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Abstract
Nowadays, use of various types of hybrid metaheuristic algorithms attracts the researchers to optimize the average profit
or cost of an inventory system to avoid the local optimality due to high nonlinearity of the corresponding optimization
problem. This paper deals with an application of binary tournament-based quantum-behaved particle swarm optimization
algorithms on an imperfect production inventory problem with shortages. In order to reduce the production of defective items,
modern/improvement technology has been incorporated in the production system. Also, the demand of the product is assumed
to be dependent on its warranty period and selling price. The main objective of this study is to optimize the production rate,
production period, selling price of the product, manufacturer’s improvement technology level and maximum shortage level as
well as maximize the average profit of the production system. For this purpose, three hybrid metaheuristic algorithms based
on binary tournamenting and different variants of quantum-behaved PSO techniques have been developed. Then to examine
the validity of the proposed model, three numerical examples have been solved. Considering each example, nonparametric
statistical tests have been performed by using four different methods to analyze the performance of the used algorithms.
Finally, sensitivity analyses have been performed to investigate the effects of different parameters on optimal policy.

Keywords Imperfect production · Partial backlogging · Dynamic demand · Binary tournamenting QPSOs

1 Introduction

In any manufacturing firm, all the produced items are not
perfect due to imperfect production process or other fac-
tors.Considering this realistic situationof production, several
researchers have developed various production models and
reported in the existing literature. In 1986, Rosenblatt and
Lee (1986) first introduced the concept of imperfect pro-
duction in manufacturing system. Salameh and Jaber (2000)
formulated an imperfect production problem. Sana et al.
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(2007) uplifted a production problem with volume flexible
cost under imperfect production system. Sarker and Moon
(2011) presented a model corresponding to the imperfect
production system with development cost investment. Some
other interesting research works related to imperfect pro-
duction process were found in in the works of Chiu (2003),
Goyal and Cárdenas-Barrón (2005), Modak et al. (2015),
Das et al. (2017), Manna et al. (2017a), Mallick et al. (2018),
among others. Jain et al. (2018) introduced repairing concept
in the imperfect production system under fuzzy environment.
Taleizadeh et al. (2019) examined product quality and returns
in an imperfect production system under two warranty poli-
cies. Manna et al. (2019) established two-plant production
model for two quality items under fuzzy environment. Rah-
man et al. (2020) developed a production inventory model
with credit-linked demand in interval environment. They also
assumed the produced products which deteriorate with time.
Shaikh et al. (2020) developed an EPQ model with partial
trade credit policy- and price-dependent demand for deteri-
orating items. Mishra et al. (2021) proposed the concept of
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preservation technology in a production inventory model to
protect the items from deterioration.

Sometimes, it is observed that stock-out situation arises
in integrated production system due to uncertain demand,
offering of discount facility, deterioration effect of produced
items, etc. As a result, in stock-out situation, manufacturer
cannot able to fulfill the demand of customers/retailers. Dur-
ing stock-out period, two situations may occur: (i) all the
customers are willing to wait for receiving the product and
(ii) a part of the customers only are willing to wait for
receiving the product. The second case of situation is known
as partial backlogging. Abad (2000) developed a lot-size
problem with partial backordering for perishable items. An
inventory model for deteriorating items was developed by
Giri et al. (2003). Ouyang and Chang (2013) proposed an
optimal production model with complete backlogging and
permissible delay in payments. In interval environment, a
partially integrated production model with variable demand
and partial backordering was introduced by Bhunia et al.
(2017). Shaikh et al. (2017) established an inventory model
for non-instantaneous deteriorating items with price- and
stock-dependent demand under partially backlogged situa-
tion. Tiwari et al. (2018) investigated a green production
problem with partial backordering for multi-items. Das et al.
(2020) proposed an inventory model with partially backlog-
ging and price-dependent demand for deteriorating items
considering preservation facilities. Later, Das et al. (2021)
developed an inventory model with partial backlogged short-
ages and trade credit financing under preservation technology
for deteriorating itemsvia particle swarmoptimization.Apart
from the earlier mentioned works, several researchers, viz.
Jamal et al. (1997), Chiu (2003), Chen and Lo (2006),
Chakraborty et al. (2013), studied different inventory models
with complete backlogging/ partial backlogging.

The classical inventory model was developed under
the assumption constant demand. After that, a number of
researchers reported various types of customer’s/retailer’s
demand dependent on several factors such as Shaikh et al.
(2019)(stock-dependent demand), Giri et al. (2003) (ramp-
type demand), Jain et al. (2018) (time-dependent demand),
Jaggi et al. (2017) (price discount demand), Lee and Yao
(1998) (fuzzy demand),Manna et al. (2017a) (advertisement-
dependent demand), Dye and Yang (2015) (credit-linked
demand), etc. However, it is very difficult to estimate the
market demand due to the lack of historical data. The war-
ranty period is an vital issue to take the customers’ decision
for purchasing the product. Yeh et al. (2005) proposed war-
ranty policy for repairable items. Wu et al. (2009) optimized
price, warranty length, production rate in a production inven-
tory model. Wang and Sheu (2003) considered free warranty
policy in their production model. Chung (2013) consid-
ered production model where the demand is dependent on
warranty period of the product. Taleizadeh et al. (2017) intro-

duced warranty policy in a supply chain model. Recently,
Manna et al. (2020) investigated the effects of warranty
period and selling price of the product on customers’ demand
in a manufacturing system. In Table 1, a comprehensive
review of related articles reported in the literature is pre-
sented.
To optimize the average profit/cost of an inventory model,
different methods can be applied such as,

(i) Direct search method
(ii) Gradient-based method
(iii) Metaheuristic method

However, in the proposed work, the optimization (maxi-
mization) problem corresponding to the proposed production
inventory model is highly nonlinear in nature and non-
concave. So, this optimization problem cannot be solved by
traditional direct and gradient-based optimization methods.
These methods have some limitations. Among these lim-
itations, one is that the traditional nonlinear optimization
methods very often stuck to the local optimum. So, authors
are bound to choose metaheuristic methods. All metaheuris-
tic algorithms have been developed from the activities of
the social organisms, properties of environments, properties
of some instruments of physics, etc. Over the previous few
decades, various nature-inspired algorithms have been pro-
posed such as genetic algorithm (Goldberg 2006), particle
swarm optimization (Eberhart and Kennedy 1995; Clerc and
Kennedy 2002; Sun et al. 2005, 2011; Xi et al. 2008; Coelho
2010), krill herd algorithm (Abualigah 2019), grasshopper
optimization algorithm (Abualigah and Diabat 2020), arith-
metic optimization algorithm (Abualigah et al. 2021a), sine
cosine algorithm (Abualigah and Diabat 2021b), differential
evolution algorithm (Storn and Price 1997), tournament dif-
ferential evolution algorithm (Akhtar et al. 2020). Besides,
some modified versions of these algorithms are proposed
(Duary et al. 2020; Kumar et al. 2019, 2020, 2021a, b).
Surprisingly, PSO and its modified versions have been con-
foundedly used to optimize the average profit/cost of an
inventory model in the recent years.

