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Abstract
Unrelated parallel machine scheduling problem (UPMSP) with sequence-dependent setup times is considered a hot topic
among the researchers, as it presents more complexity to be able to find an optimal solution. Many efforts have been made to
solve UPMSP problems and established their performances. Therefore, in this study, a new method is introduced to address
UPMSP problems with sequence-dependent and machine-dependent setup time. Our proposed method utilizes two meta-
heuristic techniques, the whale optimization algorithm (WOA) and the firefly algorithm (FA), by combining their features to
perform this task. The hybrid model is called WOAFA. For more detail, the operators of the FA are employed to improve
the exploitation ability of the WOA by serving as a local search. Moreover, the quality of the proposed WOAFA method is
tested by comparing with well-known meta-heuristic algorithms over six machines and six jobs, namely (2, 4, 6, 8, 10, and
12 machines) and (20, 40, 60, 80, 100, and 120 jobs).

Keywords Whale optimization algorithm · Firefly algorithm · Meta-heuristic · Unrelated parallel machine scheduling
problem · Local search

1 Introduction

Scheduling is one of the most important issues in different
applications, including manufacturing and various services,
such as airport schedules, train schedules, and others. Effi-
cient scheduling is done by designating a number of jobs to
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a number of limited resources according to the operational
restrictions. Therefore, efficient scheduling has a significant
impact on such applications and fields (Lin and Ying 2014;
Santos et al. 2019). Parallel machine scheduling (PMS) is
widely employed in different systems, including manufac-
turing and other services. PMS problems have received wide
attention in the past decades, and they include three well-
known categories, called identical, uniform, and unrelated
PMS problems (Ying et al. 2012). In the identical category,
the job time is the same in all machines, whereas in uni-
form category, each machine has a different speed and works
at constrain rates. More so, in unrelated one, each machine
works at different rates, and eachmachine processes different
assigned jobs (Afzalirad and Rezaeian 2016).

More so, the setup time of scheduling problems has two
types, called, sequence-dependent and sequence-independent
(Hamzadayi and Yildiz 2017). For sequence-dependent type,
the setup time is depended on both jobs that already being
scheduled and the last scheduled jobs, whereas in the
sequence independent type, the setup time is added to the
processing time of the job (Hamzadayi and Yildiz 2017; Kim
and Lee 2012).

In general, the existed studies addressed the unrelated
PMS problems (UPMSPs) with job sequence-dependent and
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machine-dependent setup times (JSDMDSTs) to minimize
the makespan. The UPMSPs can be considered as a number
of N jobs,which is required to be assigned tommachine from
a set of (RM ) unrelated parallel machines, and the makespan
(Cmax ) must be minimized. Each nth job has a single task
which requires a processing time. More so, the JSDMDST
(Si jk) is addressed because it is a critical issue in this field.
Therefore, there are differences between the Si jk that needed
for the two i and j consecutive jobs on k, k = 1, ..., M
machine and reverse two jobs (Si jk on k machine between
j and i jobs). Moreover, the Si jk between i and j jobs on k
machine is different from the Si jk of other j jobs on other k1.
Therefore, this is an NP hard problem and can be signified
by RM/Si jk/Cmax (Lin et al. 2011).

In previous decades,many studies had been investigated to
address the unrelated parallel machine scheduling problems
(UPMSPs); for example, the first study had been proposed
by McNaughton (1959) in 1959. Many efforts had been
presented during the past decades; however, only a few
solution models had been improved to solve UPMSPS with-
out considering the JSDMDSTs, for example, a branch and
bound algorithm (Rocha et al. 2008). Also, in (Helal et al.
2006), the authors introduced a mixed integer programming
model (MIP) to address UPMSPs. More so, in (Rocha et al.
2008), two MIP models were proposed to solve UPMSPs
and an efficient algorithm, called branch-and-bound(B&B).
In (Fanjul-Peyro et al. 2019), the authors presented a MIP
model and a mathematical programming to solve UPMSPs
with JSDMDSTs.

Recently, meta-heuristic (MH) methods have been widely
employed in various optimization problems, includingUPM-
SPs and cloud scheduling (Attiya et al. 2020). For example,
the variable neighborhood search (VNS) was employed by
Pacheco et al. (2018) to deal with UPMSPs with sequence-
dependent setup times, but with only one machine. The
VNS also had been applied for large instances of UPMSPs
with setup times in (De Paula et al. 2007). In (Logendran
et al. 2007), Tabu search (TS) algorithm was applied to
enhance six algorithms for solving UPMSPs. Genetic algo-
rithm (GA) is also utilized for UPMSPs as proposed by
Vallada and Ruiz (2011). Yilmaz Eroglu et al. (2014) pro-
posed a modified GA to address the UPMSPs with setup
time. In their study, the GA is enhanced by applying a
local search algorithm that enhances the search power of the
GA. In (Bektur and Saraç 2019), two MH methods called
TS and simulated annealing (SA) with a MIP model were
proposed to address UPMSPs by minimizing the tardiness.
The SA also applied by (Hamzadayi and Yildiz 2016a, b)
with several dispatching rules methods to address the prob-
lems of identical parallel machines. In (Pakzad-Moghaddam
2016), particle swarm optimization (PSO) was implemented
to address jobs scheduling problems of the uniform par-
allel machines (Pakzad-Moghaddam 2016). Lin and Ying

