranked and re-ranked using the average of

successive grades. Ranks of the statistical measure were

taken as the average of training and testing grades. Final

grades were determined by summing up the grades of

statistical measures (Table 10). It can be concluded from

that assessment, and the linear membership of the grades in

four categories that it can be concluded that IoE method

gave the best results of all (Arabameri et al. 2019).

Moreover, other statistical methods, FR, EBF, PCA and

AHP, also gave very good results like IoE that cannot be

contradistinguished. On the other hand, results of WoE and

FLs models might be evaluated as good while TOPSIS and

VIKOR models gave the poorest results.

Another assessment criterion for the interpretation of

generated flood hazards susceptibility maps is based on the

classification of five susceptibility levels determined by

natural break method in ArcGIS (Table 11). In a well-

classified flood hazards susceptibility map, an increasing

flood hazards potential trend of SCAI with decreasing

susceptibility level is expected, and this may be measured

by fitting a line whose negative slope tends to become

perpendicular. IoE method was not successful at capturing

flood hazard pixels since flood intensity concentrated on

moderate susceptibility class. In FR method, flood hazard

pixels concentrate on high class, but SCAI values are in the

desired range. In EBF method, flood hazards pixels con-

centrate on very high class that is a huge amount of the

drainage area. PCA or AHP methods may be evaluated as

reasonable models predicting the susceptibility classes.

In overall assessment, hybridization of IoE and EBF

with AHP and EBF with PCA gave very good results since

IoE and EBF themselves predicted flood hazards suscep-

tibility map very good. PCA method slightly improved the

prediction of flood hazards susceptibility maps in com-

parison with AHP. However, hybridization of AHP and

PCA did not contribute to TOPSIS- and VIKOR-based

Fig. 10 Flood hazards susceptibility map using FL-WoE method

Table 6 Pairwise comparison of flood conditioning factors

Factors Elevation Slope Aspect Curvature TWI STI Er Soil group Order Dd Distance

Elevation 1 0.5 0.25 2 0.2 0.17 1 0.25 0.5 2 1

Slope 2 1 0.5 3 0.33 0.25 1 0.5 1 4 2

Aspect 4 2 1 5 0.5 0.5 2 1 1 6 4

Curvature 0.5 0.33 0.2 1 0.14 0.13 0.5 0.17 0.25 1 1

TWI 5 3 2 7 1 1 4 1 2 8 6

STI 6 4 2 8 1 1 5 2 3 9 7

Er 1 1 0.5 2 0.25 0.2 1 0.33 0.5 3 2

Soil group 4 2 1 6 1 0.5 3 1 2 7 5

Order 2 1 1 4 0.5 0.33 2 0.5 1 5 3

Dd 0.5 0.25 0.17 1 0.13 0.11 0.33 0.14 0.2 1 0.5

Distance 1 0.5 0.25 1 0.17 0.14 0.5 0.2 0.33 2 1
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flood hazards susceptibility maps. Moreover, dimension

reduction by PCA method in overlaying flood conditioning

factor maps inversely impacted the results in TOPSIS and

VIKOR methods. Relatively poor predictions of TOPSIS

and VIKOR methods may be due to the number of random

points implemented by Arabameri et al (2019) adopted in

this study may not be compatible with grid cell size of

DEM and scale of the map used. The model prediction

capability may be improved by increasing the number of

random points, implementing different distance measures

in TOPSIS and changing strategy coefficients in VIKOR

methods in order to overcome under-fitting problem. That

may even be more reasonable to improve the PCA model

results. Sensitivity analysis of criteria weights of AHP and

Table 7 Ranking of classes of

each flood conditioning factor
Factor Class Rating Factor Class Rating Factor Class Rating