Particle swarm optimization (PSO) was proposed by
Eberhart and Kennedy (1995). Later, Clerc and Kennedy
(2002) modified the original PSO algorithm by inserting a
constriction factor. Since then, the corresponding PSO is
known as PSO-Co. Thereafter, Sun et al. (2004) proposed
a modified PSO algorithm known as quantum-behaved PSO
(QPSO) which is based on the quantum behavior of the par-
ticles. Then, to accelerate the performance of QPSO, Xu
and Sun (2005) developed adaptive QPSO (AQPSO), Xi
et al. (2008) developed Weighted QPSO (WQPSO), Coelho
(2010) developed Gaussian QPSO (GQPSO), Kumar et al.
(2019) developed AGQPSO, etc. In the current work, only
three embedded QPSO algorithms, AQPSO, GQPSO and
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PS
O
s AGQPSO algorithms, are used to solve the optimization

problem. Apart from these algorithms, by using these algo-
rithms, we have developed three different algorithms based
on the concept of binary tournamenting process which is fol-
lowed in a game. These are called asT2-AQPSO,T2-GQPSO
andT2-AGQPSO.Finally, the results are comparedwith each
other and said PSOs.

In this paper, an imperfect production inventory model
with partial backlogging and dynamic demand has been
developed. Here production of defective items has been
reduced by considering modern/improvement technology.
Also, the partial backorder rate is dependent on the length of
the waiting time of the customers. Furthermore, the demand
rate of the customers is assumed to be dependent on warranty
period and selling price of the product. Then, six metaheuris-
tic optimization techniques AQPSO, GQPSO, AGQPSO,
T2-AQPSO, T2-GQPSO and T2-AGQPSO have been used
for solving the corresponding maximization problem (aver-
age profit) of the proposed model and compared the results
obtained.

The leftover of this work is constructed as follows.
The next section presents notation and assumptions for
formulating the production inventory model. Mathematical
formulation of the proposedmodel is provided inSect. 3. Sec-
tion 4 demonstrates the solution methodology to determine
the optimal/best found solutions. Numerical experiments and
sensitivity analyses are shown in Sects. 5 and 6, respectively.
Managerial insights and conclusions are drawn in Sects. 7
and 8, respectively. Finally, limitations with future research
scope of this work are presented in Sect. 9.

2 Notation and assumptions

The following notation and assumptions have been consid-
ered throughout the manuscript.

2.1 Notation

2.2 Assumptions

(i) The production system produces single item and time
horizon is infinite.

(ii) The production system produces perfect item at the
rate (1 − θ)P where 0 < θ << 1. During the pro-
duction period (0, tp), the manufacturing company will
invest modern/improvement technology cost to reduce
the defective production. The rate of defectiveness of
produced items is defined as follows:

θ(η) = θ0e
−ξη, η ∈ [0,+∞) (1)
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Decision
Variables

P : Production rate
tp : Duration of production run time
η : Manufacturer’s improvement technology level

to reduce the production of defective units
s : Selling price per unit for perfect quality item
Qs : Maximum shortage level
Dependent
Variable
T1 : Time point when the inventory level reaches

zero
T2 : Time point when production starts to back-

logged
T : Time point of business period
Others
I (t) : Inventory level of perfect quality items
θ(η) : Reduced defective production rate, a decreas-

ing function with respect to η

θ0 : Defective production rate without develop-
ment technology

ωp : Warranty period of the product which is sold
to the customer

C(P, η) : Production cost per unit
D(ωp, s) : Demand rate of the retailer
α : Partial backorder rate
wp : Warranty period of the product
h : Holding cost/ unit / unit time
A : Setup cost/ cycle
cb : Backordering cost/ unit / unit time
Np : Swarm size
Max_gen : Maximum number of generations

which is a decreasing function with respect to η for
suitable value of ξ > 0. The graphical representation
of defective rate vs modern/improvement technology is
given in Fig. 1.

(iii) The demand of an item is dependent on warranty period
along with selling price, and mathematically it can be
represented as follows:

D(ωp, s) = β1 + λ1ωp − λ2s, (2)

where β1 is a fixed demand of customers and λ1, λ2 are
coefficients of sensitivity of the customers about war-
ranty period and selling price of the product.

(iv) The unit production cost is a function of production rate
andmodern/improvement technology, which is given by

C(P, η) = C0 + C1P
λ + C2

Pμ
+ C3η

δ + C4ω
γ
p (3)

where C0 is the fixed production cost, C1 and C2 are
coefficients of sensitivity of production cost. Also, C3

and C4 are coefficients of sensitivity of warranty cost
and development cost, respectively.

Fig. 1 Pictorial representation of defective rate vs η

Fig. 2 Production cost vs η

The geometrical representation of unit production cost
with respect to η and P is given in Figs. 2 and 3, respec-
tively.

(v) The warranty cost (cw) is dependent on warranty period
(ωp) and is given by

cw(ωp) = a + bωp (4)

where a is a fixed warranty cost and b is the coefficient
of sensitivity of the warranty period.

(vi) During the stock-out period, some of the customers are
willing to wait for receive the product. Here, the back-
logging rate is in the form 1

1+α

{
T2−t− I (t)

(1−θ)P

} , where α

is the parameter of backlogging rate.