(2014) proposed an enhanced artificial bee colony (ABC)
algorithm to address UPMSP problems by minimizing the
makespan. Moreover, the improved ABC had been evalu-
ated and compared with several existed methods and showed
better performance. Jouhari et al. (2019) proposed a combi-
nation of the SAand sine–cosine algorithm (SCA) for solving
UPMSPs with JSDMDSTs. The SCA is applied to improve
the search performance of the SA, and the combined model
was evaluated and compared to several MH methods, such
as the originals SA and SCA, and it showed a better perfor-
mance.

In (Arroyo et al. 2019), the authors presented an itera-
tive greedy (IG) algorithm and a MIP model to solve the
UPMSPs. As authors mentioned, the IG algorithm showed
better performance than several MH methods, including ant
colony optimization (ACO), discrete differential evolution,
and SA. Mir and Rezaeian (2016) proposed a hybrid PSO
and GA to solve UPMSPs by minimizing the total machine
load.

Besides the performance achieved by the previous UPM-
SPs methods based on MH techniques, they still suffer from
some limitations that affect their performance. For example,
some of thesemethods give the exploration phasemore atten-
tion than the exploitation phase. In contrast, some method
made the improvement of the exploitation ability is the main
target. Thus, solutions can attract to the optimal local point.
In addition, according to the no free lunch theorem that
assumes there is no one algorithm that can be solved all
optimization problems with the same performance. So, this
motivated us to present an alternative method to tackling the
UPMSPs problem with JSDMDSTs. This method depends
on an improved whale optimization algorithm (WOA) using
firefly algorithm (FA) that is used as a local search algo-
rithm; the proposed method is called WOAFA. The WOA is
an MH algorithm presented by Mirjalili and Lewis (2016).
WOA simulates behaviors of humpback whales and it has
been applied in various applications, such as feature selection
(Mafarja and Mirjalili 2017), image segmentation (El Aziz
et al. 2017), global optimization problems (Trivedi et al.
2016), flow shop scheduling problem (Abdel-Basset et al.
2018), sentiment analysis (Akyol and Alatas 2020), gas
consumption prediction (Qiao et al. 2020), and others (Mir-
jalili et al. 2020). The FA is also a nature-inspired MH that
mimics the flashing behavior of fireflies, proposed by Yang
(2009); Yang andHe (2013). It has been utilized in numerous
applications, such as image processing (Yang 2020), cloud
computing scheduling (Rajagopalan et al. 2020), forecast-
ing models (Zhou et al. 2019), opinion leader classification
(Jain and Katarya 2019), and other applications (Nayak et al.
2020).

The proposed WOAFA is a new hybrid approach to solve
UPMSPs by exploiting the power of the WOA, which is
improved using the operators of the FA, where the FA is
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utilized as the local search method for the WOA. There-
fore, the proposed WOAFA starts by generating random
individuals to represent UPMSPs solutions. The dimension
of each individual is represented by job numbers, and each
individual value represents the index of the machine that
executes a corresponding job. Moreover, to determine the
best individual solution, the fitness function is measured to
evaluate each individual solution. Thereafter, the probabil-
ity fitness value of each individual is computed. Therefore,
the individual solutions will be updated based on the com-
puted probability by exploitingWOA or FA operators. Thus,
previous steps are executed until meeting the terminal crite-
ria.

In short, the contributions of this study are described as
follows:

– Propose an alternative solution for UPMSPs with JSD-
MDSTs based on a modified WOA.

– The FA is applied as a local search for WOA to enhance
its search ability.

– The proposed method had been evaluated using a set of
UPMSP benchmark problems and compared to several
state-of-artsmethods. The evaluation outcomes approved
the high performance of the WOAFA.

The rest of this study is given as follows. The problem def-
inition is presented in Sect. 2, where the proposedWOAFA is
presented in Sect. 3. The experimental evaluation and com-
parison outcomes are given in Sect. 4. Section 5 presents the
conclusion and future direction.

2 Preliminaries

This section describes the problem definition, the main con-
cept of the whale optimization algorithm (WOA), and the
firefly algorithm (FA).