Elevation (m) 1 10 Curvature 1 6 Soil group A 10

2 6 2 10 G 2

3 2 3 2 P 3

4 2 TWI 1 2 K 10

5 2 2 2 N 2

Slope (8) 1 10 3 2 M 2

2 4 4 3 Order 1 2

3 2 5 10 2 4

4 2 STI 1 2 3 2

5 2 2 6 4 5

Aspect 1 10 3 10 5 10

2 2 4 2 6 10

3 3 5 2 7 4

4 2 Er 1 2 Dd 1 2

5 3 2 2 2 10

6 3 3 4 3 8

7 6 4 10 4 5

8 3 5 8 5 3

9 4 Distance 1 10

2 3

3 3

4 2

5 2

Fig. 11 Flood hazards susceptibility map using AHP method Fig. 12 Flood hazards susceptibility map using TOPSIS-AHP method
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PCA may also further contribute to optimize the results of

flood conditioning factors. Adaption by hybridization of

FR and WoE methods inversely impacted FL methods.

Especially FR method was seriously influenced by fuzzi-

fication method. Extensive research on membership func-

tion type may help to improve the prediction results.

Probabilistic approaches using various operators may also

improve the fuzzy logic results.

It is assumed that future flash flood hazards would occur

under the same conditions as past flash floods. Moreover,

flash floods are correlated with the spatial information of

flood conditioning factors. Using those assumptions in

adaptation of some models in order to predict the spatial

distribution of flood hazards susceptibility that is a very

complex phenomenon may result in some errors. Those

assumptions may also lead to previously unseen general-

ization errors. Model results may misclassify the training

data that causes to decrease in accuracy of the predictions.

Random selection of flood hazard pixels which may not be

representative samples may not consider the internal

dynamics of flood hazards in the watershed. So, it should

be kept in mind that both the quality of conditioning fac-

tors, representativeness of flood hazard pixels and the

implemented model are crucial in prediction of model

results with low generalization and training error. A model

may predict flood hazards susceptibility map with low

training error, but high test error. This over-fitting problem

may be overcome by increasing the number of represen-

tative training data with low generalization error (Han et al

2012). In the study, since adopted methods excluding

TOPSIS and VIKOR gave good results and those results

was improved in testing process, the predicted results were

found to be satisfactory.

Many studies were conducted to improve prediction

capability of flood susceptibility. Some of the researchers

adapt hybridization techniques while some adapts ensem-

ble models. Basic statistical models may be considered as a

strong tool to develop prediction results and reduce com-

putational efforts. Results of the recent studies also

revealed that hybridization with statistical model improved

predictions. For instance, Wang et al. (2021) stated that

probability density model hybridized with MLP gave the

most efficient prediction results based on considering ROC

analysis. New ensemble models may enable to be con-

structed on these statistical models. It should be kept in

mind that some of the ensemble algorithms were re-mod-

ified based on inclusion of new assumption of the existing

algorithms. On the other hand, statistical representation of

class values in order to improve prediction results, and

Fig. 13 Flood hazards susceptibility map using TOPSIS-PCA method

Fig. 14 Flood hazards susceptibility map using VIKOR-AHP method

Fig. 15 Flood hazards susceptibility map using VIKOR-PCA method
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avoid computational effort may be employed in ensemble

machine learning models in natural hazards management

studies. So, hybrid and ensemble models can be combined

in order to estimate the susceptibility. The outcomes of

such studies may be discussed and those basic studies may

be addressed in near future.

Table 8 AHP weights of flood conditioning factors

Parameters Elevation Slope Aspect Curvature TWI STI Er Soil group Order Dd Distance

Weights 0.04 0.07 0.12 0.02 0.19 0.23 0.05 0.15 0.09 0.02 0.03

0
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FL-FR
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TOPSIS-PCA

VIKOR-AHP

VIKOR-PCA

Reference Line

Fig. 16 ROCs of training data

of the applied methods
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Fig. 17 ROCs of testing data of

the applied methods
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4 Conclusion

It is important to guarantee an asset management in terms

of expectation of return of investments in a projected life

cycle. So, risk perception for assets and new investments

may be introduced in planning and design stages coupled

with a management strategy according to a risk category.