3 Mathematical formulation of the proposed
model

Let us assume that a manufacturing firm starts the production
at time t = 0 and continues up to the time t = tp with the
production rate P . During the production time, manufactur-
ing firm produces some defective items along with perfect
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Fig. 3 Production cost vs P

Fig. 4 Pictorial representation of the inventory level

ones. Here, it has been considered that the production firm
produces perfect items with the rate (1− θ)P up to the time
t = tp which satisfy the customers’ demand with the rate
D(ωp, s). The rest of the produced items are stored in the
store room with the rate (1− θ)P − D(ωp, s) up to the time
t = tp. After that, the production process stops and the inven-
tory level depletes gradually during the time interval [tp, T1]
due to customers’ demand only. Thereafter, shortages occur
and continue up to the time t = T2. At time t = T2, again
production process starts and fulfills the backlogged quantity
after meeting up the customers’ demand.

Therefore, the inventory level satisfies the governing dif-
ferential equations as follows:

d I (t)

dt
= (1 − θ)P − D(ωp, s), 0 ≤ t ≤ tp (5)

d I (t)

dt
= −D(ωp, s), tp < t ≤ T1 (6)

d I (t)

dt
= − D(ωp, s)

1 + α
{
T2 − t − I (t)

(1−θ)P

} , T1 < t ≤ T2 (7)

d I (t)

dt
= (1 − θ)P − D(ωp, s)

1 − α I (t)
(1−θ)P

, T2 < t ≤ T (8)

subject to the conditions that I (0) = 0, I (T1) = 0, I (T2) =
−Qs and I (T ) = 0.

Using the conditions I (0) = 0, I (T1) = 0 and I (T ) = 0,
the solutions of the equations (5) − (8) are, respectively, as
follows:

I (t) =
{
(1 − θ)P − D(ωp, s)

}
t, 0 ≤ t ≤ tp (9)

I (t) = D(ωp, s)(T1 − t), tp < t ≤ T1 (10)

α I (t) +
[
(1 − θ)P

{
1 + α(T2 − T1)

}
− D(ωp, s)

]

exp
{ α I (t)

D(ωp, s)

}
=

[
(1 − θ)P

{
1 + α(T2 − t)

}

D(ωp, s)
]
, T1 < t ≤ T2 (11)

I (t) − D(ωp, s)

α
log

∣∣∣
{
(1 − θ)P − D(ωp, s) − α I (t)

}
{
(1 − θ)P − D(ωp, s)

}
∣∣∣

= (1 − θ)P(t − T ), T2 < t ≤ T (12)

The continuity condition of I (t) at t = tp implies

T1 = P

D(ωp, s)
(1 − θ)tp (13)

Again, the condition I (T2) = −Qs implies

T2 = T1 + 1

α(1 − θ)P

[{
(1 − θ)P − D(ωp, s) + αQs

}

exp
{ αQs

D(ωp, s)

}
− (1 − θ)P + D(ωp, s)

]
(14)

The continuity condition of I (t) at t = T2 implies

T = T2 + 1

(1 − θ)P

⎡
⎣Qs + D(ωp, s)

α

log
∣∣∣
{
(1 − θ)P − D(ωp, s) + αQs

}
{
(1 − θ)P − D(ωp, s)

}
∣∣∣
⎤
⎦ (15)

Production cost (PC) = C(η, ωp)
[ ∫ tp

0
P dt +

∫ T

T2
P dt

]

=
(
C0 + C1P

λ + C2

Pμ
+ C3η

δ + C4ω
γ
p

)
P(tp + T − T2)

Holding cost (HC) = h
[ ∫ tp

0
I (t) dt +

∫ T1

tp
I (t) dt

]

= h

2

[
(1 − θ)Pt2p + D(ωp, s)T

2
1 − 2D(ωp, s)tpT1

]

Backorder cost (BC) = cb
[ ∫ T2

T1
−I (t) dt +

∫ T

T2
−I (t) dt

]

Warranty cost (WC) = (a + bωp)ϑ(1 − θ)P

Sales revenue (SR) = s(1 − θ)P(tp + T − T2) (16)
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The total profit of the manufacturer can be calculated as fol-
lows:

T P(P, tp, η, s, Qs) = SR-PC-HC-BC-WC-A

= s(1 − θ)P(tp + T − T2)

−
(
C0 + C1P

λ + C2

Pμ
+ C3η

δ

+C4ω
γ
p

)
P(tp + T − T2)

−h

2

[
(1 − θ)Pt2p + D(ωp, s)T

2
1

−2D(ωp, s)tpT1
]

−(a + bωp)ϑ(1 − θ)P

−cb
[ ∫ T2

T1
−I3(t) dt

+
∫ T

T2
−I4(t) dt

]
− A (17)

Therefore, the average profit of the manufacturer is given by

�(P, tp, η, s, Qs) = T P(P, tp, η, s, Qs)

T
(18)

Hence, the objective is to determine the optimal produc-
tion period (t∗p), production rate (P∗), selling price (s∗),
maximum shortage level (Q∗

s ) and development technology
level (η∗) by maximizing the manufacturer’s average profit
�(η, ωp, tp, P, Qs).

Therefore, the corresponding optimization problem is as
follows:

Maximize �(P, tp, η, s, Qs)

subject to P > D(ωp, s), tp > 0, s > 0, Qs > 0, η > 0

(19)

This is a highly nonlinear constrainedmaximizationproblem.

4 Solutionmethodology

Considering the second strategy (situation) taken by binary
tournamenting process, three hybrid algorithms have been
developed to solve the optimization problem (19). These
algorithms are called as T2-AQPSO, T2-GQPSO and T2-
AGQPSO. As the hybrid algorithms are depending on
AQPSO, GQPSO and AGQPSO and also the tournament-
ing process, thus before discussing the hybrid algorithm, it
is required to illustrate PSO, QPSO, AQPSO, GQPSO and
AGQPSO algorithms and tournamenting process. The brief
descriptions of these are given in the following subsections.