2.1 Problem definition

The problem of UPMSP can be mathematically modeled as a
mixed integer programming (MIP). The following equations
define this model (Ezugwu and Akutsah 2018):

Min Cmax (1)

Subject to

NJ∑

i=0,i �=1

Nm∑

k=1

xi jk = 1; ∀ j = 1, ..., NJ (2)

NJ∑

i=0,i �=h

xihk

−
NJ∑

j=0, j �=h

xhjk = 0; ∀h = 1, ..., NJ , k = 1, ..., Nm (3)

C j ≥ Ci +
Nm∑

k=1

xi jk(Si jk + pik)

+V

( Nm∑

k=1

xi jk − 1

)
, i = 0, ..., NJ (4)

NJ∑

j=0

x0 jk = 1,∀k = 1, ..., Nm (5)

C j ≤ Cmax ,∀ j = 1, ..., NJ , (6)

xi jk ∈ {0, 1},∀i = 0, ..., NJ ,

∀ j = 1, ..., NJ , ∀k = 1, ..., Nm, (7)

C0 = 0 (8)

C j ≥ 0, ∀ j = 0, ..., NJ (9)

where Eq. 1 works to minimize Cmax , whereas Cmax

denotes the total time required to complete the given pro-
cess (makespan).

Equation 2 works to ensure that each job is performed on
only one machine. When the job j th is executed after the job
i th on the machine kth, the xi, j,k value will equal to 1; else,
the value will be 0. Also, the xi, j,k value will equal to 1 if
the j th job is the last job on machine k. NJ and Nm are jobs’
number and of machines number, respectively.

Equation 3 is applied to ensure that there is only one
succeeding job and one preceding job. C j in Eq. 4 is the
completion time of j th job, whereas Si, j,k denotes the
sequence-dependent setup time to execute the jobs j th and
i th in sequence order on kth machine. The j th job can be
the first job on machine kth if the i equals to 0 as S0, j,k p j,k

denotes the computation time of the j th job on machine k;
this constraint is used to ensure the order of the jobs. This
can be performed using a large number (V = ∞), where∑Nm

k=1 xi jk = 1 if the job j th is ordered after the job i th,

therefore, V (
∑Nm

k=1 xi jk −1) = 0 and C j = Ci + p jk + Si jk .
Else, when the job j th does not ordered after the job i th, then∑Nm

k=1 xi jk = 0, and thus, V (
∑Nm

k=1 xi jk − 1) = −V .
In Eq. 5, x0, j,k = 1 when the j th job is the first job on

machine kth; else x0, j,k = 0. This equation is employed to
ensure that only one job is listed first at each machine.

Equation 6 checks the completion time C j of any job to
be less than the Cmax , whereas the solution x takes a binary
value by Eq. 7. Equation 8 gives zero completion time to job
0, while Eq. 9 ensures that all completion times for all jobs
are larger than zero.
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2.2 Whale optimization algorithm (WOA)

The WOA is an optimization method proposed by Mirjalili
and Lewis (2016). It emulates the behavior of the humpback
whales. InWOA, thewhale position represents the solutionof
the problemand is updated based on the behavior of thewhale
in attacking the prey Zb. There are two attacking methods;
the first one is the encircling method. It updates the whale
position using Eq. 10

Di = |B × Zb(t) − Zi (t)| (10)

Zi (t + 1) = Zb(t) − A × Di (11)

where Di denotes the distance between Zb(t) and Zi (t). t is
the current iteration. A and B are coefficients and calculated
by:

A = 2a × r − a (12)

B = 2r (13)

a = a − t
a

tm
(14)

where r is a random value ∈ [0, 1]. a is constantly decreased
from 2 to 0 in the updating phase. tm is the max iterations
number).

The second one is the bubble-net method. It applied the
shrinking encircling (if a is decreased in Eq. 12) or spiral
updating position by applying the helix-shaped to simulate
the whale movement that can be applied by the following
equation:

Z(t + 1) = D′ × ebl × cos(2πl) + Zb(t) (15)

where b is a random variable. l is also a random number
∈ [−1, 1]
In addition, the whales can swim around the Zb using the
shrinking circle and a spiral-shaped path at the same time.
Therefore, Eq. 16 can be applied to update the position:

Z(t + 1) =
{
Zb(t) − A × D i f p ≥ 0.5

D′ × ebl × cos(2πl) + Zb(t) i f p < 0.5

(16)

The WOA can also update its position by using a ran-
dom search whale Zr instead of the best whale Z∗ as in the
following equation:

Z(t + 1) = Zr − A × D (17)

D = |B × Zr − Z(t)| (18)

The steps of the WOA are described in Algorithm 1.