Especially, natural hazards seriously threaten the infras-

tructures, and even lives of human beings. So, it is

inevitable to estimate nationwide flood hazards susceptible

zones. In this study, a study area which frequently exposed

to flash flood hazards was chosen and flood hazards data

and flood conditioning factors of the study area were

coupled with GIS-based approach to generate flood hazards

susceptibility maps.

It is also important and challenging to decide about the

method and the data to be used, and how to combine these

since the methods involve interpretation and processing of

Table 9 Statistical indicators computed from extracted values from flood hazards susceptibility maps

Criteria Process Methods

FR EBF WoE IoE PCA FL-FR FL-WoE AHP TOPSIS

-AHP

TOPSIS

-PCA

VIKOR

-AHP

VIKOR

-PCA

Sensitivity Training 0.929 0.939 0.929 1.000 0.908 0.827 0.847 0.959 0.642 0.745 0.622 0.847

Testing 1.000 0.976 1.000 1.000 0.976 0.854 0.854 1.000 0.805 0.829 0.683 0.683

Specificity Training 0.959 0.959 0.918 0.898 0.980 0.990 0.929 0.908 0.765 0.561 0.806 0.469

Testing 0.976 0.976 0.929 0.976 0.952 0.976 1.000 0.952 0.786 0.714 0.881 0.786

Accuracy Training 0.944 0.949 0.923 0.949 0.944 0.908 0.888 0.934 0.704 0.653 0.714 0.658

Testing 0.988 0.976 0.964 0.988 0.964 0.915 0.927 0.976 0.795 0.772 0.782 0.734

Kappa Training 0.888 0.898 0.847 0.898 0.888 0.816 0.776 0.867 0.408 0.306 0.429 0.316

Testing 0.976 0.952 0.929 0.976 0.928 0.830 0.854 0.952 0.591 0.544 0.564 0.469

AUC Training 0.979 0.982 0.967 0.982 0.983 0.909 0.906 0.981 0.721 0.689 0.721 0.681

Testing 0.987 0.982 0.983 0.987 0.988 0.916 0.949 0.983 0.816 0.757 0.791 0.764

Table 10 Overall assessments of performed models

Criteria Process Methods

FR EBF WoE IoE PCA FL-

FR

FL-

WoE

AHP TOPSIS-

AHP

TOPSIS-

PCA

VIKOR-

AHP

VIKOR-

PCA

Sensitivity Training 4.5 3 4.5 1 6 9 7.5 2 11 10 12 7.5

Testing 2.5 5.5 2.5 2.5 5.5 7.5 7.5 2.5 10 9 11.5 11.5

Average 3.5 4.25 3.5 1.75 5.75 8.25 7.5 2.25 10.5 9.5 11.75 9.5

Specificity Training 3.5 3.5 6 8 2 1 5 7 10 11 9 12

Testing 3.5 3.5 8 3.5 6.5 3.5 1 6.5 10.5 12 9 10.5

Average 3.5 3.5 7 5.75 4.25 2.25 3 6.75 10.25 11.5 9 11.25

Accuracy Training 3.5 1.5 6 1.5 3.5 7 8 5 10 12 9 11

Testing 1.5 3.5 5.5 1.5 5.5 8 7 3.5 9 11 10 12

Average 2.5 2.5 5.75 1.5 4.5 7.5 7.5 4.25 9.5 11.5 9.5 11.5

Kappa Training 3.5 1.5 6 1.5 3.5 7 8 5 10 12 9 11

Testing 1.5 3.5 5 1.5 6 8 7 3.5 9 11 10 12

Average 2.5 2.5 5.5 1.5 4.75 7.5 7.5 4.25 9.5 11.5 9.5 11.5

AUC Training 5 2.5 6 2.5 1 7 8 4 9.5 11 9.5 12

Testing 2.5 6 4.5 2.5 1 8 7 4.5 9 12 10 11

Average 3.75 4.25 5.25 2.5 1 7.5 7.5 4.25 9.25 11.5 9.75 11.5

Total All 15.75 17 27 13 20.25 33 33 21.75 49 55.5 49.5 55.25
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data. So, various methods such as FR, EBF, WoE and IoE,