4.1 Particle Swarm optimization (PSO)

Particle swarm optimization is a prominent and efficient
algorithm based on the observations of the social behav-
ior of animals, such as fishes and birds. Here each solution
of the swarm is considered as ‘bird’ or ‘fish’-like volume
free particle in activities. All the particles of the swarm
fly throughout the search space aim to find the position of
food (optimal position). At each iteration, particles in the
swarm update their position by their personal experience and
experience of the entire particles of the swarm. As a result,
each particle has a memory to maintain its earlier best posi-
tions called ‘personal best positions’ with their own fitness.
The position of the particle of the entire swarm which has
highest fitness is called ‘global best position’. Assume that
such swarm of size Np is moving in nv-dimensional space.
Let uKi = (uKi1, u

K
i2, ..., u

K
inv

), vK
i = (vK

i1, v
K
i2, ..., v

K
inv

),

pKi = (pKi1, p
K
i2, ..., p

K
inv

), pKg = (pKg1, p
K
g2, ..., p

K
gnv

) be the
current position, current velocity, personal best position and
global best position, respectively, in the K-th iteration of the
swarm. The velocity and position of particles are updated by
the following rules:

vK+1
i j = vK

i j + c1r
K
1 j (p

K
i j − uKi j ) + c2r

K
2 j (p

K
gj − uKi j ) (20)

uK+1
i j = uKi j + vK+1

i j

for i = 1, 2, ..., Np;
j = 1, 2, ..., nv; K = 1, 2, ..., Max_I T (21)

where c1 > 0, c2 > 0 are two constants, termed as the
acceleration coefficients, and r Ki j , r

K
2 j are random numbers

which follows uniform distribution in (0, 1).

4.2 Quantum-behaved PSO (QPSO)

Sometimes, traditional PSO algorithm is trapped by local
optimum value and therefore cannot reach the global opti-
mum position. To overcome these difficulties, Sun et al.
(2005) proposed quantum-behaved PSO based on the quan-
tum behavior of the particles. In quantum space, Newton’s
laws of motion is totally invalid because the position and
velocity cannot be determined simultaneously according to
Heisenberg’s uncertainty principle. Hence, PSO algorithm is
needed to design in terms of wave function model.
While a particle of mass M is moving in quantum space, the
wave function ψ(u, t) satisfies the Schrodinger wave equa-
tion in δ-potential well,

d2ψ

du2
+ 2M

h̄2
[E + γ1δ(u − p)]ψ = 0 (22)

where E is the total energy of the particle; p is the center
of potential of the particle; h and h̄ = h

2π are the Planck’s
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constant and modified Planck’s constant; and γ1 is a positive
constant which is chosen in such a way that it is always
proportional to depth of the potential well.
Let v = u − p then (22) reduces to,

d2ψ

dv2
+ 2M

h̄2
[E + γ1δ(v)]ψ = 0 (23)

Thus, from (23) normalizedwave function can be represented
as

ψ(v) = 1√
L
e− |v−p|

L (24)

Thus, probability density function of the wave function is
calculated as

Q = |ψ(v)|2 = 1

L
e− 2|v−p|

L (25)

From this equation, the probability of any particle appears
at a certain position relative to p is found. But to get the
fitness value, it is needed to determine the exact position of
the particles. Therefore, to get the exact position, quantum
state of the particle is to be collapsed into classical state.
Monte Carlo simulation is used to measure this.
Monte Carlo simulation Since the value 1

L e
− 2|v−p|

L always
lies in the interval

(
0, 1

L

)
, let us consider a random number

in
(
0, 1

L

)
as ξ

L , where ξ is a random number in (0, 1). Now

replace the value ξ
L in place of Q in (25),

ξ

L
= 1

L
e− 2|v−p|

L (26)

Hence, v = ± L

2
log(

1

ξ
) (27)

Thus, the equation (27) is going to be equal to

u = p ± L

2
log(

1

ξ
) (28)

In the analysis of PSO, it is proved that p is the local attractor
� of the particles. Hence, the equation (28) reduces to

u = � ± L

2
log(

1

ξ
) (29)

Thus, in K−th iteration j−th component of i−th particle is
updated as follows

uK+1
i j = �K

i j ± LK
i j

2
log(

1

ξ K+1
i j

) (30)

The value of LK
i j is calculated as

2β|uKi j − mK
j | (31)

where β is the contraction parameter (which plays an impor-
tant role to control the convergence speed of the algorithm)
and mK

j is the mean best position defined by averages of the
pbest positions of all the particles and

Now, mK = (mK
1 ,mK

2 , ...,mK
nv

)

=
⎛
⎝ 1

Np

Np∑
i=1

pKi1,
1

Np

Np∑
i=1

pKi2, . . . ,
1

Np

Np∑
i=1

pKinv

⎞
⎠

(32)

also �K
i j is defined as

�K
i j = φ j p

K
i j + (1 − φ j )p

K
gj (33)

It is proved in Sun et al. (2005) if rand ≥ 0.5 then updating
formula is

uK+1
i j = �K

i j + LK
i j

2
log

(
1

ξ K+1
i j

)
(34)

and if rand < 0.5 then updating formula is

uK+1
i j = �K

i j − LK
i j

2
log

(
1

ξ K+1
i j

)
(35)

Thus, the updating formula for QPSO algorithm is as follows

uK+1
i j = �K

i j + β|uKi j − mK
j |log

(
1

ςK+1
i j

)
, if r ≥ 0.5 (36)

uK+1
i j = �K

i j − β|uKi j − mK
j |log

(
1

ςK+1
i j

)
, if r < 0.5 (37)

where ξ K+1
i j is a random number in (0, 1), φ j ∼ U (0, 1) and

r is the random number in (0, 1).

4.3 Gaussian quantum-behaved PSO (GQPSO)

To avoid the premature convergence Coelho (2010) pro-
posed GQPSO algorithm. In this version of PSO, particles
of the swarm are more volatile and diversify. Here, the
QPSO attractor �K

i j = φ j pKi j + (1 − φ j )pKgj is replaced by

�K
i j = G1 pKi j +G2 pKgj

G1+G2
, j = 1, 2, ..., nv and the random number

ςK+1
i j is replaced by the Gaussian random numbers GK+1

i j in
the QPSO algorithm, where G1 and G2 are the random num-
bers generated byGaussian probability distributionwith zero
mean and unit variance.
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4.4 Adaptive quantum-behaved PSO (AQPSO)

In AQPSO (Xu and Sun 2005), the analysis of control param-
eters is studied in detail, which was not discussed in primary
QPSO so far. Here, the parameter β (known as creativity
coefficient) plays an important role and it is dependent on
attraction and repulsion phases. When the particles are in
attraction phase, the diversity of the particles increases and
in this situation one has to assign β = βa , where βa ≤ 1 as
far as in repulsion phase one has to β = βr , where βr > 1.
Diversity of the swarm at K-th iteration is defined as

d = 1

Np|L|
Np∑
i=1

√√√√
nv∑
j=1

(pKi j − mK
j )2 (38)

where |L| is the longest diagonal of the search space.
The position of the particles at theK-th iteration is updated

by using the following rules

uK+1
i j = �K

i j + β|uKi j − mK
j |log

(
1

ςK+1
i j

)
, if r ≥ 0.5 (39)

uK+1
i j = �K

i j − β|uKi j − mK
j |log

(
1

ςK+1
i j

)
, if r < 0.5 (40)

where β runs through the βr to βa of the swarm and if d <

dlow assign β = βa and if d > dhigh assign β = βr .