Algorithm 1Whale optimization algorithm
1: Generate the whale’s population Z with size N .
2: Calculate the fitness function each whale.
3: Determine the best whale based on the fitness values.
4: while t <= tm do
5: for each solution Zi do
6: Calculate the parameters a, p, A, and B.
7: if p ≥ 0.5 then
8: Update Zi using Equation (15).
9: else
10: if | A |≥ 1 then
11: Update Zi using Equation (17).
12: else
13: Update Zi using Equation (10).
14: end if
15: end if
16: end for
17: t =t+1
18: end while t < tm

2.3 Firefly algorithm (FA)

The FA is an optimization algorithm proposed by Yang
(2010). It is based on the simulation of the flashing behavior
of fireflies in nature. The behaviors of the FA are based on
the rule: as the firefly is unisex, each one attracts to other
ones. Also, the brighter one will attract the less bright one.
Therefore, there is a relation between the brightness and
attractiveness, whereas the attractiveness and brightness are
increased if the distance between fireflies is decreased. If any
firefly is brighter than the others, it will fly randomly. In addi-
tion, the firefly’s brightness is depended on the landscape of
the objective function.

Moreover, the attractiveness (β) between two fireflies can
be calculated by Eq. 19:

β = β0 × e(−γm2) (19)

whereγ denotes the light absorption coefficient.β0 = 1 is the
attractiveness at the distance m between i-th and Zi fireflies
equals 0. The m is calculated by the following equation:

mi j = ||Zi − Z j || =
√√√√

d∑

k=1

(Zik − Z jk)2 (20)

The i firefly moves to another brighter j firefly by the
following equation:

Zi = Zi + β × (Zi − Z j ) + r4 × εi (21)

where, r4 is a random value ∈ [0, 1]. εi ∈ N (μ, σ ) denotes
a random vector.
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Algorithm 2 Firefly algorithm
1: Generate the fireflies solutions Zi (i = 1, 2, ..., N ).
2: Compute the fitness value for Zi .
3: Light intensity Ii at Zi is determined by f (Zi )

4: Determine the light absorption coefficient γ
5: repeat
6: for i = 1 : N do
7: for j = 1 : i do
8: if fi < f j then
9: Move the i-th firefly Zi towards the j-th firefly.
10: end if
11: Update the attractiveness.
12: Update the position of firefly.
13: end for
14: end for
15: Save the best solution.
16: until ( Stop condition )
17: Output the best solution.

3 The proposedWOAFA

This section introduces the proposed WOAFA to solve
UPMSP with setup times. It utilizes bothWOA and FA algo-
rithms. In more detail, the operators of FA are utilized to
enhance the exploitation ability of the WOA by serving as a
local search. Figure 1 illustrates the flowchart of the proposed
WOAFA.

In general, theWOAFA begins by creating a random inte-
ger population which represents the solution to start solving
the UPMSP. Then, theWOA initials optimizing the solutions
X . The solutions are evaluated using the objective func-
tion (to minimize the makespan). Therefore, the smallest
makespan indicates the best solution. After that, each solu-
tion is updated using either the operators of WOA or the
operators of FA. This switching is performed using a condi-
tion based on the probability. This condition is calculated by
Eq. 22. All optimizing steps are repeated until reaching the
stop condition. In the following subsections, the proposed
WOAFA is described in detail.

3.1 Initial solution

The WOAFA begins by initializing the values of all parame-
ters. Then it creates a random population X . The dimension
of this population is the number of jobs NJ in the inter-
val [1, Nm]. For instance, assume there are 10 jobs and 4
machines; therefore, the population X can be represented as
[x1, x2, x3, ..., xNJ ] = [3 1 4 3 2 3 1 1 3 2]. As in this exam-
ple, the jobs (1, 4, 6, 9) will be implemented on machine
number three, whereas jobs (2, 7, 8) will be implemented on
machine number one, while jobs (3) and jobs (5, 10) will be
implemented on machine number four and two, respectively.
After that, the fitness function is computed for the population
X by Eq. 1 to determine the best solution.

Fig. 1 Phases of the proposed method

3.2 Updating solution

To update the population, the proposed WOAFA evaluates
each solution (Zi , i = 1, 2, ..., N ) to check its quality by
applying the fitness function as in Eq. 1 and the solution with
the smallest select Cmax is determined as the best solution
Zb. Then, the WOAFA calculates the probability (Pri ) for
each individual as in Eq. 22:

Pri = Fiti∑N
k=1 Fitk

, (22)

where Fiti is the fitness value for the current solution and
FitK is the total of the fitness values. Thence, if Pri > 0.5,
then the FA will be applied to update the solution Zi ; else,
the WOA will be applied.
The stop condition is checked after each loop; if it is true,
the WOAFA will terminate the process ad output the best
solution; else, the WOAFA will repeat its steps. The steps of
the WOAFA are given in Algorithm 3.
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Algorithm 3 The steps of the WOAFA
1: Initial the values for all variables and the initial solutionswith dimen-

sion NJ .
2: Evaluate the quality of each Zi by computing its fitness value using