and hybrid integration of PCA, FL, AHP, TOPSIS, and

VIKOR were used to generate flood hazards susceptibility

maps. In the study, generated flood hazards susceptibility

maps were validated for both training and testing data sets

using sensitivity, specificity, accuracy, kappa index, AUC,

and SCAI. Some methods gave very good results while the

other methods gave relatively poor results. Since the whole

statistical measures did not point out the same method, a

simple approach was adopted to decide the most accept-

able method. So, PCA and AHP methods were found to be

more accurate at prediction of flood hazards susceptibility

mapping with regard to ROC analysis and SCAI variation.

This study may be evaluated as a contribution to the similar

efforts on the estimation of accurate flood hazards sus-

ceptibility maps by hybridization methods and assists

policymakers who have to face challenging decisions on

land use. Strategies to improve TOPSIS and VIKOR

predictions may be conducted using ensemble algorithms

using non-stationary models. Generated flood hazards

susceptibility maps may be commonly used in design,

operation, and inspection stages of any structure.
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Table 11 SCAI values at each

class of flood conditioning

factors of methods

Model Classes Pixel % Flood % SCAI Model Classes Pixel % Flood % SCAI

FR VL 87.95 1.44 61.12 FL-WoE VL 94.79 22.30 4.25

L 9.66 3.60 2.69 L 5.19 69.06 0.08

M 1.28 7.91 0.16 M 0.00 0.72 0.00

H 1.10 86.33 0.01 H 0.01 2.16 0.00

VH 0.01 0.72 0.01 VH 0.01 5.76 0.00

EBF VL 59.59 0.00 0.00 AHP VL 39.13 0.00 0.00

L 9.99 0.00 0.00 L 38.96 0.72 54.15

M 8.34 0.72 11.59 M 14.41 3.60 4.01

H 8.18 0.00 0.00 H 6.00 7.19 0.83

VH 13.91 99.28 0.14 VH 1.51 88.49 0.02

WoE VL 34.23 0.72 47.58 TOPSIS-AHP VL 0.04 0.00 0.00

L 41.08 0.00 0.00 L 0.13 0.00 0.00

M 16.21 4.32 3.75 M 0.72 0.00 0.00

H 5.59 7.19 0.78 H 2.87 2.88 1.00

VH 2.90 87.77 0.03 VH 96.24 97.12 0.99

IoE VL 97.97 5.04 19.45 VIKOR-AHP VL 4.44 1.44 3.08

L 0.69 7.19 0.10 L 14.40 5.76 2.50

M 1.03 62.59 0.02 M 25.78 10.79 2.39

H 0.29 16.55 0.02 H 45.21 37.41 1.21

VH 0.02 8.63 0.00 VH 10.17 44.60 0.23

PCA VL 42.60 0.00 0.00 TOPSIS-PCA VL 5.98 0.00 0.00

L 38.75 2.16 17.95 L 19.46 9.35 2.08

M 13.60 5.04 2.70 M 34.74 17.27 2.01

H 2.82 6.47 0.43 H 28.33 40.29 0.70

VH 2.23 86.33 0.03 VH 11.50 33.09 0.35

FL-FR VL 98.57 16.55 5.96 VIKOR-PCA VL 5.13 0.00 0.00

L 0.47 2.88 0.16 L 18.84 11.51 1.64

M 0.48 6.47 0.07 M 29.89 9.35 3.20

H 0.40 37.41 0.01 H 36.84 46.76 0.79

VH 0.08 36.69 0.00 VH 9.30 32.37 0.29
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