4.5 Adaptive Gaussian quantum-behaved PSO
(AGQPSO)

On inspiring to get the advantages of AQPSO and GQPSO
algorithms, Kumar et al. (2019) proposed AGQPSO algo-
rithm. Here, to avoid the premature convergence, Gaussian
attractor and Gaussian random number have been used.
Over and above, to make less susceptible to stuck by stag-
nation fault, parameter controls have been made. Thus,
proposed AGQPSO technique can be called as a modifi-
cation of AQPSO technique. In AQPSO technique, QPSO
attractor �K

i j = φ j pKi j + (1−φ j )pKgj has been used for com-
pelling the particles towards the global optimum position.

But in AGQPSO, Gaussian attractor �K
i j = G1 pKi j +G2 pKgj

G1+G2
,

j = 1, 2, ..., nv has been used in place of the QPSO attractor
�K
i j = φ j pKi j + (1 − φ j )pKgj . Also, Gaussian random num-

bers GK+1
i j have been used. The pseudo-code AGQPSO is as

follows:

Pseudo-code

begin
initialize AGQPSO parameters and bounds of decision variables
generate a swarm of particles randomly
compute the fitness of all particles
store the initial position (generate randomly) of each particle and its fitness ‘pbest ’
and ‘pbestobj ’ respectively
find the global best among all particles as ‘gbest ’
while (termination criterion satisfied)

calculate ‘mbest ’ (mean best position)
measure the diversity (d) of the swarm
if d < dlow assign β = βa

if d > dhigh assign β = βr

generate Gaussian random numbers and calculate Gaussian
attractor
update the position of each particle
find ‘pbest ’
find ‘gbest ’

end while
print the best result

end
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4.6 Tournamenting QPSOs

In genetic algorithm, sometimes researchers have to run the
program several times by taking different populations in dif-
ferent runs to get the best solutions from them. For smaller
search space, this process gives better outputs but for broad
solution space, and for non-convex/non-concave problem,
it becomes arduous. To overcome this type of difficulties,
Bhunia and Samanta (2014) proposed an algorithm, known
as tournament genetic algorithm as an alternative technique.

4.6.1 Hybrid binary tournament

In computational optimization, to make more efficient than
original algorithm/algorithms, hybrid algorithms are pro-
posed. Hybrid algorithm refers to the combination of two
or more algorithms or embedding an algorithm in terms of
different fashion (like tournament fashion, league fashion,
chaotic mapping fashion). As a result, the new formed hybrid
algorithm is better than the original algorithm/algorithms.

Actually in any game to select the best team among all the
teams is arranged through tournament. This tournament can
be designed in different fashions, e.g., binary tournament,
league tournament, etc. In binary tournament, in each game
one team is selected out of two teams in every round of the
tournament. The whole tournament is performed in different
rounds dependent on the number of teams which take part in
the game.

4.6.2 Hybrid binary tournament-based QPSOs

In this work, AQPSO, GQPSO and AGQPSO techniques
have been applied to elevate the swarm of particles in each
round of tournament process. Here four teams’ tournament-
ing process has been considered. Firstly, two swarms S1, S2

have been updated into S′
1, S

′
2 and finally taken 50% parti-

cles from S′
1, S

′
2. This swarm is renamed as S′

12. 50%particles
may be considered from the improved swarms S′

1 and S
′
2 with

the help of the following strategies:

Strategy-1: Alliance of the best 50% from each of the
modified swarms S′

1, S
′
2.

Strategy-2: Chosen of the best 50% from the alliance of
two swarms S′

1, S
′
2.

Strategy-3: Creation of a new swarm by choosing a better
individual by making a comparison between randomly
taken particles from each of the swarms S′

1, S
′
2.

Strategy-4: Chosen of better swarmwhich carries the best
particles between two swarms S′

1, S
′
2.

Strategy-5: Chosen of better swarm which carries better
average fitness value.
Strategy-6: Chosen of better swarm which carries finer
standard deviation of the fitness values of the particles.

It should be noted that in a real game, the better one
among two teams is selected for the next round. However,
in simulation process, different strategies may occur for the
computational optimization.

In the current work, using three rounds, all embed-
ded/hybridized PSO algorithms (AQPSO, GQPSO and
WQPSO) are designed in the form of second strategy-based
tournament fashion using four teams. As a result, the said
algorithms are hybridized in the form of binary tournament
fashion. The details of binary tournament-based algorithms
and their different scenarios are found in Kumar et al. (2019),
Kumar et al. (2020), Akhtar et al. (2020).

4.7 Pseudo-code of binary tournamenting QPSOs

begin
n ← 1
while (n < 4) do

initialize Sn where Sn denotes the n − th swarm
apply AQPSO/GQPSO/AGQPSO on Sn to get the swarm S′

n

initialize Sn+1

apply AQPSO/GQPSO/AGQPSO on Sn+1 to get the swarm S′
n+1

find 50% particles from S′
n and S′

n+1 as per any one of the strategies
1 − 6 and obtain improved swarm S′

n,n+1

apply AQPSO/GQPSO/AGQPSO on S′
n,n+1 to get the swarm S′′

n,n+1

n ← n + 2
end while
find 50% particles from S′′

12 and S′′
34 as per Strategy-2 and obtain the swarm S′′

1234

apply AQPSO/GQPSO/AGQPSO on S′′
1234 to get the swarm S′′′

1234

save the best found result
end
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Fig. 5 Pictorial representation of second strategy of tournament (T2) with four teams

5 Numerical experiment

In this section, different types of numerical experiments have
been considered. In subsect. 5.1, three numerical examples
are considered to check the validation of the proposed model
as well as the robustness of the hybrid algorithms. Here,
the best found solutions, worst found solutions, statistical
results and convergence history for each of the problems have
been provided. In subsect. 5.2, the discussion of the obtained
results is performed. The four different nonparametric statis-
tical tests are performed in subsect. 5.3.