1.
3: Save the best solution Zb.
4: repeat
5: for i = 1 : N do
6: Compute the probability Pri
7: if Pri > 0.5 then
8: Update the solution using the operators of FA.
9: else
10: Update the solution using the operators of WOA.
11: end if
12: Update the parameters.
13: Evaluate the quality of each Zi by the fitness function.
14: Save the best solution Zb.
15: end for
16: until Stop condition

The complexity of the developedWOAFA depends on the
number of iterations, size of the population, and the dimen-
sion of the tested problem. In addition, it depends on the
complexity of the quick sort algorithm. Therefore, the com-
plexity of WOAFA can be formulated as:

O(WOAFA) = NProb ∗ O(WOA)

+(N − NProb) ∗ O(FA) (23)

So, in the best case,

O(WOAFA) = O(t × (NProb × N × D + (N − NProb)

×(N × D + NlogN ))) (24)

O(WOAFA) = O(t × N (N × D + (N − NProb)

×logN )), (25)

while, in the worst case,

O(WOAFA) = O(t × N 2(D + N − NProb)) (26)

where NProb is the number of solutions updated using oper-
ators of WOA.

4 Evaluation experiments and discussions

In this section, the WOAFA is evaluated for solving UPMSP
using a benchmark dataset. Different numbers of jobs and
machines are used. The results of the WOAFA are evaluated
and compared with well-known meta-heuristic optimization
methods, namely SA, PSO, GA, FA, ABC, ACO,WOA, and
SCA.

The dataset used in this study is well-known dataset (Web-
Site 2019 (accessed Oct. 1, 2019).

It contains six types of jobs NJ (i.e., 20, 40, 60, 80, 100,
and 120) and six types of jobs machines Nm (i.e., 2, 4, 6,
8, 10, and 12) in a discrete uniform distribution U[50, 100].
We evaluate 36 problems; each problem (NJ × Nm) has 15
replication instances; thence, the total number of running is
540 times.

The results in the experiments are presented by the relative
percentage deviation (RPD). Thismeasure is used to compare
the results and determine the performance of the proposed
method against other methods. RPD is calculated by Eq. 27.

RPD = Cmax (method) − Cmax (WOAFA)

Cmax (WOAFA)
× 100, (27)

where Cmax (method) denotes the mean of the makespan
values of the each method.

The experiments were performed using Core i5 CPU and
8 GB RAM under MS-Windows 10 (64bit) using MATLAB
R2014b. The average results of 15 different instances were
computed for each problem. For a fair comparison, all meth-
ods were applied in the same environment; besides, the stop
condition in this studywas set to themax computation time in
milliseconds. Therefore, the optimization process runs for a
part of the time proportional to the job numbers and machine
numbers.

maxT ime = n(
m

2
) × tc (28)

where n and m are the numbers of current jobs and cur-
rent machines, respectively. tc is set to 50 as recommended
by Diana et al. (2015). The experiments’ parameters for all
methods are set as in their original papers. Besides, sev-
eral previous papers are revised to determine the best paper
meters for the proposed method such as (Mirjalili and Lewis
2016; Yang 2009; AbdElaziz et al. 2021; Alameer et al. 2019;
Abd ElAziz et al. 2018; Mohamed et al. 2016).

4.1 Computational results

The comparison results between theWOAFA and other algo-
rithms are illustrated in Tables 1-2 that show the average of
RPD and standard deviation, respectively. From the results
of RPD, it can notice that the WOAFA outperforms other
algorithms overall the tested instances except at themachines
2 and Jobs from 80:120, the FA is better. By analyzing the
results of RPD at each job, it can be observed that there are
variants of RPD values: some of them are under 25% and
this includes SA, GA, FA, ACO, WOA, and SCA. The sec-
ond category has RPD higher than 25%, and this contains
three algorithms, namely PSO, GA, and ABC, as shown in
Fig. 2.

Moreover, Figure 3 shows the average of RPD at each
machine, and it can be seen that theWOAFAmethodprovides
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Table 1 Results of the relative
percentage deviation (RPD) for
all methods