5.1 Numerical illustration

To validate the proposed model, three different numerical
examples have been considered which are as follows.
Example 1: In this example the values of different parameters
are taken as C0 = Rs. 80 per unit, C1 = Rs. 0.01 per unit,
C2 = Rs. 500 per unit, C3 = Rs. 2 per unit, C4 = Rs. 2.5
per unit, α = 1.25 ∈ R+, β1 = 310 unit, λ1 = 2.0 unit,
λ2 = 0.6 unit, γ = 0.5 ∈ R+, δ = 2 ∈ R+, wp = 0.5 year,
λ = 0.3 ∈ R+, μ = 0.5 ∈ R+, θ0 = 0.1 ∈ (0, 1), ϑ =

0.09 ∈ R+, ξ = 0.5 ∈ R+, h = Rs. 6.0 per unit/ unit time,
a = Rs. 20.0 per unit, b = Rs. 5 per unit, cb = Rs. 20.0 per
unit, A = Rs. 300 per cycle.
Example 2: In this example the values of different parameters
are taken as C0 = Rs. 80 per unit, C1 = Rs. 0.03 per unit,
C2 = Rs. 490 per unit, C3 = Rs. 2.2 per unit, C4 = Rs. 2.9
per unit, α = 1.15 ∈ R+, β1 = 300 unit, λ1 = 1.5 unit,
λ2 = 0.5 unit, γ = 0.4 ∈ R+, δ = 4.2 ∈ R+, wp = 0.7
year, λ = 0.6 ∈ R+, μ = 0.4 ∈ R+, θ0 = 0.2 ∈ (0, 1),
ϑ = 0.04 ∈ R+, ξ = 1.5 ∈ R+, h = Rs. 6.0 per unit/
unit time, a = Rs. 14.0 per unit, b = Rs. 14.0 per unit,
cb = Rs. 5.5 per unit, A = Rs. 305 per unit.
Example 3: In this example the values of different parameters
are taken as C0 = Rs. 82 per unit, C1 = Rs. 0.02 per unit,
C2 = Rs. 510 per unit, C3 = Rs. 1.5 per unit, C4 = Rs. 2.3
per unit, α = 1.10 ∈ R+, β1 = 305 unit, λ1 = 2.4 unit,
λ2 = 0.8 unit, γ = 0.6 ∈ R+, δ = 3.5 ∈ R+, wp = 0.6
year, λ = 0.2 ∈ R+, μ = 0.8 ∈ R+, θ0 = 0.15 ∈ (0, 1),
ϑ = 0.1 ∈ R+, ξ = 0.9 ∈ R+, h = Rs. 5.0 per unit/ unit
time, a = Rs. 16.0 per unit, b = Rs. 4.0 per unit, cb =
Rs. 16.0 per unit, A = Rs. 300 per unit.
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Table 2 Parameters of different
algorithms

Parameters Algorithms

T2-AGQPSO T2-AQPSO T2-GQPSO AGQPSO AQPSO GQPSO

Np 15 15 15 25 25 25

Max_gen 30 30 30 130 130 130

The best found average profit has been obtained using six
different algorithms including hybrid tournamenting algo-
rithms. Since all the algorithms are probabilistic in nature,
so 30 independent runs have been performed for each of
the algorithms. Each algorithm has been coded by using
C++ software, and all runs have been done on a Laptop
core i3-7020U CPU, 7th generations, 2.30 GHz processors
in LINUX environment. Simulation parameters of different
algorithms are provided in Table 2.

Here, two different types of swarm size and maximum
generations have been considered in two types of algorithms.
Since for small swarm size and generations, functions eval-
uations are large in binary tournament-based algorithms, to
compare these two types of algorithms, the swarm size and
maximum generations have to set in such a way that dif-
ference of function evaluations in two types of algorithms
is minimum. On considering swarm size 15 and maximum
generation 30 in tournament-based PSOs, the total number
of function evaluations is 7 × 15 × 30 + 4 × 15 = 3210,
while in general PSOs the total number of function evalua-
tions is 25 × 130 + 25 = 3275. Therefore, the difference of
function evaluations is not so large. However, function eval-
uations are small in tournament-based PSOs. Besides, other
parameters of PSOs are considered as per the directions of
Coelho (2010) and Sun et al. (2005). To test the efficiency of
the hybrid tournament PSOs, best found results, worst results
and statistical measurements of the average profit are shown
in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 for each of the problems.

From the results, it is observed that the hybrid tournament
PSOs give better results than its general algorithm with min-
imum function evaluations and CPU times for each problem.

5.2 Results discussion

The best found solutions of Example 1 are the same for all the
algorithms. However, the worst found solutions are different
for all the algorithms. The difference of best found solu-
tions and worst found solutions is minimum for T2-AQPSO
algorithms. Also from Tables 3, 4 and 5, it is observed that
T2-AQPSO algorithm performs better with respect to best
found objective value, worst objective value, mean objec-
tive value and standard deviation of the objective values with
minimumCPU times aswell as function evaluations. Though
AGQPSO algorithm does not perform so well, it has satis-
factory performance in tournament hybridization.