Machines Jobs SA PSO GA FA ABC ACO WOA SCA

2 20 0.29 16.45 16.45 1.93 45.84 34.85 0.53 0.32

40 2.27 15.95 15.91 0.18 13.02 4.05 0.59 0.09

60 4.05 18.47 18.36 0.27 14.68 6.40 1.53 0.47

80 4.79 17.11 16.83 -1.35 13.54 5.48 1.27 0.04

100 60.00 18.63 18.57 -1.21 14.68 8.02 1.93 0.13

120 7.12 18.95 18.91 -1.59 16.43 9.74 1.72 0.02

4 20 18.92 63.12 64.35 18.48 39.25 18.32 11.21 5.50

40 5.48 50.33 51.31 1.61 28.94 9.51 18.37 6.81

60 10.37 51.29 52.14 6.20 37.45 13.60 10.21 2.16

80 12.87 63.29 62.18 6.37 36.08 15.00 11.35 1.20

100 14.92 58.02 57.61 9.16 35.23 18.19 8.36 3.34

120 5.90 51.98 49.38 0.01 23.48 9.07 9.47 6.24

6 20 9.28 61.70 61.70 9.51 25.68 9.80 8.06 5.20

40 5.90 88.31 88.31 2.72 38.18 14.00 19.04 15.49

60 5.61 77.64 77.83 0.32 44.19 9.56 5.25 2.41

80 8.44 85.88 85.87 1.03 46.10 14.09 5.59 6.42

100 18.27 73.23 74.04 0.49 41.22 14.16 20.10 16.02

120 14.55 90.03 87.85 1.96 47.62 14.94 6.79 1.00

8 20 19.70 46.58 46.58 20.36 27.61 22.40 1.22 17.90

40 6.63 76.03 76.03 6.74 41.21 7.31 6.06 13.19

60 6.18 118.36 118.36 3.62 53.33 9.62 8.35 5.39

80 24.28 97.24 94.48 1.79 46.65 12.10 14.07 6.61

100 11.30 105.39 105.59 0.01 57.85 24.37 13.74 4.02

120 13.94 110.39 109.57 2.64 50.31 20.56 14.74 5.17

10 20 32.11 59.92 59.92 3.54 34.91 32.11 34.29 1.86

40 16.29 48.98 48.98 15.65 25.99 16.52 9.51 5.67

60 5.28 88.95 88.95 1.96 36.83 9.49 17.76 7.65

80 9.28 112.65 113.45 0.56 53.98 10.26 8.31 7.66

100 16.38 128.10 128.75 0.03 56.29 20.65 11.07 4.96

120 21.94 128.66 129.29 5.09 69.09 27.92 19.75 7.83

12 20 18.77 33.66 33.66 18.60 19.54 18.90 15.10 7.37

40 14.70 57.46 57.50 14.32 25.90 16.37 2.74 6.84

60 22.29 96.45 96.37 8.65 43.86 20.78 14.87 37.30

80 14.11 109.02 109.02 9.23 43.36 17.23 15.78 19.44

100 26.38 135.90 136.10 11.81 79.15 35.98 22.45 27.42

120 20.56 125.62 124.32 8.05 69.40 30.03 21.14 14.25

better makespan overall tested machines except at machine
2 where the FA provides better results WOAFA. Moreover,
the average over all the tested machine and jobs that given in
Fig. 4 illustrates the following; the large improvements are
achieved at PSO, GA, and ABC, while the smallest improve-
ment can be noticed by comparing the proposed WOAFA
and the FA.

Furthermore, the results of STD are shown in Table 2
and Fig. 5. We can notice that the proposed WOAFA is
more stable than others, followed by FA and SA, that allo-
cate the second and third rank, respectively. Also, PSO and

GA are the worst stable methods. This high performance of
the developed WOAFA method results from combining the
advantages of WOA and FA. This combination makes the
WOA and FA to update the solutions in competitive manner
according to the quality of each solution.

In addition, the computational times for all methods are
recorded in Table 3. From the table, we can see that the
WOAFA method showed competitive results compared to
the other method, especially with SA, PSO, and WOA. The
WOAFA improved the computational time of the original FA
because it has an effective ability to balancing between the
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Table 2 Results of the STD for
all methods