The best found solutions of Example 2 be the same for
all the algorithms except for T2-AGQPSO. However, it is
same up to eight decimal places. Here also, the difference
between the found solutions and worst found solutions is
minimum for T2-AQPSO algorithms. Here T2-AQPSO algo-
rithm performs better with respect to the best objective value,
worst objective value and standard deviation. Here, mean and
median of the objective values are better for AQPSO algo-
rithm, but it has larger CPU times and function evaluations.
So, overall T2-AQPSO algorithm performs better for Exam-
ple 2 also.
In discussions of Example 3, it is observed from Tables
9, 10 and 11 that the best found solutions be the same
for all the algorithms. The differences between best found
solutions and worst found solutions are very less for T2-
AQPSO and AQPSO algorithms. From the statistical data, it
is observed that their performances be the same except stan-
dard deviations. The standard deviation is less forT2-AQPSO
algorithm.Also, it should be noted that T2-AQPSOalgorithm
produces the best found result with minimum CPU times
and function evaluations. Here also, AGQPSO and its tour-
nament hybridized version perform well than other hybrid
algorithms.
So in overall discussions, it does not have any hesitance to
say that T2-AQPSO is the best algorithm than others in per-
formance for this profit optimization problem. Of course, it
should be noted that the computational results obtained in
Tables Tables 9, 10 and 11 do not establish that T2- AQPSO
algorithm performs well for all types of optimization prob-
lems (Wolpert and Macready 1997). Hence, this hybrid T2-
AQPSO algorithm has the highest performance for the opti-
mization problem (19) only.
The convergence history of the best found solutions obtained
from AGQPSO, AQPSO and GQPSO algorithms is shown
in Figures 6, 7 and 8. However, the convergence graphs
of different hybrid algorithms cannot be drawn as the par-
ent metaheuristic algorithms like AQPSO, AGQPSO and
GQPSO are applied in different rounds of the tournament.
From the convergence history, it is observed that AQPSO
performs better for Example 1 and Example 3, whereas
AGQPSO performs better for Example 2.
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5.3 Nonparametric statistical test

From the earlier mentioned statistical results, it is observed
thatT2-AQPSOalgorithmperformsbetter than all other algo-
rithms (T2-AGQPSO, T2-GQPSO, AGQPSO, AQPSO and
GQPSO) in overall comparison. But it is needed to perform
some statistical tests due to randomness of the metaheuris-
tic algorithm to check the significance of the results. In this
section, four nonparametric statistical tests, viz. Wilcoxon
rank-sum test (Derrac et al. 2011; Duary et al. 2020; García
et al. 2009), Friedman test (Derrac et al. 2011), Wilcoxon
signed rank test (García et al. 2009) and Iman and Daven-
port test (Derrac et al. 2011), have been performed on the
30 objective values (average profit values) obtained from 30
runs to compare with other used algorithms for each of the
examples. By considering T2-AQPSO as the control algo-
rithm, the p values of the different methods are presented
in Tables 12, 13, 14. All p values are calculated by using
Microsoft Office excel 2007.
From Table 12, it is seen that the superiorities of T2-AQPSO
algorithm are statistically significant for T2-GQPSO,
AGQPSOandAQPSOalgorithms for Example 1 as the p val-
ues are less than 0.05. However, T2-AGQPSO and GQPSO
perform very similar with T2-AQPSO algorithm.
Also from Table 13, it is noticed that the superiorities of
T2-AQPSO algorithm are statistically significant for T2-
AGQPSO,T2-GQPSO, AGQPSO and AQPSO algorithms
for Example 2 as the p values are less than 0.05. However,
the performance of GQPSO algorithm is very comparative
with T2-AQPSO algorithm.
In Table 14, it is seen that the superiorities of T2-AQPSO
algorithm are statistically significant for T2-GQPSO and
AGQPSO algorithms for Example 3 at 5% level of signif-
icance. Here, the performance of T2-AGQPSO, AQPSO and
GQPSO algorithms is very similar with T2-AQPSO algo-
rithm.

6 Sensitivity analysis

For the proposed model, the sensitivity analyses by changing
the values of known important model parameters A, cb, C0,
β1, θ0, wp, h and α from -20% to 20% have been demon-
strated. Also, the effects of P , tp, s, η, Qs , T1, T2, T , � with
respect to each parameter have been analyzed and the results
are shown graphically in Figs. 9, 10, 11, 12, 13, 14, 15 and
16.
The effectiveness of the parameters A, cb, C0, β1, θ0, wp,
h and α on the best found solution of maximization prob-
lem (17) (P , tp, s, η, Qs , T1, T2, T , �) is measured by the
following scales:
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Fig. 6 Convergence history of the best found solution of different algorithms for Example 1

Fig. 7 Convergence history of the best found solution of different algorithms for Example 2

(i) The model parameters are known as highly sensitive
directly (reversely) with respect to the best found solu-
tion of maximization problem (19) if the said solutions
change from less than -20% (greater than +20%) to
greater than +20% (less than -20%) with the changes
of that parameters from -20% to +20%.

(ii) The model parameters are known as equally sensitive
with directly (reversely) with respect to the best found
solution of maximization problem (19) if the said solu-
tions change from -20% (+20%) to +20% (-20%) with
the changes of that parameters from -20% to +20%.

(iii) The model parameters are known as moderately sensi-
tive directly (reversely) with respect to the best found
solution of maximization problem (19) if the said solu-

tions change from near -10% (+10%) to near +10%
(-10%) with the changes of that parameters from -20%
to +20%.

(iv) The model parameters are known as less sensitive
directly (reversely) with respect to the best found solu-
tion of maximization problem (19) if the said solutions
change from greater than -10% (less than +10%) to less
than +10% (greater than-10%) with the changes of that
parameters from -20% to +20%.

(v) The model parameters are known as insensitive with
respect to the best found solution of maximization prob-
lem (19) if the said solution changes from greater than
-1% (+1%) to less than +1% (-1%) with the changes of
that parameters from -20% to +20%.
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Fig. 8 Convergence history of the best found solution of different algorithms for Example 3

Table 12 Nonparametric
statistical tests of Example 1

T2-AQPSO p value

vs. Wilcoxon rank Friedman test Iman and Wilcoxon signed
sum test Davenport test rank sum test

T2-AGQPSO 0.728265296 0.583882423 0.592483283 0.217727087

T2-GQPSO 4.26655 × 10−06 0.00026073 4.22213 × 10−05 4.44934 × 10−05

AGQPSO 7.08811 × 10−08 5.90358 × 10−05 2.69579 × 10−06 8.89867 × 10−05

AQPSO 1.41762 × 10−07 5.01033 × 10−06 5.94311 × 10−09 9.88267 × 10−05

GQPSO 0.111986872 0.361310432 0.37019003 0.665349081

Table 13 Nonparametric
statistical tests of Example 2

T2-AQPSO p value

vs. Wilcoxon rank Friedman test Iman and Wilcoxon signed
sum test Davenport test rank sum test