Machines Jobs SA PSO GA FA ABC ACO WOA SCA WOAFA

2 20 28.10 43.92 43.92 39.74 610.37 597.99 51.75 29.58 37.82

40 33.27 43.32 41.97 13.70 71.35 38.41 78.53 8.73 20.95

60 74.98 89.78 87.13 27.31 82.64 67.79 131.57 55.84 33.65

80 64.14 71.04 64.50 46.31 74.43 67.29 93.62 27.52 24.18

100 48.67 111.99 108.24 26.37 79.75 62.80 111.07 25.76 29.14

120 98.94 100.49 89.74 27.60 168.38 77.68 113.94 18.38 20.71

4 20 182.38 181.68 176.90 186.45 173.33 185.60 94.04 66.72 26.46

40 51.21 281.93 271.21 36.20 105.92 110.28 171.02 119.35 8.39

60 223.97 395.52 403.15 245.18 292.21 231.50 178.21 23.61 29.17

80 265.44 607.16 566.45 296.58 247.56 277.41 304.66 52.90 19.14

100 502.15 822.35 795.31 452.37 667.53 508.89 280.54 274.93 25.00

120 40.56 841.74 684.39 38.53 240.77 73.22 373.24 405.06 31.48

6 20 64.64 167.06 167.06 65.90 79.98 74.82 103.74 108.08 58.42

40 76.83 341.38 341.38 77.55 109.18 81.30 129.33 154.73 66.03

60 166.27 430.98 427.94 163.54 262.52 171.61 120.17 141.45 78.77

80 126.08 493.83 470.44 106.37 280.64 218.58 120.77 120.79 78.38

100 598.11 500.47 492.55 121.41 323.54 177.63 330.16 353.22 86.00

120 301.61 636.02 607.61 188.43 514.58 263.07 198.17 129.74 103.92

8 20 156.82 119.88 119.88 155.68 139.60 155.06 135.63 152.21 143.47

40 152.01 219.39 219.39 150.53 69.87 148.96 92.66 178.49 95.23

60 110.51 524.74 524.74 110.71 222.17 103.84 107.48 88.94 67.38

80 460.81 280.55 240.73 201.00 374.42 215.39 244.55 119.32 108.48

100 125.82 611.19 606.10 129.94 332.05 179.72 144.05 133.88 124.46

120 146.69 476.00 455.39 158.47 384.00 275.06 194.57 133.60 109.79

10 20 187.38 178.62 178.62 77.77 175.48 187.38 263.23 52.61 89.40

40 273.43 110.50 110.50 280.22 190.90 271.01 285.87 166.06 336.92

60 166.55 224.34 224.34 185.38 82.13 174.71 143.89 194.02 90.05

80 165.74 440.42 432.99 90.49 189.81 100.16 156.43 106.04 82.80

100 126.07 603.51 600.76 79.05 146.44 168.29 103.89 114.35 101.91

120 382.61 680.49 670.43 154.24 239.56 210.94 163.79 95.62 39.39

12 20 293.46 245.85 245.85 294.47 289.15 292.69 249.13 266.48 187.39

40 359.06 237.44 237.56 360.08 296.62 351.93 295.61 329.68 304.32

60 154.93 268.12 268.29 140.96 126.59 159.79 198.03 348.95 120.48

80 202.82 394.99 394.99 240.49 191.85 161.08 182.37 261.69 169.63

100 140.65 352.89 352.47 133.57 186.99 220.49 113.45 172.75 109.20

120 52.74 332.86 325.05 134.39 198.02 147.14 132.93 60.01 46.48

two algorithms to obtain the optimal results in a short time.
The average CPU time for all machines and jobs is illustrated
in Fig. 6.

4.2 Statistical analysis

This subsection shows the results of the Wilcoxon-rank sum
test as a non-parametric test. It is employed to indicate if there
are significant differences between theWOAFAand the com-
pared methods or not at the value of the p − value less than
0.05. Table 4 lists the test results, and we can notice the sig-

nificant differences between the proposedmethod (WOAFA)
andPSO,GA, andABC.Whereas othermethods obtained the
p − value greater than 0.05, this can be because the results’
difference of these methods is small in the same computation
time; however, the WOAFA obtained the best results in most
of all problems.

Furthermore, the Friedman test is used to statistically rank
the algorithms, where the lowest Friedman’s value refers to
the best algorithm; Table 5 lists the results for each machine.
From the table, we can see that theWOAFAmethod obtained
the best rank in all machines, and therefore, it achieved the
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Fig. 2 Average of RPD at each
job

Fig. 3 Average of RPD at each
machine

Fig. 4 Average of PRD overall
the tested machine and job

first rank. The FA obtained the second rank in all machines
except formachine 2, followed by the SCA,WOA, SA,ACO,
ABC, GA, and PSO, respectively.

To sum up the above discussions, it can be noticed that
the best results of the WOAFA because the WOAFA befits
from the advantages of both WOA and FA such as the WOA
have many stages and strategies to update the solutions and
explore the search domain, whereas the FA helps the pro-
posed method to increase its exploitation and exploration
phases. In contrast, the WOAFA has some limitations, such

as it falls in local optima in the machine (2) at jobs (80, 100,
and 120); therefore, it needs to be improved in solving the
small number of machines. The proposed method’s stabil-
ity is good, but it needs more enhancement, especially in
machines (2 and 10).
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Fig. 5 Average of ST D overall
the tested machine and job

Table 3 Results of the
computation time for all
methods

Machines Jobs SA PSO GA FA ABC ACO WOA SCA WOAFA

2 20 1.002 1.002 1.007 1.005 1.007 1.002 1.001 1.006 1.006

40 2.004 2.003 2.006 2.006 2.013 2.009 2.002 2.007 2.009

60 3.002 3.005 3.011 3.009 3.014 3.046 3.003 3.008 3.003

80 4.005 4.010 4.019 4.017 4.020 4.074 4.006 4.014 4.009

100 5.003 5.006 5.018 5.020 5.029 5.156 5.011 5.014 5.015

120 6.003 6.017 6.026 6.583 6.018 6.065 6.011 6.031 6.011

4 20 2.001 2.002 2.003 2.003 2.004 2.006 2.001 2.004 2.004

40 4.001 4.001 4.006 4.006 4.013 4.023 4.002 4.007 4.007

60 6.002 6.001 6.012 6.009 6.020 6.057 6.005 6.007 6.010

80 8.002 8.002 8.021 8.014 8.031 8.075 8.005 8.013 8.014

100 10.003 10.006 10.026 10.015 10.021 10.033 10.012 10.019 10.016

120 12.003 12.019 12.037 12.025 12.038 12.260 12.006 12.023 12.023

6 20 3.001 3.002 3.005 3.004 3.008 3.002 3.003 3.003 3.004

40 6.002 6.003 6.010 6.006 6.006 6.013 6.003 6.007 6.008

60 9.001 9.003 9.014 9.009 9.023 9.056 9.004 9.009 9.011

80 12.002 12.002 12.022 12.016 12.028 12.031 12.002 12.016 12.012

100 15.002 15.005 15.015 15.019 15.023 15.024 15.013 15.017 15.023

120 18.002 18.010 18.022 18.027 18.052 18.033 18.009 18.026 18.033

8 20 4.001 4.001 4.004 4.003 4.004 4.005 4.002 4.004 4.005

40 8.001 8.004 8.007 8.005 8.013 8.011 8.004 8.005 8.007

60 12.002 12.005 12.016 12.011 12.017 12.060 12.005 12.011 12.013

80 16.002 16.003 16.012 16.014 16.034 16.049 16.004 16.020 16.015

100 20.003 20.013 20.032 20.021 20.049 20.210 20.013 20.021 20.020

120 24.003 24.013 24.026 24.021 24.046 24.104 24.007 24.023 24.022

10 20 5.001 5.002 5.004 5.004 5.008 5.004 5.003 5.005 5.004

40 10.001 10.004 10.011 10.008 10.016 10.008 10.005 10.006 10.009

60 15.001 15.004 15.013 15.013 15.011 15.015 15.004 15.011 15.010

80 20.002 20.009 20.021 20.013 20.023 20.056 20.005 20.019 20.015

100 25.004 25.008 25.024 25.023 25.020 25.124 25.012 25.021 25.024

120 30.004 30.005 30.029 30.026 30.050 30.212 30.003 30.024 30.023

12 20 6.001 6.002 6.005 6.006 6.004 6.001 6.001 6.005 6.004

40 12.001 12.002 12.007 12.007 12.006 12.018 12.001 12.010 12.007

60 18.002 18.006 18.018 18.013 18.025 18.010 18.007 18.013 18.013

80 24.002 24.011 24.019 24.018 24.028 24.102 24.011 24.016 24.020

100 30.003 30.016 30.032 30.019 30.034 30.070 30.013 30.021 30.013

120 36.004 36.006 36.033 36.028 36.050 36.321 36.015 36.020 36.015
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Fig. 6 Average of the
computation time (in seconds)
overall the tested machines and
jobs

Table 4 Results of Wilcoxon
rank-sum test

SA PSO GA FA ABC ACO WOA SCA

p-value 0.440 0.003 0.003 0.689 0.044 0.359 0.427 0.570

Table 5 Results of Friedman
rank

Machine SA PSO GA FA ABC ACO WOA SCA WOAFA

2 4.500 8.583 7.750 2.167 7.333 6.333 4.000 2.833 1.500

4 4.500 8.500 8.500 3.167 7.000 5.333 4.333 2.667 1.000

6 4.500 8.500 8.500 2.667 7.000 5.167 4.333 3.333 1.000

8 4.167 8.583 8.417 2.833 7.000 5.500 4.000 3.500 1.000

10 4.583 8.250 8.750 2.500 7.000 5.583 4.500 2.833 1.000

12 4.333 8.500 8.500 2.667 7.000 5.500 3.333 4.167 1.000

5 Conclusions

This study proposed an alternative meta-heuristic-based
solution for unrelated parallel machine scheduling prob-
lems (UPMSPs) with job sequence-dependent and machine-
dependent setup times (JSDMDSTs). The proposedWOAFA
method is a hybrid of whale optimization algorithm (WOA)
and firefly algorithm (FA). The FA is employed as a local
search method to enhance the exploitation ability of the
WOA. We used a well-known benchmark dataset to test
the performance of the proposed WOAFA, including six
machines (i.e., 2, 4, 6, 8, 10, and 12 machines) and six
jobs (i.e., 20, 40, 60, 80, 100, and 120 jobs). Moreover, we
compare the proposedWOAFAwith several meta-heuristics,
such as FA, WOA, SA, PSO, GA, ACO, ABC, and SCA.
Furthermore, the Wilcoxon rank-sum test was employed to
evaluate the proposed method over other methods. Overall
results showed that the proposed WOAFA outperforms sev-
eral previous methods.

According to the good performance of the proposed
WOAFA, in the future, it may be applied in other optimiza-

tion problems, such as feature selection, scheduling issues of
cloud computing, image processing, or time series forecast-
ing.
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