T2-AGQPSO 0.001236185 0.0061699 0.004180638 0.000561614

T2-GQPSO 1.86085 × 10−06 0.000126046 1.16972 × 10−05 7.22961 × 10−06

AGQPSO 2.37682 × 10−07 0.000126046 1.16972 × 10−05 7.22516 × 10−06

AQPSO 0.001335591 0.028459739 0.025774236 0.034417232

GQPSO 0.813005288 1.0 1.0 0.061883751

Table 14 Nonparametric
statistical tests of Example 3

T2-AQPSO p value

vs. Wilcoxon rank Friedman test Iman and Wilcoxon signed
sum test Davenport test rank sum test

T2-AGQPSO 0.813005288 0.855132141 0.858711513 0.714431128

T2-GQPSO 0.001596887 0.001910775 0.000888826 0.000292478

AGQPSO 0.000571543 0.0061699 0.004180638 0.00026984

AQPSO 0.544407554 0.583882423 0.592483283 0.731600589

GQPSO 0.078518652 0.067889173 0.066882888 0.004048316
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From Figs. 9, 10, 11, 12, 13, 14, 15 and 16, the following
observations can be made:

(i) From Fig. 9, it is observed that P , tp, Qs , T1, T2 are
less sensitive directly against the changes of setup cost
(A). On the other hand, s, η, T , � are insensitive with
respect to A.

(ii) Figure 10 shows that Qs is less sensitive directly with
respect to backordering cost (cb). On the other hand,
P , tp, η, s, η, T1, T , � are insensitive with the changes
of cb.

(iii) From Fig. 11, it is seen that s, Qs , T1, T2, T are less
sensitive directly against the changes of fixed produc-
tion cost (C0). Also η has moderate impact reversely
with respect toC0. On the other hand, P , tp are slightly
reverse sensitive and average profit (π ) is moderately
reverse sensitive with the changes of C0.

(iv) In view of Fig. 12, it is clear that P , tp, s are moder-
ately sensitive directly and average profit (�) has direct
impact largely with the changes of fixed demand (β1).
Furthermore, Qs , T1, T2, T have reverse sensitivemod-
erately and η is insensitive with the changes of β1.

(v) In Fig. 13, it is obvious that P , Qs are less sensitive
directly and tp, π are reverse sensitive slightly with the
changes of defective rate parameter θ0. Also η is largely
sensitive directly and s, T1, T2, T are insensitive with
the changes of θ0.

(vi) Figure 14 exposes that tp has less sensitive directly
and P has less sensitive reversely with the change of
warranty period (wp). On the other hand, s, η, Qs , T1,
T2, T , � are insensitive with the changes of wp.

(vii) FromFig. 15, it is observed that P , T1 and T are equally
reverse sensitive and tp is reverse sensitive moderately
with the changes of holding cost (h). Also Qs is mod-
erately sensitive directly and � is reverse sensitive
slightly with the changes of h. On the other hand, s,
η, T2 are insensitive with the changes of h.

(viii) Finally, Fig. 16 exposes that Qs has largely sensitive
reversely and s, η, Qs , T1, T2, T ,� are insensitive with
the backlogged parameter α.

7 Managerial insights

The proposed production inventory model can be applied
to any manufacturing systems where the production system
produces perfect as well as defective items. The manager
of any manufacturing company will invest development cost
to reduce the production of defective items. The manage-
ment of manufacturing company gives the product warranty
to increase annual customers’ demand and profit of the com-
pany. On the other hand, the customers will be benefited
due to the product warranty. Here, the customers’ demand

is dependent on the selling price of the produced item and
warranty period. Finally, the managers of this type of manu-
facturing company will investigate the optimal selling price,
optimal production rate, optimal production period, optimal
business period and maximum shortage level which maxi-
mize the average profit of the system. To find these optimal
values, managers may use a hybrid tournamenting QPSO
algorithms for solving the corresponding optimization prob-
lem (average profit function) of the manufacturing system.
On the other hand, on using these algorithms managers of
different manufacturing firms utilize computational cost and
time with more reliable results because these algorithms give
very finer results by taking lesser memory and function eval-
uations. Hence, managers can use these models in industry.

8 Conclusion

In this study, a production inventory problem has been
investigated and formulated the corresponding model with
dynamic demand and inventory level-dependent partially
backlogged shortages. Due to complexity of the correspond-
ing optimization problem, different variants of metaheuristic
optimization techniques AQPSO, GQPSO, AGQPSO, T2-
AQPSO, T2-GQPSO and T2-AGQPSO have been applied in
order to find themaximum average profit of the system. From
the sensitivity analyses, it is observed that the development
cost for reducing the production of defective units has a good
impact on production process as well as to increase the aver-
age profit. Hence, it is concluded that the manufacturer must
use development technology to reduce the defective item as
well as to increase the average profit. Moreover, after ana-
lyzing this model, it is observed that if manufacturer imposes
the warranty policy of the product, then its impact directly
goes to the customers’ demand as well as the average profit.
The length of warranty period is dependent on the quality
of the products. So, the manufacturer aims to increase the
warranty period for increasing demand rate.

From the numerical experiments and results, it can be con-
cluded that the tournament-based hybrid algorithms stabilize
the results of a complicated optimization problem than its
parent algorithm with lesser computational costs (i.e., mem-
ory allocation, function evaluations, CPU times, etc.)

9 Limitations and future research scope

Firstly, the proposed methodologies are based on advanced
quantum-behaved particle swarm optimization (AQPSO/
AGQPSO/GQPSO) and binary tournamenting process. In
these methodologies, initially 4 swarms/populations (teams)
are considered. Then in different rounds, populations are
updated by (AQPSO/AGQPSO/GQPSO). So, there is no
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Fig. 9 Sensitivity with respect to A

Fig. 10 Sensitivity with respect to cb

Fig. 11 Sensitivity with respect to C0

Fig. 12 Sensitivity with respect to β1

Fig. 13 Sensitivity with respect to θ0

Fig. 14 Sensitivity with respect to wp
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Fig. 15 Sensitivity with respect to h

Fig. 16 Sensitivity with respect to α

scope to compare the efficiencies of the methodologies with
respect to convergence diagram. Besides, these methodolo-
gies work better with suitable swarm size with suitable
generations.

Further, this study can be extended by considering several
realistic assumptions such as advance payment scheme, time-
dependent production rate, time-dependent demand, trade
credit facility, inflation, overtime production, etc. This model
may also be extended to take interval-valued demand rate,
defective rate and different inventory costs. Finally, anyone
can extend this model by taking green production process.
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